JPH01107514A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01107514A
JPH01107514A JP26444687A JP26444687A JPH01107514A JP H01107514 A JPH01107514 A JP H01107514A JP 26444687 A JP26444687 A JP 26444687A JP 26444687 A JP26444687 A JP 26444687A JP H01107514 A JPH01107514 A JP H01107514A
Authority
JP
Japan
Prior art keywords
region
semiconductor
specific region
radius
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26444687A
Other languages
Japanese (ja)
Inventor
Shingo Yamaguchi
新吾 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26444687A priority Critical patent/JPH01107514A/en
Publication of JPH01107514A publication Critical patent/JPH01107514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device which eliminates cracks and has high reliability by forming the specific region of a semiconductor polycrystal in a substantially rectangular shape in which its four vertexes are rounded in radius of curvature of 1/4-1/2 of the short side of the region in a step of single crystallizing the region by irradiating the region with a laser. CONSTITUTION:A semiconductor polycrystalline layer is provided on an insulating substrate, and, in a step of single crystallizing a specific region of a semiconductor polycrystal by irradiating the region with a laser, a semiconductor crystalline region O of the single-crystallized specific region is rounded at the four vertexes in a substantially rectangular shape in radius of curvature of 1/3 of the short side W of the region O. Thus, stresses concentrated at the four vertexes are dispersed, thereby becoming smaller than the stress corresponding to the elastic limit of an insulator 2 thereby to prevent it from cracking.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、絶縁基板上に半導体多結晶層を設け、前記半
導体多結晶に特定領域にレーザーを照射することにより
前記特定領域を単結晶化してなる半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a semiconductor polycrystalline layer on an insulating substrate, and irradiates a laser beam to a specific region of the semiconductor polycrystal to make the specific region into a single crystal. The present invention relates to semiconductor devices.

従来の技術 第2図はこの従来の半導体装置の構造図を示すものであ
り、1.3,5,7,9,11.13゜15.17は半
導体多結晶領域にレーザーの照射をすることによシ単結
晶化された半導体結晶領域である。18は前記半導体結
晶領域1,3,5゜7.9,11.13,15.17に
隣接して、前記半導体結晶領域1.3,5,7,9,1
1 。
Conventional technology Figure 2 shows a structural diagram of this conventional semiconductor device, and 1.3, 5, 7, 9, 11.13° and 15.17 are laser irradiation to the semiconductor polycrystalline region. This is a semiconductor crystal region that has been made into a single crystal. 18 is adjacent to the semiconductor crystal region 1, 3, 5° 7.9, 11.13, 15.17, and the semiconductor crystal region 1.3, 5, 7, 9, 1
1.

13.15.17の周囲に形成される絶縁物で、補記半
導体結晶領域の間を分離する。2oは前記半導体結晶領
域17の頂点の1つである。22は前記半導体結晶領域
9の頂点の1つである。24は前記半導体結晶領域1の
頂点の1つである。
An insulator formed around 13, 15, and 17 separates the supplementary semiconductor crystal regions. 2o is one of the vertices of the semiconductor crystal region 17. 22 is one of the vertices of the semiconductor crystal region 9. 24 is one of the vertices of the semiconductor crystal region 1.

26は前記半導体結晶領域1−7の頂点20から発生す
るヒビ割れである。28は前記半導体結晶領域9の頂点
22から発生するヒビ割れである。
26 is a crack generated from the apex 20 of the semiconductor crystal region 1-7. 28 is a crack generated from the apex 22 of the semiconductor crystal region 9.

3oは前記半導体結晶領域1の頂点24から発生するヒ
ビ割れである。
3o is a crack generated from the apex 24 of the semiconductor crystal region 1.

発明が解決しようとする問題点 しかしながら上記のような構成では、半導体多結晶領域
′にレーザーの照射をすることにょシ前記半導体多結晶
領域を単結晶化して半導体結晶1 。
Problems to be Solved by the Invention However, in the above-described configuration, it is necessary to irradiate the semiconductor polycrystalline region with a laser beam, thereby converting the semiconductor polycrystalline region into a single crystal.

3.5,7,9,11.13,15.17を形成する工
程に於いて、前記半導体結晶領域1,3゜5.7,9,
11.13,15;17が矩形の形状をしている為に、
前記半導体結晶領域1.3゜6.7,9,11.13,
16.17の熱膨張率と、前記半導体結晶領域1.3,
5,7,9゜11.13,15.17の周囲に隣接して
なる絶縁物18の熱膨張率との差によって発生して前記
半導体結晶領域1.3,5,7,9,11.13゜15
.17から前記絶縁物18に作用する応力が、前記半導
体結晶領域1.3,5,7,9,11 。
3.5, 7, 9, 11.13, 15.17, the semiconductor crystal regions 1,3°5.7,9,
11.13,15;17 are rectangular, so
The semiconductor crystal region 1.3°6.7,9,11.13,
a coefficient of thermal expansion of 16.17, and the semiconductor crystal region 1.3,
5, 7, 9 degrees 11.13, 15.17 due to the difference in thermal expansion coefficient of the insulator 18 adjacent to the periphery of the semiconductor crystal regions 1.3, 5, 7, 9, 11. 13°15
.. The stress acting on the insulator 18 from the semiconductor crystal region 1.3, 5, 7, 9, 11.

13.15.17の頂点に集中し、例えば、半導体結晶
領域1,9.17の頂点20.22.24に集中した応
力が、前記絶縁物18の弾性の限界に相当する応力より
も大きくなることにより、前記半導体結晶の頂点20.
22.24より・ヒビ割れ26.28.30が発生する
という問題点を有していた。
13.15.17, for example, the stress concentrated at the vertices 20.22.24 of the semiconductor crystal region 1, 9.17 becomes larger than the stress corresponding to the elastic limit of the insulator 18. By this, the apex 20. of the semiconductor crystal.
From 22.24 - There was a problem in that cracks 26.28.30 occurred.

本発明は、以上の問題点を解決するだめに、絶縁基板上
に半導体多結晶層を設け、前記半導体多結晶の特定領域
にレーザーを照射、することによシ前記特定領域を単結
晶化する工程に於いて、前記特定領域が概略矩形でかつ
その四頂点が前記特定領域の短辺の易から捧の半径の曲
率で角取りをされている形状にすることによって、信頼
性の高い半導体装置を提供することを目的とする。
In order to solve the above problems, the present invention provides a semiconductor polycrystalline layer on an insulating substrate, and irradiates a laser to a specific region of the semiconductor polycrystal, thereby converting the specific region into a single crystal. In the process, a highly reliable semiconductor device is achieved by forming the specific region into a substantially rectangular shape whose four vertices are rounded with a radius of curvature equal to the radius of the short side of the specific region. The purpose is to provide

問題点を解決するだめの手段 本発明は以上の問題点を解決するために、絶縁基板上に
半導体多結晶層を設け、前記半導体多結晶の特定領域に
レーザーを照射することにより前記特定領域を単結晶化
する工程に於いて、前記特定領域が概略矩形でかつその
四頂点が前記特定領域の短辺の%から棒の半径の曲率で
角取りをされている形状であることを備えた半導体装置
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a semiconductor polycrystalline layer on an insulating substrate, and irradiates a laser beam to a specific region of the semiconductor polycrystal. In the step of single crystallization, the specific region is approximately rectangular, and the four vertices of the specific region are rounded by a radius of a rod from % of the short side of the specific region. It is a device.

作用 本発明は前記した構成により、絶縁基板上に半導体多結
晶層を設け、前記半導体多結晶の特定領域にレーザーを
照射することにより前記特定領域゛を単結晶化する工程
に於いて、前記特定領域が概略矩形でかつその四頂点が
前記特定領域の短辺の秀から棒の半径の曲率で角取りを
されている形状となると、前記特定領域の四頂点に集中
する応力が分散されて、周囲に隣接する絶縁物の弾性の
限界に対応する応力よりも小さくなり、ヒビ割れの発生
が防止される。
According to the above-described configuration, the present invention provides a semiconductor polycrystalline layer on an insulating substrate, and in the step of irradiating a laser beam to a specific region of the semiconductor polycrystalline material, the specific region is made into a single crystal. When the region is approximately rectangular and its four vertices are rounded with the radius of the rod from the short side of the specific region, the stress concentrated at the four vertices of the specific region is dispersed, This is less than the stress corresponding to the elastic limit of the surrounding insulating material and prevents cracks from forming.

実施例 第1図は本発明の実施例における半導体装置の構造図を
示すものである。第1図において、0は概略矩形でかつ
その四頂点がその短辺Wの猶の半径の曲率Rで角取りを
されている形状の半導体結晶領域、2は前記半導体結晶
領域0の周囲に隣接して形成され、前記半導体結晶領域
0を電気的に周囲より絶縁する絶縁物、Lは前記半導体
結晶の長辺である。
Embodiment FIG. 1 shows a structural diagram of a semiconductor device in an embodiment of the present invention. In FIG. 1, 0 is a semiconductor crystal region having a roughly rectangular shape whose four vertices are rounded with a radius of curvature R equal to the radius of the short side W, and 2 is adjacent to the periphery of the semiconductor crystal region 0. L is the long side of the semiconductor crystal.

以上のように本実施例によれば、絶縁基板上に半導体多
結晶層を設け、前記半導体多結晶の特定領域にレーザー
を照射することにより前記特定領域を単結晶化する工程
て於いて、単結晶化した前記特定領域である半導体結晶
領域0を概略矩形でかつその四頂点が前記半導体結晶領
域0の短辺Wの発の半径の曲率で角取シをすることによ
シ、その四頂点に集中する応力が分散されて、前記絶縁
物2の弾性の限界に対応する応力よシも小さくなシ、ヒ
ビ割れを防止することができる。
As described above, according to this embodiment, in the step of providing a semiconductor polycrystalline layer on an insulating substrate and irradiating a laser beam to a specific region of the semiconductor polycrystal, the specific region is made into a single crystal. The semiconductor crystal region 0, which is the crystallized specific region, is roughly rectangular, and its four vertices are rounded with a radius of curvature from the short side W of the semiconductor crystal region 0. The stress concentrated on the insulator 2 is dispersed, and the stress corresponding to the elastic limit of the insulator 2 is also reduced, making it possible to prevent cracks.

また、第1の実施例において、半導体結晶領域Oの四頂
点の前記半導体結晶領域0の短辺Wの発の半径の曲率R
で角取りをする方法として次の2つの方法がある。1つ
は、四頂点が前記半導体結晶領域0の短辺Wの羞の半径
の曲率で角堰シをされた形状の領域を除いた半導体多結
晶層の表面に下側の前記半導体多結晶層に対して照射し
たレーザーを遮光し得る耐レーザー遮光マスク層を被着
させ、次いでレーザーを照射して前記半導体多結晶層の
表面の非マスク(露出)部分を単結晶化することにより
半導体多結晶領域0を形成する方法がある。もう1つは
、概略矩形でかつその四頂点がその領域の短辺Wの猶の
半径の曲率で角取りをされている形状である半導体多結
晶領域にのみレーザーを照射して単結晶化して前記半導
体結晶領域0を形成する方法である。
Further, in the first embodiment, the radius of curvature R of the short side W of the semiconductor crystal region 0 at the four vertices of the semiconductor crystal region O is
There are two methods for cutting corners: One is to attach the lower semiconductor polycrystalline layer to the surface of the semiconductor polycrystalline layer except for a region in which the four vertices are square-shaped with a radius of curvature of the short side W of the semiconductor crystal region 0. The semiconductor polycrystalline layer is formed by depositing a laser-resistant masking layer capable of blocking the laser beam irradiated on the semiconductor polycrystalline layer, and then irradiating the semiconductor polycrystalline layer with a laser beam to single-crystallize the non-masked (exposed) portion of the surface of the semiconductor polycrystalline layer. There is a method to form region 0. The other method is to irradiate a laser only on a semiconductor polycrystalline region, which is roughly rectangular and whose four vertices are rounded with a radius of curvature equal to the short side W of the region, to form a single crystal. This is a method for forming the semiconductor crystal region 0.

なお、第1の実施例において、曲率の半径Rは前記半導
体結晶領域の短辺Wの殆としたが、曲率の半径Rは短辺
Wのμ前後の値より捧までの任意の値が効果的である。
In the first embodiment, the radius R of curvature was set to almost the short side W of the semiconductor crystal region, but the radius R of curvature can be set to any value from the value around μ of the short side W to the maximum value. It is true.

発明の詳細 な説明したように、本発明によれば、絶縁基板上に半導
体多結晶層を設け、前記半導体多結晶の特定領域にレー
ザーを照射することにより前記特定領域を単結晶化する
工程に於いて、前記特定領域が概略矩形でかつその四頂
点が前記特定領域の短辺の騙から捧の半径の曲率で角取
りをされる形状であることKより、その頂点からヒビ割
れが発生することを防止することができ、その実用的効
果は大きい。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a semiconductor polycrystalline layer is provided on an insulating substrate, and a specific region of the semiconductor polycrystal is irradiated with a laser to make the specific region into a single crystal. Since the specific area is approximately rectangular and its four vertices are rounded with a curvature of the radius of the short side of the specific area, cracks will occur from the vertices. This can be prevented and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例の半導体装置の構造図
、第2図は従来の半導体装置の構造図である。 0・・・・・半導体結晶領域%1,3,5,7,9゜1
1.13,15,17゛・・・・・半導体結晶領域、2
゜18・・・・・絶縁物、20.22.24・・・・・
・半導体結晶領域1,9.17の頂点、26.28.3
0・・・・・化ビ割れ、R・・・・・・曲率半径、L・
・・・・・半導体結晶領域の長辺、W・・・・・・半導
体結晶領域の短辺。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名o−
−−半導体堵&傾塊 2− 絶縁物 第1図 /、 3. S、 7.9. II、 /、3. Is
、 /7−−一半11イ1(非旨5警11(域 ta−−・絶縁物 20.2424−牛IjI一体諸晶領域°の頂煎26、
2#、 3θ−ヒビ割れ 第2511
FIG. 1 is a structural diagram of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a structural diagram of a conventional semiconductor device. 0...Semiconductor crystal area%1, 3, 5, 7, 9°1
1.13,15,17゛...semiconductor crystal region, 2
゜18... Insulator, 20.22.24...
・Vertex of semiconductor crystal region 1, 9.17, 26.28.3
0...Crack crack, R...Radius of curvature, L.
... Long side of semiconductor crystal region, W ... Short side of semiconductor crystal region. Name of agent: Patent attorney Toshio Nakao and one other person o-
--Semiconductor and tilted block 2- Insulator Figure 1/, 3. S, 7.9. II, /, 3. Is
, /7--One-half 11-1 (non-effect 5-11 (area ta--・Insulator 20.2424-Cow IjI Integral crystal area ° top 26,
2#, 3θ-Crack No. 2511

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上に半導体多結晶層を設け、前記半導体
多結晶の特定領域にレーザーを照射することにより前記
特定領域を単結晶化する工程に於いて、前記特定領域が
概略矩形でかつその四頂点が前記特定領域の短辺の1/
2より小さく、かつ正の値の半径の曲率で角取りをされ
ている形状であることを特徴とする半導体装置。
(1) In the step of providing a semiconductor polycrystalline layer on an insulating substrate and turning the specific region into a single crystal by irradiating the specific region of the semiconductor polycrystal with a laser, the specific region is approximately rectangular and The four vertices are 1/1 of the short side of the specific area.
1. A semiconductor device characterized in that the semiconductor device has a rounded shape with a radius of curvature smaller than 2 and a positive value.
(2)概略矩形である半導体多結晶の特定領域の四頂点
が前記特定領域の短辺の1/2より1/4までの値の半
径の曲率で角取りをされている形状であることを特徴と
する特許請求の範囲第1項に記載の半導体装置。
(2) The four vertices of a specific region of a roughly rectangular semiconductor polycrystal are rounded with a radius of curvature from 1/2 to 1/4 of the short side of the specific region. A semiconductor device according to claim 1.
JP26444687A 1987-10-20 1987-10-20 Semiconductor device Pending JPH01107514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26444687A JPH01107514A (en) 1987-10-20 1987-10-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26444687A JPH01107514A (en) 1987-10-20 1987-10-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01107514A true JPH01107514A (en) 1989-04-25

Family

ID=17403308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26444687A Pending JPH01107514A (en) 1987-10-20 1987-10-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01107514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086509A (en) * 2001-06-26 2003-03-20 Fujitsu Ltd Method of forming polycrystalline semiconductor film
JP2009158619A (en) * 2007-12-25 2009-07-16 Advanced Lcd Technologies Development Center Co Ltd Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086509A (en) * 2001-06-26 2003-03-20 Fujitsu Ltd Method of forming polycrystalline semiconductor film
JP2009158619A (en) * 2007-12-25 2009-07-16 Advanced Lcd Technologies Development Center Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH01107514A (en) Semiconductor device
JPH0351289B2 (en)
JPS5886717A (en) Forming of single crystal silicon film
JPS59136926A (en) Manufacture of semiconductor device
JPH01120035A (en) Semiconductor device and its manufacture
JPH0442358B2 (en)
JPS58180019A (en) Semiconductor base body and its manufacture
JPS62239520A (en) Formation of soi film
JPS6236866A (en) Manufacture of semiconductor device
JPS627112A (en) Manufacture of semiconductor single crystal layer
JPS6248015A (en) Solid phase growth of semiconductor layer
JPS5919312A (en) Manufacture of semiconductor device
JPS60164316A (en) Formation of semiconductor thin film
JPS5895815A (en) Preparation of semiconductor device having laminate structure
JPS5946021A (en) Semiconductor device and its manufacture
JPH01239093A (en) Method for crystal growth
JPS63150911A (en) Manufacture of semiconductor device
JPS61197492A (en) Method of forming semiconductor crystal
JPS6321819A (en) Manufacture of semiconductor device
JPH026221B2 (en)
JPS63142810A (en) Manufacture of semiconductor device
JPS59123225A (en) Formation of single crystal silicon layer on insulating layer
JPS5837916A (en) Manufacture of semiconductor device
JPS61194828A (en) Zn diffusing process by tube opening method
JPS6037721A (en) Quantum annealing method