JPH01103868A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01103868A
JPH01103868A JP4116988A JP4116988A JPH01103868A JP H01103868 A JPH01103868 A JP H01103868A JP 4116988 A JP4116988 A JP 4116988A JP 4116988 A JP4116988 A JP 4116988A JP H01103868 A JPH01103868 A JP H01103868A
Authority
JP
Japan
Prior art keywords
base region
region
conductivity type
compensation base
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4116988A
Other languages
Japanese (ja)
Other versions
JPH0824130B2 (en
Inventor
Hisashi Takemura
武村 久
Masahiko Nakamae
正彦 中前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63041169A priority Critical patent/JPH0824130B2/en
Publication of JPH01103868A publication Critical patent/JPH01103868A/en
Publication of JPH0824130B2 publication Critical patent/JPH0824130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To speed up an element by a method wherein a second compensatory base region, lower in impurity concentration that a first compensatory base region and higher in impurity concentration than a base region, is formed between the first compensatory base region and an emitter region. CONSTITUTION:Between a P<+>-type first compensatory base region 6 and an emitter region 10, a P-type second compensatory base region 9 is formed, reducing base resistance between the first compensatory base region 6 and the emitter region 10 and enabling an element to operate at higher speeds. With the second compensatory base region 9 being lower in impurity concentration than the first compensatory base region 6, reduction is small in emitter.base junction breakdown strength in the presence of contact of the second compensatory base region 9 with the emitter region 10. This design does not increase the collector.base capacity.

Description

【発明の詳細な説明】 従来、この種のバイポーラ・トランジスタは第4図に示
すように、N型エピタキシャル層3内に形成された補償
ベース領域16AとN型のエミッタ領域10とはベース
領域5によ多接続された構造となっているか、または第
5図に示すように、ベース領域5内に形成されたエミッ
タ領域10とセルファラインで形成された補償ベース領
域16Bとは、はぼ接する構造となっていた。これはペ
ース領域5との接続を確実にするために補償ベースコン
酸化膜、8はN型多結晶シリコン膜、11はアルミ電極
、18はP型多結晶シリコン膜である。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, in this type of bipolar transistor, as shown in FIG. Alternatively, as shown in FIG. 5, the emitter region 10 formed in the base region 5 and the compensation base region 16B formed by the self-line are in contact with each other. It became. This is a compensation base conductor oxide film to ensure connection with the space region 5, 8 is an N-type polycrystalline silicon film, 11 is an aluminum electrode, and 18 is a P-type polycrystalline silicon film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイポーラ・トランジスタの補償ベース
領域とエミッタ領域間のベース抵抗は、第4図に示した
構造のものでは、ベース領域5中の不純物濃度で決まる
ため、このベース抵抗の低′1 減にはペース領域5中の不純物炭度を高める必要かめる
が、高濃度ベースでは電流増幅率の低下などトランジス
タ特性上問題となる。
The base resistance between the compensated base region and the emitter region of the conventional bipolar transistor mentioned above is determined by the impurity concentration in the base region 5 in the structure shown in FIG. Although it is necessary to increase the impurity carbon content in the pace region 5, a high concentration base causes problems in terms of transistor characteristics such as a decrease in current amplification factor.

また、第5図に示した構造のものでは、補償ベース領域
16Bとエミッタ領域10が接しているために、ベース
抵抗は低減化されるが、エミッタ・ベース接合耐圧はエ
ミッタ領域10と補償ベース領域16Bの接合耐圧で決
まシ著しく低下する。
In addition, in the structure shown in FIG. 5, since the compensation base region 16B and the emitter region 10 are in contact with each other, the base resistance is reduced, but the emitter-base junction breakdown voltage is This is determined by the junction breakdown voltage of 16B, which significantly decreases.

また、補償ベース領域16Bをエミッタ領域10に接近
させる際に横方向への拡散を行うが、これは同時に尿さ
方向への不純物原子の拡散も行なわれるため、補償ベー
ス領域16BがN型埋込コレクタ領域2に近接し、コレ
クタ・ベース接合耐圧の低下、コレクタ・ベース容量の
増加を生じる欠点がある。
Further, when the compensation base region 16B is brought close to the emitter region 10, diffusion is performed in the lateral direction, but at the same time impurity atoms are diffused in the direction of the emitter region. The disadvantage is that it is close to the collector region 2, resulting in a decrease in collector-base junction breakdown voltage and an increase in collector-base capacitance.

本発明の第1の目的は、ベース抵抗値の低減された半導
体装置およびその製造方法を提供することにある。本発
明の第2の目的は、エミッタ・ベース接合及びコレクタ
・ベース接合耐圧の低下の少い半導体装置およびその製
造方法を提供することにある。
A first object of the present invention is to provide a semiconductor device with a reduced base resistance value and a method for manufacturing the same. A second object of the present invention is to provide a semiconductor device and a method for manufacturing the same in which the breakdown voltages of the emitter-base junction and the collector-base junction are less reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1の半導体装置は、半導体基板の一主面上に
形成された第1導電型のコレクタ領域と、該コレクタ領
域内に形成された第2導電型のべ一ス領域と第2導電型
の第1の補償ベース領域と、前記ベース領域内に形成さ
れた第1導電型のエミッタ領域とを有する半導体装置に
おいて、前記第1の補償ベース領域とエミッタ領域間に
該第1の補償ベース領域に接続しエミッタ領域に接する
第2の補償ベース領域を設けたものである。
A first semiconductor device of the present invention includes a collector region of a first conductivity type formed on one main surface of a semiconductor substrate, a base region of a second conductivity type formed in the collector region, and a base region of a second conductivity type formed in the collector region. In a semiconductor device having a first compensation base region of a conductivity type and an emitter region of a first conductivity type formed in the base region, the first compensation base region and the emitter region are provided with the first compensation base region. A second compensation base region connected to the base region and in contact with the emitter region is provided.

本発明の半導体装置の第1の製造方法は、半導体基板の
一主面上にコレクタ領域となる第1導電型のエピタキシ
ャル層を形成する工程と、前記エピタキシャル層中に第
2導電型のベース領域と該ベース領域に接続しベース領
域よシネ純物誕度の高い第1の補償ベース領域を形成す
る工程と、前記ベース領域内に前記第1の補償ベース領
域に接続し第1の補償ベース領域よシネ細物濃度の低い
第2の補償ベース領域を形成する工程とを含んで構成さ
れる。
A first method for manufacturing a semiconductor device of the present invention includes the steps of forming an epitaxial layer of a first conductivity type to serve as a collector region on one main surface of a semiconductor substrate, and a base region of a second conductivity type in the epitaxial layer. forming a first compensation base region connected to the base region and having a higher cine purity content than the base region; a first compensation base region connected to the first compensation base region in the base region; forming a second compensation base region having a low concentration of fine particles.

本発明の半導体装置の第2の製造方法は、半導体基板の
一主面上にコレクタ領域となる第1導電型のエピタキシ
ャル層と第1の絶縁膜とを順次形成する工程と、前記絶
縁膜の所定部分を除去したのち全面に第2導電型不純物
を含む多結晶シリコン膜と第2の絶縁膜とを順次形成す
る工程と、前記エピタキシャル層に接する前記多結晶シ
リコン膜と第2の絶縁膜の所定部分に開孔部を形成した
のち、熱処理し、多結晶シリコン膜中の不純物を拡散さ
せて前記エピタキシャル層内に第1の補償ベース領域を
形成する工程と、全面に第2導電型不純物を含むガラス
膜を形成したのち異方性エツチングを行ない、該ガラス
膜を前記開孔部の側面にのみ残す工程と、熱処理を行な
い前記開孔部の側面に残されたガラス膜よp不純物を前
記エピタキシャル層内に拡散させ前記第1の補償ベース
領域に接続し、第1の補償ベース領域よシネ純物譲度の
低い第2の補償ベース領域を形成する工程とを含んで構
成される。
A second method for manufacturing a semiconductor device of the present invention includes the steps of sequentially forming an epitaxial layer of a first conductivity type and a first insulating film, which will become a collector region, on one main surface of a semiconductor substrate; a step of sequentially forming a polycrystalline silicon film containing a second conductivity type impurity and a second insulating film on the entire surface after removing a predetermined portion; After forming an opening in a predetermined portion, heat treatment is performed to diffuse impurities in the polycrystalline silicon film to form a first compensation base region in the epitaxial layer, and a second conductivity type impurity is added to the entire surface. A step of forming a glass film containing the aperture and then performing anisotropic etching to leave the glass film only on the side surfaces of the aperture, and a step of performing heat treatment to remove the p impurities from the glass film left on the side surface of the aperture. forming a second compensation base region having a lower cine purity tolerance than the first compensation base region by diffusing into the epitaxial layer and connecting to the first compensation base region.

本発明の第2の半導体装置は、半導体基板の一主面上に
形成された第1導電型のコレクタ領域と、該コレクタ領
域内に形成された第2導il型のベース領域と第2導電
型の第1の補償ベース領域と、前記ベース領域内に形成
された第1導電型のエミッタ領域とを有する半導体装置
において、前記第1の補償ベース領域とエミッタ領域間
に該第1の補償ベース領域に接続しエミッタ領域に近接
する第2の補償ベース領域を設けたものである。
A second semiconductor device of the present invention includes a collector region of a first conductivity type formed on one main surface of a semiconductor substrate, a base region of a second conductivity type formed in the collector region, and a base region of a second conductivity type formed in the collector region. In a semiconductor device having a first compensation base region of a mold type and an emitter region of a first conductivity type formed in the base region, the first compensation base region is provided between the first compensation base region and the emitter region. A second compensation base region is provided adjacent to the emitter region and adjacent to the emitter region.

本発明の半導体装置の第3の製造方法は、半導体基板の
一主面上にコレクタ領域となる第1導電型のエピタキシ
ャル層と第1の絶縁膜とを順次形成する工程と、前記絶
縁膜の所定部分を除去したのち全面に第2導電型不純物
を含む多結晶シリコン膜と第2の絶縁膜とを順次形成す
る工程と、前記エピタキシャル層に接する前記多結晶シ
リコン膜と第2の絶縁膜の所定部分に開孔部を形成した
のち熱処理し、多結晶シリコン膜中の不純vIJk拡散
させて前記エピタキシャル層内に第1の補償ベース領域
全形成する工程と、全面に第2導電型不純物を含むガラ
ス膜を形成したのち異方性エツチングを行ない、該ガラ
ス膜を前記開孔部の側面にのみ残す工程と熱処理を行な
い前記開孔部の側面に残されたガラス膜より不純物を前
記エピタキシャル層内に拡散させ、前記第1の補償ベー
ス領域に接続し第1の補償ベース領域よシネ細物濃度の
低い第2の補償ベース領域を形成する工程と、全面に第
2導電型不純物をイオン注入し前記開孔部内のエピタキ
シャル層にベース領域を形成する工程と、ベース領域上
を含む全面に第3の絶縁膜を形成したのち異方性エツチ
ングを行ない該第3の絶縁膜を前記開孔部内の側面に形
成されたガラス膜表面にのみ残す工程とを含んで構成さ
れる。
A third method for manufacturing a semiconductor device of the present invention includes the steps of sequentially forming an epitaxial layer of a first conductivity type and a first insulating film, which will become a collector region, on one main surface of a semiconductor substrate; a step of sequentially forming a polycrystalline silicon film containing a second conductivity type impurity and a second insulating film on the entire surface after removing a predetermined portion; After forming an opening in a predetermined portion, heat treatment is performed to diffuse the impurity vIJk in the polycrystalline silicon film to form the entire first compensation base region in the epitaxial layer, and the step includes a second conductivity type impurity on the entire surface After forming the glass film, anisotropic etching is performed to leave the glass film only on the side surfaces of the opening, and heat treatment is performed to remove impurities from the glass film left on the side of the opening into the epitaxial layer. forming a second compensation base region which is connected to the first compensation base region and has a lower cine concentration than the first compensation base region; and ion implantation of second conductivity type impurities into the entire surface. A step of forming a base region in the epitaxial layer within the opening, and after forming a third insulating film on the entire surface including the base region, anisotropic etching is performed to form the third insulating film within the opening. The method includes a step of leaving only the surface of the glass film formed on the side surface.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(e)は本発明の第1の実施例を説明す
るだめの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
に拡散法によシヒ素原子を添加しNmの埋込コレクタ領
域2を形成し、次いでエピタキシャル成長法によシN型
エピタキシャル層3を1μmの厚さに堆積し、熱酸化法
によ、9200OA厚のシリコン酸化膜4を形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
Arsenic atoms are doped by a diffusion method to form a Nm buried collector region 2, then an N-type epitaxial layer 3 is deposited to a thickness of 1 μm by an epitaxial growth method, and a 9200 OA thick layer is deposited by a thermal oxidation method. A silicon oxide film 4 is formed.

続いてイオン注入法によシ選択的にホウ素イオンをN型
エピタキシャル層内に注入し、ベース領域5を形成する
Subsequently, boron ions are selectively implanted into the N-type epitaxial layer by an ion implantation method to form the base region 5.

次に、第1図(b)に示すように、イオン注入法によシ
ホウ素イオンをベース領域5よシ高濃度となるように選
択的にイオン注入し、P 型の第1の補償ベース領域6
を形成する。
Next, as shown in FIG. 1(b), boron ions are selectively implanted using an ion implantation method so as to have a higher concentration than the base region 5. 6
form.

次に、第1図(e)に示すように、写真蝕刻法によりペ
ース領域5と第1の補償ベース領域6上のシリコン酸化
膜4を選択的に除去し、CVD法によりホウ素原子を添
加したホウ素含有ガラス膜7を200OAの浮式に堆積
させる。
Next, as shown in FIG. 1(e), the silicon oxide film 4 on the pace region 5 and the first compensation base region 6 was selectively removed by photolithography, and boron atoms were added by CVD. A boron-containing glass film 7 is deposited in a floating manner at 200 OA.

次に、第1図(dlに示すように写真蝕刻法によりホウ
素含有ガラス膜7にベース領域5に通じるエミッタ領域
形成用の開孔部を選択的に設けたのち、1000℃の熱
処理を施しペース領域よシ高濃度のP型の第2の補償ベ
ース領域9をホウ素含有ガラス膜からのホウ素原子の拡
散によって形成する。
Next, as shown in FIG. 1 (dl), openings for forming an emitter region communicating with the base region 5 are selectively provided in the boron-containing glass film 7 by photolithography, and then heat treatment is performed at 1000°C. A second compensation base region 9 of P type with a higher concentration than the region is formed by diffusion of boron atoms from a boron-containing glass film.

続いてヒ素原子を添加したN型多結晶シリコン膜8をC
VD法によjD2000A の厚さに堆積し、900℃
の熱処理を施しエミッタ領域10を形成したのち、N型
多結晶シリコン膜8を写真蝕刻法によシバターニングし
エミッタ領域lo上にのみ残す。
Next, the N-type polycrystalline silicon film 8 doped with arsenic atoms is
Deposited to a thickness of 2000A by VD method and heated at 900℃
After the emitter region 10 is formed by heat treatment, the N-type polycrystalline silicon film 8 is patterned by photolithography, leaving only the emitter region lo.

1000“Cの熱処理によ勺第2の補償ベース領域9を
形成する際、拡散されるホウ素濃度が第1の補償ベース
領域6中のホウ素濃度よりも低濃度となるようにホウ素
含有ガラス膜4幇つ素濃度をあらかじめ制御することが
必要である。
When forming the second compensation base region 9 by heat treatment at 1000"C, the boron-containing glass film 4 is heated such that the boron concentration diffused is lower than the boron concentration in the first compensation base region 6. It is necessary to control the oxidizing element concentration in advance.

次に、第1図(e)に示すように、ホウ素含有ガラスd
7に写真蝕刻法によシ第1の補償ベース領域6に通じる
開孔部を設け、厚さ1μmのアルミ電極11を選択的に
形成し半導体装置を完成させる。
Next, as shown in FIG. 1(e), a boron-containing glass d
An opening communicating with the first compensation base region 6 is formed in 7 by photolithography, and an aluminum electrode 11 having a thickness of 1 μm is selectively formed to complete the semiconductor device.

尚、上記第1の実施例においては、ホウ素含有ガラス膜
7によシ第2の補償ベース領域を形成した場合について
説明したが、このホウ素含有、・・ラス膜7で次のよう
にしてベース領域も形成することができる。すなわち、
N型エピタキシャル層3に第1の補償ベース領域6を形
成したのち酸化膜4を形成する6次でベース領域上の酸
化膜4を除去したのち、ホウ素含有ガラス膜7全形成し
熱処理してペース領域5を形成する。次でエミッタ領域
上のホウ素含有ガラス膜7を除去したのち、再び熱処理
し、ベース領域に第2の補償ベース領域を形成する。
In the first embodiment, the second compensation base region is formed using the boron-containing glass film 7. Regions can also be formed. That is,
After forming the first compensating base region 6 on the N-type epitaxial layer 3, the oxide film 4 is formed. After removing the oxide film 4 on the base region in the sixth step, the boron-containing glass film 7 is completely formed, heat-treated, and then pasted. Region 5 is formed. Next, after removing the boron-containing glass film 7 on the emitter region, heat treatment is performed again to form a second compensation base region in the base region.

このように構成された本第1の実施例においては、P型
の第1の補償ベース領域6とエミッタ領域10間にP型
の第2の補償ベース領域が形成されているため、第1の
補償ベース領域6とエミッタ領域10間のベース抵抗は
低減され、素子の高速化が実現できる。
In the first embodiment configured as described above, since the P-type second compensation base region is formed between the P-type first compensation base region 6 and the emitter region 10, The base resistance between the compensation base region 6 and the emitter region 10 is reduced, and the speed of the device can be increased.

また、第2の補償ベース領域9の不純物濃度は第1の補
償ベース領域の不純物濃度より低濃度であるため、エミ
ッタ領域10と接してもエミッタ・ベース接合耐圧の低
下は小さく、また、コレクタ・ベース容量も増加するこ
とはない。
Further, since the impurity concentration of the second compensation base region 9 is lower than that of the first compensation base region, the drop in the emitter-base junction breakdown voltage is small even if it comes into contact with the emitter region 10, and the collector The base capacity will not increase either.

この第2の補償ベースはホウ素含有ガラス膜によシセル
ファラインで形成できるため、工程は簡単である。
Since this second compensation base can be formed using a boron-containing glass film using a self-alignment process, the process is simple.

第2図(a)〜(f)は本発明の第2の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 2(a) to 2(f) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

まず第2図(a)に示すように、P型シリコン基板1に
ヒ素をイオン注入しN型埋込コレクタ領域2を形成した
のち、N型エピタキシャル層3を形成する0次で熱酸化
法によシ厚さ2000Aの酸化膜4と選択酸化法によシ
フイールド酸化膜4Aを形成したのち、埋込コレクタ領
域2上のエピタキシャル層にリンをイオン注入しコレク
タ引出し領域2Aを形成する。
First, as shown in FIG. 2(a), arsenic is ion-implanted into a P-type silicon substrate 1 to form an N-type buried collector region 2, and then a zero-order thermal oxidation method is applied to form an N-type epitaxial layer 3. After forming an oxide film 4 with a thickness of 2000 Å and a shift field oxide film 4A by selective oxidation, phosphorous is ion-implanted into the epitaxial layer on the buried collector region 2 to form a collector lead-out region 2A.

次に第2図ら)に示すように、活性領域の酸化膜4に開
孔部を設けたのち、ホウ素を添加したP型多結晶シリコ
ン膜18を300OAの厚さに堆積しパターニングする
。続いて全面にCVD法によシ3000A厚の酸化膜(
以下CVD酸化膜という)12を堆積する。
Next, as shown in FIGS. 2A and 2B, after openings are formed in the oxide film 4 in the active region, a P-type polycrystalline silicon film 18 doped with boron is deposited to a thickness of 300 OA and patterned. Next, a 3000A thick oxide film (
12 (hereinafter referred to as a CVD oxide film) is deposited.

次に第2図(c)に示すように、エピタキシャル層上の
CVD#化膜12及びP型多結晶シリコン膜18に異方
性エツチング法によシ、選択的に開孔部を設け、100
0“0の熱処理を施し、P型多結晶シリコン膜18から
ホウ素原子をエピタキシャル層3中に拡散し、第1の補
償ベース領域6Aを形成した後、ホウ素含有ガラス膜7
を300OAの厚さに堆積する。
Next, as shown in FIG. 2(c), openings are selectively formed in the CVD # film 12 and the P-type polycrystalline silicon film 18 on the epitaxial layer by an anisotropic etching method.
After performing a heat treatment of 0"0 to diffuse boron atoms from the P-type polycrystalline silicon film 18 into the epitaxial layer 3 and forming the first compensation base region 6A, the boron-containing glass film 7
is deposited to a thickness of 300OA.

次に、第2図(d)に示すように異方性エツチング法に
よりホウ素含有ガラス膜7をCVD酸化膜12とP型多
結晶シリコン膜18の開孔部の側壁に残るようにエツチ
ングする。次で1000℃の熱処理を施し、開孔部の側
壁のホウ素含有ガラス膜7Aからエピタキシャル層3中
へホウ素原子を拡散させ、第2の補償ベース領域9Aを
形成し死後、開孔部よシイオン注入法によシセルファラ
インでホウ素原子をエピタキシャル層3中に添加し、ベ
ース領域5を形成する。
Next, as shown in FIG. 2(d), the boron-containing glass film 7 is etched by anisotropic etching so that it remains on the side walls of the openings of the CVD oxide film 12 and the P-type polycrystalline silicon film 18. Next, heat treatment is performed at 1000°C to diffuse boron atoms from the boron-containing glass film 7A on the side wall of the opening into the epitaxial layer 3 to form a second compensation base region 9A, and after death, silicon ions are implanted into the opening. Boron atoms are doped into the epitaxial layer 3 using a SiSelfa line to form a base region 5.

次に第2図(e)に示すように、CVD法によシ、多結
晶シリコン膜’12500Aの厚さに堆積し、ヒ素原子
をイオン注入法でこの多結晶シリコン膜中に添加し、パ
ターニングしてNff1多結晶シリコン膜8を形成する
。次で900℃の熱処理を施しN型多結晶シリコン膜8
からのヒ素原子をベース領域5中に拡散してエミッタ領
域lOを形成する。次に写真蝕刻法によシ埋込コレクタ
領域2及び第1の補償ベース領域6Aに通じる開孔部を
選択的にCVD酸化膜12に設ける。
Next, as shown in FIG. 2(e), a polycrystalline silicon film is deposited to a thickness of 12500A by CVD, arsenic atoms are added into this polycrystalline silicon film by ion implantation, and patterned. Then, an Nff1 polycrystalline silicon film 8 is formed. Next, the N-type polycrystalline silicon film 8 is subjected to heat treatment at 900°C.
The arsenic atoms from are diffused into the base region 5 to form the emitter region IO. Next, openings communicating with the buried collector region 2 and the first compensation base region 6A are selectively formed in the CVD oxide film 12 by photolithography.

次に第2図(f)に示すように、アルミを1μm厚にス
パッタ法によシ堆積し、パターニングしてアルミ電極1
1を形成する。
Next, as shown in FIG. 2(f), aluminum was deposited to a thickness of 1 μm by sputtering and patterned to form an aluminum electrode 1.
form 1.

この第2の実施例ではベース領域とエミッタ領域をセル
7アラインで形成する製造方法においても第2の補償ベ
ース領域をセルファラインで形成できるという利点があ
る。
This second embodiment has the advantage that the second compensation base region can be formed in a self-aligned manner even in a manufacturing method in which the base region and the emitter region are formed in a cell-aligned manner.

第3図(a)〜げ)は本発明の第3の実施例を説明する
ための工程順に示した半導体チップの断面図である。
FIGS. 3(a) to 3(a) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a third embodiment of the present invention.

まず、第3図(&)に示すように、P型シリコン基板1
に拡散法によシヒ素原子を選択的に添加し、N型埋込コ
レクタ領域2t−形成したのち、エピタキシャル法によ
シ厚さ1μmのN型エピタキシャル層3t−形成する。
First, as shown in FIG. 3(&), a P-type silicon substrate 1
After selectively doping arsenic atoms by a diffusion method to form an N-type buried collector region 2t-, an N-type epitaxial layer 3t- having a thickness of 1 μm is formed by an epitaxial method.

次で熱酸化によシ厚さ2000Aの酸化膜4と選択酸化
法によシ素子分離用のフィールド酸化膜4At−形成す
る。さらに拡酸法によシリン原子を選択的に添加しコレ
クタ引出し領域2Aを形成する。
Next, an oxide film 4 having a thickness of 2000 Å is formed by thermal oxidation and a field oxide film 4At for element isolation is formed by selective oxidation. Furthermore, syringe atoms are selectively added by the acid expansion method to form the collector lead-out region 2A.

次に第3図ら)に示すように、基板表面の酸化膜4に選
択的に開孔部を設けたのち、P型不純物としてホウ素を
添加したP型多結晶シリコン膜18を300OAの厚さ
に堆積し、開孔を覆うようにパターニングする。続いて
全面にCVD法によシCvD酸化膜12t−3000A
O厚さに堆積する。
Next, as shown in FIG. 3, etc., after selectively forming openings in the oxide film 4 on the substrate surface, a P-type polycrystalline silicon film 18 doped with boron as a P-type impurity is formed to a thickness of 300 OA. It is deposited and patterned to cover the opening. Subsequently, a CVD oxide film 12t-3000A is applied to the entire surface by CVD method.
Deposited to O thickness.

次に第3図(e)に示すように、CVD酸化膜12及び
P型多結晶シリコン膜18を異方性エツチング法によシ
同時に選択的にエツチングし、N型エピタキシャル層3
に通じる開孔部を設ける0次で900’Oの熱処理を施
こし、P型多結晶シリコン膜18からホウ素原子をN壓
エピタキシャル層3内へ拡散し、第1の補償ベース領域
6Aを形成したのち、ホウ素含有ガラス膜7を200O
Aの4嘔に堆積する。
Next, as shown in FIG. 3(e), the CVD oxide film 12 and the P-type polycrystalline silicon film 18 are simultaneously selectively etched by an anisotropic etching method, and the N-type epitaxial layer 3 is etched.
A zero-order heat treatment was performed at 900'O to form an opening leading to the pores, and boron atoms were diffused from the P-type polycrystalline silicon film 18 into the N-type epitaxial layer 3, thereby forming the first compensation base region 6A. Afterwards, the boron-containing glass film 7 was heated to 200O
It is deposited in the fourth layer of A.

次に第3図(d)に示すように異方性エツチング法によ
シホウ累含有ガラス膜7をエツチングし、CVD酸化膜
12とP型多結晶シリコン膜18の側壁に残す0次で1
000℃の熱処理を行い開孔部側壁のホウ素含有ガラス
膜7AよシN型エピタキシャル層3内にホウ素原子を拡
散し、第2の補償ベース領域9Aを形成した後、開孔部
よりイオン注入法によシ、ホウ素原子をN型エピタキシ
ャル層3中に添加し、ベース領域5を形成する。
Next, as shown in FIG. 3(d), the silica-containing glass film 7 is etched by an anisotropic etching method, and a zero-order one is left on the side walls of the CVD oxide film 12 and the P-type polycrystalline silicon film 18.
After performing heat treatment at 000°C to diffuse boron atoms into the boron-containing glass film 7A on the side wall of the opening and into the N-type epitaxial layer 3 to form a second compensation base region 9A, ion implantation is performed from the opening. Finally, boron atoms are added into the N-type epitaxial layer 3 to form the base region 5.

次に第3図(e)に示すように、不純物原子を含まない
絶縁膜14を200OA厚に堆積し異方性エツチング法
によシ、蝕刻し、側壁のホウ素含有ガラス膜7A上に残
すと同時に、CVD酸化膜12と酸化膜4に、コレクタ
引出し領域2Aに通じる開孔部全選択的に形成する0次
で多結晶シリコン膜を200OAの厚さに堆積し、ヒ素
原子をイオン注入法によシ、この多結晶シリコン膜中に
添加してN型多結晶シリコン膜8とする。続いて熱処理
を施してヒ素原子をベース領域5中へ拡散し、エミッタ
領域10を形成する。
Next, as shown in FIG. 3(e), an insulating film 14 containing no impurity atoms is deposited to a thickness of 200 OA, etched by anisotropic etching, and left on the boron-containing glass film 7A on the side wall. At the same time, a zero-order polycrystalline silicon film is deposited on the CVD oxide film 12 and the oxide film 4 to a thickness of 200 OA to selectively form all the openings leading to the collector extraction region 2A, and arsenic atoms are added by ion implantation. Then, it is added to this polycrystalline silicon film to form an N-type polycrystalline silicon film 8. Subsequently, heat treatment is performed to diffuse arsenic atoms into the base region 5 to form the emitter region 10.

次に第3図げ)に示すように、N型多結晶シリコン膜8
をパターニングした後、CVD酸化膜12にP型多結晶
シリコン膜18に通じる開孔部を設けた後、アルミ電極
11を選択的に形成する。
Next, as shown in Figure 3), an N-type polycrystalline silicon film 8
After patterning, an opening communicating with the P-type polycrystalline silicon film 18 is provided in the CVD oxide film 12, and then an aluminum electrode 11 is selectively formed.

木簡3の実施例では、開孔部側壁のホウ素含有ガラス膜
7AとN型多結晶シリコン膜8の曲は、不純物原子を含
まない絶縁膜14で隔たれているため、第2の補償ベー
ス領域9Aとエミッタ領域10の間にはベース領域5が
介在する。そしてその距離は絶縁膜14の膜厚によシ制
御され、本実施例の場合は約200OAと極めて近接し
たものとなる。従って、エミッタ・ベース耐圧を劣化さ
せることなく、ベース抵抗値を低下させることが可能と
なる。
In the embodiment of the wooden tablet 3, since the curve of the boron-containing glass film 7A and the N-type polycrystalline silicon film 8 on the side wall of the opening are separated by the insulating film 14 that does not contain impurity atoms, the second compensation base region 9A A base region 5 is interposed between the emitter region 10 and the emitter region 10 . The distance is controlled by the thickness of the insulating film 14, and in this embodiment, it is very close to about 200 OA. Therefore, it is possible to reduce the base resistance value without deteriorating the emitter-base breakdown voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、第1の補償ベース領域と
エミッタ領域の間に、高凝度の不純物を有する第1の補
償ベース領域よりも低濃度で、ペース領域よシも高濃度
の不純物濃度を有する第2の補償ベース領域を形成する
ことによシ、第1の補償ベース領域とエミッタ領域間の
ベース抵抗値を低減することができ、素子の高速化に効
果がある。
As explained above, in the present invention, between the first compensation base region and the emitter region, the impurity concentration is lower than that of the first compensation base region which has a high concentration of impurities, and the impurity concentration is also higher than that of the pace region. By forming the second compensation base region having a concentration, the base resistance value between the first compensation base region and the emitter region can be reduced, which is effective in increasing the speed of the device.

第2の補償ベース領域の不純物濃度は第1の補償ベース
領域の不純物濃度よシ低濃度であるため、エミッタ領域
と接してもエミッタ・ベース接合耐圧の低下は小さい。
Since the impurity concentration of the second compensation base region is lower than the impurity concentration of the first compensation base region, even if it comes into contact with the emitter region, the reduction in the emitter-base junction breakdown voltage is small.

また、第2の補償ベース領域は浅く形成されるために、
コレクタ・ベース接合耐圧の低下はなく、コレクタ・ベ
ース容量も増加することはない。
Furthermore, since the second compensation base region is formed shallowly,
There is no decrease in collector-base junction breakdown voltage, and no increase in collector-base capacitance.

更に、第2の補償ベース領域をエミッタ領域に近接して
設けることによシ、エミッタ・ベース接合耐圧の劣化を
生じることなくベース抵抗を低減することができる。
Furthermore, by providing the second compensation base region close to the emitter region, the base resistance can be reduced without deteriorating the emitter-base junction breakdown voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の第1〜第3の実施例を説明す
るだめの半導体チップの断面図、第4図及び第5図は従
来の半導体装置の一例の断面図でるる。 1・・・・・・P型シリコン基板、2・・・・・・N型
埋込コレクタ領域、3・・・・・・N型エピタキシャル
層、4・・・・・・シリコン酸化膜、4A・・・・・・
フィールド酸化膜、5・・・・・・ペース領域、6,6
A・・・・・・第1の補償ベース領域、7・・・・・・
ホウ素含有ガラス膜、8・・・・・・N型多結晶シリコ
ン膜、9.9A・・・・・・M2の補償ベース領域、1
0・旧・・エミッタ領域、11・・・・・・アルミ電極
、12・・・・・・CVD酸化膜、14・・・・・・不
純物を含まない絶縁膜、16A、16B・・・・・・補
償ベース領域、18・・・・・・P型多結晶シリコン膜
。 代理人 弁理士  内  原    晋−〇
1 to 3 are cross-sectional views of preliminary semiconductor chips for explaining first to third embodiments of the present invention, and FIGS. 4 and 5 are cross-sectional views of an example of a conventional semiconductor device. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... N-type buried collector region, 3... N-type epitaxial layer, 4... Silicon oxide film, 4A・・・・・・
Field oxide film, 5...Pace area, 6,6
A...First compensation base area, 7...
Boron-containing glass film, 8...N-type polycrystalline silicon film, 9.9A...M2 compensation base region, 1
0. Old... Emitter region, 11... Aluminum electrode, 12... CVD oxide film, 14... Insulating film containing no impurities, 16A, 16B... ...Compensation base region, 18...P-type polycrystalline silicon film. Agent Patent Attorney Susumu Uchihara -〇

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板の一主面上に形成された第1導電型の
コレクタ領域と、該コレクタ領域内に形成された第2導
電型のベース領域と第2導電型の第1の補償ベース領域
と、前記ベース領域内に形成された第1導電型のエミッ
タ領域とを有する半導体装置において、前記第1の補償
ベース領域とエミッタ領域間に該第1の補償ベース領域
に接続しエミッタ領域に接する第2の補償ベース領域を
設けたことを特徴とする半導体装置。
(1) A collector region of a first conductivity type formed on one principal surface of a semiconductor substrate, a base region of a second conductivity type formed within the collector region, and a first compensation base region of a second conductivity type. and an emitter region of a first conductivity type formed in the base region, wherein the first compensation base region is connected to the first compensation base region and is in contact with the emitter region between the first compensation base region and the emitter region. A semiconductor device characterized in that a second compensation base region is provided.
(2)半導体基板の一主面上にコレクタ領域となる第1
導電量のエピタキシャル層を形成する工程と、前記エピ
タキシャル層中に第2導電型のベース領域と該ベース領
域に接続しベース領域より不純物濃度の高い第1の補償
ベース領域を形成する工程と、前記ベース領域内に前記
第1の補償ベース領域に接続し第1の補償ベース領域よ
り不純物濃度の低い第2の補償ベース領域を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
(2) A first layer serving as a collector region on one principal surface of the semiconductor substrate.
forming an epitaxial layer of a conductive amount; forming in the epitaxial layer a base region of a second conductivity type and a first compensating base region connected to the base region and having a higher impurity concentration than the base region; A method of manufacturing a semiconductor device, comprising the step of forming a second compensation base region in a base region, which is connected to the first compensation base region and has a lower impurity concentration than the first compensation base region.
(3)半導体基板の一主面上にコレクタ領域となる第1
導電型のエピタキシャル層と第1の絶縁膜とを順次形成
する工程と、前記絶縁膜の所定部分を除去したのち全面
に第2導電型不純物を含む多結晶シリコン膜と第2の絶
縁膜とを順次形成する工程と、前記エピタキシャル層に
接する前記多結晶シリコン膜と第2の絶縁膜の所定部分
に開孔部を形成したのち熱処理し、多結晶シリコン膜中
の不純物を拡散させて前記エピタキシャル層内に第1の
補償ベース領域を形成する工程と、全面に第2導電型不
純物を含むガラス膜を形成したのち異方性エッチングを
行ない、該ガラス膜を前記開孔部の側面にのみ残す工程
と、熱処理を行ない前記開孔部の側面に残されたガラス
膜より不純物を前記エピタキシャル層内に拡散させ前記
第1の補償ベース領域に接続し第1の補償ベース領域よ
り不純物濃度の低い第2の補償ベース領域を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
(3) A first layer serving as a collector region on one principal surface of the semiconductor substrate.
A step of sequentially forming an epitaxial layer of a conductivity type and a first insulating film, and after removing a predetermined portion of the insulating film, a polycrystalline silicon film containing impurities of a second conductivity type and a second insulating film are formed on the entire surface. After forming openings in predetermined portions of the polycrystalline silicon film and the second insulating film that are in contact with the epitaxial layer, heat treatment is performed to diffuse impurities in the polycrystalline silicon film to form the epitaxial layer. a step of forming a first compensation base region within the opening, and a step of forming a glass film containing a second conductivity type impurity on the entire surface and then performing anisotropic etching to leave the glass film only on the side surface of the opening. Then, heat treatment is performed to diffuse impurities into the epitaxial layer from the glass film left on the side surface of the opening, and a second layer is formed which is connected to the first compensation base region and whose impurity concentration is lower than that of the first compensation base region. forming a compensation base region.
(4)半導体基板の一主面上に形成された第1導電型の
コレクタ領域と、該コレクタ領域内に形成された第2導
電型のベース領域と第2導電型の第1の補償ベース領域
と、前記ベース領域内に形成された第1導電型のエミッ
タ領域とを有する半導体装置において、前記第1の補償
ベース領域とエミッタ領域間に該第1の補償ベース領域
に接続しエミッタ領域に近接する第2の補償ベース領域
を設けたことを特徴とする半導体装置。
(4) A collector region of a first conductivity type formed on one principal surface of a semiconductor substrate, a base region of a second conductivity type formed within the collector region, and a first compensation base region of a second conductivity type. and an emitter region of a first conductivity type formed in the base region, wherein the first compensation base region is connected to the first compensation base region and is close to the emitter region between the first compensation base region and the emitter region. A semiconductor device characterized in that a second compensation base region is provided.
(5)半導体基板の一主面上にコレクタ領域となる第1
導電型のエピタキシャル層と第1の絶縁膜とを順次形成
する工程と、前記絶縁膜の所定部分を除去したのち全面
に第2導電型不純物を含む多結晶シリコン膜と第2の絶
縁膜とを順次形成する工程と、前記エピタキシャル層に
接する前記多結晶シリコン膜と第2の絶縁膜の所定部分
に開孔部を形成したのち熱処理し、多結晶シリコン膜中
の不純物を拡散させ前記エピタキシャル層内に第1の補
償ベース領域を形成する工程と、全面に第2導電型不純
物を含むガラス膜を形成したのち異方性エッチングを行
ない、該ガラス膜を前記開孔部の側面にのみ残す工程と
、熱処理を行ない前記開孔部の側面に残されたガラス膜
より不純物を前記エピタキシャル層内に拡散させ前記第
1の補償ベース領域に接続し第1の補償ベース領域より
不純物濃度の低い第2の補償ベース領域を形成する工程
と、全面に第2導電型不純物をイオン注入し前記開孔部
内のエピタキシャル層にベース領域を形成する工程と、
ベース領域上を含む全面に第3の絶縁膜を形成したのち
、異方性エッチングを行ない該第3の絶縁膜を前記開孔
部内の側面に形成されたガラス膜表面にのみ残す工程と
を含むことを特徴とする半導体装置の製造方法。
(5) A first layer serving as a collector region on one main surface of the semiconductor substrate.
A step of sequentially forming an epitaxial layer of a conductivity type and a first insulating film, and after removing a predetermined portion of the insulating film, a polycrystalline silicon film containing impurities of a second conductivity type and a second insulating film are formed on the entire surface. After forming openings in predetermined portions of the polycrystalline silicon film and the second insulating film that are in contact with the epitaxial layer, heat treatment is performed to diffuse impurities in the polycrystalline silicon film into the epitaxial layer. a step of forming a first compensation base region on the entire surface, and a step of forming a glass film containing a second conductivity type impurity over the entire surface and then performing anisotropic etching to leave the glass film only on the side surface of the opening. , heat treatment is performed to diffuse impurities into the epitaxial layer from the glass film left on the side surface of the opening, and a second compensation base region connected to the first compensation base region and having a lower impurity concentration than the first compensation base region is formed. a step of forming a compensation base region; a step of ion-implanting second conductivity type impurities into the entire surface to form a base region in the epitaxial layer within the opening;
forming a third insulating film on the entire surface including the base region, and then performing anisotropic etching to leave the third insulating film only on the surface of the glass film formed on the side surface inside the opening. A method for manufacturing a semiconductor device, characterized in that:
JP63041169A 1987-07-24 1988-02-23 Semiconductor device and manufacturing method thereof Expired - Fee Related JPH0824130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041169A JPH0824130B2 (en) 1987-07-24 1988-02-23 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18591487 1987-07-24
JP62-185914 1987-07-24
JP63041169A JPH0824130B2 (en) 1987-07-24 1988-02-23 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01103868A true JPH01103868A (en) 1989-04-20
JPH0824130B2 JPH0824130B2 (en) 1996-03-06

Family

ID=26380732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041169A Expired - Fee Related JPH0824130B2 (en) 1987-07-24 1988-02-23 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0824130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838747A (en) * 2020-06-23 2021-12-24 上海先进半导体制造有限公司 Semiconductor device with epitaxial layer and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221270A (en) * 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221270A (en) * 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838747A (en) * 2020-06-23 2021-12-24 上海先进半导体制造有限公司 Semiconductor device with epitaxial layer and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0824130B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
KR970011641B1 (en) Semiconductor device and method of manufacturing the same
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPH01103868A (en) Semiconductor device and manufacture thereof
JPH01246874A (en) Bipolar transistor and manufacture thereof
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JP2538077B2 (en) Method for manufacturing semiconductor device
JP2581548B2 (en) Method for manufacturing semiconductor device
JP2528559B2 (en) Method for manufacturing lateral bipolar transistor
JP2625741B2 (en) Manufacturing method of bipolar transistor
JPH0239091B2 (en)
JP2712889B2 (en) Method for manufacturing semiconductor device
JP2615707B2 (en) Method for manufacturing semiconductor device
JPH06244365A (en) Semiconductor device, and manufacture thereof
JPH11307544A (en) Bipolar transistor and semiconductor integrated circuit device
JPS6376481A (en) Semiconductor device and manufacture thereof
JP3018477B2 (en) Method for manufacturing bipolar semiconductor device
JPH02265247A (en) Semiconductor device
JPH0695573B2 (en) Method for manufacturing semiconductor device
JPS62141768A (en) Semiconductor device and manufacture thereof
JPH01289162A (en) Bipolar transistor and manufacture thereof
JP2000323489A (en) Semiconductor device and its manufacture
JPS5816559A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH11233521A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees