JPH01102403A - 曲がり光導波路 - Google Patents
曲がり光導波路Info
- Publication number
- JPH01102403A JPH01102403A JP25845187A JP25845187A JPH01102403A JP H01102403 A JPH01102403 A JP H01102403A JP 25845187 A JP25845187 A JP 25845187A JP 25845187 A JP25845187 A JP 25845187A JP H01102403 A JPH01102403 A JP H01102403A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- waveguide
- magnesium oxide
- lithium niobate
- diffusing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 62
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 18
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000010936 titanium Substances 0.000 claims abstract description 18
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 238000009792 diffusion process Methods 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 abstract description 8
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 abstract 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 abstract 1
- 229910052705 radium Inorganic materials 0.000 abstract 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はニオブ酸リチウム基板上に形成された曲がり光
導波路の改良に関する。
導波路の改良に関する。
超高速光通信システムや光交換シテスムを構築するため
の光集積回路は、主にニオブ酸リチウム(LiNbOs
)基板にチタン(Ti)金属を拡散させた光導波路で構
成されている。第3図はその一例であり、第3図(a)
及び(b)のようにニオブ酸リチウム基板2にチタン金
属を所要深さにまで拡散させて光導波路1を形成してい
る。ここでは直線光導波路11と、曲率半径Rの曲がり
光導波路12とを連続して形成した例を示している。
の光集積回路は、主にニオブ酸リチウム(LiNbOs
)基板にチタン(Ti)金属を拡散させた光導波路で構
成されている。第3図はその一例であり、第3図(a)
及び(b)のようにニオブ酸リチウム基板2にチタン金
属を所要深さにまで拡散させて光導波路1を形成してい
る。ここでは直線光導波路11と、曲率半径Rの曲がり
光導波路12とを連続して形成した例を示している。
この光導波路1によれば、光導波路1と基板2との屈折
率の相違により、光導波路1の一端に入射された光波は
光導波路lに沿って伝送されることになる。
率の相違により、光導波路1の一端に入射された光波は
光導波路lに沿って伝送されることになる。
上述した従来の光導波路では、その等偏屈折率分布は第
3図(C)に示すように略対称な特性をしている。この
ため、導波路の中心軸Cに対して対称な形を有する入射
光波3が入射されて直線光導波路11を伝播する間は光
波形は対称を保っている。しかしながら光波が曲がり導
波路12を伝播し、断面BB’の位置に達すると、中心
軸Cに対して非対称な伝播光波形3Bとなる。
3図(C)に示すように略対称な特性をしている。この
ため、導波路の中心軸Cに対して対称な形を有する入射
光波3が入射されて直線光導波路11を伝播する間は光
波形は対称を保っている。しかしながら光波が曲がり導
波路12を伝播し、断面BB’の位置に達すると、中心
軸Cに対して非対称な伝播光波形3Bとなる。
即ち、曲がり光導波路を伝播する光波にあっては、曲が
りの外側での位相速度が内側のそれよりも遅くなり、曲
がりの外側にはみ出した光波成分3xが反射されて放射
損失が生じるためである。
りの外側での位相速度が内側のそれよりも遅くなり、曲
がりの外側にはみ出した光波成分3xが反射されて放射
損失が生じるためである。
この曲がり導波路の損失は曲率半径Rを小さくすればす
るほど、前記した位相速度の差が増々大きくなって顕著
なものとなる。
るほど、前記した位相速度の差が増々大きくなって顕著
なものとなる。
したがって、従来の曲がり光導波路ではこの放射損失を
小さくするために曲率半径Rを充分大きくとらざるを得
す、光導波路を構築するために大きなスペースを必要と
し、高密度集積化を阻害する原因となっている。
小さくするために曲率半径Rを充分大きくとらざるを得
す、光導波路を構築するために大きなスペースを必要と
し、高密度集積化を阻害する原因となっている。
本発明の目的は、放射損失を低減した曲率半径の小さい
曲がり光導波路を提供することを目的としている。
曲がり光導波路を提供することを目的としている。
本発明の曲がり光導波路は、ニオブ酸リチウム基板にチ
タン金属を拡散して形成される曲がり光導波路の曲がり
外周部に沿って、酸化マグネシウムを拡散した酸化マグ
ネシウム拡散部を形成し、この酸化マグネシウム拡散部
とチタン拡散部との比屈折率差を利用して曲げ光導波路
における放射損失を抑制する構成としている。
タン金属を拡散して形成される曲がり光導波路の曲がり
外周部に沿って、酸化マグネシウムを拡散した酸化マグ
ネシウム拡散部を形成し、この酸化マグネシウム拡散部
とチタン拡散部との比屈折率差を利用して曲げ光導波路
における放射損失を抑制する構成としている。
〔実施例〕
次に、本発明を図面を参照して説明する。
第1図は本発明の一実施例を示す図であり、第1図(a
)は平面図、第1図(b)は第1図のA−A’線に沿う
断面図である。これらの図において、ニオブ酸リチウム
基板2には所要パターンにチタン金属を拡散して光導波
路1を形成している。
)は平面図、第1図(b)は第1図のA−A’線に沿う
断面図である。これらの図において、ニオブ酸リチウム
基板2には所要パターンにチタン金属を拡散して光導波
路1を形成している。
ここでは光導波路lは直線光導波路11と、これに連続
する曲率半径Rの曲がり光導波路12とで構成している
。
する曲率半径Rの曲がり光導波路12とで構成している
。
そして、この曲がり光導波路12の外周部に沿った領域
には、第1図(b)に断面A−A″の状態を示すように
、酸化マグネシウム(MgO)を浅(拡散した酸化マグ
ネシウム拡散部4を形成している。
には、第1図(b)に断面A−A″の状態を示すように
、酸化マグネシウム(MgO)を浅(拡散した酸化マグ
ネシウム拡散部4を形成している。
チタン金属と酸化マグネシウムをニオブ酸リチウム基板
に拡散した場合の比屈折率差Δnを第2図に示している
。これは、′エレクトロニクスレターズ、22巻、17
号、 1986年、881頁(f:LECTRO−NI
C5LETTHR3、14th August、 1
986. Vol、1?。
に拡散した場合の比屈折率差Δnを第2図に示している
。これは、′エレクトロニクスレターズ、22巻、17
号、 1986年、881頁(f:LECTRO−NI
C5LETTHR3、14th August、 1
986. Vol、1?。
P2O3)に述べられている通りである。
即ち、ニオブ酸リチウムに対して、チタン拡散では比屈
折率差Δnが正の値をとるのに比較して酸化マグネシウ
ム拡散では負となる。つまり、チタン拡散部の屈折率は
ニオブ酸リチウム基板のそれより大きく、一方酸化マグ
ネシウム拡散部の屈折率は該基板の屈折率より小さくな
る。これにより、曲がり光導波路12の断面A−A’−
A’の等偏屈折率分布は、第1図(c)に示すように光
導波路中心軸Cに対して対称ではなくなり、曲がり外周
部側の等偏屈折率4nは曲がり内周部側の等偏屈折率i
nより小さくなる。
折率差Δnが正の値をとるのに比較して酸化マグネシウ
ム拡散では負となる。つまり、チタン拡散部の屈折率は
ニオブ酸リチウム基板のそれより大きく、一方酸化マグ
ネシウム拡散部の屈折率は該基板の屈折率より小さくな
る。これにより、曲がり光導波路12の断面A−A’−
A’の等偏屈折率分布は、第1図(c)に示すように光
導波路中心軸Cに対して対称ではなくなり、曲がり外周
部側の等偏屈折率4nは曲がり内周部側の等偏屈折率i
nより小さくなる。
したがって、曲がり光導波路12における曲がり外周部
側での光波の位相速度は、従来の曲がり光導波路での外
周部のそれより速(なり、内周部の位相速度により近づ
けられる。その結果、直線光導波路11に入射した入射
波3は曲がり光導波路12を伝播する際にもその波形が
令り変化せず、中心軸Cに対してほぼ対称な伝播波形3
Aとなり、放射成分は従来の曲がり光導波路に比べて非
常に小さくなる。
側での光波の位相速度は、従来の曲がり光導波路での外
周部のそれより速(なり、内周部の位相速度により近づ
けられる。その結果、直線光導波路11に入射した入射
波3は曲がり光導波路12を伝播する際にもその波形が
令り変化せず、中心軸Cに対してほぼ対称な伝播波形3
Aとなり、放射成分は従来の曲がり光導波路に比べて非
常に小さくなる。
したがって、一定の放射損失を許容した場合、曲がり光
導波路の曲率半径Rを従来の光導波路に比べて小さくす
ることができるので、高密度光集積回路が実現できる。
導波路の曲率半径Rを従来の光導波路に比べて小さくす
ることができるので、高密度光集積回路が実現できる。
□ここで、第1図の光導波路1の製造方法を簡単に説明
する。
する。
先ず、フォトリソグラフィ技術にて、所望の形状のパタ
ーンマスクをニオブ酸リチウム基板2上に形成する。適
切な温度(例えば1050℃)に保たれた炉中で、適切
な時間(例えば8時間)チタンを拡散する。この工程に
より、第1図(a)または(b)で示される直線光導波
路11と曲がり光導波路12からなる光導波路1が形成
される。
ーンマスクをニオブ酸リチウム基板2上に形成する。適
切な温度(例えば1050℃)に保たれた炉中で、適切
な時間(例えば8時間)チタンを拡散する。この工程に
より、第1図(a)または(b)で示される直線光導波
路11と曲がり光導波路12からなる光導波路1が形成
される。
次に、フォトリソグラフィ技術にて曲がり光導波路12
の外側に沿って開口したパターンマスクを形成する。そ
して、炉中で熱拡散法により基板中に酸化マグネシウム
を拡散すれば、前記酸化マグネシウム拡散部4が形成さ
れ、これにより光導波路が完成される。
の外側に沿って開口したパターンマスクを形成する。そ
して、炉中で熱拡散法により基板中に酸化マグネシウム
を拡散すれば、前記酸化マグネシウム拡散部4が形成さ
れ、これにより光導波路が完成される。
以上説明したように本発明は、ニオブ酸リチウム基板に
チタン金属を拡散して形成される曲がり光導波路の曲が
り外周部に沿って酸化マグネシウム拡散部を形成してい
るので、この酸化マグネシウム拡散部とチタン拡散部と
の比屈折率差を利用して曲げ光導波路における放射損失
を抑制でき、これにより低損失でかつ曲率半径の小さい
高密度な曲がり光導波路を構築できる効果がある。
チタン金属を拡散して形成される曲がり光導波路の曲が
り外周部に沿って酸化マグネシウム拡散部を形成してい
るので、この酸化マグネシウム拡散部とチタン拡散部と
の比屈折率差を利用して曲げ光導波路における放射損失
を抑制でき、これにより低損失でかつ曲率半径の小さい
高密度な曲がり光導波路を構築できる効果がある。
第1図は本発明の曲がり光導波路の一実施例を示す図で
、第1図(a)は平面図、第1図(b)は第1図(a)
のA−A″線に沿う断面図、第1図(c)は同じ<A−
A”線に沿う等偏屈折率分布図、第2図はニオブ酸リチ
ウム基板へチタン及び酸化!グネシウムを拡散した場合
の比屈折率差特性図、第3図は従来の曲がり光導波路を
示す図で第3図(a)は平面図、第3図(b)は第3図
(a)のB−B’線゛に沿う断面図、第3図(c)は同
じ<B−B’線に沿う等偏屈折率分布図である。 l・・・光導波路、2・・・ニオブ酸リチウム基板、3
・・・入射光波、4・・・酸化マグネシウム拡散部、1
1・二・直線光導波路、12・・・曲がり光導波路。 第1図
、第1図(a)は平面図、第1図(b)は第1図(a)
のA−A″線に沿う断面図、第1図(c)は同じ<A−
A”線に沿う等偏屈折率分布図、第2図はニオブ酸リチ
ウム基板へチタン及び酸化!グネシウムを拡散した場合
の比屈折率差特性図、第3図は従来の曲がり光導波路を
示す図で第3図(a)は平面図、第3図(b)は第3図
(a)のB−B’線゛に沿う断面図、第3図(c)は同
じ<B−B’線に沿う等偏屈折率分布図である。 l・・・光導波路、2・・・ニオブ酸リチウム基板、3
・・・入射光波、4・・・酸化マグネシウム拡散部、1
1・二・直線光導波路、12・・・曲がり光導波路。 第1図
Claims (1)
- (1)ニオブ酸リチウム基板にチタン金属を拡散して形
成される曲がり光導波路の曲がり外周部に沿って、酸化
マグネシウムを拡散した酸化マグネシウム拡散部を形成
したことを特徴とする曲がり光導波路。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25845187A JPH01102403A (ja) | 1987-10-15 | 1987-10-15 | 曲がり光導波路 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25845187A JPH01102403A (ja) | 1987-10-15 | 1987-10-15 | 曲がり光導波路 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH01102403A true JPH01102403A (ja) | 1989-04-20 |
Family
ID=17320392
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25845187A Pending JPH01102403A (ja) | 1987-10-15 | 1987-10-15 | 曲がり光導波路 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH01102403A (ja) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011211125A (ja) * | 2010-03-30 | 2011-10-20 | Nec Corp | 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、画像表示装置用光源、および画像表示装置 |
| US9297951B2 (en) | 2012-02-27 | 2016-03-29 | Sumitomo Bakelite Co., Ltd. | Optical waveguide, optical wiring component, optical waveguide module and electronic device |
| WO2025173311A1 (ja) * | 2024-02-16 | 2025-08-21 | 株式会社フジクラ | 光導波路 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63157109A (ja) * | 1986-12-20 | 1988-06-30 | Fujitsu Ltd | 光導波路及びその形成方法 |
-
1987
- 1987-10-15 JP JP25845187A patent/JPH01102403A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63157109A (ja) * | 1986-12-20 | 1988-06-30 | Fujitsu Ltd | 光導波路及びその形成方法 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011211125A (ja) * | 2010-03-30 | 2011-10-20 | Nec Corp | 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、画像表示装置用光源、および画像表示装置 |
| US9297951B2 (en) | 2012-02-27 | 2016-03-29 | Sumitomo Bakelite Co., Ltd. | Optical waveguide, optical wiring component, optical waveguide module and electronic device |
| WO2025173311A1 (ja) * | 2024-02-16 | 2025-08-21 | 株式会社フジクラ | 光導波路 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7177490B2 (en) | Optical waveguide, optical device, and method of manufacturing optical waveguide | |
| JP2001512846A (ja) | 単一モード光ウェーブガイド結合要素 | |
| US4136439A (en) | Method for the production of a light conductor structure with interlying electrodes | |
| JPH01102403A (ja) | 曲がり光導波路 | |
| JPH05173030A (ja) | 光導波路の曲がり構造 | |
| JPH04131806A (ja) | 光方向性結合器 | |
| US7463808B2 (en) | Optical waveguide, optical device, and manufacturing method of the optical waveguide | |
| JP2597358B2 (ja) | Y分岐導波路 | |
| JPS63157109A (ja) | 光導波路及びその形成方法 | |
| JP2853663B2 (ja) | 集積化光回路 | |
| JPH0310206A (ja) | LiNbO↓3光導波路およびその製造方法 | |
| JPS60177304A (ja) | 光アテネ−タ | |
| JPS6319620A (ja) | 光導波路の形成方法 | |
| JPH03259204A (ja) | 高屈折率化材料拡散による光導波路基板 | |
| JPH0310207A (ja) | モード形状変換器及びその製造方法 | |
| JPS61256946A (ja) | 屈折率分布型平板レンズの製造方法 | |
| JPS58178303A (ja) | 光導波路の形成方法 | |
| JPH09288219A (ja) | 偏光分離素子 | |
| JPH041323B2 (ja) | ||
| JPH055810A (ja) | 光方向性結合器 | |
| JPS6363007A (ja) | 導波路型分岐回路 | |
| JPH0360097B2 (ja) | ||
| JPS62136611A (ja) | Y分岐光導波路 | |
| JPH11167033A (ja) | 曲がり光導波路回路 | |
| JPS6113563B2 (ja) |