JPH01100031A - Mold for forming optical element - Google Patents

Mold for forming optical element

Info

Publication number
JPH01100031A
JPH01100031A JP25718787A JP25718787A JPH01100031A JP H01100031 A JPH01100031 A JP H01100031A JP 25718787 A JP25718787 A JP 25718787A JP 25718787 A JP25718787 A JP 25718787A JP H01100031 A JPH01100031 A JP H01100031A
Authority
JP
Japan
Prior art keywords
mold
surface layer
substrate
thermal expansion
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25718787A
Other languages
Japanese (ja)
Inventor
Kyoko Amamiya
雨宮 恭子
Osami Kaneto
修身 兼頭
Hiroshi Takeuchi
博 竹内
Takashi Yashiki
屋敷 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25718787A priority Critical patent/JPH01100031A/en
Publication of JPH01100031A publication Critical patent/JPH01100031A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide a forming mold having excellent machining accuracy and long life for optical elements, by forming a substrate from a WC-Co based super hard alloy and surface layer from TiC and providing an intermediate layer having a thermal expansion coefficient within a specific range between the substrate and the surface layer CONSTITUTION:A substrate is formed from a WC-6-10wt.% Co super hard alloy and the surface layer is formed from TiC. An intermediate layer having a thermal expansion coefficient between those of the substrate and the surface layer or higher than that of the surface layer is provided between the substrate and the surface layer to constitute a forming mold for optical elements. TiN, TaC, etc., are cited as preferred specific examples of the intermediate layer. Thereby occurrence of cracks can be effectively suppressed in finish polishing of a mold and good surface roughness and shape accuracy can be obtained in producing an aspherical glass lens is produced by hot-press forming. Furthermore, reaction between the glass and the mold can be eliminated to prevent fusion of glass to the mold surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、元学素子成形戯に係り、さらに詳細には、型
の高精度加工と長寿命化とをはかることのできる光学素
子成形型に関する7、ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to optical element molding, and more particularly, to an optical element molding die that can achieve high precision processing and extend the life of the mold. 7, things related to.

〔従来の技術〕[Conventional technology]

近年、光学系の簡略化1手形軽量化、原価低減を目的に
、非球面ガラスレンズの要求が高まっている。その理由
は、非球面形状の採用孔より、光学系を簡略化すること
ができ、小形軽量化と原価低減とが可能となるためであ
る。
In recent years, there has been an increasing demand for aspherical glass lenses for the purpose of simplifying optical systems, making them lighter, and reducing costs. The reason for this is that the optical system can be simplified by employing an aspherical hole, making it possible to reduce the size, weight, and cost.

しかし、非球面ガラスレンズな従来の研削、研磨技術で
加工することは非常に離しく、これが量産化を阻む原因
となりている。
However, it is extremely difficult to process aspherical glass lenses using conventional grinding and polishing techniques, which is a barrier to mass production.

そこで、最近では、熱間プレス成形によりて非球面ガラ
スレンズを製造する方法も試みられている。
Therefore, recently, a method of manufacturing an aspherical glass lens by hot press molding has been attempted.

そして、熱間プレス成形により非球面ガラスレンズを製
造する方法は、所定の非球面形状に仕上げた型内にガラ
ス素材を挿入し、次に、屋内の素材温度を成形温度にま
で加熱した後、加圧してプレス成形するというものであ
る。
The method of manufacturing an aspherical glass lens by hot press molding involves inserting a glass material into a mold finished in a predetermined aspherical shape, then heating the material indoors to the molding temperature, and then It is press-molded under pressure.

したがって、前記したごときプレス型材料としては、高
温での強度が高く1mの形状積置9面粗さが出しやす(
、高温でガラスと反応しないなどの特性が必要である。
Therefore, as a press mold material such as the one described above, it has high strength at high temperatures and is easy to produce a 1 m long stacked nine surface roughness (
It must have properties such as not reacting with glass at high temperatures.

なお、このような光学素子成形型としては1例えば特開
昭60−118638号公報に記載のように、炭化タン
グステンCM”C)を基材として、その表面に炭化チタ
ン(TiC)を成膜した金型が先に提案されている。
Incidentally, as such an optical element mold 1, for example, as described in JP-A-60-118638, a film made of tungsten carbide (CM"C) is used as a base material and a film of titanium carbide (TiC) is formed on the surface of the base material. The mold is proposed first.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、表面層であるTiCの成膜は、高温下でおこな
われるため、これと基材であるFCとの熱膨張係数差が
大きいと、型冷却時、 TiC被膜内部に大きな引張残
留応力が発生しやす(、型の仕上研磨に際し、被膜にク
ラックが発生して破壊されやすい性状を示すものである
が、従来、この点九ついての配慮はなされていなかった
However, since the TiC surface layer is formed at high temperatures, if the difference in thermal expansion coefficient between this and the base material FC is large, large tensile residual stress will occur inside the TiC film when the mold is cooled. This refers to the tendency for cracks to occur in the film and breakage during final polishing of the mold, but no consideration has been given to this point in the past.

本発明は、前記した従来技術の問題点を解決すべく検討
の結果なされたものであって、その目的とするところは
、熱間プレス成形により非球面ガ1ラスレンズを製造す
るに際し、型仕上研磨時におけるクラックの発生を効果
的に抑え、良好な表面粗さ、形状精度を得ることができ
、ガラスと型との反応をなくして、型表面九対するガラ
スの融着現象を生じることがなく、盤の長寿命化をはか
ることのできる光学素子成形型を提供しようとするもの
である。
The present invention was made as a result of studies to solve the problems of the prior art described above, and its purpose is to perform mold finishing polishing when manufacturing an aspherical glass lens by hot press molding. It is possible to effectively suppress the occurrence of cracks during the process, obtain good surface roughness and shape accuracy, eliminate the reaction between the glass and the mold, and prevent the phenomenon of fusion of the glass to the mold surface. The present invention aims to provide an optical element mold that can extend the life of the disc.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するため、本発明に係る光学素子成形型
は、基材をF(’−6〜10wt%Co超硬合金とし、
表面層をTcCとし、かつその間に位置して、前記基材
の熱膨張係数と表面層の野膨張係数との間、あるいは前
記表面層の熱膨張係数よりも大きな熱膨張係数を有する
中間層を設けたことを特徴とするものである。
In order to achieve the above object, the optical element mold according to the present invention uses F('-6 to 10 wt% Co cemented carbide as the base material,
The surface layer is TcC, and an intermediate layer located therebetween has a coefficient of thermal expansion between the coefficient of thermal expansion of the base material and the coefficient of thermal expansion of the surface layer, or a coefficient of thermal expansion larger than the coefficient of thermal expansion of the surface layer. It is characterized by the fact that it has been provided.

〔作用〕[Effect]

しかして、前記した基材の熱膨張係数をαI、中間層の
熱膨張係数なαl1表面層の熱膨張係数をαCとしたと
き、αlくαl≦αCであるよ5な中間層を基材と表面
層との間に介在させると、表面層と中間層との熱膨張係
数差は小さくなるため、成膜後における表面層の引張残
留応力が低減され、型仕上研磨時におけるクラックの発
生を効果的に抑えることができる。
Therefore, when the thermal expansion coefficient of the base material described above is αI, the thermal expansion coefficient of the intermediate layer is αl1, and the thermal expansion coefficient of the surface layer is αC, then αl is 5 such that αl≦αC, and the intermediate layer is the base material. When interposed between the surface layer and the intermediate layer, the difference in thermal expansion coefficient between the surface layer and the intermediate layer becomes smaller, which reduces the tensile residual stress in the surface layer after film formation, and is effective in preventing cracks from occurring during mold finishing polishing. can be suppressed.

また、前記のごとく、基材の熱膨張係数をαM。Moreover, as mentioned above, the thermal expansion coefficient of the base material is αM.

中間層の熱膨張係数なαl1表面層の熱膨張係数をαC
としたとき、αI〉αCであるような中間層を基材と表
面層との間に介在させると、成膜後における表面層には
、圧縮残留応力が発生するため、これまた型仕上研磨時
化おけるクラックの発生を効果的に抑えることができる
The thermal expansion coefficient of the intermediate layer is αl1 The thermal expansion coefficient of the surface layer is αC
If an intermediate layer such that αI>αC is interposed between the base material and the surface layer, compressive residual stress will be generated in the surface layer after the film is formed, and this will also occur during mold finishing polishing. It is possible to effectively suppress the occurrence of cracks in the melting process.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

(実施例1) 直径30間、高さ40調の円柱状に成形・焼結したFC
−6〜10wt%Co超硬合金のプレス使用面を。
(Example 1) FC molded and sintered into a cylindrical shape with a diameter of 30mm and a height of 40mm
- 6 to 10 wt% Co cemented carbide press surface.

曲率半径59mwh 、±10μ風の形状精度で、凹曲
面に研刷加工した。その後、これを、ダイヤモンド砥粒
により、形状精度を維持したまま研磨し、面粗さα1戸
= Rmazに仕上げた。そして、この加工面に、CV
D法によ’)、約1Pの厚さで、TAN 11 M (
熱膨張係数9.2 X 1G”/c)を均一にコーティ
ングし、その後、さらに、CVD法により、約6−の厚
さK TiC被膜(熱膨張係t17.6 X 10−’
/Rc)を均一にコーティングした。次いで、これを、
ダイヤモンド砥粒な用いて、表面粗さQ、005μm以
下に研磨し、プレス型を裏作した。
It was polished into a concave curved surface with a radius of curvature of 59mwh and a shape accuracy of ±10μ. Thereafter, this was polished with diamond abrasive grains while maintaining the shape accuracy, and finished to a surface roughness of α1=Rmaz. Then, on this machined surface, CV
D method), with a thickness of about 1P, TAN 11M (
A TiC coating having a thermal expansion coefficient of 9.2 x 1 G"/c) is then applied by CVD to a thickness of about 6 K (with a thermal expansion coefficient of t17.6 x 10-').
/Rc) was uniformly coated. Next, this
It was polished to a surface roughness Q of 0.05 μm or less using diamond abrasive grains, and a press mold was prepared.

しかし℃、このプレス型の表面を、走査電子顕微鏡で観
察したところ、その表面は滑らかで、クラックは見られ
なかった。
However, when the surface of this press mold was observed under a scanning electron microscope at ℃, the surface was smooth and no cracks were observed.

次に、40wt% BaO−59wt% Sin、−1
5wt% B、0.を主成分とする光学ガラス(φ16
 X ’15rrm )の円柱状素材を、前記のように
して裏作されたプレス型の凹面間に挿入し、窒素雰囲気
中で、約730℃に加熱した後、約2tonfの荷重を
、2分間負荷して、プレス成形をおこなったところ、こ
の時の成形品の形状精度9面粗さは、型のそれらとi[
同一で、ガラスと型との反応は生じなかった。その結果
を第1表に示す。すなわち、第1表は、前記実施例IK
関連して、40wt% BaO−59wt% Sin、
−15wt%B、Osを主成分とする光学ガラスをプレ
ス成形した場合の評価結果である。なお、第1表には、
比較のため、超硬合金にTiCを被覆した型についての
結果も併せて示した。
Next, 40wt% BaO-59wt% Sin, -1
5wt% B, 0. Optical glass (φ16
A cylindrical material with a diameter of When press molding was performed, the shape accuracy of the molded product at this time and the surface roughness of the mold were equal to those of the mold i [
were identical, and no reaction between the glass and the mold occurred. The results are shown in Table 1. That is, Table 1 shows the above-mentioned Example IK.
Relatedly, 40wt% BaO-59wt% Sin,
These are evaluation results when optical glass containing -15 wt% B and Os as main components was press-molded. Furthermore, in Table 1,
For comparison, the results for a mold made of cemented carbide coated with TiC are also shown.

C以下余白) (実施例2) 57wt% Sin、−22wt% KHF、−16u
at% B、03ヲ主成分とする光学ガラス(φ16 
X tlsmm )の円柱状素材を、実施例1と同様に
製作したプレス型の間に挿入し、窒素雰囲気中で、約6
20℃に加熱した後、約2tonfの荷重を、2分間負
荷して、プレス成形をおこなりたところ、この場合も、
実施例1と同様、成形品の形状摺度1面粗さは、型のそ
れらとほぼ同一で、ガラスと型との反応は生じたかりた
Margin below C) (Example 2) 57wt% Sin, -22wt% KHF, -16u
at% B, optical glass with 03 as the main component (φ16
A cylindrical material of approximately
After heating to 20°C, press forming was performed by applying a load of approximately 2 tonf for 2 minutes.
As in Example 1, the shape sliding degree and surface roughness of the molded product were almost the same as those of the mold, and there was no reaction between the glass and the mold.

その結果をag2表に示す。すなわち、第2表は、前記
実施例2に関連し℃、57wt%Sin、−22uJt
%KHF、 −16uttl、 B、0.を主成分とす
る光学ガラスをプレス成形した場合の評価結果である。
The results are shown in Table ag2. That is, Table 2 is related to the above Example 2 and shows that
%KHF, -16uttl, B, 0. These are the evaluation results when optical glass whose main component is press-molded.

C以下余白) なお、前記実施例忙おいては、中間層材料として、 T
iNを用いた場合について例示したか、中間層材料は、
TiNVcのみ限定されるものではなく、これに代えて
、TaC、NbC、Al、0. 、 ptなどを用いる
こともできる。
Note that in the above examples, the intermediate layer material was T
The intermediate layer material is as shown in the example using iN.
It is not limited to TiNVc, and instead of this, TaC, NbC, Al, 0. , pt, etc. can also be used.

また、前記実施例においては、7’&C被膜のツー+4
ング厚さを、約6μmとした場合について例示したが、
その理由は、型の面粗さが低下した場合を考慮して、再
研磨により再生を意−しているためでありて、再生を考
慮しない場合、前記T&Cの膜厚は、最低で約1μ程度
あればよい。
In addition, in the above embodiment, 2+4 of the 7'&C coating
Although the case where the thickness of the ring was approximately 6 μm was illustrated,
The reason for this is that in consideration of the case where the surface roughness of the mold decreases, it is intended to be regenerated by re-polishing.If regeneration is not taken into consideration, the T&C film thickness is at least approximately 1 μm. A certain degree is fine.

さらに、本発明において、基材には、F C−6〜ID
wt%Co超硬合金を用いたが、coを6〜10wtチ
した根拠は、以下の理由による。すなわち、Caが6w
t% 未満になると、超硬合金がもろくなり、またCO
が101#t%以上になると、超硬合金が酸化されやす
(なり、良好な面粗さが得られなくなるためである。
Furthermore, in the present invention, the base material includes F C-6 to ID
Although wt% Co cemented carbide was used, the reason why 6 to 10 wt of Co was used is as follows. That is, Ca is 6w
If it is less than t%, the cemented carbide becomes brittle and CO
If it exceeds 101 #t%, the cemented carbide is easily oxidized (and good surface roughness cannot be obtained).

〔発明の効果〕〔Effect of the invention〕

本発明は以上のごときであり、前記実施例の説明からも
明らかなように、本発明によれば、熱間ブレス成形によ
り非球面ガラスレンズを製造スるに際し、型仕上研磨時
におけるクラックの発生を効果的に抑え、良好な表面粗
さ、形状精度を得ることができ、ガラスと型との反応を
な(して、型表面に対するガラスの融着現象を生じるこ
とがなく、型の長寿命化をはかることのできる光学素子
成形型を得ることができる。
The present invention is as described above, and as is clear from the description of the above embodiments, according to the present invention, when manufacturing an aspherical glass lens by hot press molding, cracks occur during mold finishing polishing. It is possible to effectively suppress this, obtain good surface roughness and shape accuracy, and prevent the reaction between the glass and the mold (thereby preventing the glass from adhering to the mold surface, resulting in a long life of the mold. It is possible to obtain an optical element molding die that can be used for various purposes.

Claims (1)

【特許請求の範囲】 1、基材をWC−6〜10wt%Co起硬合金とし、表
面層をTiCとし、かつその間に位置して、前記基材の
熱膨張係数と表面層の熱膨張係数との間、あるいは前記
表面層の熱膨張係数よりも大きな熱膨張係数を有する中
間層を設けたことを特徴とする光学素子成形型。 2、特許請求の範囲第1項記載の発明において、中間層
がTiNである光学素子成形型。
[Claims] 1. The base material is a WC-6 to 10 wt% Co hardened alloy, the surface layer is TiC, and the thermal expansion coefficient of the base material and the thermal expansion coefficient of the surface layer are located between them. An optical element molding die, characterized in that an intermediate layer is provided between the surface layer and the surface layer, or an intermediate layer having a thermal expansion coefficient larger than that of the surface layer. 2. The optical element mold according to the invention as set forth in claim 1, wherein the intermediate layer is TiN.
JP25718787A 1987-10-14 1987-10-14 Mold for forming optical element Pending JPH01100031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25718787A JPH01100031A (en) 1987-10-14 1987-10-14 Mold for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25718787A JPH01100031A (en) 1987-10-14 1987-10-14 Mold for forming optical element

Publications (1)

Publication Number Publication Date
JPH01100031A true JPH01100031A (en) 1989-04-18

Family

ID=17302888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25718787A Pending JPH01100031A (en) 1987-10-14 1987-10-14 Mold for forming optical element

Country Status (1)

Country Link
JP (1) JPH01100031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221131A (en) * 1989-02-21 1990-09-04 Olympus Optical Co Ltd Mold for molding optical element
JPH03153535A (en) * 1989-11-13 1991-07-01 Canon Inc Mold for forming optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221131A (en) * 1989-02-21 1990-09-04 Olympus Optical Co Ltd Mold for molding optical element
JPH03153535A (en) * 1989-11-13 1991-07-01 Canon Inc Mold for forming optical element

Similar Documents

Publication Publication Date Title
US5028251A (en) Molds for manufacturing molded glass-articles for precision-optical purposes
US4606750A (en) Mold for direct press molding of optical glass element
KR900000622B1 (en) Method for forming of optical glass element
JPS632821A (en) Formation of glass optical element, mold therefor and manufacture of mold
JPH01100031A (en) Mold for forming optical element
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
US5762676A (en) Product for molding glass lenses having difficult shapes
JPH0146453B2 (en)
JPH0379299B2 (en)
JPH02233528A (en) Shaping mold for optical part material made of glass
EP0146315A2 (en) Mould for direct press moulding of optical glass element
JPS63260831A (en) Forming mold for optical element
JPH11268920A (en) Forming mold for forming optical element and its production
JPH04170331A (en) Mold for molding optical element and production thereof and production of optical glass element
JPS6365613B2 (en)
JPH02188432A (en) Molding die for optical parts
JPH0350127A (en) Fabrication of optical glass element forming mold and production of the element
JPH02137741A (en) Mold for making optical glass element
JPS60176929A (en) Mold for press molding glass lens
JPH0572336B2 (en)
JP3219460B2 (en) Optical element mold and method of manufacturing the same
JPH0361615B2 (en)
JPH02208229A (en) Production of mold for forming optical element
JPS6296331A (en) Method of molding optical glass element and mold therefor