JPS6365613B2 - - Google Patents

Info

Publication number
JPS6365613B2
JPS6365613B2 JP25932984A JP25932984A JPS6365613B2 JP S6365613 B2 JPS6365613 B2 JP S6365613B2 JP 25932984 A JP25932984 A JP 25932984A JP 25932984 A JP25932984 A JP 25932984A JP S6365613 B2 JPS6365613 B2 JP S6365613B2
Authority
JP
Japan
Prior art keywords
platinum
platinum alloy
glass
mold
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25932984A
Other languages
Japanese (ja)
Other versions
JPS61136929A (en
Inventor
Masaki Aoki
Hideo Torii
Hideto Monji
Hideyuki Okinaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25932984A priority Critical patent/JPS61136929A/en
Publication of JPS61136929A publication Critical patent/JPS61136929A/en
Publication of JPS6365613B2 publication Critical patent/JPS6365613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • C03B2215/17Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals comprising one or more of the noble meals, i.e. Ag, Au, platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は光学ガラスレンズの製造方法に関し、
さらに具体的に述べればプレス成型のみで後の磨
き工程等を必要としない、光学ガラスレンズの直
接プレス成形による製造に使用するプレス成形用
型の製造方法に関するものである。 (従来例の構成とその問題点) 光学ガラスレンズは、光学機器のレンズ構成の
簡略化とレンズ部分の軽量化を同時に達成できる
非球面化が進んでいる。非球面レンズの製造に
は、従来の光学研磨法による光学レンズ製造方法
では加工性および量産性が極めて低いという問題
点があつた。 この対策として直接プレス成形法が有望視され
ている。直接プレス成形法とは、あらかじめ成形
面を所望の品質および精度に仕上げた非球面の成
形用型を用い、その型の上で加熱するか、あるい
は、あらかじめ加熱した塊状の光学ガラスを、成
形のみで光学ガラスレンズに製造する方法で、プ
レス成形後に研磨、ラツプ等の後工程を必要とし
ない製造方法である。従つて、直接プレス成形法
では、プレス成形されたままの光学ガラスレンズ
が、レンズの像形成品質が損われない優れた品質
と精度を有している必要があり、特に、非球面レ
ンズの成形では高い精度が要求される。 この要求を満すために、型の材料としては、高
温度でガラスに対する化学作用が最小であるこ
と、型の成型面に擦傷等の損傷を受け難いこと、
熱衝撃に対する耐破壊性能が高いことなどが必要
である。この目的を達成するために、炭化珪素
(SiC)、窒化珪素(Si3N4)を素材とした型、あ
るいは高密度炭素の上に炭化珪素などの被膜を形
成した型が適しているとされ、種々の検討が行わ
れている。 しかしながら、炭化珪素、窒化珪素等は硬度が
極めて高いため、これらを加工し球面あるいは非
球面レンズの成形用型として、高精度の加工を施
すことは極めて困難であり、しかも、これらはい
ずれも焼結して成形されるため、焼結助剤として
アルミナ(Al2O3)、酸化硼素(B2O3)等のガラ
スと比較的反応し易い物質が使用され、このため
高精度でレンズを成形することができるという問
題点があつた。 一方、高密度炭素の成形物に炭化珪素の被膜を
形成した型も、被膜がベータ炭化珪素(β−
SiC)であるため、ナトリウム(Na)がバリウ
ム(Ba)を多量に含有するガラスと反応を起す
という問題点があり、また、高温でベータ炭化珪
素よりガラスと反応し難いとされているアルフア
炭化珪素(α−SiC)を使用した型や、炭化タン
グステン(WC)上にアルフア炭化珪素の被膜を
形成した型も開発されつつあるが、これらも鉛
(Pb)やゲルマニウム(Ge)を多量に含有するガ
ラスと反応を起すという問題点があり、共に精密
な非球面レンズを成形することは困難である。 鉛(Pb)やナトリウム(Na)を多量に含有す
るガラスとの反応が少ない型で、しかも空気中で
ガラスの成形が行なえる型材としては、炭化タン
グステン(WC)上に白金合金の被膜を形成した
型、およびジルコニア(ZrO2)の上に白金合金
の被膜を形成した型(特願昭59−29618号)があ
るが、空気中で長時間にわたり成形プレス作業を
行うと、前者は炭化タングステンの酸化のため
に、後者はジルコニアと白金合金の熱膨張係数の
相異と付着力の弱さのために、それぞれ白金合金
の被膜の剥離が生ずるという問題点があつた。 (発明の目的) 本発明は上記の欠点を解消するもので、光学ガ
ラスレンズの直接プレス成形用型に必要な高精度
の加工が容易で、かつ、高濃度で鉛やナトリウム
を含有するガラスを成形しても、ガラスと反応せ
ず、しかも白金合金被膜の剥離が生じないガラス
プレス成形用型の製造方法を提供しようとするも
のである。 (発明の構成) 上記の目的を達成するために、本発明では、ジ
ルコニア(ZrO2)を母材として所要のプレス成
形用型の形状に加工し、そのプレス成形面上に、
イリジウム(Ir)、オスミウム(Os)、パラジウ
ム(Pd)、ロジウム(Rh)およびルテニウム
(Ru)の中から選ばれた少くとも一種の元素と白
金(Pt)とからなる白金合金の膜厚300Åないし
2000Åの被膜を形成し、これにアルゴン(Ar)
又は窒素(N2)イオンを50kVないし200kVの加
速電圧で1013イオン/cm2ないし1017イオン/cm2
入してジルコニア(ZrO2)の母材と白金合金被
膜との間に拡散層を形成させた後、再びイリジウ
ム(Ir)、オスミウム(Os)、パラジウム(Pd)、
ロジウム(Rh)およびルテニウム(Ru)の中か
ら選ばれた少なくとも一種の元素と白金(Pt)
とからなる白金合金の膜厚1μmないし10μmの被
膜を重ねて形成して直接プレス成形用の型を造
る。 白金合金被膜上からのアルゴンイオン(Ar+
あるいは窒素イオン(N2 +)の注入は、注入され
たアルゴンイオンあるいは窒素イオンに衝突され
た白金原子が、注入されたイオンの運動エネルギ
ーを得て他の白金原子と次々に衝突を繰り返す、
いわゆるカスケード衝突を起し、母材のジルコニ
アの中に侵入して行き、母材のジルコニアと白金
合金被膜とが拡散層を形成する働きをする。この
拡散層の形成によつて母材と白金被膜との強固な
接着力が得られることになる。 いうまでもなく、白金合金被膜の上にスパツタ
法で白金合金被膜を重ねた場合は、両被膜間の接
着力は、白金合金同志のため強固で、プレス成形
中に剥離することはない。 型母材と白金合金被膜との強固な接着力は、ガ
ラスのプレス成形の際に必要な型の加熱、レンズ
のプレス成形とその後の冷却の熱サイクルの繰り
返しにも耐えるもので、この接着力を付与したプ
レス成形用型により、従来困難であつた鉛やナト
リウム等を多量に含有するガラスを形成しても、
型とガラスとの化学反応が生ぜず、白金合金被膜
の剥離も生じないガラスプレス成形用型を得よう
とするものである。 型のプレス成形面にスパツタ法により形成した
被膜上にイオン注入を行なつたが、真空蒸着を行
ないながらイオン注入を行なつても同様の効果が
得られることが実験により判つている。 (実施例の説明) 本発明の実施例について第1図および第2図に
より説明する。 第1図は、本発明によるガラスプレス成形用型
の上型1および下型2の斜視図である。上下両型
1および2ともに、直径30mm、長さ50mmのジルコ
ニア(ZrO2)の円柱状素材を用い、上型1には
曲率半径が46mmの凹形の成形面4とその周縁にV
形切欠き3が複数個所を、下型2には曲率半径が
200mmの凹形の成形面5をそれぞれ形成する。こ
れらの成形面4および5を超微細なダイヤモンド
粉末を用いてラツプし、約2時間で表面の最大粗
さ(Rmax)が0.02μmの鏡面とする。次に、こ
の鏡面となつた成形面4および5の表面に、白金
(Pt)95重量パーセント、ロジウム(Rh)5重量
パーセントの組成を有する白金合金を用い、スパ
ツタ法によつて膜厚300Åの被膜を形成し、この
被膜に加速電圧50kVで注入量1013イオン/cm2
窒素イオン(N2 +)を注入した後、さらに厚さ1μ
mの(同じ組成を有する)白金イリジウム(Pt
−Ir)合金の被膜をスパツタ法によつて形成す
る。このような製造方法によりガラスプレス成形
用上型1および下型2を得た。 第2図は、上述のガラスプレス成形用型1およ
び2の外径面にそれぞれ加熱器6および7を巻き
付け、プレスの上下プランジヤ8および9に取り
付けた一部破断図である。同図において、酸化鉛
(PbO)73重量パーセント、酸化珪素(SiO2)27
重量パーセントの組成を有する半径20mmの酸化鉛
系光学ガラスの塊10は、原料供給治具11で把
持されてトンネル形の予備加熱炉12により加熱
されたのち、温度700℃に昇温されたガラスプレ
ス成形用型1および2の間で、プレス圧力40Kg/
cm2でプレス成形される。そのまま温度400℃まで
上下の型とともに冷却された成形レンズは、上部
プランジヤ8を戻した後、取出し口13から取り
出される。 このような工程によつて、イリジウム(Ir)、
オスミウム(Os)、パラジウム(Pd)、ロジウム
(Rh)およびルテニウム(Ru)の中から1種又
は2種の元素の白金(Pt)との二元あるいは三
元の白金合金と、注入イオンとしてアルゴンイオ
ン(Ar+)又は窒素イオン(N2 +)とを用いて諸
種の条件により製造したガラスプレス成形用型を
用い、100回のプレス成形を行なつた後、型の成
形面4および5と成形されたガラスレンズの表面
の状態を観察した結果を表に示す。表の試料番号
(Industrial Application Field) The present invention relates to a method for manufacturing an optical glass lens,
More specifically, the present invention relates to a method for manufacturing a press molding die used for manufacturing an optical glass lens by direct press molding, which requires only press molding and does not require a subsequent polishing step. (Conventional Structure and its Problems) Optical glass lenses are increasingly becoming aspherical, which can simultaneously simplify the lens structure of optical equipment and reduce the weight of the lens portion. In the production of aspherical lenses, there has been a problem in that the conventional optical lens production method using the optical polishing method has extremely low workability and mass productivity. Direct press molding is seen as a promising solution to this problem. The direct press molding method uses an aspherical mold whose molding surface has been finished to the desired quality and precision in advance, and heats it on the mold, or it simply molds a pre-heated block of optical glass. This manufacturing method does not require post-processes such as polishing and lapping after press molding. Therefore, in the direct press molding method, the optical glass lens as press-molded must have excellent quality and precision so that the image forming quality of the lens is not impaired. requires high precision. In order to meet this requirement, the mold material must have minimal chemical effects on glass at high temperatures, and must be resistant to damage such as scratches on the molding surface.
It is necessary to have high fracture resistance against thermal shock. To achieve this purpose, molds made of silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or molds with a film of silicon carbide or the like formed on high-density carbon are considered suitable. , various studies are being conducted. However, silicon carbide, silicon nitride, etc. have extremely high hardness, so it is extremely difficult to process them with high precision as molds for molding spherical or aspherical lenses. Since the lenses are molded by sintering, substances that react relatively easily with glass, such as alumina (Al 2 O 3 ) and boron oxide (B 2 O 3 ), are used as sintering aids, which makes it possible to form lenses with high precision. There was a problem that it could be molded. On the other hand, in molds made of high-density carbon with a silicon carbide coating, the coating is made of beta silicon carbide (β-silicon carbide).
SiC), there is a problem in that sodium (Na) reacts with glass containing a large amount of barium (Ba). Molds using silicon (α-SiC) and types with alpha silicon carbide coatings formed on tungsten carbide (WC) are also being developed, but these also contain large amounts of lead (Pb) and germanium (Ge). There is a problem that it reacts with glass, making it difficult to mold precise aspherical lenses with both. A mold material that has less reaction with glass that contains large amounts of lead (Pb) and sodium (Na), and which can be molded into glass in air, is a mold material that forms a platinum alloy coating on tungsten carbide (WC). There are molds made of zirconia (ZrO 2 ) coated with a platinum alloy (Japanese Patent Application No. 59-29618); The former has a problem in that the platinum alloy coating peels off due to the difference in thermal expansion coefficient between zirconia and platinum alloy and weak adhesive force. (Object of the Invention) The present invention solves the above-mentioned drawbacks, and is capable of easily performing high-precision processing required for direct press molding molds for optical glass lenses. It is an object of the present invention to provide a method for manufacturing a glass press molding mold that does not react with glass and does not cause peeling of a platinum alloy coating during molding. (Structure of the Invention) In order to achieve the above object, in the present invention, zirconia (ZrO 2 ) is used as a base material and processed into the shape of a required press molding die, and on the press molding surface,
A platinum alloy film consisting of at least one element selected from iridium (Ir), osmium (Os), palladium (Pd), rhodium (Rh) and ruthenium (Ru) and platinum (Pt) with a thickness of 300 Å or more
Form a film of 2000 Å and add argon (Ar) to this.
Alternatively, nitrogen (N 2 ) ions are implanted at 10 13 ions/cm 2 to 10 17 ions/cm 2 at an accelerating voltage of 50 kV to 200 kV to form a diffusion layer between the zirconia (ZrO 2 ) base material and the platinum alloy coating. After forming, iridium (Ir), osmium (Os), palladium (Pd),
At least one element selected from rhodium (Rh) and ruthenium (Ru) and platinum (Pt)
A mold for direct press molding is made by stacking layers of platinum alloy with a thickness of 1 μm to 10 μm. Argon ions (Ar + ) from above the platinum alloy coating
Alternatively, in the case of implanting nitrogen ions (N 2 + ), platinum atoms collided with the implanted argon ions or nitrogen ions obtain the kinetic energy of the implanted ions and repeatedly collide with other platinum atoms one after another.
A so-called cascade collision occurs, and the metal penetrates into the base material zirconia, and the base material zirconia and the platinum alloy coating function to form a diffusion layer. Formation of this diffusion layer provides strong adhesion between the base material and the platinum coating. Needless to say, when a platinum alloy coating is layered on a platinum alloy coating by sputtering, the adhesion between the two coatings is strong because the platinum alloys are mutually bonded to each other, and will not peel off during press forming. The strong adhesive strength between the mold base material and the platinum alloy coating can withstand the repeated thermal cycles of heating the mold required during press molding of glass, press molding of lenses, and subsequent cooling. The press-molding mold provided with
The objective is to obtain a mold for glass press molding in which no chemical reaction occurs between the mold and the glass, and no peeling of the platinum alloy coating occurs. Although ion implantation was performed on a film formed by sputtering on the press molding surface of a mold, it has been found through experiments that the same effect can be obtained even if ion implantation is performed while performing vacuum evaporation. (Description of Examples) Examples of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of an upper mold 1 and a lower mold 2 of a glass press molding mold according to the present invention. Both upper and lower molds 1 and 2 are made of cylindrical zirconia (ZrO 2 ) material with a diameter of 30 mm and a length of 50 mm.
There are multiple shape notches 3, and the lower die 2 has a radius of curvature.
A concave molding surface 5 of 200 mm is formed respectively. These molded surfaces 4 and 5 are wrapped with ultrafine diamond powder to give mirror surfaces with a maximum surface roughness (Rmax) of 0.02 μm in about 2 hours. Next, a platinum alloy having a composition of 95% by weight of platinum (Pt) and 5% by weight of rhodium (Rh) was used on the surfaces of molding surfaces 4 and 5, which had become mirror-finished, to form a film with a thickness of 300 Å by sputtering. After forming a film and implanting nitrogen ions (N 2 + ) into this film at an acceleration voltage of 50 kV at an implantation rate of 10 13 ions/cm 2 , the film was further deposited to a thickness of 1 μm.
m of platinum iridium (with the same composition)
-Ir) alloy film is formed by sputtering method. An upper mold 1 and a lower mold 2 for glass press molding were obtained by such a manufacturing method. FIG. 2 is a partially cutaway view showing heaters 6 and 7 wound around the outer diameter surfaces of the above-mentioned glass press molding molds 1 and 2, respectively, and attached to upper and lower plungers 8 and 9 of the press. In the same figure, lead oxide (PbO) is 73% by weight and silicon oxide (SiO 2 ) is 27% by weight.
A lump 10 of lead oxide-based optical glass having a radius of 20 mm and having a composition of 10% by weight is held by a raw material supply jig 11 and heated in a tunnel-shaped preheating furnace 12, and then the glass is heated to a temperature of 700°C. Press pressure 40Kg/between press molding molds 1 and 2
Press molded in cm2 . The molded lens, which has been cooled to a temperature of 400° C. together with the upper and lower molds, is taken out from the take-out port 13 after the upper plunger 8 is returned. Through this process, iridium (Ir),
A binary or ternary platinum alloy with platinum (Pt) containing one or two elements selected from osmium (Os), palladium (Pd), rhodium (Rh) and ruthenium (Ru), and argon as the implanted ion. After performing press molding 100 times using a glass press mold manufactured under various conditions using ions (Ar + ) or nitrogen ions (N 2 + ), molding surfaces 4 and 5 of the mold were The table shows the results of observing the surface condition of the molded glass lens. Sample number in table

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 1は上述の試験結果を示すもので、成形面4およ
び5に剥離を生ぜず、成形されたレンズの表面も
良好であつた。 比較例として、従来使用されている炭化珪素
(SiC)の型、炭化タングステン(WC)又は炭化
珪素(SiC)を母材とし成形面に白金合金膜をス
パツタ法で形成し、イオン注入処理は施していな
い型を使用した試料番号87ないし89と、本願の特
許請求の範囲に含まれない試料番号にアスタリス
ク(*)記号を付けた試料番号4ないし7、11な
いし14、18ないし21、25、26、30、31、35、36、
40、41、45、46、50、51、55、56、60、61、65、
66、70、71、75、76、80、81、85および86を記載
した。 これらの比較例で判るように、第1コーテイン
グ層の被膜の厚さは、300Å以下では白金合金膜
が薄すぎてイオン注入により形成される拡散層が
薄くなり、ジルコニア(ZrO2)と白金合金との
接着力が不充分となるためであり、2000Å以上で
は白金合金膜が厚すぎて、侵入したイオンがジル
コニア(ZrO2)と白金合金との境界まで到達し
難くなり接着力が不足するため、状態が悪化する
ものである。 アルゴンイオン(Ar+)又は窒素イオン
(N2 +)の加速電圧は、50kV以下では電圧が低す
ぎてイオンがジルコニア側に十分侵入しないため
であり、200kV以上ではイオンが白金合金膜を損
傷するため状態が悪化するものである。 イオン注入量は、1013イオン/cm2以下ではイオ
ン量が少なすぎてジルコニア(ZrC2)と白金合
金膜との十分な接着力が得られず、1017イオン/
cm2以上では白金合金膜に損傷を与えるため型の表
面が荒れて、良質のガラス成形面が得られない。 また、白金合金の組成は、白金(Pt)が60重
量パーセント未満では白金合金膜の強度あるいは
硬度が低いため、成形面に微細なきずが発生した
り、あるいは塑性変形を起して成形面の面精度が
低下し、95重量パーセントを越えるとプレス成形
したガラスが着色するが、これは白金合金膜が高
温で酸化され易くなるためである。 このように試験結果を踏まえ、特許請求の範囲
に記載されたように限定されたものである。従つ
てこの限定された範囲でガラスプレス成形用型を
製造すれば、型の成形面および成形されたガラス
レンズの状態がともに良好なガラスプレス成形用
型を得ることができる。 (発明の効果) 以上説明したように、本発明によれば、ジルコ
ニア(ZrO2)の母材を用い、成形面に形成する
白金合金膜に強固な接着力を付与することがで
き、鉛系あるいはゲルマニウム系ガラスとの反応
性が少なく、高精度のガラス成形が可能なガラス
プレス成形用型を得ることができる。
[Table] 1 shows the above test results, and there was no peeling on the molding surfaces 4 and 5, and the surface of the molded lens was also good. As a comparative example, we used a conventionally used silicon carbide (SiC) mold, tungsten carbide (WC) or silicon carbide (SiC) as the base material, and formed a platinum alloy film on the molding surface by sputtering, without ion implantation treatment. sample numbers 87 to 89 using molds that are not included in the claims of the present application, and sample numbers 4 to 7, 11 to 14, 18 to 21, 25, with an asterisk (*) attached to sample numbers that are not included in the claims of the present application, 26, 30, 31, 35, 36,
40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65,
66, 70, 71, 75, 76, 80, 81, 85 and 86 were listed. As can be seen from these comparative examples, if the thickness of the first coating layer is less than 300 Å, the platinum alloy film is too thin, and the diffusion layer formed by ion implantation becomes thin, resulting in a reduction in the thickness of the zirconia (ZrO 2 ) and platinum alloy. This is because the adhesion between the zirconia (ZrO 2 ) and the platinum alloy becomes insufficient.If the thickness exceeds 2000Å, the platinum alloy film becomes too thick, making it difficult for the invading ions to reach the boundary between the zirconia (ZrO 2 ) and the platinum alloy, resulting in insufficient adhesion. , the condition worsens. If the accelerating voltage of argon ions (Ar + ) or nitrogen ions (N 2 + ) is less than 50kV, the voltage is too low and the ions do not penetrate sufficiently into the zirconia side, and if it is more than 200kV, the ions will damage the platinum alloy film. Therefore, the condition worsens. If the ion implantation amount is less than 10 13 ions/cm 2 , the ion amount is too small and sufficient adhesion between zirconia (ZrC 2 ) and platinum alloy film cannot be obtained;
If it exceeds cm2 , the platinum alloy film will be damaged and the surface of the mold will become rough, making it impossible to obtain a high-quality glass molding surface. In addition, if the platinum alloy composition contains less than 60% by weight of platinum (Pt), the strength or hardness of the platinum alloy film will be low, resulting in minute scratches on the molding surface or plastic deformation, causing the molding surface to deteriorate. The surface precision decreases, and if the content exceeds 95% by weight, the press-formed glass becomes colored, but this is because the platinum alloy film becomes easily oxidized at high temperatures. Based on the test results, the invention is limited as described in the claims. Therefore, if a glass press molding mold is manufactured within this limited range, it is possible to obtain a glass press molding mold in which both the molding surface of the mold and the molded glass lens are in good condition. (Effects of the Invention) As explained above, according to the present invention, strong adhesion can be imparted to the platinum alloy film formed on the molding surface using a zirconia (ZrO 2 ) base material, and lead-based Alternatively, it is possible to obtain a glass press molding mold that has little reactivity with germanium-based glass and is capable of high-precision glass molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガラスプレス成形用型の斜視
図、第2図は第1図の成形用型を取り付けたプレ
スのプランジヤ部の一部破断図である。 1……上型、2……下型、3……切欠き、4,
5……成形面、6,7……加熱器、8,9……プ
ランジヤ、10……光学ガラスの塊、11……原
料供給治具、12……予備加熱炉、13……取出
し口。
FIG. 1 is a perspective view of a glass press molding mold of the present invention, and FIG. 2 is a partially cutaway view of the plunger portion of the press to which the molding mold of FIG. 1 is attached. 1... Upper mold, 2... Lower mold, 3... Notch, 4,
5... Molding surface, 6, 7... Heater, 8, 9... Plunger, 10... Optical glass lump, 11... Raw material supply jig, 12... Preheating furnace, 13... Takeout port.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニア(ZrO2)を母材として所要のプ
レス成形用型の形状に加工し、そのプレス成形面
上に、イリジウム(Ir)、オスミウム(Os)、パ
ラジウム(Pd)、ロジウム(Rh)およびルテニ
ウム(Ru)の中から選ばれた少くとも一種の元
素と白金(Pt)とからなる白金合金で、白金
(Pt)が60重量パーセントないし95重量パーセン
ト、残部がイリジウム(Ir)、オスミウム(Os)、
パラジウム(Pd)、ロジウム(Rh)およびルテ
ニウム(Ru)の中から選ばれた少くとも一種の
元素の組成を有する白金合金の、膜厚300Åない
し2000Åの被膜を形成し、これにアルゴン(Ar)
又は窒素(N2)イオンを50kVないし200kVの加
速電圧で1013イオン/cm2ないし1017イオン/cm2
入した後、再びイリジウム(Ir)、オスミウム
(Os)、パラジウム(Pd)、ロジウム(Rh)およ
びルテニウム(Ru)の中から選ばれた少くとも
一種類の元素と白金(Pt)とからなる白金合金
の膜厚1μmないし10μmの被膜を重ねて形成する
ことを特徴とするガラスプレス成形用型の製造方
法。
1 Zirconia (ZrO 2 ) is used as a base material and processed into the shape of the required press molding die, and on the press molding surface, iridium (Ir), osmium (Os), palladium (Pd), rhodium (Rh), and ruthenium are added. A platinum alloy consisting of at least one element selected from (Ru) and platinum (Pt), with platinum (Pt) being 60 to 95 weight percent, and the balance being iridium (Ir) and osmium (Os). ,
A film with a thickness of 300 Å to 2000 Å is formed of a platinum alloy having a composition of at least one element selected from palladium (Pd), rhodium (Rh), and ruthenium (Ru), and then argon (Ar) is applied to the film.
Or, after implanting nitrogen (N 2 ) ions at an acceleration voltage of 50 kV to 200 kV at 10 13 ions/cm 2 to 10 17 ions/cm 2 , Iridium (Ir), Osmium (Os), Palladium (Pd), Rhodium ( Glass press forming characterized by forming layers of a platinum alloy film with a thickness of 1 μm to 10 μm, which is made of platinum (Pt) and at least one element selected from Rh) and ruthenium (Ru). Method of manufacturing molds.
JP25932984A 1984-12-10 1984-12-10 Manufacture of mold for press-molding glass Granted JPS61136929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25932984A JPS61136929A (en) 1984-12-10 1984-12-10 Manufacture of mold for press-molding glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25932984A JPS61136929A (en) 1984-12-10 1984-12-10 Manufacture of mold for press-molding glass

Publications (2)

Publication Number Publication Date
JPS61136929A JPS61136929A (en) 1986-06-24
JPS6365613B2 true JPS6365613B2 (en) 1988-12-16

Family

ID=17332578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25932984A Granted JPS61136929A (en) 1984-12-10 1984-12-10 Manufacture of mold for press-molding glass

Country Status (1)

Country Link
JP (1) JPS61136929A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9418705D0 (en) * 1994-09-16 1994-11-16 Johnson Matthey Plc Improvements in high temperature articles
US6071471A (en) * 1997-07-31 2000-06-06 Harry Winston Inc. Composition for jewelry

Also Published As

Publication number Publication date
JPS61136929A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
KR900002704B1 (en) Elements and a molding method using the same
KR900000622B1 (en) Method for forming of optical glass element
JPS6228093B2 (en)
JPS6228091B2 (en)
JPS6365613B2 (en)
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
JPS63103836A (en) Mold for molding optical glass element
JPH0361614B2 (en)
JP2785888B2 (en) Mold for optical element molding
JPH0572336B2 (en)
JP3185299B2 (en) Glass lens molding die and glass lens molding device
EP1428801B1 (en) A coated moulding die for producing an optical glass element
JP2000072452A (en) Optical element molding die
JPH06102554B2 (en) Optical element molding method and molding die thereof
JPS6296331A (en) Method of molding optical glass element and mold therefor
JPS63297230A (en) Molding mold for glass moldings
JPH01111738A (en) Molding die for molded glass
JPH0421609B2 (en)
JPH01100031A (en) Mold for forming optical element
JPH0572335B2 (en)
JPH0653579B2 (en) Method for manufacturing optical glass element
JPH0455135B2 (en)
JPH0729788B2 (en) Method for manufacturing optical glass element
JPS60180926A (en) Mold for press-molding highly accurate glass molded article

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term