JP7527052B2 - Ammonia synthesis catalyst - Google Patents

Ammonia synthesis catalyst Download PDF

Info

Publication number
JP7527052B2
JP7527052B2 JP2023116308A JP2023116308A JP7527052B2 JP 7527052 B2 JP7527052 B2 JP 7527052B2 JP 2023116308 A JP2023116308 A JP 2023116308A JP 2023116308 A JP2023116308 A JP 2023116308A JP 7527052 B2 JP7527052 B2 JP 7527052B2
Authority
JP
Japan
Prior art keywords
ceo2
catalyst
ceo
ammonia synthesis
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023116308A
Other languages
Japanese (ja)
Other versions
JP2023126494A (en
Inventor
哲哉 難波
慶祐 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2023116308A priority Critical patent/JP7527052B2/en
Publication of JP2023126494A publication Critical patent/JP2023126494A/en
Application granted granted Critical
Publication of JP7527052B2 publication Critical patent/JP7527052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明はNとHからNHを合成するアンモニア合成触媒に関する。 The present invention relates to an ammonia synthesis catalyst for synthesizing NH3 from N2 and H2 .

とHからNHを合成する方法として、Fe-Al-KOなどのFe系触媒を用い、23-35MPa、約500℃程度の高温高圧で反応を行うハーバー・ボッシュ法が知られている。
その後、Ru-CeO触媒を用いて、より低温低圧の温和な条件で反応を行う方法が開発された(特許文献1、2)。この方法で用いる触媒は、硝酸セリウムを、アンモニア水溶液を用いてアルカリ性条件下で沈殿させ、600℃程度で焼成して得たCeOに、Ruカルボニルの溶液を含浸し、水素還元することで作製され、これにより、200~600℃程度の温度、1~20気圧程度の低圧でのNH合成を実現している。
The Haber-Bosch process is known as a method for synthesizing NH 3 from N 2 and H 2 , in which an Fe-based catalyst such as Fe 3 O 4 --Al 2 O 3 --K 2 O is used to carry out the reaction at high temperatures and pressures of 23-35 MPa and approximately 500°C.
Later, a method was developed to carry out the reaction under milder conditions of lower temperature and pressure using a Ru- CeO2 catalyst (Patent Documents 1 and 2). The catalyst used in this method is produced by precipitating cerium nitrate under alkaline conditions using an aqueous ammonia solution, calcining the resulting CeO2 at about 600°C, impregnating the resulting CeO2 with a solution of Ru carbonyl, and reducing it with hydrogen, thereby realizing NH3 synthesis at temperatures of about 200 to 600°C and low pressures of about 1 to 20 atm.

特開平6-79177JP 6-79177 A 特開2013-111562Patent Publication 2013-111562

Ru-CeOは、特許文献1、2に示されるように、アンモニア合成触媒として特許が出願されているが、CeOの物理的・化学的状態が異なることによってRu-CeOの触媒性能は全く異なり、高いアンモニア合成活性を再現性よく引き出す調製法を示した特許等の文献はない。
また、Ru-CeOはRuおよびCeOともに高コストな素材であり、どちらの元素の使用量も低減することが望まれる。
本発明は、高いアンモニア合成活性を得ることができるRu-CeO触媒の調製法を提供すること、およびRu-CeO触媒におけるCeO使用量削減に対して効果的な触媒調製法を提供することを課題とする。
As shown in Patent Documents 1 and 2, patent applications have been filed for Ru- CeO2 as an ammonia synthesis catalyst. However, the catalytic performance of Ru- CeO2 is completely different depending on the physical and chemical state of CeO2 , and there are no patents or other documents showing a preparation method that reproducibly brings out high ammonia synthesis activity.
In addition, in Ru-- CeO2 , both Ru and CeO2 are high-cost materials, and it is desirable to reduce the amount of both elements used.
The present invention aims to provide a method for preparing a Ru- CeO2 catalyst that can obtain high ammonia synthesis activity, and to provide a catalyst preparation method that is effective for reducing the amount of CeO2 used in the Ru- CeO2 catalyst.

本発明者らは、硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウム(Ru(NO)(NO)の溶液を含浸することにより作製したRu-CeO触媒が、従来のRuカルボニルを用いて作製した触媒と比べて、高いアンモニア合成活性を有することを見出した。これに対し、硝酸セリウムを水酸化ナトリウムやクエン酸により沈殿・焼成して作製したCeOを用いた場合は、アンモニア合成活性は、従来のRuカルボニルを用いて作製した触媒よりも低かった。
また、アンモニア合成活性は、CeOの焼成温度によっても変化し、水酸化カリウムにより沈殿させたCeOを用いた触媒では、600℃で焼成したものが最も活性が高かった。
The present inventors discovered that a Ru-CeO2 catalyst, which was prepared by impregnating CeO2, which was prepared by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia, with a solution of strongly acidic ruthenium nitrosyl nitrate (Ru(NO)( NO3 ) 3 ), had higher ammonia synthesis activity than a catalyst prepared using a conventional Ru carbonyl. In contrast, when CeO2 prepared by precipitating and calcining cerium nitrate with sodium hydroxide or citric acid was used, the ammonia synthesis activity was lower than that of a catalyst prepared using a conventional Ru carbonyl.
In addition, the ammonia synthesis activity also changes depending on the calcination temperature of CeO2 . Among catalysts using CeO2 precipitated with potassium hydroxide, the one calcined at 600°C had the highest activity.

CeOは塩基性の担体であり、強酸性の溶液で処理するとその表面が一部溶解する。このことが、強酸性のニトロシル硝酸ルテニウムの溶液をCeOに含浸することにより作製した本発明の触媒が高いアンモニア合成活性を有することと関連しているのではないかとの想定の下に、本発明者らは、CeOを強酸性の溶液で処理したときに生じるCeO担体の表面の状態を模するものとして、結晶性のCeOに硝酸セリウム水溶液を含浸させ、焼成することで、結晶性CeOの表面に非晶質のCeOを、種々のAmo(非晶質)/Cry(結晶質)の比率で担持した担体を作製し、これにRuを担持した触媒を用いてアンモニア合成反応を行った。
その結果、Amoの比率を高めるにつれて担体の表面積及び細孔容積は大きくなるが、触媒のアンモニア合成活性も同様に一律に高まるわけではなく、Amo/Cry比が1である場合をピークに、それ以上Amoの比率を高めるとアンモニア合成活性がかえって低くなることを見出した。
硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウムの溶液を含浸することにより作製したRu-CeO触媒においては、CeO担体の表面が、上述のAmo/Cry比が1である場合と類似する構造を有しているものと推察される。
CeO 2 is a basic carrier, and when it is treated with a strong acidic solution, its surface is partially dissolved. Under the assumption that this is related to the fact that the catalyst of the present invention, which is produced by impregnating CeO 2 with a solution of strongly acidic nitrosyl ruthenium nitrate, has high ammonia synthesis activity, the present inventors have produced a carrier in which amorphous CeO 2 is supported on the surface of crystalline CeO 2 at various Amo (amorphous)/Cry (crystalline) ratios by impregnating crystalline CeO 2 with a cerium nitrate aqueous solution and calcining it, as a simulation of the surface state of the CeO 2 carrier that occurs when CeO 2 is treated with a strongly acidic solution, and performed an ammonia synthesis reaction using a catalyst that supports Ru on the carrier.
As a result, it was found that, although the surface area and pore volume of the carrier increase as the Amo ratio is increased, the ammonia synthesis activity of the catalyst does not increase uniformly. Rather, the ammonia synthesis activity peaks when the Amo/Cry ratio is 1, and if the Amo ratio is increased further, the ammonia synthesis activity actually decreases.
In the Ru- CeO2 catalyst prepared by impregnating CeO2, which is prepared by precipitating and calcining cerium nitrate using an aqueous solution of potassium hydroxide or ammonia, with a solution of strongly acidic ruthenium nitrosyl nitrate, the surface of the CeO2 support is presumed to have a structure similar to that in the case where the Amo/Cry ratio is 1 described above.

Ru-CeO触媒に用いられるRuもCeOも高価な材料である。本発明者らは、Ru-CeO触媒にMgOを混合することで、MgOの混合量に応じてRu-CeO触媒に含まれるCeOの量を減らすことができ、CeOの量を減らさない場合と匹敵し、あるいはそれを上回るアンモニア合成活性が得られることを見出した。これにより、高価な材料であるCeOの、同一のRuの量に対する使用量を抑えることができる。
同様の量のRu、CeOおよびMgOを用いても、共沈や物理的混合により得られたCeOおよびMgOの混合物にRuを担持した場合や、MgO外表面にCeOを担持した後、これにRuを担持した場合には、このような効果は見られないことから、このような効果を得るためには、RuはCeOに集約されて担持されている必要があるものと考えられる。
Both Ru and CeO2 used in the Ru- CeO2 catalyst are expensive materials. The inventors have found that by mixing MgO into the Ru- CeO2 catalyst, the amount of CeO2 contained in the Ru-CeO2 catalyst can be reduced according to the amount of MgO mixed, and ammonia synthesis activity comparable to or exceeding that obtained when the amount of CeO2 is not reduced can be obtained. This makes it possible to reduce the amount of CeO2 , an expensive material, used relative to the same amount of Ru.
Even if similar amounts of Ru, CeO2 , and MgO are used, such effects are not observed when Ru is supported on a mixture of CeO2 and MgO obtained by coprecipitation or physical mixing, or when CeO2 is supported on the outer surface of MgO and then Ru is supported on this. Therefore, in order to obtain such effects, it is considered that Ru needs to be aggregated and supported on CeO2 .

本発明者らは、さらに、Ru-CeO触媒において、モル比Ru/Fe=5~200の範囲でFeを添加することにより、Feを添加しない場合を上回るアンモニア合成活性が得られることを見出した。
具体的には、Fe(NO水溶液を用いてCeOにFeを含浸担持させ、焼成した後、得られたFe/CeOにニトロシル硝酸ルテニウムの溶液を用いてRuを含浸担持し、水素還元する。
第二成分の添加により触媒活性が向上することは、他の触媒系においても観察されることがあるが、モル比Ru/Fe=100~200などの少ない量のFeの共存によっても上記効果が得られることは、本発明の際立った効果であるといえる。
The present inventors further discovered that by adding Fe to the Ru- CeO2 catalyst in a molar ratio of Ru/Fe in the range of 5 to 200, ammonia synthesis activity superior to that obtained when no Fe was added was obtained.
Specifically, Fe is impregnated and supported on CeO2 using an aqueous solution of Fe( NO3 ) 3 , and then calcined. After that, Ru is impregnated and supported on the obtained Fe/ CeO2 using a solution of ruthenium nitrosyl nitrate, and reduced with hydrogen.
Although the improvement of catalytic activity by the addition of a second component has been observed in other catalyst systems, the fact that the above effect can be obtained even in the presence of a small amount of Fe, such as a molar ratio of Ru/Fe=100 to 200, is a distinctive effect of the present invention.

本発明は、本発明者らが得た、これらの知見に基づいてなされたものであり、本出願は、具体的には、以下の発明を提供するものである。
〈1〉担体として酸化セリウム(CeO)を有し、触媒成分としてルテニウム(Ru)を有する、窒素と水素からアンモニアを合成する反応用の触媒の製造方法であって、硝酸セリウム水溶液へKOH水溶液またはアンモニア水溶液を沈殿剤として添加して得た沈殿を焼成することでCeOを調製し、これをRu(NO)(NO水溶液に含浸させてRuを担持した後、水素処理して、CeO担持Ru触媒を調製することを特徴とする、触媒の製造方法。
〈2〉上記沈殿の焼成温度が500-700℃であることを特徴とする、〈1〉に記載の触媒の製造方法。
〈3〉上記水素処理を300℃で行うことを特徴とする、〈1〉または〈2〉に記載の触媒の製造方法。
〈4〉窒素と水素からアンモニアを合成する反応用のCeO担持Ru触媒であって、CeO担体のBET比表面積が17~100m/gの範囲であり、細孔容積が0.09~0.25mL/gの範囲であることを特徴とする、触媒。
〈5〉CeO担持Ru触媒とMgOが混合されてなる、窒素と水素からアンモニアを合成する反応用のRu-CeOとMgOの混合体触媒。
〈6〉混合体におけるCeとMgのモル比がMg/Ce=1~9である、〈5〉に記載の触媒。
〈7〉窒素と水素からアンモニアを合成する反応用のCeO担持Ru触媒であって、CeO担体の表面にモル比Ru/Fe=5~200の範囲でFeが更に担持されていることを特徴とする、触媒。
The present invention has been made based on these findings obtained by the present inventors, and specifically, the present application provides the following inventions.
<1> A method for producing a catalyst for a reaction to synthesize ammonia from nitrogen and hydrogen, the catalyst having cerium oxide ( CeO2 ) as a support and ruthenium (Ru) as a catalytic component, the method comprising the steps of: adding a KOH aqueous solution or an ammonia aqueous solution as a precipitant to an aqueous solution of cerium nitrate to obtain a precipitate; calcining the precipitate to prepare CeO2 ; impregnating the precipitate with an aqueous solution of Ru(NO)( NO3 ) 3 to support Ru; and then treating with hydrogen to prepare a CeO2- supported Ru catalyst.
<2> The method for producing the catalyst according to <1>, wherein the calcination temperature of the precipitate is 500 to 700°C.
<3> The method for producing the catalyst according to <1> or <2>, wherein the hydrogen treatment is carried out at 300°C.
<4> A CeO2 -supported Ru catalyst for a reaction for synthesizing ammonia from nitrogen and hydrogen, characterized in that the BET specific surface area of the CeO2 support is in the range of 17 to 100 m2 /g and the pore volume is in the range of 0.09 to 0.25 mL/g.
<5> A mixed catalyst of Ru-CeO2 and MgO for use in a reaction for synthesizing ammonia from nitrogen and hydrogen, comprising a mixture of a CeO2- supported Ru catalyst and MgO.
<6> The catalyst according to <5>, wherein the mixture has a molar ratio of Ce to Mg of Mg/Ce=1 to 9.
<7> A CeO2 -supported Ru catalyst for a reaction for synthesizing ammonia from nitrogen and hydrogen, characterized in that Fe is further supported on the surface of the CeO2 support in a molar ratio of Ru/Fe in the range of 5 to 200.

アンモニア合成においてRu-CeO触媒は、比較的低温・低圧で作用する触媒であるとともに、条件変化に対して応答性がよいため、変動性である再生可能エネルギーにより製造されたCOフリー水素を原料にするCOフリーアンモニア合成プロセスに適した触媒であり、よって、再生可能エネルギーの大量導入にむけた再生可能エネルギー貯蔵の面で社会実装されることが期待される触媒である。
本発明により、より高いアンモニア合成活性を有するRu-CeO触媒を提供することができ、また、CeOの使用量を減らすことで、より安価でRu-CeO触媒を提供することができる。これにより、上記再生可能エネルギーの利用の分野にも資することが期待される。
In ammonia synthesis, the Ru- CeO2 catalyst is a catalyst that functions at relatively low temperatures and pressures, and is responsive to changes in conditions. Therefore, it is a catalyst suitable for the CO2 -free ammonia synthesis process that uses CO2- free hydrogen produced by variable renewable energy as the raw material. Therefore, it is a catalyst that is expected to be implemented in society in terms of renewable energy storage toward the large-scale introduction of renewable energy.
According to the present invention, it is possible to provide a Ru- CeO2 catalyst having a higher ammonia synthesis activity, and by reducing the amount of CeO2 used, it is possible to provide a Ru- CeO2 catalyst at a lower cost. This is expected to contribute to the field of renewable energy utilization.

実施例1における、CeO担体の調製法及び/又はRuの担持法の相異する各種RuCeO触媒のNH合成活性を対比するグラフ。図中、横軸にCeOの調製方法を示し、Ruの担持については、Ru(CO)12含浸と表示されているもの以外は、Ru(NO)(NO水溶液を含浸させることで行った。A graph comparing the NH3 synthesis activity of various RuCeO2 catalysts with different CeO2 support preparation methods and/or Ru loading methods in Example 1. In the figure, the horizontal axis shows the CeO2 preparation method, and Ru loading was performed by impregnation with an aqueous Ru(NO)(NO3)3 solution except for the one shown as Ru3 (CO) 12 impregnation. 実施例1における、CeO担体の焼成温度の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。CeOはKOH沈殿法で調製し、RuはRu(NO)(NO水溶液で含浸させた。Graph showing the effect of the calcination temperature of the CeO2 support on the NH3 synthesis activity of the RuCeO2 catalyst in Example 1. CeO2 was prepared by KOH precipitation method, and Ru was impregnated with an aqueous solution of Ru(NO)( NO3 ) 3 . 実施例2における、CeO担体におけるAmo(非晶質)/Cry(結晶質)比の、CeO担体の比表面積及び細孔容積に与える影響を示すグラフ。黒バーが比表面積を、白抜き丸が細孔容積を示す。A graph showing the effect of the Amo (amorphous) / Cry (crystalline) ratio in the CeO2 support on the specific surface area and pore volume of the CeO2 support in Example 2. The black bars indicate the specific surface area, and the white circles indicate the pore volume. 実施例2における、CeO担体におけるAmo(非晶質)/Cry(結晶質)比の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。FIG. 2 is a graph showing the effect of the Amo (amorphous)/Cry (crystalline) ratio in the CeO2 support on the NH3 synthesis activity of the RuCeO2 catalyst in Example 2. 実施例3における、CeOに対するMgOの混合の態様の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。Graph showing the effect of the mixing aspect of MgO with CeO2 on the NH3 synthesis activity of RuCeO2 catalyst in Example 3. 実施例3における、RuCeO触媒に対するMgOの混合量(Mg/Ce比)の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。Graph showing the effect of the amount of MgO mixed with the RuCeO2 catalyst (Mg/Ce ratio) on the NH3 synthesis activity of the RuCeO2 catalyst in Example 3. 実施例4における、RuCeO触媒に対するFeの配合量の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。Graph showing the effect of the amount of Fe added to the RuCeO2 catalyst on the NH3 synthesis activity of the RuCeO2 catalyst in Example 4.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the examples are merely illustrative of the present invention, and the present invention is not limited to the examples.

[実施例1]各種のCeO担体を用いたRu-CeO触媒の調製とそのNH合成活性
(1)以下の要領で、Ru-CeO触媒の担体として用いる各種のCeOを準備した。
(アルカリ水溶液による沈殿法によるもの)
硝酸セリウム重量の約10倍数の体積のイオン交換蒸留水で硝酸セリウム水溶液を調製し、27%NH水もしくは0.05-0.1mol/LのKOH、NaOHを徐々に加えて、pHを10以上にして得られる沈殿を600℃で空気中焼成して、CeOを調製した。
(クエン酸水溶液による沈殿法によるもの)
上述の硝酸セリウム水溶液にセリウムの2倍mol量を含むクエン酸水溶液を加え、蒸発乾固させて得た沈殿を600℃で空気中焼成して、CeOを調製した。
(市販品)
市販されている、比表面積の異なるCeOを2種(高表面積および中程度の表面積)、準備した。これらはそれぞれ第一稀元素化学工業製CeO Type-AおよびType-Bであり、比表面積はそれぞれ150m/gおよび100m/gであった。
(低表面積CeO
市販のCeO Type-Aを900℃、6時間、空気中で焼成して、比表面積9m/gのCeOを調製した。
(2)これらのCeOに、Ru(NO)(NO水溶液を含浸させて、各種のRu-CeO触媒を調製した。CeOは、メスシリンダーによる見かけの密度および真密度計による真密度を測定し、それらの差分によって得られる見かけの空隙容積を算出した。CeOの重量に応じて、見かけの空隙容積の1.5倍の水に必要量のRu(NO)(NOを溶解し、そのRu(NO)(NO水溶液中にCeOを室温で1時間浸漬した後、100℃で12時間乾燥させてRu担持CeOを得た。Ru担持CeOは、管状炉中で10%H/N気流中300℃、1時間焼成して目的の触媒を調製した。
また、これに加えて、市販の高表面積CeOにRu(CO)12溶液を含浸させて、Ru-CeO触媒を調製した。上記と同様に測定したCeOの見かけの空隙容積の50倍のテトラヒドロフラン(THF)にRu(CO)12を溶解し、上記と同様の手順で目的の触媒を得た。
得られた各Ru-CeO触媒のRu担持量は、それぞれ1Wt%である。
[Example 1] Preparation of Ru- CeO2 catalyst using various CeO2 supports and its NH3 synthesis activity (1) Various CeO2 to be used as supports for Ru- CeO2 catalyst were prepared as follows.
(By precipitation using an alkaline aqueous solution)
A cerium nitrate aqueous solution was prepared using ion-exchanged distilled water with a volume approximately 10 times the weight of cerium nitrate, and 27% NH3 water or 0.05-0.1 mol/L KOH or NaOH was gradually added to adjust the pH to 10 or higher. The resulting precipitate was calcined in air at 600 °C to prepare CeO2 .
(Precipitation method using citric acid solution)
A citric acid solution containing twice the molar amount of cerium was added to the above-mentioned cerium nitrate aqueous solution, and the precipitate obtained by evaporating to dryness was calcined in air at 600 °C to prepare CeO2 .
(Commercial goods)
Two types of commercially available CeO 2 with different specific surface areas (high surface area and medium surface area) were prepared. These were CeO 2 Type-A and Type-B manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., and had specific surface areas of 150 m 2 /g and 100 m 2 /g, respectively.
(Low surface area CeO 2 )
Commercially available CeO 2 Type-A was calcined in air at 900° C. for 6 hours to prepare CeO 2 with a specific surface area of 9 m 2 /g.
(2) These CeO 2 were impregnated with Ru(NO)(NO 3 ) 3 aqueous solution to prepare various Ru-CeO 2 catalysts. CeO 2 was measured for apparent density using a measuring cylinder and true density using a true density meter, and the apparent void volume obtained by the difference between them was calculated. Depending on the weight of CeO 2 , the required amount of Ru(NO)(NO 3 ) 3 was dissolved in water 1.5 times the apparent void volume, and CeO 2 was immersed in the Ru(NO)(NO 3 ) 3 aqueous solution at room temperature for 1 hour, and then dried at 100 ° C for 12 hours to obtain Ru-supported CeO 2. Ru-supported CeO 2 was calcined in a tubular furnace in a 10% H 2 /N 2 stream at 300 ° C for 1 hour to prepare the target catalyst.
In addition, a Ru- CeO2 catalyst was prepared by impregnating a commercially available high surface area CeO2 with a Ru3 (CO) 12 solution. Ru3(CO)12 was dissolved in tetrahydrofuran (THF) in an amount 50 times the apparent void volume of CeO2 measured in the same manner as above, and the target catalyst was obtained by the same procedure as above.
The amount of Ru supported in each of the obtained Ru- CeO2 catalysts was 1 wt %.

これらのRu-CeO触媒を用いて、アンモニアの合成試験を行った。試験は常圧固定床流通反応装置を用いて行った。反応温度400℃で得られたその結果を、図1に示す。
図1に示されるように、硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のRu(NO)(NO(ニトロシル硝酸ルテニウム)の溶液を含浸することにより作製したRu-CeO触媒は、従来のRu(CO)12(Ruカルボニル)を用いて作製した触媒と比べて、高いアンモニア合成活性を有する。これに対し、硝酸セリウムを水酸化ナトリウムやクエン酸により沈殿・焼成して作製したCeOを用いた場合のアンモニア合成活性は、従来のRuカルボニルを用いて作製した触媒よりも低い。
Ammonia synthesis tests were carried out using these Ru- CeO2 catalysts. The tests were carried out using an atmospheric pressure fixed bed flow reactor. The results obtained at a reaction temperature of 400°C are shown in Figure 1.
As shown in Fig. 1, the Ru - CeO2 catalyst, which is produced by impregnating CeO2, which is produced by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia, with a solution of strongly acidic Ru(NO)( NO3 ) 3 (ruthenium nitrosyl nitrate), has a higher ammonia synthesis activity than a catalyst produced using conventional Ru3 (CO) 12 (Ru carbonyl). In contrast, the ammonia synthesis activity of the catalyst produced by precipitating and calcining cerium nitrate with sodium hydroxide or citric acid is lower than that of the catalyst produced using conventional Ru carbonyl.

また、アンモニア合成活性は、CeOの焼成温度によっても変化し、水酸化カリウムにより沈殿させたCeOを用いた上記触媒では、600℃で焼成したものが最も活性が高かった(図2)。 In addition, the ammonia synthesis activity also changes depending on the calcination temperature of CeO2 . Among the above catalysts using CeO2 precipitated with potassium hydroxide, the one calcined at 600°C had the highest activity (Figure 2).

[実施例2]CeO担体の表面構造と触媒活性の関連性
CeOは塩基性の担体であり、強酸性の溶液で処理するとその表面が一部溶解する。このことが、強酸性のニトロシル硝酸ルテニウムの溶液をCeOに含浸することにより作製した本発明の触媒が高いアンモニア合成活性を有することと関連しているのではないかとの想定の下に、CeOを強酸性の溶液で処理したときに生じるCeO担体の表面の状態を模するものとして、結晶性のCeOに硝酸セリウム水溶液を含浸させ、焼成することで、結晶性CeOの表面に非晶質のCeOを、種々のAmo(非晶質)/Cry(結晶質)の比率で担持した担体を作製し、これにRuを担持した触媒を用いてアンモニア合成反応を行った。
[Example 2] Relationship between the surface structure of the CeO2 carrier and catalytic activity CeO2 is a basic carrier, and when treated with a strong acidic solution, its surface is partially dissolved. Under the assumption that this is related to the fact that the catalyst of the present invention, which is produced by impregnating CeO2 with a solution of strongly acidic nitrosyl ruthenium nitrate, has high ammonia synthesis activity, crystalline CeO2 was impregnated with a cerium nitrate aqueous solution and fired to simulate the surface state of the CeO2 carrier that occurs when CeO2 is treated with a strongly acidic solution, and a support was produced in which amorphous CeO2 was supported on the surface of crystalline CeO2 at various Amo (amorphous)/Cry (crystalline) ratios, and ammonia synthesis reaction was performed using a catalyst supported with Ru.

上記担体および触媒の調製、および、これを用いたアンモニア合成試験は、具体的には、以下のとおりに行った:
実施例1でも用いた市販の高表面積CeOを空気中900℃で6時間焼成することで、結晶性のCeO(以下、CeO(Cry)という)を調製した。
所定量のCeO(Cry)を各種濃度のCe(NO水溶液に含浸し、100℃で12時間乾燥させた後、10%H/N雰囲気中300℃で1時間焼成することで、CeO(Amo)/CeO(cry)のモル比が、それぞれ0.01、0.02、0.1、0.2、0.5、1、2、10であるCeO(Amo)/CeO(cry)を調製した。また、硝酸セリウムを300℃で4時間焼成することで、CeO(Amo)のみからなるCeOを調製した。これらのCeOについて測定されたBET法による比表面積および細孔容積を図3に示す。黒バーが比表面積を、また白抜き丸が細孔容積を示す。
このようにして調製した各種のCeOを、Ru担持量が1Wt%となるように濃度調節したRu(NO)(NO水溶液中に含浸し、100℃で8時間乾燥させた後、10%H/N雰囲気中300℃で1時間焼成することで、各種のRu-CeO触媒を調製した。
これらのRu-CeO触媒を用いて、アンモニアの合成試験を行った。アンモニア合成反応の反応条件は、実施例1と同様である。その結果を、図4に示す。
The preparation of the above-mentioned carrier and catalyst, and the ammonia synthesis test using the same were specifically carried out as follows:
The commercially available high surface area CeO 2 used in Example 1 was calcined in air at 900° C. for 6 hours to prepare crystalline CeO 2 (hereinafter referred to as CeO 2 (Cry)).
A predetermined amount of CeO 2 (Cry) was impregnated into various concentrations of Ce(NO 3 ) 3 aqueous solutions, dried at 100° C. for 12 hours, and then baked at 300° C. for 1 hour in a 10% H 2 /N 2 atmosphere to prepare CeO 2 (Amo) / CeO 2 (cry) with a molar ratio of CeO 2 (Amo) / CeO 2 (cry) of 0.01, 0.02, 0.1, 0.2, 0.5, 1, 2, and 10, respectively. CeO 2 consisting only of CeO 2 (Amo) was also prepared by baking cerium nitrate at 300° C. for 4 hours. The specific surface area and pore volume measured for these CeO 2 by the BET method are shown in FIG. 3. The black bars indicate the specific surface area, and the open circles indicate the pore volume.
The various CeO2 thus prepared were impregnated into an aqueous solution of Ru(NO)( NO3 ) 3 whose concentration was adjusted so that the Ru loading amount was 1 wt%, and then dried at 100°C for 8 hours, and then calcined at 300°C for 1 hour in a 10% H2 / N2 atmosphere to prepare various Ru- CeO2 catalysts.
Using these Ru- CeO2 catalysts, an ammonia synthesis test was carried out. The reaction conditions for the ammonia synthesis reaction were the same as those in Example 1. The results are shown in FIG.

これらの実験の結果、Amoの比率を高めるにつれて担体の比表面積及び細孔容積は大きくなる(図3)が、触媒のアンモニア合成活性も同様に一律に高まるわけではなく、Amo/Cry比が1である場合をピークに、それ以上Amoの比率を高めるとアンモニア合成活性がかえって低くなる(図4)ことを見出した。図3と4とから、担体の比表面積17~100m/g、細孔容積0.09~0.25mL/gの範囲、より好ましくは、20~60m/g、0.09~0.2mL/gの範囲で高いアンモニア合成活性が得られたことが分かる。
硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウムの溶液を含浸することにより作製したRu-CeO触媒においては、CeO担体の表面が、上述のAmo/Cry比が1である場合と類似する構造を有しているものと推察される。
As a result of these experiments, it was found that, as the ratio of Amo is increased, the specific surface area and pore volume of the support increase (Figure 3), but the ammonia synthesis activity of the catalyst does not increase uniformly either, and the ammonia synthesis activity peaks when the Amo/Cry ratio is 1, and decreases when the ratio of Amo is further increased (Figure 4). Figures 3 and 4 show that high ammonia synthesis activity was obtained when the specific surface area of the support was in the range of 17 to 100 m 2 /g and the pore volume was in the range of 0.09 to 0.25 mL/g, more preferably in the range of 20 to 60 m 2 /g and 0.09 to 0.2 mL/g.
In the Ru- CeO2 catalyst prepared by impregnating CeO2, which is prepared by precipitating and calcining cerium nitrate using an aqueous solution of potassium hydroxide or ammonia, with a solution of strongly acidic ruthenium nitrosyl nitrate, the surface of the CeO2 support is presumed to have a structure similar to that in the case where the Amo/Cry ratio is 1 described above.

[実施例3]Ru-CeO2触媒へのMgOの混合効果
Ru-CeO触媒に用いられるRuもCeOも高価な材料である。本発明者らは、Ru-CeO触媒におけるCeOの一部をMgOで置き換えることで、Ru-CeO触媒に含まれるCeOの量を減らすことを試みた。
[Example 3] Effect of mixing MgO into Ru-CeO2 catalyst Both Ru and CeO2 used in Ru-CeO2 catalyst are expensive materials. The present inventors attempted to reduce the amount of CeO2 contained in the Ru- CeO2 catalyst by replacing a part of CeO2 in the Ru- CeO2 catalyst with MgO.

具体的には、以下に示す4種類の触媒を調製し、そのアンモニア合成活性を調べた:
(共沈)
硝酸マグネシウム+硝酸セリウム重量の約10倍数の体積のイオン交換蒸留水で硝酸マグネシウムと硝酸セリウムの共水溶液(モル比Mg/Ce=5)を調製し、これに27%NH水溶液を徐々に添加することによりpHを10以上にして得られる沈殿を600℃、4時間、空気中で焼成し、これにRu(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(物理混合)
MgOとCeOを上述の共沈法と同様の方法でそれぞれ沈殿から調製し、モル比Mg/Ce=5で乳鉢によって混合し、得られたものに、Ru(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(表面担持)
所定量を秤量した硝酸セリウム水溶液中に上述の沈殿法によって調製したMgO粉体を浸漬し、蒸発乾固させることで、MgO外表面にCeを析出させ、続いて、空気中600℃で4時間焼成し、CeOが表面に担持したMgO(モル比Mg/Ce=5)を得、これにRu(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(Ru-CeO2+MgO混合)
実施例1においてNHを用いた沈殿法により得られたCeOにRu(NO水溶液をRu含有量が2.2Wt%となるように含浸担持し、H/N雰囲気中300℃で焼成した後、モル比Mg/Ce=5となるようにMgOをRu-CeOに加えて、乳鉢で混合し、Ru含有量が混合物全体で1Wt%となるRu-CeO+MgO混合触媒を得た。
これらの触媒、及び比較対象として、実施例1においてNHを用いた沈殿法により得られたCeOにRu(NO)(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成した触媒について、アンモニアの合成試験を行った。アンモニア合成反応の反応条件は、実施例1と同様である。その結果を、図5に示す。
Specifically, the following four types of catalysts were prepared and their ammonia synthesis activity was examined:
(Coprecipitation)
A co-aqueous solution of magnesium nitrate and cerium nitrate (molar ratio Mg/Ce=5) was prepared using ion-exchanged distilled water with a volume approximately 10 times the weight of magnesium nitrate and cerium nitrate, and a 27% NH3 aqueous solution was gradually added to the solution to adjust the pH to 10 or higher. The resulting precipitate was calcined in air at 600°C for 4 hours, impregnated with an aqueous Ru( NO3 ) 3 solution so that the Ru content was 1 wt%, and then calcined in a H2 / N2 atmosphere at 300°C.
(Physical Mixture)
MgO and CeO2 are prepared from precipitation in a manner similar to the above-mentioned coprecipitation method, mixed in a mortar at a molar ratio of Mg/Ce = 5, impregnated with an aqueous solution of Ru( NO3 ) 3 so that the Ru content is 1 wt%, and then fired at 300°C in a H2 / N2 atmosphere.
(Surface Loading)
The MgO powder prepared by the above-mentioned precipitation method is immersed in a weighed amount of cerium nitrate aqueous solution, and evaporated to dryness to precipitate Ce on the outer surface of the MgO. The powder is then fired in air at 600°C for 4 hours to obtain MgO with CeO2 supported on the surface (molar ratio Mg/Ce=5). This is impregnated with an aqueous Ru( NO3 ) 3 solution so that the Ru content becomes 1 wt%, and then fired in a H2 / N2 atmosphere at 300°C.
(Ru-CeO2+MgO mixture)
In Example 1, CeO2 obtained by the precipitation method using NH3 was impregnated with an aqueous solution of Ru( NO3 ) 3 so that the Ru content was 2.2 wt%. The mixture was then fired at 300°C in a H2 / N2 atmosphere. MgO was then added to the Ru- CeO2 so that the molar ratio was Mg/Ce = 5, and mixed in a mortar to obtain a Ru- CeO2 +MgO mixed catalyst with a Ru content of 1 wt% in the entire mixture.
These catalysts and, as a comparison, a catalyst obtained by impregnating CeO2 obtained by the precipitation method using NH3 in Example 1 with an aqueous solution of Ru(NO)( NO3 ) 3 so that the Ru content was 1 wt%, and then calcining the catalyst at 300°C in a H2 / N2 atmosphere were subjected to an ammonia synthesis test. The reaction conditions for the ammonia synthesis reaction were the same as those in Example 1. The results are shown in Figure 5.

図5に示されるように、Ru-CeO触媒にMgOを混合することで、MgOの混合量に応じてRu-CeO触媒に含まれるCeOの量を減らすことができ、CeOの量を減らさない場合と匹敵するアンモニア合成活性が得られることを見出した。これにより、高価な材料であるCeOの、同一のRuの量に対する使用量を抑えることができる。
一方、同様の量のRu、CeOおよびMgOを用いても、共沈や物理的混合により得られたCeOおよびMgOの混合物にRuを担持した場合や、MgO外表面にCeOを担持した後、これにRuを担持した場合には、このような効果は見られないことから、このような効果を得るためには、RuはCeOに集約されて担持されている必要があるものと考えられる。
As shown in Figure 5, by mixing MgO into the Ru- CeO2 catalyst, the amount of CeO2 contained in the Ru- CeO2 catalyst can be reduced according to the amount of MgO mixed, and it was found that ammonia synthesis activity comparable to that obtained when the amount of CeO2 is not reduced can be obtained. This makes it possible to reduce the amount of CeO2 , which is an expensive material, used for the same amount of Ru.
On the other hand, even if similar amounts of Ru, CeO2 and MgO are used, such effects are not observed when Ru is supported on a mixture of CeO2 and MgO obtained by coprecipitation or physical mixing, or when CeO2 is supported on the outer surface of MgO and then Ru is supported on this. Therefore, in order to obtain such effects, it is considered that Ru needs to be aggregated and supported on CeO2 .

図6に、上述のRu-CeO+MgO混合触媒において、モル比Mg/Ceが1、3または9の混合触媒を更に調製し、これらと、モル比Mg/Ceが5の触媒、及び、上述の(物理混合)に記載した調製法で調製したMgOを含まない触媒、並びに、CeOを含まない触媒のアンモニア合成活性を調べた結果を示す。
図6から、上述のRu-CeO触媒にMgOを混合することの効果は、少なくともMg/Ce比が1~9の範囲で得られ、この範囲で、同じRu担持法による、MgOを含まない触媒のアンモニア合成活性を上回ることが分かる。
FIG. 6 shows the results of investigating the ammonia synthesis activity of the above-mentioned Ru-CeO 2 +MgO mixed catalyst, which was further prepared with a molar ratio of Mg/Ce of 1, 3, or 9, as well as a catalyst with a molar ratio of Mg/Ce of 5, a catalyst not containing MgO prepared by the preparation method described above (physical mixing), and a catalyst not containing CeO 2 .
From FIG. 6, it can be seen that the effect of mixing MgO with the above-mentioned Ru-CeO 2 catalyst is obtained at least in the range of Mg/Ce ratio of 1 to 9, and in this range, the ammonia synthesis activity exceeds that of a catalyst not containing MgO by the same Ru supporting method.

[実施例4]Ru-CeO触媒へのFe配合の効果
多くの触媒において、第二成分を添加することにより活性が向上する現象が観察されることがある。そこで、本発明者らは、Ru-CeO触媒において、さらにFeを添加することが触媒のアンモニア合成活性に与える影響について検討した。
[Example 4] Effect of Fe addition to Ru- CeO2 catalyst In many catalysts, the phenomenon of activity improvement by adding a second component is observed. Therefore, the present inventors investigated the effect of further adding Fe to the Ru- CeO2 catalyst on the ammonia synthesis activity of the catalyst.

具体的には、実施例1で用いた市販の高表面積CeOの見かけの密度および真密度測定から見かけの空隙容積を算出し、その1.5倍体積のイオン交換蒸留水にFe(NOを溶解した水溶液中にCeOを浸漬させ、600℃、4時間、空気中で焼成し、Fe/CeOを調製した。これにRu(NO)(NO水溶液を用いてRuを1Wt%含浸担持した後、H/N雰囲気中300℃で焼成することで、Ru/Fe/CeO触媒を得た。Ru/Feモル比が0.2~200の範囲の10種類の触媒を、Fe仕込み量を調整しながら調製し、これらの触媒、およびFeを担持させない触媒(Ru/Feが無限大)ならびにRuを担持させない5Wt%Fe担持触媒について、アンモニア合成活性を調べた。得られた結果を図7に示す。 Specifically, the apparent void volume was calculated from the apparent density and true density measurements of the commercially available high surface area CeO 2 used in Example 1, and CeO 2 was immersed in an aqueous solution of Fe(NO 3 ) 3 dissolved in ion-exchanged distilled water of 1.5 times the volume of the CeO 2 , and then calcined in air at 600 ° C for 4 hours to prepare Fe/CeO 2. After impregnating and supporting 1 Wt% Ru using an aqueous solution of Ru(NO)(NO 3 ) 3 , the catalyst was calcined at 300 ° C in an H 2 /N 2 atmosphere to obtain a Ru/Fe/CeO 2 catalyst. Ten types of catalysts with Ru/Fe molar ratios in the range of 0.2 to 200 were prepared while adjusting the amount of Fe charged, and the ammonia synthesis activity was examined for these catalysts, as well as a catalyst not supporting Fe (Ru/Fe is infinite) and a 5 Wt% Fe-supported catalyst not supporting Ru. The results obtained are shown in FIG.

図7から、上述の触媒において、モル比Ru/Fe=5~200の範囲でFeを添加することにより、Feを添加しない場合を上回るアンモニア合成活性が得られることが分かる。特に、モル比Ru/Fe=100~200などの極めて少ない量のFeの共存によっても上記効果が得られることは、本発明の際立った効果であるといえる。 From Figure 7, it can be seen that by adding Fe to the above catalyst in a molar ratio of Ru/Fe in the range of 5 to 200, ammonia synthesis activity that exceeds that obtained when no Fe is added can be obtained. In particular, the fact that the above effect can be obtained even with the coexistence of an extremely small amount of Fe, such as a molar ratio of Ru/Fe in the range of 100 to 200, is a notable effect of the present invention.

アンモニアは、各種化合物の合成反応において原料化合物の1つとして用いられる等、化学工業において広く使用されている化合物であり、本発明は、これらの化学工業の分野で広く利用し得るものである。
また、アンモニアは、再生可能エネルギーの貯蔵の形態の一つとして期待されており、本発明は、この分野での利用も期待される。
Ammonia is a compound that is widely used in the chemical industry, for example as one of raw material compounds in the synthesis reactions of various compounds, and the present invention can be widely used in these chemical industrial fields.
Furthermore, ammonia is expected to be one form of storage for renewable energy, and the present invention is also expected to be used in this field.

Claims (2)

窒素と水素からアンモニアを合成する反応用の触媒の製造方法であって、
CeOにFeを担持させてFe/CeOを得て、モル比Ru/Fe=5~200となるように、このFe/CeOにRuを担持させる触媒の製造方法。
A method for producing a catalyst for a reaction of synthesizing ammonia from nitrogen and hydrogen, comprising the steps of:
A method for producing a catalyst in which Fe is supported on CeO 2 to obtain Fe/CeO 2 , and Ru is supported on this Fe/CeO 2 so that the molar ratio of Ru/Fe is 5 to 200.
モル比Ru/Fe=5~50となるようにFe/CeOにRuを担持させる、請求項に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1 , wherein Ru is supported on Fe/CeO 2 so that the molar ratio of Ru/Fe is 5 to 50.
JP2023116308A 2020-01-08 2023-07-14 Ammonia synthesis catalyst Active JP7527052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023116308A JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020001558A JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst
JP2023116308A JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020001558A Division JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst

Publications (2)

Publication Number Publication Date
JP2023126494A JP2023126494A (en) 2023-09-07
JP7527052B2 true JP7527052B2 (en) 2024-08-02

Family

ID=77058621

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020001558A Active JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst
JP2023116308A Active JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116306A Pending JP2023126492A (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116307A Active JP7454307B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020001558A Active JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2023116306A Pending JP2023126492A (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116307A Active JP7454307B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Country Status (1)

Country Link
JP (4) JP7432224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005062A1 (en) * 2022-06-28 2024-01-04 株式会社豊田中央研究所 Ammonia synthesis catalyst, method for manufacturing same, and method for synthesizing ammonia using said ammonia synthesis catalyst
CN118477639B (en) * 2024-07-09 2024-09-20 临朐大祥精细化工有限公司 Ammonia synthesis catalyst and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149109A (en) 2008-11-18 2010-07-08 Osaka Gas Co Ltd Catalyst for producing high calorie gas, production method therefor, and method for producing high calorie gas using catalyst for producing high calorie gas
JP2013111562A (en) 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Composition and method for manufacturing ammonia using the composition
JP2015218091A (en) 2014-05-20 2015-12-07 株式会社Ihi Ammonia synthesis catalyst and ammonia synthesis method
JP2018051462A (en) 2016-09-28 2018-04-05 株式会社日本触媒 Catalyst for ammonia synthesis, method for manufacturing catalyst for ammonia synthesis, and method for synthesizing ammonia
JP2019162604A (en) 2018-03-20 2019-09-26 日揮触媒化成株式会社 Method of producing ammonia synthesis catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679177A (en) * 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc Catalyst and process for synthesizing ammonia
JP4777670B2 (en) * 2005-02-25 2011-09-21 本田技研工業株式会社 Ammonia synthesis catalyst and method for producing the same
CN104888774B (en) 2015-06-15 2017-04-12 福州大学 Rare earth element-doped hydrotalcite-like precursor loading ruthenium ammonia synthetic catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149109A (en) 2008-11-18 2010-07-08 Osaka Gas Co Ltd Catalyst for producing high calorie gas, production method therefor, and method for producing high calorie gas using catalyst for producing high calorie gas
JP2013111562A (en) 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Composition and method for manufacturing ammonia using the composition
JP2015218091A (en) 2014-05-20 2015-12-07 株式会社Ihi Ammonia synthesis catalyst and ammonia synthesis method
JP2018051462A (en) 2016-09-28 2018-04-05 株式会社日本触媒 Catalyst for ammonia synthesis, method for manufacturing catalyst for ammonia synthesis, and method for synthesizing ammonia
JP2019162604A (en) 2018-03-20 2019-09-26 日揮触媒化成株式会社 Method of producing ammonia synthesis catalyst

Also Published As

Publication number Publication date
JP7432224B2 (en) 2024-02-16
JP7454307B2 (en) 2024-03-22
JP2023126493A (en) 2023-09-07
JP2021109130A (en) 2021-08-02
JP2023126492A (en) 2023-09-07
JP2023126494A (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP7527052B2 (en) Ammonia synthesis catalyst
US6808652B2 (en) Modified ⊖-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
KR101551509B1 (en) Low temperature water gas shift catalyst
KR101447683B1 (en) Iron modified Ni-based perovskite type catalyst, Preparing method thereof, and Producing method of synthesis gas from combined steam CO2 reforming of methane using the same
CN109126787B (en) Rare earth metal oxide supported ruthenium catalyst for ammonia synthesis and application thereof
US20050063900A1 (en) CO-free hydrogen from decomposition of methane
WO2009078979A2 (en) Iron-based water gas shift catalyst
JP2021130100A (en) Ammonia decomposition catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
WO2005030391A1 (en) Catalyst and method for the generation of co-free hydrogen from methane
CN114308056B (en) Samarium-manganese-mullite-type nickel-based catalyst for autothermal reforming of acetic acid to produce hydrogen
KR100899306B1 (en) Calcium based high temperature carbon dioxide absorbent
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
JPS5870839A (en) Catalyst for steam reforming of methanol
CN112387276A (en) Supported ruthenium cluster catalyst for ammonia synthesis and preparation method and application thereof
JP2018187621A (en) Nitrogen oxide occlusion material, method for producing the same, and exhaust gas purification catalyst
JP4776403B2 (en) Hydrocarbon reforming catalyst
JP2000103604A (en) Preparation of reforming catalyst for hydrocarbon and molded product of magnesium oxide for forming the same catalyst support
KR102233613B1 (en) Catalyst for water gas shift reaction in middle temperature, preparation method thereof, and hydrogen preparation method using the same
JP2011224554A (en) Catalyst for decomposing ammonia, method for producing the catalyst, and method for producing hydrogen using the catalyst
KR102531947B1 (en) Catalyst for methane synthesis and preparation method thereof
CN114477298B (en) Composite oxide and preparation method and application thereof
US12129174B2 (en) Catalyst for water gas shift reaction at middle temperature, preparation method thereof, and hydrogen preparation method using same
CN116870915A (en) Iron-based oxygen carrier and preparation method and application thereof
KR20240061114A (en) Method for preparing porous alpha alumina composite for co2 reforming reaction, porous alpha alumina composite prepared using the same and co2 reforming catalyst comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240716

R150 Certificate of patent or registration of utility model

Ref document number: 7527052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150