JPS5870839A - Catalyst for steam reforming of methanol - Google Patents

Catalyst for steam reforming of methanol

Info

Publication number
JPS5870839A
JPS5870839A JP17017181A JP17017181A JPS5870839A JP S5870839 A JPS5870839 A JP S5870839A JP 17017181 A JP17017181 A JP 17017181A JP 17017181 A JP17017181 A JP 17017181A JP S5870839 A JPS5870839 A JP S5870839A
Authority
JP
Japan
Prior art keywords
catalyst
copper
methanol
magnesium
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17017181A
Other languages
Japanese (ja)
Other versions
JPH039772B2 (en
Inventor
Michiyuki Jinbo
神保 陸志
Hiroji Miyagawa
博治 宮川
Tokio Nagayama
時男 永山
Toshihiro Abe
智弘 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17017181A priority Critical patent/JPS5870839A/en
Publication of JPS5870839A publication Critical patent/JPS5870839A/en
Publication of JPH039772B2 publication Critical patent/JPH039772B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst excellent in low temp. activity, as the catalyst for steam reforming of methanol, by using one having a magnesium compound contained in a copper compound. CONSTITUTION:As a copper type catalyst for steam reforming of methanol, one obtained by containing a magnesium compound such as magnesium oxide or magnesium carbonate in a copper compound such as copper nitrate or copper sulfate is used. Thus obtained catalyst is high in a methanol conversion ratio at a relatively low temp. and reduces the generation of CO as a byproduct.

Description

【発明の詳細な説明】 本発明は、メタノールをスチームI) 7オーミングし
て水素を得るための触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for the steam I)7ohming of methanol to obtain hydrogen.

−現在、化学工業において大量に使用される水素は、大
部分がナフサまたは天然ガスのスチームリフオーミング
で製造されている。これに対し、メタノールのスチーム
リフォーミングによって水素を製造する方法は比較的低
温でスチームリフォーミングが可能なこと、メタノール
の貯蔵や取扱いが容易なこと、高純度の水素が得やすい
こと等の利点を有し、近年、注目をあびている。
-Currently, hydrogen, which is used in large quantities in the chemical industry, is mostly produced by steam reforming of naphtha or natural gas. On the other hand, the method of producing hydrogen by steam reforming methanol has the following advantages: steam reforming is possible at relatively low temperatures, methanol is easy to store and handle, and high purity hydrogen is easy to obtain. It has attracted attention in recent years.

メタノールのスチームリフォーミング反応は、形式的に
(1)式で表わされる。  ′CH30H+H2O−−
→C6□+3H2・・・・・・(1)また、主要な副反
応としては(2)および(己)式0式%(2) (3) によって表わされる一酸化炭素の副生がある。
The steam reforming reaction of methanol is formally represented by equation (1). 'CH30H+H2O--
→C6□+3H2... (1) Also, major side reactions include (2) and the by-product of carbon monoxide represented by the following formulas: (2) (3).

(2)式よシ明らかなように、−酸化炭素の副生は水素
生成量を減少させるので好ましくない。
As is clear from equation (2), the by-product of -carbon oxide is undesirable because it reduces the amount of hydrogen produced.

まだ水素の用途によっては、例えば、燃料電池用原料水
素のように一酸化炭素の混在をきらう場合があり、この
ような時には一酸化炭素副生量を厳しく制限する必要が
ある。したがって、一般的にはメタノールのスチームリ
フオーミング用触媒は一酸化炭素の副生が少ないことが
要求される。前記の(2)式の反応は一酸化炭素シフト
反応として良く知られ、その平衡は低温になるほど水素
の生成に有利であるので、−酸化炭素の副生を抑制する
意味から、メタノールのスチームリフオーミング用触媒
はできる限シ低温で充分な活性を持つことが望ましい。
However, depending on the use of hydrogen, for example, as raw material hydrogen for fuel cells, the presence of carbon monoxide may be undesirable, and in such cases it is necessary to strictly limit the amount of carbon monoxide by-product. Therefore, methanol steam reforming catalysts are generally required to produce less carbon monoxide as a by-product. The reaction of equation (2) above is well known as the carbon monoxide shift reaction, and the lower the temperature, the more favorable the equilibrium is for the production of hydrogen. Therefore, in order to suppress the by-product of carbon oxide, steam refrigeration of methanol is It is desirable that the ohming catalyst has sufficient activity at as low a temperature as possible.

また原料の予熱等に要するエネルギーの点からみても、
反応温度が低いことは有利である。
Also, from the point of view of the energy required for preheating the raw materials,
Low reaction temperatures are advantageous.

メタノールのスチームリフォーミング反応には銅−亜鉛
、銅−亜鉛−クロム、銅−クロム、銅−クロム−マンガ
ン−亜鉛、亜鉛−クロム、亜鉛−コバルト−クロム等の
触媒が活性を有することが公知である。これらのうちで
は銅系、特に銅−亜鉛系触媒が低温でスチームリフォー
ミングの活性を有するが、水素製造プロセスの経済性を
向上させるために、さらに低温で活性な触媒の開発が要
請されている。
It is known that catalysts such as copper-zinc, copper-zinc-chromium, copper-chromium, copper-chromium-manganese-zinc, zinc-chromium, and zinc-cobalt-chromium are active in the methanol steam reforming reaction. be. Among these, copper-based catalysts, especially copper-zinc catalysts, have steam reforming activity at low temperatures, but in order to improve the economic efficiency of the hydrogen production process, there is a need to develop catalysts that are active at even lower temperatures. .

本発明者らは、メタノールのスチームリフォーミング反
応の銅系触媒の改良を行なった結果、銅化合物にマグネ
シウム化合物を含有してなる触媒が低温活性の点ですぐ
れていることを見い出し、本発明を完成した。
As a result of improving copper-based catalysts for methanol steam reforming reactions, the present inventors discovered that a catalyst containing a magnesium compound in a copper compound has excellent low-temperature activity. completed.

すなわち、本発明は銅化合物およびマグネシウム化合物
を有することを特徴とするメタノールのスチームリフオ
ーミング用触媒である。
That is, the present invention is a methanol steam reforming catalyst characterized by having a copper compound and a magnesium compound.

本発明の触媒は、銅化合物およびマグネシウム化合物を
含有して成るものであり、触媒中の銅化合物とマグネシ
ウム化合物の含有比率は銅:マグネシウムの原子比で2
=98〜98:2である。
The catalyst of the present invention contains a copper compound and a magnesium compound, and the content ratio of the copper compound and magnesium compound in the catalyst is 2 in terms of copper:magnesium atomic ratio.
=98-98:2.

共沈または混練触媒における銅とマグネシウム20 の比率は、/(Cu○+M20)として計算された酸化
マグネシウムの重量割合として、1〜5Q wt%、好
ましくは2〜20 wt%である。銅化合物とマグネシ
ウム混合物は必要に応じてアルミナ、シリカ−アルミナ
、シリカ、チタニア、ジルコニア、コージライト、ムラ
イト等の担体に担持する。
The ratio of copper and magnesium 20 in the coprecipitated or kneaded catalyst is 1 to 5Q wt%, preferably 2 to 20 wt%, as a weight proportion of magnesium oxide calculated as /(Cu○+M20). The copper compound and magnesium mixture may be supported on a carrier such as alumina, silica-alumina, silica, titania, zirconia, cordierite, or mullite, if necessary.

本発明の触媒は、公知の触媒製法により調製することが
できる。一般的には、銅塩およびマグネシウム塩の水溶
液と中和剤を混合し、生成した沈澱を水洗、乾燥、焼成
することによシ得られる。原料の銅塩としては硝酸塩、
硫酸塩または水溶性の各種有機酸塩が使用される。塩化
物から調製されたものは活性が低いだめ、塩化物の使用
は好ましくない。原料マグネシウム塩は硝酸塩またぜ水
溶性の各種有機酸塩が使用される。中和剤としてはアル
カリ金属水酸化物、アルカリ金属炭酸塩、アンモニア水
、炭酸アンモニウム、尿素等が使用される。焼成温度は
200〜500 ℃の範囲で適宜選択される。
The catalyst of the present invention can be prepared by a known catalyst manufacturing method. Generally, it is obtained by mixing an aqueous solution of a copper salt and a magnesium salt with a neutralizing agent, and washing the resulting precipitate with water, drying, and calcining. Raw material copper salts include nitrate,
Sulfates or various water-soluble organic acid salts are used. The use of chloride is not preferred because those prepared from chloride have low activity. As the raw material magnesium salt, nitrates and various water-soluble organic acid salts are used. As the neutralizing agent, alkali metal hydroxide, alkali metal carbonate, aqueous ammonia, ammonium carbonate, urea, etc. are used. The firing temperature is appropriately selected within the range of 200 to 500°C.

上記の方法のほが予備成形された酸化マグネシウム、炭
酸マグネシウム、水酸化マグネシウム等のマグネシウム
化合物担体に銅塩水溶液を含浸する方法によっても、本
発明の触媒を得ることができる。マグネシウム担体を用
いる含浸法の場合は、前記共沈法と異なり、MrO/(
cuo −4−MfO)として計算された酸化マグネシ
ウムの重量・割合は、70〜96wt%であることが好
ましい。
In addition to the above method, the catalyst of the present invention can also be obtained by a method in which a preformed magnesium compound carrier such as magnesium oxide, magnesium carbonate, magnesium hydroxide, etc. is impregnated with an aqueous copper salt solution. In the case of the impregnation method using a magnesium carrier, unlike the above coprecipitation method, MrO/(
The weight/proportion of magnesium oxide calculated as (Cuo-4-MfO) is preferably 70 to 96 wt%.

本発明の触媒は通常、酸化物であるが、その他の化合物
の形をとることも可能である。焼成温度を低く設定した
場合には原料工ある硝酸塩、硫酸塩等が未分解のま1触
媒を構成するが、そのようなものであってもよい。
The catalysts of the present invention are typically oxides, but can also take the form of other compounds. When the calcination temperature is set low, raw materials such as nitrates and sulfates constitute the undecomposed catalyst, but such materials may be used.

本発明の触媒は気相、流通系におけるメタノールのスチ
ームリフォーミング反応に適用される。反応温度は15
0〜4oo℃、反応圧力は0〜10Kg/c17fG1
水トメタノールの割合は水エトメタノールモル比で1:
1〜5:1、原料供給速度はメタノール基準のV/Fと
して、5〜500かhr/Ky−mol −) p 7
− ル、好ましくは10〜200””hrAV−mo 
I−メタノールである。
The catalyst of the present invention is applied to a methanol steam reforming reaction in a gas phase, a flow system. The reaction temperature is 15
0~4oo℃, reaction pressure 0~10Kg/c17fG1
The water-to-methanol molar ratio is 1:
1 to 5:1, raw material supply rate is 5 to 500 hr/Ky-mol -) p 7
- preferably 10 to 200"hrAV-mo
I-methanol.

本発明の触媒は公知のものに比べて150〜250℃の
比較的低温でのメタノール転化率が高く、COの副生も
少ない点に特徴を有するが、300〜400 ℃の比較
的高温で使用することももちろん可能である。
The catalyst of the present invention is characterized in that it has a higher methanol conversion rate at a relatively low temperature of 150 to 250 °C and produces less CO as a by-product compared to known catalysts, but it cannot be used at a relatively high temperature of 300 to 400 °C. Of course, it is also possible to do so.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 硝醒銅三水和物273.3fIと硝酸マグネシウム六水
和物6662を500ccの水に溶解したものに炭叡ナ
トリウム水溶液を滴下し、生成した沈澱を水洗、沢過、
乾燥した後30[] ℃でIhr空気中で焼成した。得
られたCuO90wt%、MfO10wt%よシなる組
成物を粉砕し、直径6朋の円柱状に打錠成形した。
Example 1 Aqueous sodium carbonate solution was added dropwise to a solution of nitrated copper trihydrate 273.3 fI and magnesium nitrate hexahydrate 6662 dissolved in 500 cc of water, and the resulting precipitate was washed with water, filtered, and washed with water.
After drying, it was calcined in air at 30[]°C for Ihr. The resulting composition containing 90 wt% CuO and 10 wt% MfO was pulverized and formed into a cylindrical tablet with a diameter of 6 mm.

成形された触媒を内径24mmの反応管に5゜crd充
填し、メタノール供給−4) 1.0 mo l e/
hr 、の条件で常圧でメタノールのスチームリフォー
ミング試験を行なった。反応温度は15o、175.2
00℃の3点で測定した。生成ガス中のH21,CO’
tCO2及び反応器出口凝縮液中のメタノールと水の分
析はガスクロマトグラフにょシ行なった。
Fill a reaction tube with an inner diameter of 24 mm with the shaped catalyst at 5° crd, and supply methanol-4) 1.0 mol e/
A methanol steam reforming test was conducted at normal pressure under the conditions of hr. Reaction temperature is 15o, 175.2
Measurements were made at three points at 00°C. H21, CO' in generated gas
Analysis of tCO2 and methanol and water in the reactor outlet condensate was performed using gas chromatography.

Co濃度及びメタノール転化率は、 により計算した。結果を表1に示す。Co concentration and methanol conversion rate are Calculated by. The results are shown in Table 1.

実施例2 実施例1と同じ方法で硝酸銅と硝酸マグネシウムの合計
重量を一定にし、銅とマグネシウムの比を変えて、Mf
O含量が0.1.2,5.2’0゜30.40,50.
60およびiooチの触媒を製造した。これらの触媒を
実施例1と同じ方法で活性試験した。結果を表1に示す
Example 2 Mf
O content is 0.1.2,5.2'0°30.40,50.
60 and ioo catalysts were prepared. These catalysts were tested for activity in the same manner as in Example 1. The results are shown in Table 1.

比較例1 CuQ 61 wt%、Zn033wt%及びAt20
36wt%から成る市販メタノール合成触媒を実施例1
と同じ方法で活性試験した。結果を表2に示す。
Comparative example 1 CuQ 61 wt%, Zn033 wt% and At20
Example 1 A commercially available methanol synthesis catalyst consisting of 36 wt%
The activity was tested in the same manner. The results are shown in Table 2.

比較例2゜ 硝酸マグネシウム六水和物を硝酸亜鉛六水和物6652
にかえた他は実施例1と同じ方法で、CuO’90 w
t%、Zn0.10 wt%よシなる触媒を製造した。
Comparative Example 2゜Magnesium nitrate hexahydrate was replaced with zinc nitrate hexahydrate 6652
The same method as in Example 1 was used except that CuO'90 w
t% and Zn0.10 wt%.

これらの触媒を実施例1と同じ方法で活性試験した。結
果を表2に示す。
These catalysts were tested for activity in the same manner as in Example 1. The results are shown in Table 2.

比較例6 先行文献である特開昭48−.15786において、銅
−クロム−マンガン酸化物触媒がメタノールのスチーム
リフオーミング反応に優れた活性を示すことが開示され
ているので、追試験を行なった。126.1 Fの重ク
ロム酸アンモニウムを500CCの水に溶解したものに
150c’c、の28チアンモニア水を加え、この溶液
に241.6fの結晶硝酸銅と28.7 fの結晶硝酸
マンガンを500ccの水に溶解したものを攪拌しなが
ら滴下した。生じた沈澱を水洗、乾燥、粉砕し、これを
350 ℃で焼成し、得られた銅−クロム−マンガン酸
化物を乳鉢に1002とシ、40%のクロム酸水溶液7
52を徐々に加え、乾燥、粉砕した。
Comparative Example 6 Japanese Patent Application Laid-Open No. 1983-1989, which is a prior document. No. 15786 discloses that a copper-chromium-manganese oxide catalyst exhibits excellent activity in the steam reforming reaction of methanol, so additional tests were conducted. To a solution of 126.1 F ammonium dichromate in 500 CC water, 150 c'c of 28 thiammonium water was added, and to this solution were added 241.6 f crystalline copper nitrate and 28.7 f crystalline manganese nitrate. A solution dissolved in 500 cc of water was added dropwise while stirring. The resulting precipitate was washed with water, dried, and pulverized, and then calcined at 350°C. The resulting copper-chromium-manganese oxide was placed in a mortar with 1002 and mixed with 40% chromic acid aqueous solution 7.
52 was gradually added, dried and ground.

次に、約40 wt%の珪藻土を混合し、61RrRの
円柱状に打錠成形した。この触媒を実施例1と同じ方法
で活性試験した。結果を表2に示す。
Next, about 40 wt% of diatomaceous earth was mixed and the mixture was compressed into a 61RrR cylinder. This catalyst was tested for activity in the same manner as in Example 1. The results are shown in Table 2.

実施例1,2と比較例1〜3の比較から、本発明の触媒
は公知のメタノールのスチームリフオーミング触媒に比
べて高いメタノール転化率を示す。特にMfO含量が2
〜20wt%の範囲で優れた活性を示す。
From a comparison of Examples 1 and 2 and Comparative Examples 1 to 3, the catalyst of the present invention exhibits a higher methanol conversion rate than the known methanol steam reforming catalyst. Especially when the MfO content is 2
Excellent activity is shown in the range of ~20 wt%.

比較例4 実施例1.の硝酸マグネシウムのかわシにアルカリ土類
の硝酸塩を用い、実施例1と同様の方法でCuO90w
t% 、アルカリ土類酸化物10wt%よシなる触媒を
調製した。これらの触媒を実施例1と同じ方法で活性試
験した結果を表3に示す。
Comparative Example 4 Example 1. CuO90w was prepared in the same manner as in Example 1 using an alkaline earth nitrate as a substitute for magnesium nitrate.
t% and 10 wt% alkaline earth oxide. These catalysts were tested for activity in the same manner as in Example 1, and the results are shown in Table 3.

この結果は銅−マグネシウム触媒に比べて活性が低く、
銅−アルカリ土類触媒の中でも銅−マグネシウムだけが
特異的に高い活性を示すことがわかる。
This result indicates that the activity is lower than that of the copper-magnesium catalyst.
It can be seen that among the copper-alkaline earth catalysts, only copper-magnesium exhibits a specifically high activity.

実施例3゜ 硝酸銅三水和物273.39を400ccの水に溶解し
たものに炭酸ナトリウム水溶液を滴下して生成した沈澱
と、硝酸マグネシウム六水和物6362を100ccの
水に溶解したものに炭酸ナトリウム水溶液を滴下して生
成した沈澱をそれぞれ水洗、沢過した後混合し、ニーグ
ーで2hr捏和した。
Example 3 Precipitate produced by dropping an aqueous sodium carbonate solution into a solution of copper nitrate trihydrate 273.39 in 400 cc of water and a precipitate produced by dissolving magnesium nitrate hexahydrate 6362 in 100 cc of water. The precipitates produced by dropping an aqueous sodium carbonate solution were washed with water, filtered, mixed, and kneaded for 2 hours with a Nigu.

これを乾燥後、300℃、1hr空気中で焼成し、Cu
O90wt%、MP、’ 10 wt%よシなる組−酸
物を得た。これを粉砕して直径6朋の円柱状に打錠成形
し、実施例1.と同じ方法で活性試験を行なった。結果
を表4に示す。
After drying this, it was fired in air at 300°C for 1 hour, and Cu
A set of acids containing 90 wt% O, MP, and 10 wt% was obtained. This was pulverized and formed into a cylindrical tablet with a diameter of 6 mm. The activity test was conducted in the same manner. The results are shown in Table 4.

実施例4゜ 硝酸マグネシウム六水和物636.0グを5tの水にm
W4したものに炭酸ナトリウム水溶液を滴下し、生成し
た沈澱を水洗、沢過しだ後、300℃で1hr焼成しな
。これを粉砕し、直径6朋の円柱状に打錠成形して担体
を製造した。得られた担体を硝酸銅三水和物164.O
fを300ccの水に溶解した水溶液に浸漬し、乾燥、
300℃、1hr焼成して触媒を得た。触媒中の銅とマ
グネシウムの比は、酸化物換算でCuo 21.’6 
wt%、MfO’ 78.4wt%であつ−た。
Example 4 636.0 g of magnesium nitrate hexahydrate was added to 5 tons of water.
Add a sodium carbonate aqueous solution dropwise to the W4 solution, wash the formed precipitate with water, filter it, and then sinter at 300°C for 1 hour. This was pulverized and compressed into a cylindrical tablet with a diameter of 6 mm to produce a carrier. The obtained carrier was mixed with copper nitrate trihydrate 164. O
f in an aqueous solution of 300 cc of water, dried,
A catalyst was obtained by firing at 300°C for 1 hour. The ratio of copper to magnesium in the catalyst is Cuo 21. '6
wt%, and MfO' was 78.4 wt%.

この触媒を実施例1と同じ方法で活性試験した結果を表
4に示す。
This catalyst was tested for activity in the same manner as in Example 1, and the results are shown in Table 4.

実施例5 ユバスの粉末を得た。この粉末を4〜6龍φ の市販γ
−アルミナ担体と共に皿型造粒器に入れ、少量の水を加
えて、γ−アルミナ担体表面に銅−マグネシウム組成物
がコーティングされた触媒を製造した。得られた触媒上
の銅−マグネシウム組成物の塗布量は、酸化物として全
触媒重数に対して27.9%であった。この触媒を実施
例1と同じ方法で活性試験した結果を表4に示す。
Example 5 Yubas powder was obtained. This powder is commercially available γ of 4 to 6 φ
- The catalyst was placed in a dish-shaped granulator together with an alumina carrier, and a small amount of water was added to produce a catalyst in which the surface of the γ-alumina carrier was coated with a copper-magnesium composition. The coating amount of the copper-magnesium composition on the obtained catalyst was 27.9% as an oxide based on the total weight of the catalyst. This catalyst was tested for activity in the same manner as in Example 1, and the results are shown in Table 4.

Claims (1)

【特許請求の範囲】[Claims] 1)銅化合物およびマグネシウム化合物を含有L−’i
l[ることを特徴とするメタノールのスチームリフォー
ミング用触媒。
1) L-'i containing a copper compound and a magnesium compound
A methanol steam reforming catalyst characterized by:
JP17017181A 1981-10-26 1981-10-26 Catalyst for steam reforming of methanol Granted JPS5870839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017181A JPS5870839A (en) 1981-10-26 1981-10-26 Catalyst for steam reforming of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017181A JPS5870839A (en) 1981-10-26 1981-10-26 Catalyst for steam reforming of methanol

Publications (2)

Publication Number Publication Date
JPS5870839A true JPS5870839A (en) 1983-04-27
JPH039772B2 JPH039772B2 (en) 1991-02-12

Family

ID=15899999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017181A Granted JPS5870839A (en) 1981-10-26 1981-10-26 Catalyst for steam reforming of methanol

Country Status (1)

Country Link
JP (1) JPS5870839A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086002A (en) * 1983-10-17 1985-05-15 Marutani Kakoki Kk Preparation of hydrogen from methanol
US4554267A (en) * 1983-06-03 1985-11-19 General Electric Company Catalyst and method for ortho-alkylation of hydroxyaromatic compounds
US4554266A (en) * 1983-06-03 1985-11-19 General Electric Company Copper-magnesium catalyst and method for alkylation of hydroxyaromatic compounds therewith
JPS6186946A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Catalyst for steam reforming of methanol
JPS62250948A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Catalyst for steam reforming of methanol
JP2009525940A (en) * 2006-02-08 2009-07-16 ロス アラモス ナショナル セキュリティ,リミテッド ライアビリテイ カンパニー Compositions and methods for storing and releasing hydrogen
CN110694624A (en) * 2019-10-10 2020-01-17 天津大学 Cu and MgO-based bifunctional catalyst, and preparation method and application thereof
CN113731429A (en) * 2021-09-26 2021-12-03 厦门大学 Copper-based catalyst for hydrogen production by methanol steam reforming, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554267A (en) * 1983-06-03 1985-11-19 General Electric Company Catalyst and method for ortho-alkylation of hydroxyaromatic compounds
US4554266A (en) * 1983-06-03 1985-11-19 General Electric Company Copper-magnesium catalyst and method for alkylation of hydroxyaromatic compounds therewith
JPS6086002A (en) * 1983-10-17 1985-05-15 Marutani Kakoki Kk Preparation of hydrogen from methanol
JPH0345002B2 (en) * 1983-10-17 1991-07-09 Marutani Kakoki
JPS6186946A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Catalyst for steam reforming of methanol
JPS62250948A (en) * 1986-04-24 1987-10-31 Agency Of Ind Science & Technol Catalyst for steam reforming of methanol
JPH0582321B2 (en) * 1986-04-24 1993-11-18 Kogyo Gijutsuin
JP2009525940A (en) * 2006-02-08 2009-07-16 ロス アラモス ナショナル セキュリティ,リミテッド ライアビリテイ カンパニー Compositions and methods for storing and releasing hydrogen
CN110694624A (en) * 2019-10-10 2020-01-17 天津大学 Cu and MgO-based bifunctional catalyst, and preparation method and application thereof
CN110694624B (en) * 2019-10-10 2022-07-19 天津大学 Bifunctional catalyst based on Cu and MgO, preparation method and application
CN113731429A (en) * 2021-09-26 2021-12-03 厦门大学 Copper-based catalyst for hydrogen production by methanol steam reforming, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH039772B2 (en) 1991-02-12

Similar Documents

Publication Publication Date Title
US7964114B2 (en) Iron-based water gas shift catalyst
CA1144911A (en) Catalyst and method for producing the catalyst
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
JPH0336571B2 (en)
US4861745A (en) High temperature shift catalyst and process for its manufacture
EP0182797A1 (en) Catalyst and its application for conversion of methanol.
JPS5870839A (en) Catalyst for steam reforming of methanol
JP4467675B2 (en) Dimethyl ether synthesis catalyst and synthesis method
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS58163444A (en) Preparation of catalyst
JP3328845B2 (en) Hydrogen production method and catalyst used for it
JP3943648B2 (en) Methanol synthesis method
EP0324618B1 (en) Catalyst composition for decomposition of methanol
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JPS647974B2 (en)
JPH0724320A (en) Production of catalyst for steam reforming of methanol
JPS6045537A (en) Production of oxygen-containing organic compound
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
JPS6021680B2 (en) Method for producing methane-rich gas
JPS5845740A (en) Sulfur resistant shift catalyst
JPS60110337A (en) Catalyst for preparing hydrogen rich gas
JPS61234939A (en) Catalyst for producing h2-enriched gas
JPS59131501A (en) Modification of methanol with steam
JPS61109741A (en) Process for producing oxygen-containing organic compound
JPS637842A (en) Catalyst for reforming methanol