JPS5845740A - Sulfur resistant shift catalyst - Google Patents

Sulfur resistant shift catalyst

Info

Publication number
JPS5845740A
JPS5845740A JP56143316A JP14331681A JPS5845740A JP S5845740 A JPS5845740 A JP S5845740A JP 56143316 A JP56143316 A JP 56143316A JP 14331681 A JP14331681 A JP 14331681A JP S5845740 A JPS5845740 A JP S5845740A
Authority
JP
Japan
Prior art keywords
catalyst
component
nickel
sulfur
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56143316A
Other languages
Japanese (ja)
Inventor
Akio Furuta
昭男 古田
Hiroo Matsuoka
松岡 洋夫
Takao Takinami
滝浪 高男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Japan Gasoline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Japan Gasoline Co Ltd filed Critical JGC Corp
Priority to JP56143316A priority Critical patent/JPS5845740A/en
Publication of JPS5845740A publication Critical patent/JPS5845740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a sulfur resistant shift catalyst suitable for water gas conversion reaction, by allowing a nickel component partially containing nickel sulfide to be carried by an MgO-Al2O3 solid solution. CONSTITUTION:A catalyst, wherein a nickel component is supported by an MgO- Al2O3 solid solution with an Mg/Al atomic ratio of 2-4 in an amount of 10- 70wt% on the basis of NiO to a final catalyst and the part of the nickel component is present as sulfide, is used as a sulfur resistant shift catalyst. This catalyst is used in water gas conversion reaction, especially, the water gas conversion reaction of a gas containing CO in the coexistence of a sulfur compound and excellent in sulfur resistance.

Description

【発明の詳細な説明】 本発明は水性ガス変成反応に使用して好適なシフト触媒
に関するものであって、特に硫黄化合物が共存する一酸
化炭素含有ガスの水性ガス変成反応に使用可能な耐硫黄
性に優れたシフト触媒に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shift catalyst suitable for use in water gas shift reactions, and in particular, a shift catalyst that is sulfur-resistant and suitable for use in water gas shift reactions of carbon monoxide-containing gases in which sulfur compounds coexist. It relates to a shift catalyst with excellent properties.

水性ガスその他の一酸化炭素含有ガスをシフト触媒の存
在下に、水蒸気と作用させて水素と二酸化炭素を生成さ
せる水性ガス変成反応(シフト反応)は1石炭又は重質
油のガス化によって得られる一酸化炭素含有ガスを原料
ガスとして、水素を製造する場合やガス中のCO/H,
のモル比を調整する場合に広く利用されている。ところ
が従前のシフト触媒C%に低温シフト触媒)は耐硫黄性
に乏しいのに対して0石炭又は重質油のガス化によって
得られる一酸化炭素含有ガスは0通常硫黄化合物を典型
的には硫化水素の形で含有しているため、この種の一ガ
スを原料として水性ガス変成反応を行う場合には、原料
ガスを予め脱硫しておかなければならない煩わしさがあ
った。
A water gas shift reaction (shift reaction) in which water gas or other carbon monoxide-containing gas is reacted with steam in the presence of a shift catalyst to produce hydrogen and carbon dioxide is obtained by gasifying coal or heavy oil. When producing hydrogen using carbon monoxide-containing gas as a raw material gas, or when CO/H in the gas,
It is widely used to adjust the molar ratio of However, conventional shift catalysts (C% and low temperature shift catalysts) have poor sulfur resistance, whereas carbon monoxide-containing gases obtained by gasifying coal or heavy oil typically contain sulfur compounds. Since it is contained in the form of hydrogen, when carrying out a water gas modification reaction using this type of gas as a raw material, there is the hassle of having to desulfurize the raw material gas in advance.

こうした事情から最近では耐硫黄性のシフト触媒が幾つ
か提案されている。例えば特開昭49−130385号
公iには1アルミナ担体にニッケル及び/又はコ/?ル
トの硫化物とモリブデンの硫化物を担持させた触媒が教
示されておシ。
Under these circumstances, several sulfur-resistant shift catalysts have been proposed recently. For example, Japanese Patent Application Laid-Open No. 49-130385 discloses 1 alumina carrier with nickel and/or co/? Catalysts supported on sulfide of rut and sulfide of molybdenum have been taught.

特開昭50−8791号公報には、アルミナ担体にニッ
ケル及び/又はコノセルトの硫化物とモリブデンの硫化
物と、さらにアルミニウムの硫化物を担持させた触媒が
記載されている。また王化誌第71巻第1484頁(1
968)及び同じぐ第1488頁(1968)に掲載さ
れた森田等の雑文では、アルミナ又はマグネシアを担体
とし。
JP-A-50-8791 describes a catalyst in which a nickel and/or conocert sulfide, a molybdenum sulfide, and an aluminum sulfide are supported on an alumina carrier. Also, Wangka Magazine, Vol. 71, Page 1484 (1)
968) and a miscellaneous paper by Morita et al. published on page 1488 (1968), using alumina or magnesia as a carrier.

これにNi −Mo 、 IIH−Coなどを担持させ
た触媒が紹介されている。しかしながら、これらの耐硫
黄性シフト触媒のなかにあってアルミナ担持触媒鉱、森
田等の雑文にも見られる通)、マグネシア担持触媒に比
較して触媒活性が劣シ、一方マグネシア担持触媒は初期
活性は高いものの。
Catalysts in which Ni-Mo, IIH-Co, etc. are supported have been introduced. However, among these sulfur-resistant shift catalysts, alumina-supported catalyst minerals (as seen in the miscellaneous papers of Morita et al.) have inferior catalytic activity compared to magnesia-supported catalysts, while magnesia-supported catalysts have low initial activity. Although it is expensive.

高圧水蒸気雰囲気で拡容易にマグネシアがシンタリング
を起すため、寿命の面で改善の余地を残している。
Since magnesia easily spreads in a high-pressure steam atmosphere and causes sintering, there is still room for improvement in terms of service life.

本発明は上記したマグネシア担持触媒の担体マグネシア
’l MgO−Alρ、固溶体に置き換えることにより
、マグネシア担持触媒の高活性を犠牲にすることなくそ
の寿命を改善しようとするも ′のであって、詳しくは
Mg/Alの原子比が2〜4であるMg0−AI、03
固溶体と、これに担持され九ニッケル成分とからなシ、
ニッケル成分の担持量がNiOに換算して最終触媒の1
0〜70wt%であシ、そのニッケル成分の少なくとも
一部が硫化物として存在する耐硫黄性シフト触媒並びに
Mg/Atの原子比が2〜4であるMg0−AI、0.
固溶体と、これに担持されたニッケル成分及びモリブデ
ン成分とからなり、ニッケル成分とモリブデン成分の合
計担持量がNi0−1−Mo0.に換算して最終触媒の
10〜79w1%であシ、ニッケぶ成分、とモリブデン
成分の比率がN1/(Ni +Mo )の原子比で0.
2〜1.0の範囲にあり、ニッケル成分の少なくとも一
部とモリブデン成分の少なくとも一部がそれぞれ硫化物
として存在する耐硫黄性シフト触媒を提案する。
The present invention aims to improve the service life of the magnesia-supported catalyst without sacrificing its high activity by replacing the above-mentioned magnesia-supported catalyst with a solid solution of magnesia'lMgO-Alρ. Mg0-AI, 03 with an atomic ratio of Mg/Al of 2 to 4
A solid solution and a 9 nickel component supported on it,
The amount of nickel component supported is 1 in the final catalyst in terms of NiO.
A sulfur-resistant shift catalyst in which the nickel component is 0 to 70 wt% and at least a part of the nickel component is present as a sulfide, and Mg0-AI having an atomic ratio of Mg/At of 2 to 4;
It consists of a solid solution and a nickel component and a molybdenum component supported thereon, and the total supported amount of the nickel component and molybdenum component is Ni0-1-Mo0. The ratio of the nickel component and the molybdenum component is 10 to 79w1% of the final catalyst in terms of the atomic ratio of N1/(Ni + Mo2), which is 0.
2 to 1.0, and in which at least a portion of the nickel component and at least a portion of the molybdenum component are each present as sulfides.

本発明に係る触媒の最大の特徴は、ニッケル成分ないし
はモリブデン成分の担体としてMg0−AI、O,固溶
体を使用する点にあるが、この固溶体のMg/Atの原
子比は2〜4の範囲になければならない。MgOが多過
ぎると触媒寿命が低下し。
The greatest feature of the catalyst according to the present invention is that it uses a Mg0-AI, O, solid solution as a carrier for the nickel component or molybdenum component, and the Mg/At atomic ratio of this solid solution is in the range of 2 to 4. There must be. Too much MgO will reduce catalyst life.

少な過ぎると触媒活性が損われるからである。This is because if it is too small, the catalyst activity will be impaired.

Mg0−人!、O3固溶体はMgOの結晶内のMgの位
置にAIが一部置換した構造にあり、 MgOとAI、
O,との混°合物とはX線回折測定によって次の通シ峻
別される。すなわち、 Mg0−AI、O,固溶体は水
蒸気を吸収すると、 Mgx人1 y (OH)z −
aH,Oに基づくシャープなX線回折ノ9ターンを与え
るのに対し。
Mg0-person! , O3 solid solution has a structure in which AI partially substitutes the Mg position in the MgO crystal, and MgO and AI,
It can be clearly distinguished from a mixture with O, by X-ray diffraction measurement as follows. That is, when the Mg0-AI, O, solid solution absorbs water vapor, Mgx 1 y (OH)z -
Whereas it gives sharp X-ray diffraction nine turns based on aH,O.

AI、O,とMgOとの混合物は水蒸気を吸収してもM
gOの一部がMg(OH)、になるのみで、複塩の生成
は認められない。
Even if a mixture of AI, O, and MgO absorbs water vapor, M
Only a part of gO becomes Mg(OH), and no double salt formation is observed.

上記の固溶体に担持される成分の担持量は。What is the amount of the component supported on the above solid solution?

尚該成分がニッケル成分単独である場合は姐0に換算し
て、ニッケル成分とモリブデン成分を併用する場合はN
l0−1−Mo0.に換算して最終触媒の10〜70w
t%の範囲であることを可とする。
If the component is a nickel component alone, it is converted to 0, and if a nickel component and a molybdenum component are used together, it is converted to N.
l0-1-Mo0. Converting to 10~70w of final catalyst
It is allowed to be within the range of t%.

担持量がこれを下廻ると活性が充分でなくなり。If the supported amount is less than this, the activity will not be sufficient.

下廻ると触媒使用中に担持成分のシンタリングが顕著と
なるため、触媒寿命が損われる結果を招く。・担持成分
としてニッケル成分とモリブデン成分を併用する触媒に
あっては1画成分の比率がNi/(Ni −)−Mo 
)の原子比で0.2〜1.0の範囲であることが好まし
い。この原子比が0.2を下廻る程の多量のモリブデン
成分を含有させた場合は、触媒の活性が低下してしまう
からである。
If the temperature is too low, sintering of the supported components becomes noticeable during use of the catalyst, resulting in a shortened catalyst life.・For catalysts that use both nickel and molybdenum components as supported components, the ratio of one component is Ni/(Ni −)-Mo
) is preferably in the range of 0.2 to 1.0. This is because if a molybdenum component is contained in such a large amount that the atomic ratio is less than 0.2, the activity of the catalyst will decrease.

本発明の触媒に於ては、ニッケル成分の少なくとも一部
は硫化物の形で存在し、モリブデン成分が共存する場合
はその少なくとも一部も硫化物の形で存在する。触媒中
に硫化物の垣で存在するニッケル成分及びモリブデン成
分の量は硫化条件の選択により任意に変えることができ
るが、耐硫黄性のシフト触媒として一応満足できる機能
を発揮させるためには、ニッケル成分中のニッケル硫化
度がNI、8.f100%とした場合に30チ以上であ
ること、モリブデン成分が共存する場合にはこれに含ま
れるモリブデンの硫化度がMo8を10096とした場
合に、同じ<30チ以上であることが好ましい。
In the catalyst of the present invention, at least a portion of the nickel component exists in the form of a sulfide, and when a molybdenum component is present, at least a portion of the molybdenum component also exists in the form of a sulfide. The amounts of nickel and molybdenum components present in the sulfide barrier in the catalyst can be changed arbitrarily by selecting the sulfiding conditions, but in order to exhibit a satisfactory function as a sulfur-resistant shift catalyst, nickel and molybdenum components must be The nickel sulfidity in the components is NI, 8. It is preferable that f100% is 30 or more, and if a molybdenum component is present, the sulfidity of the molybdenum contained therein is preferably <30 or more when Mo8 is 10096.

本発明の耐硫黄性シフト触媒は、予めMgO−AI、0
jlil’溶体又はその前駆物を調製し、これにニッケ
ル成分又はニッケル成分とモリブデン成分を担持させる
という手順が遵守される限り。
The sulfur-resistant shift catalyst of the present invention is prepared in advance by using MgO-AI, 0
As long as the procedure of preparing a jlil' solution or its precursor and loading it with a nickel component or a nickel component and a molybdenum component is followed.

従来公知の触媒調製手段を用いて製造することができる
ので、その詳細は省略するが1本発明の触媒を製造する
方法の一例を示せば次の通りである。
Since the catalyst can be manufactured using conventionally known catalyst preparation means, the details thereof will be omitted, but an example of the method for manufacturing the catalyst of the present invention is as follows.

すなわち、適当な水溶性アルミニウム塩とマグネシウム
塩とを使用してMg/Alの原子比が2〜4の範囲にあ
る水溶液を調製する。次にこの水溶液を炭酸ソーダ溶液
又は苛性ソーダを含有する炭−ソーダ溶液と混合し、混
合液のpH9〜12.好ましくはlO〜11に保持して
沈澱を生成させ、この沈澱を濾過、洗浄して固溶体前駆
物を得る。
That is, an aqueous solution having an atomic ratio of Mg/Al in the range of 2 to 4 is prepared using appropriate water-soluble aluminum salts and magnesium salts. Next, this aqueous solution is mixed with a soda carbonate solution or a charcoal-soda solution containing caustic soda, and the pH of the mixed solution is 9 to 12. Preferably, the temperature is maintained at 10 to 11 to form a precipitate, and this precipitate is filtered and washed to obtain a solid solution precursor.

念のため付言するとlMgO/Al、0.固溶体を作る
ためには前駆物質としてMgxAly(pH)z−Co
3・4H10というハイドロタルサイト類似化合物の生
成が必須である。この化合物の安定なx、  yの範囲
は1口1のときX””2,3,4.5であるので、前記
した沈澱のMg/Atの原子比が2〜4の範囲にある限
シ、この沈澱の焼成物中には遊離のアルミナやマグネシ
アが混在することがない0 Mg0−AI、0.固溶体に担持させるべきニッケル成
分とモリブデン成分は6個々に調製することもできれば
、共沈法で調製することもできる。
Just to be sure, lMgO/Al, 0. To make the solid solution, MgxAly(pH)z-Co is used as a precursor.
The production of a hydrotalcite-like compound called 3.4H10 is essential. Since the stable range of x and y of this compound is 2, 3, 4.5 when one portion is 1, the range of stable x and y of this compound is 2, 3, 4.5. , free alumina and magnesia are not mixed in the calcined product of this precipitate. The nickel component and molybdenum component to be supported on the solid solution can be prepared individually or by a coprecipitation method.

共沈法を採用する場合は、Ni/(Ni +Mo)の原
子比が0.2〜1.0になるような割合で適当なニッケ
ル塩とモリブデン酸塩を水に溶解させ2この水溶液にア
ンモニア水、苛性ソーダ溶液又は炭酸ソーダ溶液を加え
て沈澱を生成させてこれを濾過、洗浄する。次いでこの
沈澱を前記の固溶体前駆物と所定の割合で水中で充分混
合する。この場合、固溶体前駆物は予めこれを焼成して
Mg0−AI、0.固溶体に転化させてから、前記の沈
澱と混合しても差支えない。混合後は母液を濾別し、混
合物を乾燥後350〜700℃の温度で力焼すれば、 
Mg0−AttO,固溶体にニッケル成分とモリブデン
成分が酸化物の形で担持された組成物を得ることができ
る。′ この組成物は次いで硫化処理に付される。硫化処理はt
 o o ppm以上の硫黄化合物、典型的には硫化水
素が存在するガスに、上記の混合物を300〜400℃
で2〜3時間程度接触させることで一般に完了し、これ
によってニッケル成分とモリブデン成分の少なくとも一
部が硫化物の形で存在する本発明の耐硫黄性シフト触媒
を取得することができるのである。
When using the coprecipitation method, dissolve appropriate nickel salts and molybdates in water at a ratio such that the atomic ratio of Ni/(Ni + Mo) is 0.2 to 1.0.2 Add ammonia to this aqueous solution. Water, caustic soda solution or soda carbonate solution is added to form a precipitate, which is filtered and washed. Next, this precipitate is thoroughly mixed with the solid solution precursor described above in a predetermined ratio in water. In this case, the solid solution precursor is prepared by firing it in advance to form Mg0-AI, 0. It may be converted into a solid solution and then mixed with the precipitate. After mixing, the mother liquor is filtered, and the mixture is dried and calcined at a temperature of 350 to 700°C.
It is possible to obtain a composition in which a nickel component and a molybdenum component are supported in the form of oxides in Mg0-AttO, a solid solution. ' This composition is then subjected to a sulfurization treatment. Sulfurization treatment is t
The above mixture is heated at 300-400°C in a gas in which more than o ppm of sulfur compounds, typically hydrogen sulfide, are present.
This is generally completed by contacting the catalyst for about 2 to 3 hours, thereby making it possible to obtain the sulfur-resistant shift catalyst of the present invention in which at least a portion of the nickel component and molybdenum component exist in the form of sulfides.

本発明の触媒は通常のシフト反応条件で使用可能である
が、一般Ka200〜500℃程度の反応温度と、1〜
100気圧、好ましくは5〜70気圧程度の反応圧力を
採用することを可とする。何故なら1反応温度が200
℃以下では触媒が低活性となり、  5oo℃以上の高
温では平衡的に不利であるばかりでなく、触媒の劣化も
著しくなるからである。また反応圧力について言えば1
本発明の触媒の活性は高圧である程高レベルt/cある
が、高圧にするほど水の露点が上昇するため0反応温度
を上昇させなければならない不都合が生ずるからである
。、従って反応圧力は好ましくは5〜70気圧の範囲に
保持される。シフト反応の原料ガスとしては、水性ガス
その他の一酸化炭素含有ガスが何れも使用可能である。
The catalyst of the present invention can be used under normal shift reaction conditions, but it can be used at a reaction temperature of about 200 to 500°C and a general Ka of about 1 to 500°C.
It is possible to employ a reaction pressure of about 100 atm, preferably about 5 to 70 atm. This is because the temperature of one reaction is 200
This is because the catalyst becomes less active at temperatures below 50°C, while temperatures above 50°C are not only disadvantageous in terms of equilibrium, but also cause significant deterioration of the catalyst. Regarding the reaction pressure, 1
The higher the pressure, the higher the activity of the catalyst of the present invention (t/c), but the higher the pressure, the higher the dew point of water, which causes the inconvenience of having to raise the zero reaction temperature. Therefore, the reaction pressure is preferably maintained in the range of 5 to 70 atmospheres. As the raw material gas for the shift reaction, any water gas or other carbon monoxide-containing gas can be used.

この原料ガスは硫化水素その他の硫黄化合物を含んでい
ても差支えなく、予備脱硫を必要としない。むしろ原料
ガス中に100 ppm以上の硫黄化合物が共存してい
ることは、触媒の硫化状態を維持し、その活性を高レベ
ルに保持するうえで好ましい。
This raw material gas may contain hydrogen sulfide and other sulfur compounds, and does not require preliminary desulfurization. Rather, it is preferable that 100 ppm or more of sulfur compounds coexist in the raw material gas in order to maintain the sulfided state of the catalyst and maintain its activity at a high level.

以上述べてきたところから明らかな通り1本発明のシフ
ト触媒は耐硫黄性でおるため、この触媒を使用すれば1
石炭ないしは重質油のガス化によって得られるところの
、比較的高濃度の硫黄化合物が共存する一酸化炭素含有
ガスを。
As is clear from the above, the shift catalyst of the present invention is sulfur resistant, so if this catalyst is used,
Carbon monoxide-containing gas that is obtained by gasifying coal or heavy oil and containing relatively high concentrations of sulfur compounds.

格別な脱硫処理を施すことなく、シフト反応に供するこ
とができる。また0本発明の触媒は従来の耐硫黄性シフ
ト触媒よシ高活性であるため。
It can be subjected to a shift reaction without special desulfurization treatment. Furthermore, the catalyst of the present invention has higher activity than conventional sulfur-resistant shift catalysts.

シフト反応にとって平衡的に有利な低温度で使用でき、
しかも低水蒸気比でシフト反応を行うことができる。
Can be used at low temperatures that are equilibriumally favorable for shift reactions;
Moreover, the shift reaction can be carried out at a low water vapor ratio.

比較例1 炭酸ソーダ42gを純水400 ccに溶解し。Comparative example 1 Dissolve 42g of soda carbonate in 400cc of pure water.

これに100メツシユ以下に粉砕したr−AI、0゜s
ogを加えて懸濁する。この懸濁液に硫酸ニッケルの1
モル/l溶液270 ecを70’Cにて30分かけて
滴下した。同温度で2時間熟成したのち8.濾過、洗浄
後、110’Cにて15時間乾燥、さらに空気流通下4
50”C,4時間焼成した。触媒の組成はNiO20w
t % 、 y−AI、0.80wt%であった。これ
を触媒1とする。
To this, r-AI crushed to less than 100 mesh, 0°s
Add og and suspend. Add 1 part of nickel sulfate to this suspension.
270 ec of a mol/l solution was added dropwise over 30 minutes at 70'C. After aging at the same temperature for 2 hours, 8. After filtration and washing, dry at 110'C for 15 hours, and then dry under air circulation for 4 hours.
Calcined at 50"C for 4 hours.Catalyst composition is NiO20w
t%, y-AI, 0.80wt%. This will be referred to as catalyst 1.

y−At、o、18量0. 、 Tie、 、 Coo
、 、 MgOに代えた以外は触媒1と同じ方法テNt
o−sto、、 Nho−:to、。
y-At, o, 18 amount 0. , Tie, , Coo
, , Same method as catalyst 1 except for replacing MgO
o-sto,, Nho-:to,.

Nl0−Ce0.、 Nl0−MgOの各触媒を得た。Nl0-Ce0. , Nl0-MgO catalysts were obtained.

これらを記載順に触媒2〜5とする。These will be referred to as catalysts 2 to 5 in the order of description.

実施例1 炭酸ソーダ318gを純水31に溶解し、70℃に加熱
する。これに硫酸マグネシウム346gと硫酸アルミニ
ウム312gを21の純水に溶解した溶液を60分で加
える。70℃で2時間熟成後、濾過、洗浄する。110
℃で15時間乾燥後。
Example 1 318 g of soda carbonate is dissolved in 31 g of pure water and heated to 70°C. A solution of 346 g of magnesium sulfate and 312 g of aluminum sulfate dissolved in 21 g of pure water was added over 60 minutes. After aging at 70°C for 2 hours, filter and wash. 110
After drying for 15 hours at °C.

100メツシユ以下に粉砕し、炭酸ソーダのITdll
溶液400 ccに懸濁する。以後の操作については触
媒1と同じ方法でNi0−Mg0−Al2O,触媒を得
た。触媒組成はNIO20wt%、 MgO56wt%
Grind to less than 100 mesh and add carbonated soda ITdll
Suspend in 400 cc of solution. Regarding the subsequent operations, a Ni0-Mg0-Al2O catalyst was obtained in the same manner as in Catalyst 1. Catalyst composition: NIO 20wt%, MgO 56wt%
.

AI、0.24’wt%であった。これを触媒6とする
AI was 0.24'wt%. This will be referred to as catalyst 6.

X線回折の結果、この触媒にはγ−アルミナによるピー
クは認められない。
As a result of X-ray diffraction, no peak due to γ-alumina is observed in this catalyst.

比較例2 触媒6との比較のために、以下の方法でNi0−Mg0
−AI、O,触媒を調製した。
Comparative Example 2 For comparison with catalyst 6, Ni0-Mg0 was prepared using the following method.
-AI, O, catalyst was prepared.

100メツシユ以下に粉砕したγ−AI、0. 24 
gを1モル/lの炭酸ソーダ水溶液2.11に懸濁し7
0℃に加熱する。これに1モル/lの硫酸マグネシウム
の水溶液1.4!を60分間で滴下する0得られた沈澱
を濾過、洗浄後、1モル/!の炭酸ソーダ溶液400 
ccに懸濁する。ついで硫酸ニッケルの1モル/!水f
lj液2rocc−@30分で滴下する。70”Cで2
時間熟成後、濾過、洗浄した。乾燥、焼成は触媒1と同
様にしてNIO20wt166Mg056wt%、  
人t、o、  24 wt%の触媒を得た。これを触媒
フとする。X線回折の結果、この触媒にはr−アルミナ
のピークが藺められる。
γ-AI ground to 100 mesh or less, 0. 24
g in 1 mol/l aqueous sodium carbonate solution 2.11
Heat to 0°C. Add to this 1.4 mol/l of an aqueous solution of magnesium sulfate! was added dropwise over 60 minutes.The resulting precipitate was filtered and washed, and then 1 mol/! Sodium carbonate solution of 400
Suspend in cc. Then 1 mole of nickel sulfate/! water f
Add lj solution 2rocc-@30 minutes dropwise. 2 at 70”C
After aging for some time, it was filtered and washed. Drying and calcination were carried out in the same manner as for catalyst 1, with NIO20wt166Mg056wt%,
A catalyst of 24 wt% was obtained. This is used as a catalyst. As a result of X-ray diffraction, the peak of r-alumina can be seen in this catalyst.

実施例2 触媒6と同じ方法によってNIO含量だけを変えた触媒
及びMg/Al比を変えた触媒を調製した。
Example 2 Catalysts with different NIO content and different Mg/Al ratio were prepared by the same method as Catalyst 6.

触媒 910  63.0   27      3触
媒1070   21.0    9       3
触媒1180   14.0    6       
3触媒1220   35    45.0     
 1触媒1320   485   31.1    
  2触媒14 20   60.7   19.3 
     4触媒1520   63.7   16.
3      5比較例3 硝酸ニッケル38gとモリブデン酸アンモン23.7g
をアンモニア水150ccに溶解し、pH−9〜10と
する。この溶液に100メツシユ以下に粉砕したy−A
I、0.70 gを加え、良く混ぜ合わせる。液を蒸発
乾固したのち、110”Cにて15時間乾燥し、ついで
500℃で4時間焼成して触媒とした。触媒組成はNi
O10wt % 、 MoO320wt % 、 y−
AI、0.70 w 1%であった。これを触媒21と
する。
Catalyst 910 63.0 27 3 Catalyst 1070 21.0 9 3
Catalyst 1180 14.0 6
3 catalyst 1220 35 45.0
1 catalyst 1320 485 31.1
2 catalyst 14 20 60.7 19.3
4 catalyst 1520 63.7 16.
3 5 Comparative Example 3 Nickel nitrate 38g and ammonium molybdate 23.7g
was dissolved in 150 cc of aqueous ammonia, and the pH was adjusted to -9 to 10. In this solution, y-A crushed to 100 mesh or less
Add 0.70 g of I, and mix well. After the liquid was evaporated to dryness, it was dried at 110"C for 15 hours, and then calcined at 500°C for 4 hours to obtain a catalyst.The catalyst composition was Ni
O10wt%, MoO320wt%, y-
AI was 0.70 w 1%. This will be referred to as the catalyst 21.

7−AI、O,を8 l OH、T i OHt Ce
O2、MgOに代えた以外は触媒21と同じ方法でNi
0−Mo0.−8i0.、 Ni0−Mo0.−TiO
,、Nip−Mob、−Coo、 、 N10−Mo0
.−MgOの各触媒を得た。これらを記載順に触媒22
〜25とする。
7-AI, O, to 8 l OH, T i OHt Ce
Ni was prepared in the same manner as catalyst 21 except that O2 and MgO were replaced.
0-Mo0. -8i0. , Ni0-Mo0. -TiO
, , Nip-Mob, -Coo, , N10-Mo0
.. -MgO catalysts were obtained. Catalyst 22
~25.

実施例3 炭酸ソーダ318gを純水3ノに溶解し。Example 3 Dissolve 318g of soda carbonate in 3ml of pure water.

70℃に加熱する。これに硝酸マグネシウム306gと
硝酸アルミニウム142gを2ノの純水に溶解′した溶
液を60分で加える。70”Cで2時間熟成後、濾過、
洗浄する。ついで110°Cで15時間乾燥後100メ
ツシユ以下に粉砕する。
Heat to 70°C. A solution prepared by dissolving 306 g of magnesium nitrate and 142 g of aluminum nitrate in two volumes of pure water was added over 60 minutes. After aging at 70"C for 2 hours, filtration,
Wash. Then, after drying at 110°C for 15 hours, it is ground into 100 meshes or less.

とこで得た乾燥物はMg−Alの複合炭酸塩である。The dried product obtained here is a composite carbonate of Mg-Al.

この複塩を硝酸ニッケル38gとモリブデン酸アン七ン
23.7gをアンモニア水150ccに溶解してpHs
== 9〜10とし九溶液に少量ずつ加え。
This double salt was dissolved in 150 cc of ammonia water with 38 g of nickel nitrate and 23.7 g of ammonium molybdate, and the pH
== Add 9 to 10 little by little to the 9 solution.

よく混合したのち蒸発乾固する。乾燥以後の工程は触媒
21と同様にして触媒26t−得た。
Mix well and evaporate to dryness. The steps after drying were the same as those for catalyst 21 to obtain catalyst 26t.

触媒組成はNiO10Wt % 0Mob、 20w1
%、 Mg049 Wt % 、AI!O821wt 
% テロ ツた。
Catalyst composition is NiO10Wt%0Mob, 20w1
%, Mg049 Wt%, AI! O821wt
% Terrorism.

比較例4 触媒26との比較のために、以下の方法でN i O・
MoOs −MgO・人1!0.触媒を調製した。
Comparative Example 4 For comparison with catalyst 26, N i O.
MoOs-MgO・person 1!0. A catalyst was prepared.

100メツシユ以下に粉砕したγ−AI、0.21 g
t−1′モル/lの炭酸ソーダ水溶液1.81に懸濁し
70℃に加熱する。これに1モル/jの硝酸マグネシウ
ムの水溶液1.231を60分間で滴下する。得られた
沈澱を濾過、洗浄後、110℃で15時間乾燥する。こ
こで得た乾燥物は塩基性炭酸マグネシウムとy−At、
o、の混合物である。
γ-AI crushed to less than 100 mesh, 0.21 g
It is suspended in 1.81 t-1' mol/l of aqueous sodium carbonate solution and heated to 70°C. To this was added dropwise 1.231 of a 1 mol/j aqueous solution of magnesium nitrate over 60 minutes. The obtained precipitate is filtered, washed, and then dried at 110° C. for 15 hours. The dried product obtained here contains basic magnesium carbonate and y-At.
It is a mixture of o.

この乾燥物を100メツシユ以下に粉砕し、硝酸ニッケ
ル38gとモリブデン酸アンモン237gのアンモニア
水溶液(pH−9〜10 ) 150ccに少量ずつ加
える。良く混合したのち蒸発乾固し、乾燥以後の工程は
触媒21と同様にして触媒27含得た。
This dried material is ground to 100 meshes or less and added little by little to 150 cc of an ammonia aqueous solution (pH -9 to 10) containing 38 g of nickel nitrate and 237 g of ammonium molybdate. After thorough mixing, the mixture was evaporated to dryness, and the steps after drying were the same as those for catalyst 21 to obtain catalyst 27.

触媒組成はNIO’ 10 wt%、 Mob、 20
 w t%、MgO49wt % 、 AItOs 2
1 wt %であった。
The catalyst composition was NIO' 10 wt%, Mob, 20
wt%, MgO49wt%, AItOs2
It was 1 wt%.

実施例4 触媒26と同じ方法によってNiOとMob、の含量だ
けが異なる下記の触媒を調製した。
Example 4 The following catalysts were prepared by the same method as Catalyst 26, differing only in the content of NiO and Mob.

MgO量  MoOH量 Ni/(Ni−1−Mo )
原子比触媒28  1.6wt9J   28.0w1
%     約0.1触媒29  3.5    26
.5       約0.2触媒30  7.8   
 22.0       約0,4触媒31 20.0
    10.0       約0,8触媒32 2
5.0    5.0       約0.9触媒33
  1.5     B。0      約0,5触媒
34  3.3     7.0        同上
触媒35 17.0    33.5       同
上触媒36 23.6    47.0       
 同上触媒37 26.5    54.0     
  同上実施例5 触媒26と同じ方法によってMgOとAI!O,の含量
を変えた下記の触媒を調製した。但し。
MgO amount MoOH amount Ni/(Ni-1-Mo)
Atomic ratio catalyst 28 1.6wt9J 28.0w1
% approx. 0.1 catalyst 29 3.5 26
.. 5 Approximately 0.2 catalyst 30 7.8
22.0 approx. 0.4 catalyst 31 20.0
10.0 approx. 0.8 catalyst 32 2
5.0 5.0 Approx. 0.9 Catalyst 33
1.5 B. 0 Approximately 0.5 Catalyst 34 3.3 7.0 Same catalyst 35 17.0 33.5 Same catalyst 36 23.6 47.0
Same catalyst 37 26.5 54.0
Same as above Example 5 MgO and AI by the same method as catalyst 26! The following catalysts were prepared with varying amounts of O. however.

Ni0−)MoO,含量線30vtチ、Nl/Ni+M
o原子比#i0.5とした。
Ni0-)MoO, content line 30vt, Nl/Ni+M
o atomic ratio #i was set to 0.5.

MgO量  Al2O,量  Mg/At原子比触媒3
8  30.5vvt% 39jwt%    約1触
媒39  42.8   27.0       約2
触媒40  53.0   1?、0       約
4触媒41  55.5   14.5       
約5〔反応例1・・・・・・活性試験〕 内径3 mmの流通式反応管を用い、下記の条件にて活
性試験を行なった。
MgO amount Al2O, amount Mg/At atomic ratio catalyst 3
8 30.5vvt% 39jwt% Approximately 1 catalyst 39 42.8 27.0 Approximately 2
Catalyst 40 53.0 1? , 0 about 4 catalysts 41 55.5 14.5
Approximately 5 [Reaction Example 1...Activity test] An activity test was conducted under the following conditions using a flow-through reaction tube with an inner diameter of 3 mm.

触媒0.5g(20〜32メツシユ) 。Catalyst 0.5g (20-32 meshes).

温度:300℃ 、 圧カニ常圧 。Temperature: 300℃, normal pressure.

G、H,8,V、  1000h−’(Co基準) 。G, H, 8, V, 1000h-' (Co standard).

H,0/CO: 3.Omol/mol 、  H,8
: 2.Q vo1% pH,:  15vo1%、 
 co: 83vo1%  (ドライペース)触媒は反
応前にあらかじめ2、fivo1%のH,8を含む水素
中で300°C,2,5時間硫化して試験に用いた。
H,0/CO: 3. Omol/mol, H,8
: 2. Q vo1% pH,: 15vo1%,
co: 83vol 1% (dry pace) The catalyst was sulfurized in advance at 300°C for 2.5 hours in hydrogen containing 2, fivo 1% H, 8 before the reaction and used in the test.

活性はCOの転化率をガスクロスで測定し。The activity was determined by measuring the CO conversion rate using a gas cloth.

次式によ多速度定数を求め九。Find the multirate constant using the following formula.9.

k=F/W XJ2..1/(1−X)x : Co転
化率 F:CO供給量(mol/h) W:触媒量(g) 結果を表1及び表2に記す。
k=F/W XJ2. .. 1/(1-X)x: Co conversion rate F: CO supply amount (mol/h) W: catalyst amount (g) The results are shown in Tables 1 and 2.

〔反応例2・・・・・・寿命試験〕 内径IQmmの断熱型反応管を用い、下記の条件にて寿
命試験を行なった。
[Reaction Example 2... Life test] A life test was conducted under the following conditions using an adiabatic reaction tube with an inner diameter of IQ mm.

触媒20g(1〜2mm)、  温度:250℃。Catalyst 20g (1-2mm), temperature: 250°C.

圧カニ 12Kg/cm”g。Pressure crab 12Kg/cm”g.

G、HoS、V、: 1000 h’″1(Co基準)
G, HoS, V,: 1000 h'''1 (Co standard)
.

H,0/Co : 3.Omol/mol 、  H,
8: 2 vol % 。
H,0/Co: 3. Omol/mol, H,
8: 2 vol%.

H,:1gvo1%、  CO: 80 VO19b反
応初期と100時間後のkを比較することによシ、劣化
の程度を測定した。
H: 1 gvol 1%, CO: 80 VO19b The degree of deterioration was measured by comparing k at the beginning of the reaction and after 100 hours.

結果を表3に記す。The results are shown in Table 3.

Claims (1)

【特許請求の範囲】 1、  Mg/Atの原子比が2〜4であるMg0−A
I!0゜固溶体と、これに担持されたニッケル成分とか
らなシ、ニッケル成分の担持量がNIOに換算して最終
触媒の10〜70wt%であシ、そのニッケル成分の少
なくとも一部が硫化物として存在する耐硫黄性シフト触
媒。 l  Mg/Atの原子比が2〜4であるMg0−At
、0゜固溶体と、これに担持されたニッケル成分及びモ
リブデン成分とからなシ、ニッケル成分とモリブデン成
分の合計担持量がN10 +MoOsに換算して最終触
媒の10〜70wtチであシ。 ニッケル成分とモリブデン成分の比率がNi/ (Ni
 +Mo )の原子比テ0.2〜1.OC[lKIシ、
ニッケル成分の少なくとも一部とモリブデン成分の少な
くとも一部がそれぞれ硫化物として存在する耐硫黄性シ
フト触媒。
[Claims] 1. Mg0-A with an atomic ratio of Mg/At of 2 to 4;
I! It consists of a 0° solid solution and a nickel component supported thereon, and the supported amount of the nickel component is 10 to 70 wt% of the final catalyst in terms of NIO, and at least a part of the nickel component is in the form of sulfide. Sulfur-resistant shift catalysts present. l Mg0-At with an atomic ratio of Mg/At of 2 to 4
, 0° solid solution and the nickel component and molybdenum component supported thereon, the total supported amount of the nickel component and molybdenum component is 10 to 70 wt of the final catalyst in terms of N10 + MoOs. The ratio of nickel component to molybdenum component is Ni/(Ni
+Mo) atomic ratio Te 0.2-1. OC [lKI shi,
A sulfur-resistant shift catalyst in which at least a portion of a nickel component and at least a portion of a molybdenum component each exist as a sulfide.
JP56143316A 1981-09-11 1981-09-11 Sulfur resistant shift catalyst Pending JPS5845740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56143316A JPS5845740A (en) 1981-09-11 1981-09-11 Sulfur resistant shift catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56143316A JPS5845740A (en) 1981-09-11 1981-09-11 Sulfur resistant shift catalyst

Publications (1)

Publication Number Publication Date
JPS5845740A true JPS5845740A (en) 1983-03-17

Family

ID=15335937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56143316A Pending JPS5845740A (en) 1981-09-11 1981-09-11 Sulfur resistant shift catalyst

Country Status (1)

Country Link
JP (1) JPS5845740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140394A (en) * 1984-08-01 1986-02-26 Mitsubishi Heavy Ind Ltd Method for modifying coal
JPH08173809A (en) * 1994-12-16 1996-07-09 China Petrochem Corp Catalyst for conversion of carbon monoxide and method using the same
CN1051251C (en) * 1993-03-25 2000-04-12 中国石油化工总公司 Hydrocarbons water vapor conversion lower section catalyst and its preparation
JP2002003207A (en) * 2000-04-27 2002-01-09 Haldor Topsoe As Method for production of hydrogen rich gas
CN104549336A (en) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140394A (en) * 1984-08-01 1986-02-26 Mitsubishi Heavy Ind Ltd Method for modifying coal
CN1051251C (en) * 1993-03-25 2000-04-12 中国石油化工总公司 Hydrocarbons water vapor conversion lower section catalyst and its preparation
JPH08173809A (en) * 1994-12-16 1996-07-09 China Petrochem Corp Catalyst for conversion of carbon monoxide and method using the same
JP2002003207A (en) * 2000-04-27 2002-01-09 Haldor Topsoe As Method for production of hydrogen rich gas
CN104549336A (en) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof
CN104549336B (en) * 2013-10-15 2017-01-25 中国石油化工股份有限公司 Activated carbon-based sulfur tolerant shift catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2818171B2 (en) Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
US7964114B2 (en) Iron-based water gas shift catalyst
KR100928608B1 (en) Reforming Catalyst of Hydrocarbon and Method of Making the same, and Reforming Method of Hydrocarbon Using the Catalyst
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
JP3226558B2 (en) Catalyst for high temperature steam reforming of hydrocarbons
JPS62210057A (en) Catalyst and its production
US20030032554A1 (en) Modified theta-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
US3303001A (en) Low temperature shift reaction involving a zinc oxide-copper catalyst
KR20090128460A (en) Catalyst precursor substance, and catalyst using the same
KR20140108264A (en) Zinc and/or manganese aluminate catalyst useful for alkane dehydrogenation
US4153580A (en) CO conversion catalyst
US3388972A (en) Low temperature shift reaction catalysts and methods for their preparation
JP6830543B2 (en) Manganese-doped nickel-methaneation catalyst
JP4738024B2 (en) Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst
US4185967A (en) Process for the production of methane-containing gases and catalyst used in process
JPS5845740A (en) Sulfur resistant shift catalyst
JP3328845B2 (en) Hydrogen production method and catalyst used for it
CN114471589A (en) Catalyst, method for sulfur-tolerant shift catalytic reaction and method for preparing methane
US3507811A (en) Catalyst for the reaction of hydrocarbons with steam
JPS5870839A (en) Catalyst for steam reforming of methanol
JPH08173809A (en) Catalyst for conversion of carbon monoxide and method using the same
US5622790A (en) Fuel cell and catalyst for use therein
WO2021192872A1 (en) Reducing agent, and gas production method
JP4776403B2 (en) Hydrocarbon reforming catalyst
JPS60220143A (en) Catalyst for preparing methane-containing gas