JP4738024B2 - Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst - Google Patents

Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst Download PDF

Info

Publication number
JP4738024B2
JP4738024B2 JP2005063575A JP2005063575A JP4738024B2 JP 4738024 B2 JP4738024 B2 JP 4738024B2 JP 2005063575 A JP2005063575 A JP 2005063575A JP 2005063575 A JP2005063575 A JP 2005063575A JP 4738024 B2 JP4738024 B2 JP 4738024B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
methane
carbon dioxide
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005063575A
Other languages
Japanese (ja)
Other versions
JP2006247451A (en
Inventor
聡信 安武
哲也 今井
正樹 平野
健之助 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2005063575A priority Critical patent/JP4738024B2/en
Publication of JP2006247451A publication Critical patent/JP2006247451A/en
Application granted granted Critical
Publication of JP4738024B2 publication Critical patent/JP4738024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、二酸化炭素及び水蒸気によるメタンの改質方法及びシステム、この改質用の触媒、並びにこの触媒の製造方法に関する。   The present invention relates to a method and system for reforming methane with carbon dioxide and steam, a catalyst for the reforming, and a method for producing the catalyst.

メタンを改質して水素を生成する方法は、メタンと水蒸気とを反応させる水蒸気改質反応(式1)が主体となっている。
CH4+H2O→3H2+CO・・・(式1)
A method of reforming methane to generate hydrogen mainly consists of a steam reforming reaction (Equation 1) in which methane reacts with steam.
CH 4 + H 2 O → 3H 2 + CO (Formula 1)

水蒸気改質反応は、反応の段階で、原料の水を水蒸気にする必要があるが、メタンに対する水蒸気の比(以下、「S/C比」と略す)が低い場合、メタンの水蒸気改質が十分に行われずに、副反応として、メタンの分解反応(式2)が起こる。
CH4→2H2+C・・・(式2)
In the steam reforming reaction, the raw material water needs to be steam at the reaction stage, but when the ratio of steam to methane (hereinafter referred to as “S / C ratio”) is low, steam reforming of methane is not possible. If it is not performed sufficiently, a methane decomposition reaction (formula 2) occurs as a side reaction.
CH 4 → 2H 2 + C (Formula 2)

この副反応によって触媒上に炭素が析出すると、触媒の活性が阻害され、反応効率が低下するという問題がある。したがって、炭素析出を防止するために、S/C比を高くする必要がある。しかしながら、S/C比を高くすると熱効率の低下などが生じ、経済的な面での損失が大きくなるという問題がある。   When carbon is deposited on the catalyst by this side reaction, there is a problem that the activity of the catalyst is inhibited and the reaction efficiency is lowered. Therefore, it is necessary to increase the S / C ratio in order to prevent carbon deposition. However, when the S / C ratio is increased, there is a problem that the thermal efficiency is reduced and the loss in terms of economy is increased.

一方、温室効果ガスである二酸化炭素を固定化する方法の1つとして、二酸化炭素をメタンと反応させて水素を生成する方法が提案されている。この反応を式3に示す。
CH4+CO2→2H2+2CO・・・(式3)
On the other hand, as one method of fixing carbon dioxide, which is a greenhouse gas, a method of generating hydrogen by reacting carbon dioxide with methane has been proposed. This reaction is shown in Equation 3.
CH 4 + CO 2 → 2H 2 + 2CO (Formula 3)

この式3の反応に有効な触媒としては、酸化アルミニウム担持ニッケル触媒がある。しかしながら、このNi/Al23触媒は、副反応(式2)の炭素析出により活性低下が甚だしいという問題がある。そこで、炭素の析出防止を図るために、上記の触媒にランタン(La)又はバリウム(Ba)を添加することが提案されている(非特許文献1)。
田村祐介、外3名,「メタンの二酸化炭素によるリフォーミングI−Ni/Al2O3触媒への塩基性物質添加の影響−」,広島工業大学研究紀要,2001年,第35巻,p.207−216
An effective catalyst for the reaction of Formula 3 is an aluminum oxide-supported nickel catalyst. However, this Ni / Al 2 O 3 catalyst has a problem that the activity is greatly lowered due to the carbon deposition of the side reaction (formula 2). In order to prevent carbon deposition, it has been proposed to add lanthanum (La) or barium (Ba) to the above catalyst (Non-patent Document 1).
Yusuke Tamura and three others, “Effects of adding basic substances to reforming I-Ni / Al2O3 catalyst by carbon dioxide of methane”, Hiroshima Institute of Technology Bulletin, 2001, Vol. 35, p. 207-216

本発明は、メタンに対する水蒸気の比(S/C比)を相対的に減少させるために、水蒸気とともに二酸化炭素によってメタンを改質することを図るものである。すなわち、本発明は、水蒸気改質反応(式1)と二酸化炭素改質反応(式3)とを同時に進行させることを図るものである。しかしながら、水蒸気改質反応に用いられる従来の触媒は、二酸化炭素改質反応に対して活性が非常に低いという問題がある。一方、上記文献に記載されたLa又はBa添加のNi触媒は、二酸化炭素改質反応に対して活性が高いものの、依然として副反応(式2)により炭素が析出して触媒活性が低下すること、及び触媒成分であるNiが水蒸気により酸化され触媒性能が低下することから長期間にわたって安定してメタンを改質することができないという問題がある。   The present invention aims to reform methane with carbon dioxide together with water vapor in order to relatively reduce the ratio of water vapor to methane (S / C ratio). That is, the present invention intends to allow the steam reforming reaction (Formula 1) and the carbon dioxide reforming reaction (Formula 3) to proceed simultaneously. However, the conventional catalyst used for the steam reforming reaction has a problem that its activity is very low for the carbon dioxide reforming reaction. On the other hand, the La or Ba-added Ni catalyst described in the above document has high activity with respect to the carbon dioxide reforming reaction, but carbon is still precipitated by the side reaction (formula 2) and the catalytic activity is reduced. In addition, since Ni which is a catalyst component is oxidized by water vapor and the catalytic performance is lowered, there is a problem that methane cannot be stably reformed over a long period of time.

そこで本発明は、上記の問題点に鑑み、メタンに対する水蒸気の比(S/C比)を低くできるとともに、メタンを長期間にわたって安定して改質することができる二酸化炭素及び水蒸気によるメタンの改質方法及びシステム、この改質用の触媒、並びにこの触媒の製造方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention can reduce the ratio of water vapor to methane (S / C ratio) and can improve the stability of methane over a long period of time. It is an object of the present invention to provide a quality method and system, a catalyst for the reforming, and a method for producing the catalyst.

上記の目的を達成するために、本発明に係る二酸化炭素及び水蒸気によりメタンを改質するための触媒は、ルテニウム及びロジウムからなる群から選択される少なくとも1つの活性成分が、酸化セリウムの第1の酸化物と、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1つの第2の酸化物とを含む担体に担持されていることを特徴とする。 In order to achieve the above object, in the catalyst for reforming methane with carbon dioxide and steam according to the present invention, at least one active component selected from the group consisting of ruthenium and rhodium is the first cerium oxide . And a support containing at least one second oxide selected from the group consisting of aluminum oxide and zirconium oxide.

このように、活性成分としてルテニウム又はロジウムを採用することで、水蒸気改質反応及び二酸化炭素改質反応の両方に対して優れた活性を得ることができる。また、上記第1の酸化物と上記第2の酸化物との両方を含む担体を採用することで、第1の酸化物である酸化セリウムにより担体全体が電子供与性(δ-)となり、水蒸気及び二酸化炭素が担体に活性化吸着するので、相対的に触媒表面でのメタンの分解反応を防止することができる。したがって、本触媒によれば、S/C比を低くすることができるとともに、触媒上への炭素析出が防止され、メタンを長期間にわたって安定して改質することができる。 As described above, by using ruthenium or rhodium as an active component, it is possible to obtain excellent activity for both the steam reforming reaction and the carbon dioxide reforming reaction. Further, by employing a carrier containing both the first oxide and the second oxide, the entire carrier becomes electron donating (δ ) by cerium oxide, which is the first oxide, and water vapor Since carbon dioxide and activated carbon are activated and adsorbed on the carrier, the decomposition reaction of methane on the catalyst surface can be relatively prevented. Therefore, according to the present catalyst, the S / C ratio can be lowered, carbon deposition on the catalyst can be prevented, and methane can be stably reformed over a long period of time.

前記活性成分であるルテニウム又はロジウムの粒径は、5nm以下であることが好ましい。活性成分の粒径を5nm以下にすることで、活性成分も電子供与性(δ-)にすることができる。したがって、水蒸気及び二酸化炭素が活性成分に活性化吸着するので、活性成分表面への炭素析出をより確実に防止することができるので、触媒の活性低下をさらに顕著に防止することができる。 The particle size of ruthenium or rhodium as the active ingredient is preferably 5 nm or less. By making the particle size of the active ingredient 5 nm or less, the active ingredient can also be electron donating (δ ). Therefore, since water vapor and carbon dioxide are activated and adsorbed on the active component, carbon deposition on the surface of the active component can be more reliably prevented, so that a decrease in the activity of the catalyst can be more remarkably prevented.

前記活性成分であるルテニウム又はロジウムの結晶形態は、アモルファス状であることが好ましい。活性成分の結晶形態をアモルファス状にすることで、特に二酸化炭素改質反応の活性を顕著に向上させることができる。   The crystalline form of ruthenium or rhodium, which is the active ingredient, is preferably amorphous. By making the crystal form of the active component amorphous, the activity of the carbon dioxide reforming reaction can be significantly improved.

前記活性成分の量は、触媒全体を100重量%とすると、0.01〜5重量%であることが好ましい。また、前記第1の酸化物の量は、前記第1の酸化物と前記第2の酸化物の合計を100重量%とすると、20〜60重量%であることが好ましい。   The amount of the active component is preferably 0.01 to 5% by weight when the total catalyst is 100% by weight. The amount of the first oxide is preferably 20 to 60% by weight when the total of the first oxide and the second oxide is 100% by weight.

このように、ルテニウム又はロジウムの水酸化物を含有するスラリーを、担体である粒状の酸化物に添加して焼成することで、活性成分となるルテニウム又はロジウムを担体上に5nm以下の粒径でアモルファス状に高分散化させることができる。   Thus, the slurry containing ruthenium or rhodium hydroxide is added to the granular oxide as the carrier and baked, so that the ruthenium or rhodium as the active ingredient is deposited on the carrier with a particle size of 5 nm or less. Highly dispersed in an amorphous state.

なお、前記粒状の担体は、アルカリ沈殿法又は蒸発乾固法によって生成する沈殿物又は乾固物を焼成することによって得られるものが好ましい。   The granular carrier is preferably obtained by firing a precipitate or a dried product produced by an alkali precipitation method or an evaporation to dryness method.

本発明は、別の態様として、二酸化炭素及び水蒸気によりメタンを改質するための触媒を製造する方法であって、ルテニウム及びロジウムからなる群から選択される少なくとも1つの元素の水酸化物を含有するスラリーを、酸化セリウムの第1の酸化物と、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1つの第2の酸化物とを含む粒状の担体に添加して焼成する工程と含んでなることを特徴とする。 Another aspect of the present invention is a method for producing a catalyst for reforming methane with carbon dioxide and steam, which contains a hydroxide of at least one element selected from the group consisting of ruthenium and rhodium. Adding the slurry to be granulated to a granular support containing a first oxide of cerium oxide and at least one second oxide selected from the group consisting of aluminum oxide and zirconium oxide, and firing. It is characterized by becoming.

本発明に係る製造方法は、アルカリ沈殿法又は蒸発乾固法によって生成する沈殿物又は乾固物を焼成して前記粒状の担体を得る工程をさらに含むことが好ましい。   The production method according to the present invention preferably further includes a step of obtaining a granular carrier by baking a precipitate or a dried product produced by an alkali precipitation method or an evaporation to dry method.

本発明は、さらに別の態様として、二酸化炭素及び水蒸気によりメタンを改質する方法であって、上記に記載した触媒を用いることを特徴とする。   As another aspect of the present invention, there is provided a method for reforming methane with carbon dioxide and water vapor, wherein the catalyst described above is used.

本発明は、またさらに別の態様として、二酸化炭素及び水蒸気によりメタンを改質するシステムであって、上記に記載した触媒を備えていることを特徴とする。   As still another aspect of the present invention, there is provided a system for reforming methane with carbon dioxide and steam, which is characterized by comprising the catalyst described above.

上記したように、本発明によれば、S/C比を低くできるとともに、メタンを長期間にわたって安定して改質することができる二酸化炭素及び水蒸気によるメタンの改質方法及びシステム、この改質用の触媒、並びにこの触媒の製造方法が提供される。   As described above, according to the present invention, a method and system for reforming methane with carbon dioxide and steam, which can lower the S / C ratio and can stably reform methane over a long period of time, and this reforming And a process for producing the catalyst.

以下、本発明の一実施の形態について説明する。先ず、本発明に係る触媒の一実施の形態について説明する。触媒の活性成分は、ルテニウム(Ru)又はロジウム(Rh)である。Ru又はRhを活性成分として用いることで、水蒸気改質反応及び二酸化炭素改質反応の両方に対して優れた活性を得ることができる。また、Ru又はRhの粒径は直径5nm以下であることが好ましい。粒径を5nm以下にすることで、活性成分を電子供与性(δ-)にすることができる。 Hereinafter, an embodiment of the present invention will be described. First, an embodiment of the catalyst according to the present invention will be described. The active component of the catalyst is ruthenium (Ru) or rhodium (Rh). By using Ru or Rh as an active ingredient, excellent activity can be obtained for both the steam reforming reaction and the carbon dioxide reforming reaction. The particle size of Ru or Rh is preferably 5 nm or less in diameter. By making the particle size 5 nm or less, the active component can be made electron donating (δ ).

Ru又はRhの結晶形態は、アモルファス状であることが好ましい。アモルファス状にすることで、特に二酸化炭素改質反応の活性を顕著に向上させることができる。活性成分の量は、触媒全体を100重量%とすると、0.01〜5重量%が好ましく、0.1〜2重量%がより好ましい。0.01重量%以上にすることで、反応活性サイトが多くなり十分な反応速度を得ることができる。また、5重量%以下にすることで、担体からの電子供与効果が十分に得られ、メタンの直接分解反応をより確実に防止することができる。   The crystal form of Ru or Rh is preferably amorphous. By making it amorphous, particularly the activity of the carbon dioxide reforming reaction can be remarkably improved. The amount of the active component is preferably 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on 100% by weight of the entire catalyst. By setting the content to 0.01% by weight or more, the reaction active sites increase and a sufficient reaction rate can be obtained. Further, when the content is 5% by weight or less, the effect of donating electrons from the carrier can be sufficiently obtained, and the direct decomposition reaction of methane can be more reliably prevented.

また、触媒の担体は、酸化マグネシウム(MgO)、酸化セリウム(CeO2)及び酸化ストロンチウム(SrO)のうちの少なくとも1種の第1の酸化物と、酸化アルミニウム(Al23)及び酸化ジルコニウム(ZrO2)のうちの少なくとも1種の第2の酸化物とを含む担体である。第1の酸化物としてMgO、CeO2又はSrOを用いることで、担体を電子供与性(δ-)にすることができる。そして、第1の酸化物と第2の酸化物との両方を含む担体とすることで、担体全体が電子供与性(δ-)となり、水蒸気及び二酸化炭素が担体に活性化吸着されるので、相対的に触媒表面でのメタンの分解反応を防止することができる。 The catalyst carrier includes at least one first oxide of magnesium oxide (MgO), cerium oxide (CeO 2 ), and strontium oxide (SrO), aluminum oxide (Al 2 O 3 ), and zirconium oxide. A support containing at least one second oxide of (ZrO 2 ). By using MgO, CeO 2 or SrO as the first oxide, the carrier can be made electron donating (δ ). And, by using a carrier containing both the first oxide and the second oxide, the entire carrier becomes electron donating (δ ), and water vapor and carbon dioxide are activated and adsorbed on the carrier. The decomposition reaction of methane on the catalyst surface can be relatively prevented.

なお、第2の酸化物としてAl23又はZrO2を用いることで、800℃以上の高温状態に晒されてもその多孔質性を維持することができ、改質反応時における触媒のメタンに対する高い接触効率が維持される。第1の酸化物の量は、第1の酸化物と第2の酸化物との合計を100重量%とすると、20〜60重量%であることが好ましい。20重量%以上にすることで、これらは容易に複合酸化物となり電子供与効果を十分に発揮することができる。また、60重量%以下にすることで、800℃以上の高温使用によっても担体の比表面積を確実に維持することができる。 By using Al 2 O 3 or ZrO 2 as the second oxide, the porosity can be maintained even when exposed to a high temperature state of 800 ° C. or higher, and the catalyst methane during the reforming reaction. High contact efficiency is maintained. The amount of the first oxide is preferably 20 to 60% by weight when the total of the first oxide and the second oxide is 100% by weight. By setting it to 20% by weight or more, these easily become complex oxides and can sufficiently exhibit the electron donating effect. Moreover, the specific surface area of a support | carrier can be reliably maintained by using 60 weight% or less by high temperature use of 800 degreeC or more.

次に、本発明に係る触媒の製造方法の一実施の形態について説明する。触媒の担体は、アルカリ沈殿法や蒸発乾固法等により調製することが好ましい。以下に先ず、アルカリ沈殿法による手順について詳細に説明する。先ず、Mg、Ce又はSrの塩化物や硝酸塩等の塩と、Al又はZrの塩化物や硝酸塩等の塩とに、炭酸ナトリウム(Na2CO3)、水酸化ナトリウム(NaOH)、アンモニア(NH4OH)等のアルカリを加える。これにより、Mg、Ce又はSrと、Al又はZrとの水酸化化合物又は塩基性炭酸塩を含む沈殿物を得ることができる。 Next, an embodiment of a method for producing a catalyst according to the present invention will be described. The catalyst carrier is preferably prepared by alkali precipitation, evaporation to dryness, or the like. First, the procedure by the alkali precipitation method will be described in detail. First, Mg, Ce or Sr chloride or nitrate salt, Al or Zr chloride or nitrate salt, sodium carbonate (Na 2 CO 3 ), sodium hydroxide (NaOH), ammonia (NH 4 Add an alkali such as OH). Thereby, the deposit containing the hydroxide compound or basic carbonate of Mg, Ce, or Sr and Al or Zr can be obtained.

この得られた沈殿物を焼成することで、Mg、Ce又はSrと、Al又はZrとの複合酸化物が得られる。なお、焼成温度は500〜1100℃が好ましく、焼成時間は1〜24時間が好ましい。また、焼成前に沈殿物を乾燥させておくことが好ましい。得られた複合酸化物は直径10〜30μmの粉末状であるので、反応ガスの通気性向上のため、直径1〜7mmの粒状に成型することが好ましい。   By firing the obtained precipitate, a composite oxide of Mg, Ce or Sr and Al or Zr is obtained. The firing temperature is preferably 500 to 1100 ° C., and the firing time is preferably 1 to 24 hours. Moreover, it is preferable to dry the precipitate before firing. Since the obtained composite oxide is in the form of a powder having a diameter of 10 to 30 μm, it is preferably molded into a particle having a diameter of 1 to 7 mm in order to improve the gas permeability of the reaction gas.

次に、蒸発乾固法による担体の調製手順について詳細に説明する。先ず、Mg、Ce又はSrの塩化物や硝酸塩等の塩を溶解させた水溶液にAl23又はZrO2の粉末又は粒子を浸漬する。この水溶液を加熱して水分を蒸発させることで、乾固物を得ることができる。また、Al23又はZrO2は、Al又はZrの塩化物や硝酸塩等の塩にアルカリを加えることで得られる。そして、この乾固物を焼成して酸化物化することで、Mg、Ce又はSrと、Al又はZrとの複合酸化物を得ることができる。なお、焼成の条件は上記と同様である。 Next, the procedure for preparing the carrier by the evaporation to dryness method will be described in detail. First, Al 2 O 3 or ZrO 2 powder or particles are immersed in an aqueous solution in which a salt such as chloride, nitrate or the like of Mg, Ce or Sr is dissolved. A dried product can be obtained by heating the aqueous solution to evaporate the water. Al 2 O 3 or ZrO 2 can be obtained by adding an alkali to a salt such as a chloride or nitrate of Al or Zr. And by baking this dried solid substance and oxidizing it, the complex oxide of Mg, Ce, or Sr, and Al or Zr can be obtained. The firing conditions are the same as above.

そして、上記により得られた粒状の複合酸化物に活性成分を担持させる。活性成分の担持方法は、活性成分の水酸化物を含有するスラリーを担体に分散させて焼成する方法が好ましい。以下、本方法の手順について詳細に説明する。先ず、アルカリ沈殿法や、Ru又はRhの水酸化物を湿式粉砕する等の方法によって、Ru又はRhの水酸化物スラリーを調製する。アルカリ沈殿法では、Ru又はRhの硝酸塩又は炭酸塩を、アンモニウム水や水酸化ナトリウム等のアルカリで中和して、Ru又はRhの水酸化物を含有するスラリーを生成する。   And an active ingredient is carry | supported by the granular complex oxide obtained by the above. As a method for supporting the active ingredient, a method in which a slurry containing a hydroxide of the active ingredient is dispersed in a carrier and calcined is preferable. Hereinafter, the procedure of this method will be described in detail. First, a hydroxide slurry of Ru or Rh is prepared by an alkali precipitation method or a method of wet pulverizing a hydroxide of Ru or Rh. In the alkaline precipitation method, Ru or Rh nitrate or carbonate is neutralized with an alkali such as ammonium water or sodium hydroxide to produce a slurry containing Ru or Rh hydroxide.

このスラリーを、上記により得られた粒状の複合酸化物に混合添加した後、この混合添加したものを焼成する。これにより、Ru又はRhの水酸化物は、結晶形態がアモルファス状で、粒径が直径5nm以下であるRu又はRhとなり、粒状の複合酸化物の表面上に分散担持される。なお、焼成温度は500〜1100℃が好ましく、焼成時間は1〜24時間が好ましい。また、焼成前に乾燥させておくことが好ましい。以上により、本発明に係る触媒を製造することができる。   The slurry is mixed and added to the granular composite oxide obtained as described above, and then the mixture and added are fired. Thereby, the hydroxide of Ru or Rh becomes Ru or Rh whose crystal form is amorphous and whose particle diameter is 5 nm or less, and is dispersed and supported on the surface of the granular composite oxide. The firing temperature is preferably 500 to 1100 ° C., and the firing time is preferably 1 to 24 hours. Moreover, it is preferable to dry before baking. As described above, the catalyst according to the present invention can be produced.

さらに次に、本発明に係る二酸化炭素及び水蒸気によりメタンを改質するシステムの一実施の形態について説明する。本システムは、本発明に係る触媒が内部に充填された改質部と、この改質部に原料であるメタンを供給するメタン供給部と、この改質部に二酸化炭素を供給する二酸化炭素供給部と、この改質部に水蒸気を供給する水蒸気供給部と、この改質部を加熱する加熱部とから主に構成されている。   Next, an embodiment of a system for reforming methane with carbon dioxide and steam according to the present invention will be described. The system includes a reforming unit filled with a catalyst according to the present invention, a methane supply unit that supplies methane as a raw material to the reforming unit, and a carbon dioxide supply that supplies carbon dioxide to the reforming unit. Part, a steam supply part for supplying steam to the reforming part, and a heating part for heating the reforming part.

このような構成によれば、先ず、加熱部によって改質部の内部を500〜1000℃、好ましくは650〜850℃の温度に加熱する。そして、この改質部の内部にメタン、二酸化炭素及び水蒸気を各供給部から供給する。ここで、メタンに対する水蒸気の比(S/C比)は、0.1〜3mol/molが好ましく、1.0〜2.0mol/molがより好ましい。S/C比を0.1mol/mol以上にすることで、二酸化炭素とメタンの改質反応を安定に行うことができる。また、S/C比を3mol/mol以下にすることで、水蒸気添加によるプロセス効率の低下を防止することができる。   According to such a configuration, first, the inside of the reforming section is heated to a temperature of 500 to 1000 ° C., preferably 650 to 850 ° C., by the heating section. And methane, a carbon dioxide, and water vapor | steam are supplied from this supply part inside this reforming part. Here, the ratio of water vapor to methane (S / C ratio) is preferably 0.1 to 3 mol / mol, and more preferably 1.0 to 2.0 mol / mol. By setting the S / C ratio to 0.1 mol / mol or more, the reforming reaction of carbon dioxide and methane can be performed stably. Moreover, the process efficiency fall by water vapor | steam addition can be prevented because S / C ratio shall be 3 mol / mol or less.

また、メタンに対する二酸化炭素の比(CO2/CH4比)は、0.1〜3.0mol/molが好ましく、1.0〜2.0mol/molがより好ましい。CO2/CH4比を0.1mol/mol以上にすることで、水蒸気とメタンの改質反応を安定に行うことができる。また、CO2/CH4比を3.0mol/mol以下にすることで、水及び二酸化炭素を効率よくメタンの改質反応に利用することができる。さらに、メタンに対する二酸化炭素と水蒸気の比((CO2+H2O)/CH4比)は、2.5mol/mol以上が好ましい。(CO2+H2O)/CH4比を2.5mol/mol以上にすることで、二酸化炭素と水蒸気とメタンの改質反応を安定に行うことができる。 The ratio of carbon dioxide for methane (CO 2 / CH 4 ratio) is preferably from 0.1~3.0mol / mol, 1.0~2.0mol / mol is more preferable. By setting the CO 2 / CH 4 ratio to 0.1 mol / mol or more, the reforming reaction of water vapor and methane can be performed stably. Moreover, water and carbon dioxide can be efficiently utilized for the reforming reaction of methane by setting the CO 2 / CH 4 ratio to 3.0 mol / mol or less. Furthermore, the ratio of carbon dioxide and water vapor to methane (ratio of (CO 2 + H 2 O) / CH 4 ) is preferably 2.5 mol / mol or more . By setting the (CO 2 + H 2 O) / CH 4 ratio to 2.5 mol / mol or more, the reforming reaction of carbon dioxide, water vapor, and methane can be performed stably.

これにより、改質部において、メタンが水蒸気改質及び二酸化炭素改質され、水素と一酸化炭素を含有する合成ガスが得られる。改質部の内部には、本発明に係る触媒が充填されているので、二酸化炭素を供給しても、二酸化炭素によるメタンの改質反応が十分に進む。また、二酸化炭素の供給により相対的にS/C比が減少しても、本発明に係る触媒によって炭素の析出は防止されるので、長期間にわたってメタンを安定して改質することができる。   Thereby, in the reforming section, methane is steam reformed and carbon dioxide reformed, and a synthesis gas containing hydrogen and carbon monoxide is obtained. Since the inside of the reforming section is filled with the catalyst according to the present invention, the reforming reaction of methane by carbon dioxide proceeds sufficiently even if carbon dioxide is supplied. Further, even if the S / C ratio is relatively decreased by the supply of carbon dioxide, the catalyst according to the present invention prevents carbon deposition, so that methane can be stably reformed over a long period of time.

(触媒番号1の調製)
無水炭酸ナトリウム(Na2CO3、MW=106)1850gをイオン交換水100Lに溶かし、これに塩化マグネシウム6水和物(MgCl2・6H2O、MW=203.3)1730gと無水塩化アルミニウム(AlCl3、MW=133.3)1160gを加えた。これより得られた沈殿物を十分に水洗し、120℃で乾燥した後、1100℃で5h焼成した。これより得られた粉末は、酸化マグネシウムと酸化アルミニウムの重量比が50:50の酸化マグネシウムと酸化アルミニウムの複合酸化物(MgO・Al23)であった。この粉末1kgを直径約3mmの粒状に成型して担体を調製した。
(Preparation of catalyst number 1)
1850 g of anhydrous sodium carbonate (Na 2 CO 3 , MW = 106) is dissolved in 100 L of ion-exchanged water, and then 1730 g of magnesium chloride hexahydrate (MgCl 2 .6H 2 O, MW = 203.3) and anhydrous aluminum chloride ( 1160 g of AlCl 3 , MW = 133.3) was added. The precipitate obtained from this was sufficiently washed with water, dried at 120 ° C., and calcined at 1100 ° C. for 5 hours. The powder thus obtained was a composite oxide (MgO.Al 2 O 3 ) of magnesium oxide and aluminum oxide having a weight ratio of magnesium oxide to aluminum oxide of 50:50. A carrier was prepared by molding 1 kg of the powder into granules having a diameter of about 3 mm.

続いて、5wt%の硝酸ルテニウム(Ru(NO34、MW=349)水溶液10Lに1Nのアンモニア水をpH7.5になるまで添加し、黒色の水酸化ルテニウム(Ru(OH)4)を含むスラリーを調製した。そして、先に調製したMgO・Al23粒状担体100gに、この水酸化ルテニウムスラリーをRu量換算で触媒全重量に対し2wt%量添加し、120℃で12h十分に乾燥させた後、さらに700℃で24h焼成させた。これにより、Ruを2wt%担持したRu/MgO・Al23触媒(触媒番号1)を得た。 Subsequently, 1N ammonia water is added to 10 L of 5 wt% ruthenium nitrate (Ru (NO 3 ) 4 , MW = 349) aqueous solution until pH 7.5 is reached, and black ruthenium hydroxide (Ru (OH) 4 ) is added. A slurry containing was prepared. And after adding 2 wt% of this ruthenium hydroxide slurry to 100 g of the previously prepared MgO · Al 2 O 3 granular carrier in terms of Ru amount with respect to the total weight of the catalyst and sufficiently drying at 120 ° C. for 12 hours, Firing was performed at 700 ° C. for 24 hours. As a result, a Ru / MgO.Al 2 O 3 catalyst (catalyst number 1) carrying 2 wt% of Ru was obtained.

(触媒番号2の調製)
触媒番号1の調製方法に対し、硝酸ルテニウムを硝酸ロジウム(Rh(NO33、MW=289)に変え、Rh量を触媒全重量に対し0.1wt%にしたこと以外は全て同様の調製方法により、Rh/MgO・Al23触媒(触媒番号2)を調製した。
(Preparation of catalyst number 2)
All preparations are the same as the preparation method of catalyst number 1 except that ruthenium nitrate is changed to rhodium nitrate (Rh (NO 3 ) 3 , MW = 289) and the amount of Rh is 0.1 wt% with respect to the total weight of the catalyst. By the method, a Rh / MgO.Al 2 O 3 catalyst (catalyst number 2) was prepared.

(触媒番号3及び4の調製)
触媒番号1の調製方法に対し、塩化マグネシウムを硝酸第一セリウム(Ce(NO33・6H2O、MW=434.2)1890g又は無水硝酸ストロンチウム(Sr(NO32、MW=211.6)615gに変えたこと以外は全て同様の調製方法により、Ru/CeO2・Al23触媒(触媒番号3)及びRu/SrO・Al23触媒(触媒番号4)を調製した。
(Preparation of catalyst numbers 3 and 4)
For the preparation method of Catalyst No. 1, magnesium chloride is replaced with 1890 g of cerium nitrate (Ce (NO 3 ) 3 .6H 2 O, MW = 434.2) or anhydrous strontium nitrate (Sr (NO 3 ) 2 , MW = 211). .6) Ru / CeO 2 · Al 2 O 3 catalyst (Catalyst No. 3) and Ru / SrO · Al 2 O 3 catalyst (Catalyst No. 4) were prepared in the same manner except that the amount was changed to 615 g. .

(触媒番号比較1の調製)
無水炭酸ナトリウム(Na2CO3、MW=106)1850gをイオン交換水100Lに溶かし、これに無水塩化アルミニウム(AlCl3、MW=133.3)1160gを加えた。これにより得られた沈殿物を十分に水洗し、120℃で乾燥した後、1100℃で5h焼成した。これにより得られたα−Al23粉末1kgを直径約3mmの粒状に成型した。さらにこれを、塩化マグネシウム6水和物(MgCl2・6H2O、MW=203.3)220gをイオン交換水1.5Lに溶解させた水溶液に浸漬させ、加熱により水分を蒸発させた後、1100℃で5h焼成した。これにより得られた酸化アルミニウムと酸化マグネシウムの複合酸化物(MgO/α−Al23)を直径約3mmの粒状に成型して担体を調製した。
(Preparation of catalyst number comparison 1)
1850 g of anhydrous sodium carbonate (Na 2 CO 3 , MW = 106) was dissolved in 100 L of ion-exchanged water, and 1160 g of anhydrous aluminum chloride (AlCl 3 , MW = 133.3) was added thereto. The precipitate thus obtained was sufficiently washed with water, dried at 120 ° C., and calcined at 1100 ° C. for 5 hours. 1 kg of the α-Al 2 O 3 powder obtained in this way was molded into granules having a diameter of about 3 mm. Further, after immersing 220 g of magnesium chloride hexahydrate (MgCl 2 .6H 2 O, MW = 203.3) in 1.5 L of ion-exchanged water and evaporating the water by heating, Firing was performed at 1100 ° C. for 5 hours. The carrier was prepared by molding the composite oxide (MgO / α-Al 2 O 3 ) of aluminum oxide and magnesium oxide obtained in this manner into granules having a diameter of about 3 mm.

続いて、硝酸ニッケル6水和物(Ni(NO32・6H2O、MW=290.8)50gをイオン交換水0.5Lに溶解させた水溶液に、先に調製したMgO/α−Al23担体90gを浸漬させ、加熱により水分を蒸発させた後、500℃で5h焼成した。これにより、Niを触媒全重量に対し10wt%担持したNi/MgO/α−Al23触媒(触媒番号比較1)を得た。 Subsequently, the MgO / α- prepared above in an aqueous solution in which 50 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 .6H 2 O, MW = 290.8) was dissolved in 0.5 L of ion-exchanged water. After 90 g of Al 2 O 3 carrier was immersed and water was evaporated by heating, it was calcined at 500 ° C. for 5 hours. As a result, a Ni / MgO / α-Al 2 O 3 catalyst (catalyst number comparison 1) carrying 10 wt% of Ni with respect to the total weight of the catalyst was obtained.

(触媒番号比較2の調製)
無水炭酸ナトリウム(Na2CO3、MW=106)1850gをイオン交換水100Lに溶かし、これに無水塩化アルミニウム(AlCl3、MW=133.3)1160gを加えた。これにより得られた沈殿物を十分に水洗し、120℃で乾燥した後、1100℃で5h焼成した。これにより得られたα−Al23粉末1kgを直径約3mmの粒状に成型して担体を調製した。
(Preparation of catalyst number comparison 2)
1850 g of anhydrous sodium carbonate (Na 2 CO 3 , MW = 106) was dissolved in 100 L of ion-exchanged water, and 1160 g of anhydrous aluminum chloride (AlCl 3 , MW = 133.3) was added thereto. The precipitate thus obtained was sufficiently washed with water, dried at 120 ° C., and calcined at 1100 ° C. for 5 hours. A carrier was prepared by molding 1 kg of the α-Al 2 O 3 powder thus obtained into granules having a diameter of about 3 mm.

続いて、5wt%の硝酸ルテニウム(Ru(NO34、MW=349)水溶液10Lに1Nのアンモニア水をpH7.5になるまで添加し、黒色の水酸化ルテニウムを含むスラリーを調製した。先に調製したα−Al23粒状担体100gにこの水酸化ルテニウムスラリーをRu量換算で触媒全重量に対し2wt%量添加し、120℃で12h十分に乾燥させた後、さらに700℃で24h焼成させた。これにより、Ruを2wt%担持したRu/α−Al23触媒(触媒番号比較2)を得た。 Subsequently, 1N ammonia water was added to 10 L of a 5 wt% aqueous solution of ruthenium nitrate (Ru (NO 3 ) 4 , MW = 349) until pH 7.5, thereby preparing a slurry containing black ruthenium hydroxide. The ruthenium hydroxide slurry was added to 100 g of the previously prepared α-Al 2 O 3 granular carrier in an amount of 2 wt% based on the total weight of the catalyst in terms of Ru amount, and after sufficiently drying at 120 ° C. for 12 hours, further at 700 ° C. Baked for 24 hours. As a result, a Ru / α-Al 2 O 3 catalyst (catalyst number comparison 2) carrying 2 wt% of Ru was obtained.

以上の触媒番号1〜4及び比較1〜2の触媒の組成及び調製方法を表1にまとめる。

Figure 0004738024
The compositions and preparation methods of the above catalyst numbers 1 to 4 and Comparative Examples 1 and 2 are summarized in Table 1.
Figure 0004738024

(メタンの改質の性能評価)
触媒番号1〜4及び比較1〜2の各触媒を用いて、固定床流通式リアクタでメタンの改質反応を行った。反応条件を表2に示す。なお、試験番号1は、水蒸気と二酸化炭素によるメタンの改質反応であり、試験番号2及び3は、水蒸気のみによるメタンの改質反応である。
(Performance evaluation of methane reforming)
Using each of the catalysts Nos. 1 to 4 and Comparative Examples 1 and 2, the reforming reaction of methane was performed in a fixed bed flow type reactor. The reaction conditions are shown in Table 2. Test number 1 is a reforming reaction of methane with steam and carbon dioxide, and test numbers 2 and 3 are a reforming reaction of methane with only steam.

Figure 0004738024
Figure 0004738024

改質反応により生成したガスを分析し、以下の式4からメタン反応率(%)を算出した。改質反応の初期のメタン反応率と、500時間経過後のメタン反応率を表3にまとめた。   The gas produced by the reforming reaction was analyzed, and the methane reaction rate (%) was calculated from the following formula 4. Table 3 shows the initial methane reaction rate of the reforming reaction and the methane reaction rate after 500 hours.

Figure 0004738024
Figure 0004738024

Figure 0004738024
Figure 0004738024

表3に示すように、水蒸気と二酸化炭素によるメタンの改質反応(試験番号1)では、触媒番号1〜4のいずれの触媒においてもメタン反応率は500時間経過後でもほとんど低下せず、優れた耐久性を示した。一方、活性成分がNiである比較1と、担体が酸化アルミニウムのみの比較2では、メタン反応率が500時間経過後で約3分の1程度まで低下した。また、比較1は、初期のメタン反応率も触媒番号1〜4の触媒の約80%と低かった。   As shown in Table 3, in the reforming reaction of methane with water vapor and carbon dioxide (test number 1), the methane reaction rate hardly deteriorates even after 500 hours in any of the catalysts of catalyst numbers 1 to 4, and is excellent. Showed high durability. On the other hand, in Comparative 1 where the active ingredient is Ni and Comparative 2 where the support is only aluminum oxide, the methane reaction rate decreased to about one third after 500 hours. In comparison 1, the initial methane reaction rate was also as low as about 80% of the catalysts of catalyst numbers 1 to 4.

また、二酸化炭素を供給せず、水蒸気を上記と同じS/C比で供給した場合のメタンの改質反応(試験番号2)でも、触媒番号1〜4の各触媒は優れた耐久性を示したが、比較1及び2の各触媒はメタン反応率が約3分の1程度まで低下した。なお、二酸化炭素を供給せず、水蒸気を上記の2倍のS/C比で供給した場合のメタンの改質反応(試験番号3)では、比較1及び2の各触媒のメタン反応率は約3分の2程度までの低下となり、耐久性は向上した。   Also, in the methane reforming reaction (test number 2) when water vapor is supplied at the same S / C ratio as above without supplying carbon dioxide, each catalyst of catalyst numbers 1 to 4 exhibits excellent durability. However, each catalyst of Comparative 1 and 2 had a methane reaction rate reduced to about one third. In the methane reforming reaction (test number 3) when carbon dioxide is not supplied and water vapor is supplied at twice the above S / C ratio, the methane reaction rate of each catalyst of Comparative 1 and 2 is about The durability decreased to about two-thirds and the durability was improved.

上記の各試験において、500時間経過後の触媒番号1〜4及び比較1及び2の各触媒に付着した炭素(C)の量を測定した。その結果を表4に示す。触媒番号1〜4のいずれの触媒においても炭素析出量は、触媒全体の重量に対して僅かであったが、比較1及び2の各触媒ではこの数倍以上の炭素が付着していた。   In each of the above tests, the amount of carbon (C) adhering to each of the catalyst numbers 1 to 4 and Comparative 1 and 2 after 500 hours was measured. The results are shown in Table 4. In any of the catalysts Nos. 1 to 4, the carbon deposition amount was a little with respect to the weight of the whole catalyst, but in each of the catalysts of Comparative Examples 1 and 2, carbon several times or more adhered.

Figure 0004738024
Figure 0004738024

以上により、触媒番号1〜4の各触媒は、S/C比が低くても、触媒上への炭素析出量が非常に少なく、触媒活性の低下が起こらないので、メタンの改質反応を長期にわたって安定して維持できることが確認できた。   As described above, each catalyst of catalyst Nos. 1 to 4 has a very small amount of carbon deposited on the catalyst even when the S / C ratio is low, and the catalytic activity does not decrease. It was confirmed that it could be maintained stably over the entire period.

Claims (9)

二酸化炭素及び水蒸気によりメタンを改質するための触媒であって、ルテニウム及びロジウムからなる群から選択される少なくとも1つの活性成分が、酸化セリウムの第1の酸化物と、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1つの第2の酸化物とを含む担体に担持されている触媒。   A catalyst for reforming methane with carbon dioxide and steam, wherein at least one active component selected from the group consisting of ruthenium and rhodium is composed of a first oxide of cerium oxide, aluminum oxide and zirconium oxide. A catalyst supported on a support comprising at least one second oxide selected from the group consisting of: 前記活性成分であるルテニウム又はロジウムの粒径が5nm以下である請求項1に記載の触媒。   The catalyst according to claim 1, wherein the particle size of ruthenium or rhodium as the active component is 5 nm or less. 前記活性成分であるルテニウム又はロジウムの結晶形態がアモルファス状である請求項1又は2に記載の触媒。   The catalyst according to claim 1 or 2, wherein a crystal form of ruthenium or rhodium as the active component is amorphous. 前記活性成分の量が、触媒全体100重量%に対して、0.01〜5重量%である請求項1〜3のいずれかに記載の触媒。   The catalyst according to any one of claims 1 to 3, wherein the amount of the active component is 0.01 to 5% by weight with respect to 100% by weight of the whole catalyst. 前記第1の酸化物の量が、前記第1の酸化物と前記第2の酸化物の合計100重量%に対して、20〜60重量%である請求項1〜4のいずれかに記載の触媒。   5. The amount of the first oxide is 20 to 60 wt% with respect to 100 wt% of the total of the first oxide and the second oxide. catalyst. 二酸化炭素及び水蒸気によりメタンを改質するための触媒を製造する方法であって、ルテニウム及びロジウムからなる群から選択される少なくとも1つの元素の水酸化物を含有するスラリーを、酸化マグネシウム、酸化セリウム及び酸化ストロンチウムからなる群から選択される少なくとも1つの第1の酸化物と、酸化アルミニウム及び酸化ジルコニウムからなる群から選択される少なくとも1つの第2の酸化物との粒状の担体に添加して焼成する工程と含んでなる製造方法。   A method for producing a catalyst for reforming methane with carbon dioxide and steam, comprising a slurry containing a hydroxide of at least one element selected from the group consisting of ruthenium and rhodium, magnesium oxide, cerium oxide And at least one first oxide selected from the group consisting of strontium oxide and at least one second oxide selected from the group consisting of aluminum oxide and zirconium oxide added to a granular carrier and calcined And a manufacturing method comprising the steps of: アルカリ沈殿法又は蒸発乾固法によって生成する沈殿物又は乾固物を焼成して前記粒状の担体を得る工程をさらに含んでなる請求項に記載の製造方法。 The production method according to claim 6 , further comprising a step of calcining a precipitate or a dried product produced by an alkali precipitation method or an evaporation to dry method to obtain the granular carrier. 請求項1〜のいずれかに記載の触媒を用いて、二酸化炭素及び水蒸気によりメタンを改質する方法。 A method for reforming methane with carbon dioxide and water vapor using the catalyst according to any one of claims 1 to 5 . 請求項1〜のいずれかに記載の触媒を備えた、二酸化炭素及び水蒸気によりメタンを改質するシステム。 A system for reforming methane with carbon dioxide and water vapor, comprising the catalyst according to any one of claims 1 to 5 .
JP2005063575A 2005-03-08 2005-03-08 Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst Active JP4738024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063575A JP4738024B2 (en) 2005-03-08 2005-03-08 Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063575A JP4738024B2 (en) 2005-03-08 2005-03-08 Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst

Publications (2)

Publication Number Publication Date
JP2006247451A JP2006247451A (en) 2006-09-21
JP4738024B2 true JP4738024B2 (en) 2011-08-03

Family

ID=37088487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063575A Active JP4738024B2 (en) 2005-03-08 2005-03-08 Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst

Country Status (1)

Country Link
JP (1) JP4738024B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136907A (en) * 2006-11-30 2008-06-19 Tanaka Kikinzoku Kogyo Kk Catalyst for manufacturing synthetic gas
DE102007022723A1 (en) * 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
JP5531462B2 (en) * 2008-07-04 2014-06-25 株式会社村田製作所 Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP6229508B2 (en) * 2014-01-21 2017-11-15 株式会社Ihi Oxy-combustion boiler system
EP3103548B1 (en) 2014-02-05 2020-12-30 Mitsui Mining & Smelting Co., Ltd Fuel reforming catalyst
JP2016165664A (en) * 2015-03-09 2016-09-15 学校法人 工学院大学 STEAM MODIFICATION CATALYST HAVING Ru ON CARRIER CONTAINING 12SrO 7Al2O3 COMPOUND HAVING MAYENITE STRUCTURE, PREFERABLY CARRIER MAINLY CONTAINING THE COMPOUND
CN109675556A (en) * 2019-01-04 2019-04-26 华东理工大学 A kind of ruthenium catalyst and preparation method thereof for propane catalysis burning
CN112237926B (en) * 2019-07-18 2023-10-31 中国石油化工股份有限公司 Metal supported catalyst and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413234B2 (en) * 1993-03-24 2003-06-03 東ソー株式会社 Synthesis gas production method
MY128194A (en) * 1997-04-11 2007-01-31 Chiyoda Corp Process for the production of synthesis gas
JP2000084410A (en) * 1998-07-14 2000-03-28 Idemitsu Kosan Co Ltd Preparation of autothermal reforming catalyst and production of hydrogen or synthesis gas
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor

Also Published As

Publication number Publication date
JP2006247451A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4738024B2 (en) Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst
JP2818171B2 (en) Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
US6693060B2 (en) Modified θ-Al2O3-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
US11918981B2 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
US7771586B2 (en) Nickel on strontium-doped calcium aluminate catalyst for reforming
JP5972678B2 (en) Synthesis gas production catalyst and synthesis gas production method
WO2005079978A1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
KR20090128460A (en) Catalyst precursor substance, and catalyst using the same
JP6830543B2 (en) Manganese-doped nickel-methaneation catalyst
JP4202072B2 (en) Method for preparing hydrogen production catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JP2007203159A (en) Catalyst for reforming hydrocarbon, its manufacturing method and hydrogen-manufacturing method using the catalyst
JPH039772B2 (en)
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP2003245554A (en) Hydrogen generating catalyst
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4738024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250