JPS6086002A - Preparation of hydrogen from methanol - Google Patents

Preparation of hydrogen from methanol

Info

Publication number
JPS6086002A
JPS6086002A JP58192435A JP19243583A JPS6086002A JP S6086002 A JPS6086002 A JP S6086002A JP 58192435 A JP58192435 A JP 58192435A JP 19243583 A JP19243583 A JP 19243583A JP S6086002 A JPS6086002 A JP S6086002A
Authority
JP
Japan
Prior art keywords
methanol
reaction
hydrogen
steam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58192435A
Other languages
Japanese (ja)
Other versions
JPH0345002B2 (en
Inventor
Tamechika Yamamoto
山本 為親
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTANI KAKOKI KK
Original Assignee
MARUTANI KAKOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTANI KAKOKI KK filed Critical MARUTANI KAKOKI KK
Priority to JP58192435A priority Critical patent/JPS6086002A/en
Publication of JPS6086002A publication Critical patent/JPS6086002A/en
Publication of JPH0345002B2 publication Critical patent/JPH0345002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prepare hydrogen easily at low cost, by using methanol and steam in a specific ratio, preparing hydrogen by a contact reaction. CONSTITUTION:In preparing hydrogen by a contact reaction between methanol and steam, a mixture of equimolar ratio of methanol and steam is used as raw materials, and they are reacted in the presence of a proper catalyst at about 250-300 deg.C to give hydrogen. Consequently, unreacted methanol has a ratio of water to methanol of 1 independently of a reaction ratio in preparation process of hydrogen, and since the composition of feed raw materials is not changed even if unreacted methanol is circulated through the raw material, control of variation in production is carried out easily and latent heat of steam of water can be economized.

Description

【発明の詳細な説明】 本発明はメタノールから水素を製造する方法に関し、特
に、メタノールを工業用及び燃料電池発電用水素源とす
る場合に応用して有用な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen from methanol, and particularly to a method useful when methanol is used as a hydrogen source for industrial use and fuel cell power generation.

メタノールと水蒸気の反応で適当な触媒が存在すれば、
250〜300℃で下記の式の反応が起ることは古くか
ら知られている。
If a suitable catalyst exists for the reaction of methanol and steam,
It has been known for a long time that the reaction of the following formula occurs at 250 to 300°C.

CH30H+ H20= COz + 3Hz ・・・
・・・(1)然し乍ら、工業的な水素の製造に式(1)
の反応が利用されたことは殆んどなく、通常、水素の製
造は、軽質石油系炭化水素(LPGまたはナフサ)また
は天然ガスの接触スチームリフオーミングと、そのリフ
ォームドガスに1酸化炭素のシフト反応で行われており
、メタンを用いた場合の反応は下記の式で表わされる。
CH30H+ H20= COz + 3Hz...
...(1) However, formula (1) is used for industrial hydrogen production.
This reaction has rarely been utilized, and hydrogen production is usually done by catalytic steam reforming of light petroleum hydrocarbons (LPG or naphtha) or natural gas and adding carbon monoxide to the reformed gas. It is carried out by a shift reaction, and the reaction when methane is used is expressed by the following formula.

CH4+ Ha O= Co + 3H2・・・・・・
・・(2)CO+HJO=CO2+Hx ・・・・・・
・・(3)而して、式(2)の反応はメタン1モルに対
して少なくとも2モルの水蒸気を使用してニッケル系触
媒上800〜850℃で操作され、そのリフォームドガ
スを約450℃に冷却した後、酸化鉄系の1酸化炭素シ
フト触媒に通じて式(3)の反応を進め、更に要すれば
約250℃に冷却して、銅系触媒上で残る1酸化炭素を
1%以下とする。この反応ガスから水素を分離するには
、かつてはこれを冷却した後モノエタノールアミンなど
の再生可能なアルカリ水溶液で洗って2酸化炭素を除き
、更に、アンモニア性第1銅鉗塩溶液で残留1酸化炭素
を吸収除去するか、戒はニッケル系触媒上で1酸化炭素
をメタンに水素化して無害化するなどの方法が採用され
ていたが、近年、吸着剤を使用した圧力差による吸脱着
法(以下、PSA法という)によって、水素以外のすべ
ての不純物を除去する方法が普及し、水素の製造は大い
に合理化されるようになった。
CH4+ Ha O= Co + 3H2...
・・・(2) CO+HJO=CO2+Hx ・・・・・・
...(3) Therefore, the reaction of formula (2) is operated at 800-850°C over a nickel-based catalyst using at least 2 moles of water vapor per mole of methane, and the reformed gas is heated to about 450 °C. After cooling to ℃, it passes through an iron oxide-based carbon monoxide shift catalyst to proceed with the reaction of formula (3). % or less. In order to separate hydrogen from this reaction gas, it used to be necessary to cool it, wash it with a renewable alkaline aqueous solution such as monoethanolamine to remove carbon dioxide, and then remove the remaining carbon dioxide with an ammoniacal cuprous salt solution. Previously, methods such as absorbing and removing carbon oxide or detoxifying carbon monoxide by hydrogenating it to methane over a nickel-based catalyst have been adopted, but in recent years, adsorption and desorption methods using adsorbents and pressure differences have been adopted. (hereinafter referred to as the PSA method), a method for removing all impurities other than hydrogen has become widespread, and the production of hydrogen has become greatly streamlined.

一方、石油の価格は近年若干廉くなったとはいえ、未だ
かなり高価で、燃料のみならず水素の原料である軽質炭
化水素の価格もその例の洩れず、水素の原価を高からし
めている。これに対して、天然ガスまたは石炭の産地で
それらを大規模に原料から合成したメタノールを輸入し
、それを燃料とすれば発熱量当りの価格を石油製品と同
等になし得るとして、これを実施しようとする動きがあ
る。既にメタノール専用自動車の設計を終り、ボイラー
やガスタービンの燃料としてメタノールを使用した場合
の効率の測定や燃焼廃気中の大気汚染物質の分析なども
行われ、メタノールを石油代替燃料とすることは技術的
にも経済にも可能とされている。
On the other hand, although the price of oil has fallen somewhat in recent years, it is still quite expensive, and the cost of not only fuel but also light hydrocarbons, which are the raw materials for hydrogen, is no exception, making the cost of hydrogen high. In contrast, importing methanol synthesized on a large scale from natural gas or coal-producing raw materials and using it as fuel would make the price per calorific value equivalent to that of petroleum products. There is a movement to do so. The design of a methanol-only vehicle has already been completed, and the efficiency of using methanol as fuel for boilers and gas turbines has been measured and air pollutants in combustion exhaust gas analyzed. It is technically and economically possible.

本発明はメタノールを用いて、特に、工業用や燃料電池
発電用の水素源となる水素を製造する方法を提供するこ
とを目的としてなされたもので、その構成は、メタノー
ルと水蒸気の接触反応によって水素ガスを製造する方法
において、原料としてメタノールと水蒸気の等モル混合
物を使用することを特徴とするものである。
The present invention was made for the purpose of providing a method for producing hydrogen, which is a hydrogen source for industrial use and fuel cell power generation, using methanol. A method for producing hydrogen gas characterized by using an equimolar mixture of methanol and steam as a raw material.

前述の式(1)の反応は適当な触媒を選べば250 ’
Cで迅速に進行するが、これに対して式(2)の反応は
800〜850℃を必要とし、その差は双方の加熱用燃
料の所要量や反応装置の建設費、廃熱回収設備費など経
済性に大差を生じる原因となる。
The reaction of the above formula (1) can be performed at 250' if an appropriate catalyst is selected.
In contrast, the reaction in equation (2) requires a temperature of 800 to 850°C, and the difference lies in the amount of heating fuel required for both, the construction cost of the reaction equipment, and the cost of waste heat recovery equipment. This causes a large difference in economic efficiency.

式(1)の反応は下記の式(4)及び(5)の反応が併
発する結果と考えられる。
The reaction of formula (1) is considered to be the result of the reactions of formulas (4) and (5) below occurring simultaneously.

CHa OH= CO+ 2tlz ・・・・・・・・
・・・・(4)CO+H寡0=COス+H2・・・・・
・・・・・(5)本発明方法において使用される触媒は
この双方の反応に活性を有するものが望ましい。而して
式(4)の反応の平衡は高温下では右側に有利であるが
、式(5)の反応はその逆に低温が右側に有利である。
CHa OH= CO+ 2tlz・・・・・・・・・
...(4) CO + H low 0 = CO gas + H2 ...
(5) It is desirable that the catalyst used in the method of the present invention has activity in both of these reactions. Thus, the equilibrium of the reaction of formula (4) favors the right side at high temperatures, but conversely, the equilibrium of the reaction of formula (5) favors the right side at low temperatures.

然し、式(4)の反応と式(5)の反応が綜合された、
式(1)の反応を完結さぜるには、式(4)の反応の平
衡や速度を無視し、式(5)の反応を完結させる条件を
選ばなければならない。それには、触媒の活性が許す限
り反応速度を低くする必要がある。
However, the reaction of formula (4) and the reaction of formula (5) are combined,
In order to complete the reaction of formula (1), conditions must be selected to complete the reaction of formula (5), ignoring the equilibrium and rate of the reaction of formula (4). This requires the reaction rate to be as low as the activity of the catalyst allows.

一般に、式(1)の反応の適温は式(2)の炭化水素ス
チームリフォーミングの適温よりはるかに低いため、反
応ガス中の1酸化炭素残留量を充分低くなし得るので、
式(3)の1酸化炭素のシフトを必要としないが、一般
に水素の多くの用途では微量の1酸化炭素の存在も嫌わ
れるので、過剰の水蒸気を使用を必要とし、特に式(1
)の反応用触媒の適温が高い時は過剰の水蒸気を使用し
なければ、反応ガス中の1酸化炭素を充分低くすること
が出来ない。
Generally, the optimum temperature for the reaction of formula (1) is much lower than the optimum temperature for hydrocarbon steam reforming of formula (2), so the residual amount of carbon monoxide in the reaction gas can be kept sufficiently low.
Although the shift of carbon monoxide in equation (3) is not required, the presence of trace amounts of carbon monoxide is generally disfavored in many applications of hydrogen, so it is necessary to use excess water vapor, and in particular, the shift of carbon monoxide in equation (1) is not required.
) When the appropriate temperature of the reaction catalyst is high, the carbon monoxide in the reaction gas cannot be sufficiently lowered unless excess steam is used.

然し乍ら、前述のようにpsA法で水素の精製が行われ
るならば、1酸化度素の除去は比較的容易であるから、
反応ガス中の1酸化炭素の残留量を特別低くする努力の
必要は少なくなっている。
However, if hydrogen is purified by the psA method as mentioned above, it is relatively easy to remove hydrogen oxide.
There is less need for efforts to make the residual amount of carbon monoxide in the reaction gas particularly low.

本発明の発明者はこのような見地からメタノール−1モ
ルに対して使用する水蒸気の量を1.5モル。
From this point of view, the inventor of the present invention determined that the amount of water vapor to be used per 1 mole of methanol was 1.5 moles.

1.2モル、1.0モルとする場合を試みた。その結果
を下に示す。
We tried cases where the amount was 1.2 mol and 1.0 mol. The results are shown below.

反応温度 250℃ 液体メタノールの空間速度 1.5 メタノール反応率 約80% 水、メタノールのモル比 1.5 1.2 1.0反応
ガスの組成(体積%) COx 23.22 23.28 23.57(01,
071,461,52 1目z75.7175.2674.91この結果からメ
タノールに対する水蒸気の過剰量は反応温度が充分低く
、且つ1回通過反応率があまり高くない時は、反応ガス
中の1酸化炭素の濃度に及ぼす影響は少ないことが判明
した。反応温度が低ければ、l酸化炭素の濃度が低くな
ることは式(5)の反応の平衡から当然であり、また、
反応率が低ければ式(4)の反応で生成した】酸化炭素
に対して水蒸気は過剰に存在することになるからである
Reaction temperature 250°C Space velocity of liquid methanol 1.5 Methanol reaction rate Approx. 80% Molar ratio of water to methanol 1.5 1.2 1.0 Composition of reaction gas (volume %) COx 23.22 23.28 23. 57 (01,
071,461,52 1st z75.7175.2674.91 From this result, when the reaction temperature is low enough and the one-pass reaction rate is not very high, the excess amount of water vapor relative to methanol is the carbon monoxide in the reaction gas. It was found that the effect on the concentration of It is natural that if the reaction temperature is low, the concentration of carbon oxide will be low from the reaction equilibrium of equation (5), and also,
This is because if the reaction rate is low, water vapor will be present in excess of the carbon oxide produced by the reaction of formula (4).

このメタノールに対する水蒸気の過剰量を無くすること
の利益の一つは、未反応メタノールと水の循環使用にあ
る。一般に触媒反応において一定量の触媒による単位時
間の目的物の収得量(空時得量)を多くするには、一定
量の触媒に対する原料の流量(空間速度)を大きくする
ことが必要である。それがために1回通過反応率が低け
れば反応器出口物質より目的物を分離して未反応物を原
料に循環させなければならない。然し水、メタノールモ
ル比が1より大きい原料を使用すれば、未反応物の水、
メタノールモル比は原料と異なり、それを原料に循環す
れば、全体の原料の水、メタノールモル比が変ることに
なる。この変動はメタノールに対して水蒸気が増加する
方向であるから。
One of the benefits of eliminating this excess of water vapor to methanol is the recycling of unreacted methanol and water. Generally, in a catalytic reaction, in order to increase the yield of a target product per unit time (space-time yield) using a fixed amount of catalyst, it is necessary to increase the flow rate (space velocity) of the raw material relative to the fixed amount of catalyst. Therefore, if the one-pass reaction rate is low, it is necessary to separate the target product from the reactor outlet material and circulate the unreacted material to the raw material. However, if raw materials with a molar ratio of water and methanol greater than 1 are used, unreacted water and
The methanol molar ratio is different from that of the raw material, and if it is recycled to the raw material, the water and methanol molar ratio of the entire raw material will change. This fluctuation is due to an increase in water vapor relative to methanol.

支障は起らないが、装置の生産量を変え、或は触媒が劣
化す才tば、循環量が変り、それに応じて供給メタノー
ルと水のモル比が変動する。
Although no problems occur, if the production rate of the device changes or the catalyst deteriorates, the circulation rate changes and the molar ratio of methanol and water supplied changes accordingly.

燃料電池に水素を供給する場合、電力需要の100%か
ら25aIoまでの変動に対応させて水素の供給も変動
させなければならないが、メタノール反応率をこの大き
な変動に対して一定に維持することは殆んど不可能であ
って、それによって反応ガス中の1酸化炭素の濃度が変
動し、l’sA法の操作もそれに応じて変えなければな
らないが、景と濃度の同時変動に対する制御は極めて困
難で゛ある。
When supplying hydrogen to a fuel cell, the supply of hydrogen must be varied in response to fluctuations in electricity demand from 100% to 25aIo, but it is difficult to maintain the methanol reaction rate constant against such large fluctuations. Although it is almost impossible to control the simultaneous fluctuations of the carbon monoxide concentration in the reaction gas and the operation of the l'sA method must be changed accordingly, It is difficult.

今、もし、水、メタノールモル比1の原料を使用すれば
、反応率に関係なく未反応メタノールも水、メタノール
モル比は1となり、これを原料に循環させても供給原料
の組成は変動しないので、生産量の変動に対しては原料
供給量の制御のみで濃度の制御の必要はない。
Now, if we use a raw material with a molar ratio of water to methanol of 1, the unreacted methanol will also have a molar ratio of water to methanol of 1 regardless of the reaction rate, and even if this is recycled to the raw material, the composition of the feedstock will not change. Therefore, in response to fluctuations in production volume, it is not necessary to control the concentration only by controlling the raw material supply amount.

水、メタノールのモル比1の原料を使用することによる
第二の利点は、水の蒸発潜熱が節約出来ることである。
The second advantage of using raw materials with a molar ratio of water and methanol of 1 is that the latent heat of vaporization of water can be saved.

本発明方法の必要とする熱量は反応熱と水及びメタノー
ルを反応温度に加熱するための熱量の合M1であるが、
その中で水の蒸発潜熱は少なからぬ割合を占める。原料
に過剰の水を使用しなければ過剰分の水の蒸発潜熱が節
約出来る7これは本発明方法の所要熱量の低減に大きく
貢献する。特に本発明方法が燃料電池発電用水素の製造
に利用される場合、燃料電池のエネルギ変換効率の高い
利点を減殺しないためには、電池に供給される水素の製
造のエネルギ変換効率も高くしなければならない。それ
には本発明の水素製造プロセスにおいて水蒸気の過剰量
を無くす方法は極めて有効である。
The amount of heat required by the method of the present invention is the sum of the reaction heat and the amount of heat for heating water and methanol to the reaction temperature, M1.
The latent heat of vaporization of water accounts for a considerable portion of this. If excess water is not used as a raw material, the latent heat of vaporization of the excess water can be saved.7 This greatly contributes to reducing the amount of heat required for the process of the present invention. In particular, when the method of the present invention is used to produce hydrogen for fuel cell power generation, the energy conversion efficiency of producing the hydrogen supplied to the battery must also be high in order not to reduce the advantage of the high energy conversion efficiency of the fuel cell. Must be. For this purpose, the method of eliminating excess water vapor in the hydrogen production process of the present invention is extremely effective.

本発明は上述の通りであって、メタノールと水蒸気の接
触反応によって水素ガスを製造するに際し、原料として
メタノールと水蒸気の等モル混合物を使用するから、水
素の製造過程において反応率に関係なく未反応メタノー
ルも、水、メタノールモル比は1となり、これを原料に
循環させても供給原料の組成は変動しないので、生産量
の変動に対する制御が容易であるばかりでなく、水の蒸
発潜熱を節約出来、従って水素製造コン′、トを従来に
比して著しく低減出来る。
The present invention is as described above, and since an equimolar mixture of methanol and steam is used as a raw material when producing hydrogen gas through a catalytic reaction between methanol and steam, no reaction occurs regardless of the reaction rate during the hydrogen production process. For methanol, the molar ratio of water to methanol is 1, and the composition of the feedstock does not change even if it is circulated through the feedstock, so it is not only easy to control fluctuations in production volume, but also saves the latent heat of vaporization of water. Therefore, the hydrogen production cost can be significantly reduced compared to the conventional method.

代理人 小 泉 良 邦Agent Yoshikuni Koizumi

Claims (1)

【特許請求の範囲】[Claims] 1 メタノールと水蒸気の接触反応によって水素ガスを
製造する方法において、原料としてメタノールと水蒸気
の等モル混合物を使用することを特徴とするメタノール
より水素を製造する方法。
1. A method for producing hydrogen gas from methanol using a catalytic reaction between methanol and steam, the method comprising using an equimolar mixture of methanol and steam as a raw material.
JP58192435A 1983-10-17 1983-10-17 Preparation of hydrogen from methanol Granted JPS6086002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192435A JPS6086002A (en) 1983-10-17 1983-10-17 Preparation of hydrogen from methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192435A JPS6086002A (en) 1983-10-17 1983-10-17 Preparation of hydrogen from methanol

Publications (2)

Publication Number Publication Date
JPS6086002A true JPS6086002A (en) 1985-05-15
JPH0345002B2 JPH0345002B2 (en) 1991-07-09

Family

ID=16291257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192435A Granted JPS6086002A (en) 1983-10-17 1983-10-17 Preparation of hydrogen from methanol

Country Status (1)

Country Link
JP (1) JPS6086002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333001A (en) * 1989-06-29 1991-02-13 Nippon Sanso Kk Method for feeding starting material for methanol reforming

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376991A (en) * 1976-12-20 1978-07-07 Engelhard Min & Chem Catalyst and manufacturing method of hydrogen using said catalyst
JPS581881A (en) * 1981-06-25 1983-01-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Data detector
JPS5818881A (en) * 1981-07-27 1983-02-03 Mitsui Toatsu Chem Inc Operation of fuel-cell generating system
JPS5870839A (en) * 1981-10-26 1983-04-27 Mitsui Toatsu Chem Inc Catalyst for steam reforming of methanol
JPS58193738A (en) * 1982-05-06 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen
JPS58193736A (en) * 1982-05-06 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen
JPS58193737A (en) * 1982-05-04 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376991A (en) * 1976-12-20 1978-07-07 Engelhard Min & Chem Catalyst and manufacturing method of hydrogen using said catalyst
JPS581881A (en) * 1981-06-25 1983-01-07 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Data detector
JPS5818881A (en) * 1981-07-27 1983-02-03 Mitsui Toatsu Chem Inc Operation of fuel-cell generating system
JPS5870839A (en) * 1981-10-26 1983-04-27 Mitsui Toatsu Chem Inc Catalyst for steam reforming of methanol
JPS58193737A (en) * 1982-05-04 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen
JPS58193738A (en) * 1982-05-06 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen
JPS58193736A (en) * 1982-05-06 1983-11-11 Mitsubishi Heavy Ind Ltd Catalyst for production of gas enriched with hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333001A (en) * 1989-06-29 1991-02-13 Nippon Sanso Kk Method for feeding starting material for methanol reforming

Also Published As

Publication number Publication date
JPH0345002B2 (en) 1991-07-09

Similar Documents

Publication Publication Date Title
Rostrup-Nielsen Catalysis and large-scale conversion of natural gas
RU2110477C1 (en) Method for catalytic production of gas rich in carbon oxide
US5512599A (en) Process for the production of methanol
US4725380A (en) Producing ammonia synthesis gas
Yusuf et al. Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects
JPS5953245B2 (en) Methane gas
CA2842913C (en) Method and system for production of hydrogen rich gas mixtures
WO2013038140A1 (en) Synthesis gas and fischer tropsch integrated process
US4203915A (en) Process of producing methanol
CN113396205B (en) Carbon dioxide conversion engineering and system thereof
RU2404117C2 (en) Method of preparing mixture of carbon monoxide and hydrogen
NZ198538A (en) Catalytic production of ammonia
JPH09510178A (en) Method for producing hydrogen and carbon oxides from dimethyl ether
EP0212889B1 (en) Producing ammonia synthesis gas
AU2022286649A1 (en) Heat exchange reactor for co2 shift
JP7570830B2 (en) Method for producing methane-rich gas
CA2862796C (en) Gasoline production device
EP1613551B1 (en) Process for the preparation of a hydrogen-rich stream
JPS6086002A (en) Preparation of hydrogen from methanol
JP4256013B2 (en) Environmentally friendly hydrogen production method
RU2515477C2 (en) Method of obtaining hydrogen
KR101315676B1 (en) Apparatus for simultaneous production of synthetic oil and electricity using Fischer-Tropsch synthesis reactor unit and Fuel Cell unit and method thereof
UA124533C2 (en) Process for revamping an ammonia plant
JPS61122102A (en) Steam reforming of hydrocarbon
Neumann et al. Options for economical supply of hydrogen