JP2023126494A - Ammonia synthesis catalyst - Google Patents

Ammonia synthesis catalyst Download PDF

Info

Publication number
JP2023126494A
JP2023126494A JP2023116308A JP2023116308A JP2023126494A JP 2023126494 A JP2023126494 A JP 2023126494A JP 2023116308 A JP2023116308 A JP 2023116308A JP 2023116308 A JP2023116308 A JP 2023116308A JP 2023126494 A JP2023126494 A JP 2023126494A
Authority
JP
Japan
Prior art keywords
ceo
catalyst
ammonia synthesis
supported
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023116308A
Other languages
Japanese (ja)
Other versions
JP7527052B2 (en
Inventor
哲哉 難波
Tetsuya Namba
慶祐 小林
Keisuke Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2023116308A priority Critical patent/JP7527052B2/en
Publication of JP2023126494A publication Critical patent/JP2023126494A/en
Application granted granted Critical
Publication of JP7527052B2 publication Critical patent/JP7527052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

To improve catalytic activity of a Ru-CeO2 catalyst by addition of a second component.SOLUTION: Provided herein is a CeO2-carrying Ru catalyst for a reaction to synthesize ammonia from nitrogen and hydrogen. The CeO2 carrier further has Fe carried thereon with the molar ratio Ru/Fe=5-200, preferably Ru/Fe=5-50. The catalyst is prepared by the following steps, for example, to make CeO2 carry Fe, yielding Fe/CeO2, and to make the Fe/CeO2 carry Ru for the molar ratio Ru/Fe to be 5-200.SELECTED DRAWING: Figure 7

Description

本発明はNとHからNHを合成するアンモニア合成触媒に関する。 The present invention relates to an ammonia synthesis catalyst for synthesizing NH3 from N2 and H2 .

とHからNHを合成する方法として、Fe-Al-KOなどのFe系触媒を用い、23-35MPa、約500℃程度の高温高圧で反応を行うハーバー・ボッシュ法が知られている。
その後、Ru-CeO触媒を用いて、より低温低圧の温和な条件で反応を行う方法が開発された(特許文献1、2)。この方法で用いる触媒は、硝酸セリウムを、アンモニア水溶液を用いてアルカリ性条件下で沈殿させ、600℃程度で焼成して得たCeOに、Ruカルボニルの溶液を含浸し、水素還元することで作製され、これにより、200~600℃程度の温度、1~20気圧程度の低圧でのNH合成を実現している。
As a method for synthesizing NH 3 from N 2 and H 2 , a Fe-based catalyst such as Fe 3 O 4 -Al 2 O 3 -K 2 O is used, and the reaction is carried out at high temperature and pressure of about 23-35 MPa and about 500°C. The Haber-Bosch method is known.
Subsequently, a method was developed in which a Ru-CeO 2 catalyst was used to carry out the reaction under milder conditions at lower temperatures and pressures (Patent Documents 1 and 2). The catalyst used in this method is prepared by precipitating cerium nitrate under alkaline conditions using an aqueous ammonia solution and calcining it at approximately 600°C, impregnating CeO 2 with a solution of Ru carbonyl and reducing it with hydrogen. As a result, NH 3 synthesis is realized at a temperature of about 200 to 600°C and a low pressure of about 1 to 20 atmospheres.

特開平6-79177JP 6-79177 特開2013-111562JP2013-111562

Ru-CeOは、特許文献1、2に示されるように、アンモニア合成触媒として特許が出願されているが、CeOの物理的・化学的状態が異なることによってRu-CeOの触媒性能は全く異なり、高いアンモニア合成活性を再現性よく引き出す調製法を示した特許等の文献はない。
また、Ru-CeOはRuおよびCeOともに高コストな素材であり、どちらの元素の使用量も低減することが望まれる。
本発明は、高いアンモニア合成活性を得ることができるRu-CeO触媒の調製法を提供すること、およびRu-CeO触媒におけるCeO使用量削減に対して効果的な触媒調製法を提供することを課題とする。
As shown in Patent Documents 1 and 2 , a patent has been applied for Ru-CeO 2 as an ammonia synthesis catalyst, but the catalytic performance of Ru-CeO 2 is different due to the different physical and chemical states of CeO 2 . It is completely different, and there are no patents or other documents that show a preparation method that brings out high ammonia synthesis activity with good reproducibility.
Furthermore, both Ru and CeO 2 are high-cost materials, and it is desirable to reduce the amount of both elements used.
The present invention provides a method for preparing a Ru-CeO 2 catalyst that can obtain high ammonia synthesis activity, and a method for preparing a catalyst that is effective for reducing the amount of CeO 2 used in the Ru-CeO 2 catalyst. That is the issue.

本発明者らは、硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウム(Ru(NO)(NO)の溶液を含浸することにより作製したRu-CeO触媒が、従来のRuカルボニルを用いて作製した触媒と比べて、高いアンモニア合成活性を有することを見出した。これに対し、硝酸セリウムを水酸化ナトリウムやクエン酸により沈殿・焼成して作製したCeOを用いた場合は、アンモニア合成活性は、従来のRuカルボニルを用いて作製した触媒よりも低かった。
また、アンモニア合成活性は、CeOの焼成温度によっても変化し、水酸化カリウムにより沈殿させたCeOを用いた触媒では、600℃で焼成したものが最も活性が高かった。
The present inventors impregnated CeO 2 , which was prepared by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia, with a solution of strongly acidic ruthenium nitrosyl nitrate (Ru(NO)(NO 3 ) 3 ). It has been found that a Ru-CeO 2 catalyst prepared by this method has higher ammonia synthesis activity than a conventional catalyst prepared using Ru carbonyl. On the other hand, when CeO 2 prepared by precipitating and calcining cerium nitrate with sodium hydroxide or citric acid was used, the ammonia synthesis activity was lower than that of a conventional catalyst prepared using Ru carbonyl.
Furthermore, the ammonia synthesis activity also changed depending on the firing temperature of CeO 2 , and among catalysts using CeO 2 precipitated with potassium hydroxide, the one fired at 600° C. had the highest activity.

CeOは塩基性の担体であり、強酸性の溶液で処理するとその表面が一部溶解する。このことが、強酸性のニトロシル硝酸ルテニウムの溶液をCeOに含浸することにより作製した本発明の触媒が高いアンモニア合成活性を有することと関連しているのではないかとの想定の下に、本発明者らは、CeOを強酸性の溶液で処理したときに生じるCeO担体の表面の状態を模するものとして、結晶性のCeOに硝酸セリウム水溶液を含浸させ、焼成することで、結晶性CeOの表面に非晶質のCeOを、種々のAmo(非晶質)/Cry(結晶質)の比率で担持した担体を作製し、これにRuを担持した触媒を用いてアンモニア合成反応を行った。
その結果、Amoの比率を高めるにつれて担体の表面積及び細孔容積は大きくなるが、触媒のアンモニア合成活性も同様に一律に高まるわけではなく、Amo/Cry比が1である場合をピークに、それ以上Amoの比率を高めるとアンモニア合成活性がかえって低くなることを見出した。
硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウムの溶液を含浸することにより作製したRu-CeO触媒においては、CeO担体の表面が、上述のAmo/Cry比が1である場合と類似する構造を有しているものと推察される。
CeO 2 is a basic carrier, and its surface partially dissolves when treated with a strongly acidic solution. Based on the assumption that this may be related to the high ammonia synthesis activity of the catalyst of the present invention prepared by impregnating CeO 2 with a solution of strongly acidic ruthenium nitrosyl nitrate, the present invention was conducted. The inventors imitated the surface state of a CeO 2 carrier that occurs when CeO 2 is treated with a strongly acidic solution, by impregnating crystalline CeO 2 with an aqueous cerium nitrate solution and firing it. Ammonia synthesis was carried out using a catalyst supporting Ru on the surface of amorphous CeO 2 with various Amo (amorphous)/Cry (crystalline) ratios . The reaction was carried out.
As a result, as the ratio of Amo increases, the surface area and pore volume of the carrier increase, but the ammonia synthesis activity of the catalyst also does not increase uniformly. It has been found that increasing the ratio of Amo actually lowers the ammonia synthesis activity.
In the Ru-CeO 2 catalyst prepared by impregnating CeO 2 prepared by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia with a solution of strongly acidic ruthenium nitrosyl nitrate, It is presumed that the surface has a structure similar to that in the case where the Amo/Cry ratio is 1 as described above.

Ru-CeO触媒に用いられるRuもCeOも高価な材料である。本発明者らは、Ru-CeO触媒にMgOを混合することで、MgOの混合量に応じてRu-CeO触媒に含まれるCeOの量を減らすことができ、CeOの量を減らさない場合と匹敵し、あるいはそれを上回るアンモニア合成活性が得られることを見出した。これにより、高価な材料であるCeOの、同一のRuの量に対する使用量を抑えることができる。
同様の量のRu、CeOおよびMgOを用いても、共沈や物理的混合により得られたCeOおよびMgOの混合物にRuを担持した場合や、MgO外表面にCeOを担持した後、これにRuを担持した場合には、このような効果は見られないことから、このような効果を得るためには、RuはCeOに集約されて担持されている必要があるものと考えられる。
Both Ru and CeO 2 used in the Ru-CeO 2 catalyst are expensive materials. The present inventors have found that by mixing MgO into the Ru-CeO 2 catalyst, the amount of CeO 2 contained in the Ru-CeO 2 catalyst can be reduced according to the amount of MgO mixed, and the amount of CeO 2 can be reduced. It has been found that an ammonia synthesis activity comparable to or exceeding that without the ammonia synthesis activity can be obtained. This makes it possible to suppress the amount of CeO 2 , which is an expensive material, used for the same amount of Ru.
Even if similar amounts of Ru, CeO 2 and MgO are used, when Ru is supported on a mixture of CeO 2 and MgO obtained by coprecipitation or physical mixing, or after CeO 2 is supported on the outer surface of MgO, When Ru is supported on this, such an effect is not observed, so it is thought that in order to obtain such an effect, Ru must be supported in a concentrated manner on CeO2 . .

本発明者らは、さらに、Ru-CeO触媒において、モル比Ru/Fe=5~200の範囲でFeを添加することにより、Feを添加しない場合を上回るアンモニア合成活性が得られることを見出した。
具体的には、Fe(NO水溶液を用いてCeOにFeを含浸担持させ、焼成した後、得られたFe/CeOにニトロシル硝酸ルテニウムの溶液を用いてRuを含浸担持し、水素還元する。
第二成分の添加により触媒活性が向上することは、他の触媒系においても観察されることがあるが、モル比Ru/Fe=100~200などの少ない量のFeの共存によっても上記効果が得られることは、本発明の際立った効果であるといえる。
The present inventors further discovered that by adding Fe in the Ru-CeO 2 catalyst at a molar ratio of Ru/Fe = 5 to 200, ammonia synthesis activity exceeding that in the case of not adding Fe can be obtained. Ta.
Specifically, Fe is impregnated and supported on CeO 2 using an aqueous Fe(NO 3 ) 3 solution, and after firing, Ru is impregnated and supported on the obtained Fe/CeO 2 using a solution of ruthenium nitrosyl nitrate. Reduces hydrogen.
Although it has been observed in other catalyst systems that the catalytic activity is improved by the addition of a second component, the above effect can also be achieved by the coexistence of a small amount of Fe such as at a molar ratio of Ru/Fe = 100-200. This can be said to be a remarkable effect of the present invention.

本発明は、本発明者らが得た、これらの知見に基づいてなされたものであり、本出願は、具体的には、以下の発明を提供するものである。
〈1〉担体として酸化セリウム(CeO)を有し、触媒成分としてルテニウム(Ru)を有する、窒素と水素からアンモニアを合成する反応用の触媒の製造方法であって、硝酸セリウム水溶液へKOH水溶液またはアンモニア水溶液を沈殿剤として添加して得た沈殿を焼成することでCeOを調製し、これをRu(NO)(NO水溶液に含浸させてRuを担持した後、水素処理して、CeO担持Ru触媒を調製することを特徴とする、触媒の製造方法。
〈2〉上記沈殿の焼成温度が500-700℃であることを特徴とする、〈1〉に記載の触媒の製造方法。
〈3〉上記水素処理を300℃で行うことを特徴とする、〈1〉または〈2〉に記載の触媒の製造方法。
〈4〉窒素と水素からアンモニアを合成する反応用のCeO担持Ru触媒であって、CeO担体のBET比表面積が17~100m/gの範囲であり、細孔容積が0.09~0.25mL/gの範囲であることを特徴とする、触媒。
〈5〉CeO担持Ru触媒とMgOが混合されてなる、窒素と水素からアンモニアを合成する反応用のRu-CeOとMgOの混合体触媒。
〈6〉混合体におけるCeとMgのモル比がMg/Ce=1~9である、〈5〉に記載の触媒。
〈7〉窒素と水素からアンモニアを合成する反応用のCeO担持Ru触媒であって、CeO担体の表面にモル比Ru/Fe=5~200の範囲でFeが更に担持されていることを特徴とする、触媒。
The present invention has been made based on these findings obtained by the present inventors, and the present application specifically provides the following inventions.
<1> A method for producing a catalyst for the reaction of synthesizing ammonia from nitrogen and hydrogen, which has cerium oxide (CeO 2 ) as a carrier and ruthenium (Ru) as a catalyst component, in which a KOH aqueous solution is added to a cerium nitrate aqueous solution. Alternatively, CeO 2 is prepared by adding an ammonia aqueous solution as a precipitant and calcining the resulting precipitate, impregnating it with an Ru(NO)(NO 3 ) 3 aqueous solution to support Ru, and then hydrogen-treating it. , a method for producing a catalyst, which comprises preparing a CeO 2 -supported Ru catalyst.
<2> The method for producing a catalyst according to <1>, wherein the firing temperature of the precipitate is 500-700°C.
<3> The method for producing a catalyst according to <1> or <2>, wherein the hydrogen treatment is performed at 300°C.
<4> CeO 2 supported Ru catalyst for the reaction of synthesizing ammonia from nitrogen and hydrogen, in which the BET specific surface area of the CeO 2 support is in the range of 17 to 100 m 2 /g and the pore volume is 0.09 to Catalyst, characterized in that it is in the range of 0.25 mL/g.
<5> Ru-CeO 2 and MgO mixture catalyst for the reaction of synthesizing ammonia from nitrogen and hydrogen, which is a mixture of CeO 2 supported Ru catalyst and MgO.
<6> The catalyst according to <5>, wherein the molar ratio of Ce and Mg in the mixture is Mg/Ce = 1 to 9.
<7> A CeO 2 supported Ru catalyst for the reaction of synthesizing ammonia from nitrogen and hydrogen, in which Fe is further supported on the surface of the CeO 2 support at a molar ratio of Ru/Fe = 5 to 200. Features: Catalyst.

アンモニア合成においてRu-CeO触媒は、比較的低温・低圧で作用する触媒であるとともに、条件変化に対して応答性がよいため、変動性である再生可能エネルギーにより製造されたCOフリー水素を原料にするCOフリーアンモニア合成プロセスに適した触媒であり、よって、再生可能エネルギーの大量導入にむけた再生可能エネルギー貯蔵の面で社会実装されることが期待される触媒である。
本発明により、より高いアンモニア合成活性を有するRu-CeO触媒を提供することができ、また、CeOの使用量を減らすことで、より安価でRu-CeO触媒を提供することができる。これにより、上記再生可能エネルギーの利用の分野にも資することが期待される。
In ammonia synthesis, the Ru-CeO 2 catalyst works at relatively low temperatures and pressures, and is highly responsive to changes in conditions. This catalyst is suitable for the CO2 - free ammonia synthesis process used as a raw material, and is therefore expected to be socially implemented in the field of renewable energy storage in preparation for the large-scale introduction of renewable energy.
According to the present invention, a Ru--CeO 2 catalyst having higher ammonia synthesis activity can be provided, and by reducing the amount of CeO 2 used, a Ru--CeO 2 catalyst can be provided at a lower cost. This is expected to contribute to the field of renewable energy utilization mentioned above.

実施例1における、CeO担体の調製法及び/又はRuの担持法の相異する各種RuCeO触媒のNH合成活性を対比するグラフ。図中、横軸にCeOの調製方法を示し、Ruの担持については、Ru(CO)12含浸と表示されているもの以外は、Ru(NO)(NO水溶液を含浸させることで行った。2 is a graph comparing the NH 3 synthesis activities of various RuCeO 2 catalysts using different methods of preparing a CeO 2 carrier and/or supporting Ru in Example 1. In the figure, the horizontal axis shows the method for preparing CeO 2 , and for supporting Ru, except for those indicated as Ru 3 (CO) 12 impregnation, impregnation with Ru(NO) (NO 3 ) 3 aqueous solution is used. I went there. 実施例1における、CeO担体の焼成温度の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。CeOはKOH沈殿法で調製し、RuはRu(NO)(NO水溶液で含浸させた。2 is a graph showing the influence of the calcination temperature of the CeO 2 carrier on the NH 3 synthesis activity of the RuCeO 2 catalyst in Example 1. CeO 2 was prepared by KOH precipitation method, and Ru was impregnated with Ru(NO)(NO 3 ) 3 aqueous solution. 実施例2における、CeO担体におけるAmo(非晶質)/Cry(結晶質)比の、CeO担体の比表面積及び細孔容積に与える影響を示すグラフ。黒バーが比表面積を、白抜き丸が細孔容積を示す。2 is a graph showing the influence of the Amo (amorphous)/Cry (crystalline) ratio in the CeO 2 support on the specific surface area and pore volume of the CeO 2 support in Example 2. The black bar indicates the specific surface area, and the open circle indicates the pore volume. 実施例2における、CeO担体におけるAmo(非晶質)/Cry(結晶質)比の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。2 is a graph showing the influence of the Amo (amorphous)/Cry (crystalline) ratio in the CeO 2 support on the NH 3 synthesis activity of the RuCeO 2 catalyst in Example 2. 実施例3における、CeOに対するMgOの混合の態様の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。3 is a graph showing the influence of the mixing mode of MgO to CeO 2 on the NH 3 synthesis activity of the RuCeO 2 catalyst in Example 3. 実施例3における、RuCeO触媒に対するMgOの混合量(Mg/Ce比)の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。3 is a graph showing the influence of the amount of MgO mixed with the RuCeO 2 catalyst (Mg/Ce ratio) on the NH 3 synthesis activity of the RuCeO 2 catalyst in Example 3. 実施例4における、RuCeO触媒に対するFeの配合量の、RuCeO触媒のNH合成活性に与える影響を示すグラフ。7 is a graph showing the influence of the amount of Fe added to the RuCeO 2 catalyst on the NH 3 synthesis activity of the RuCeO 2 catalyst in Example 4.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not limited to the examples.

[実施例1]各種のCeO担体を用いたRu-CeO触媒の調製とそのNH合成活性
(1)以下の要領で、Ru-CeO触媒の担体として用いる各種のCeOを準備した。
(アルカリ水溶液による沈殿法によるもの)
硝酸セリウム重量の約10倍数の体積のイオン交換蒸留水で硝酸セリウム水溶液を調製し、27%NH水もしくは0.05-0.1mol/LのKOH、NaOHを徐々に加えて、pHを10以上にして得られる沈殿を600℃で空気中焼成して、CeOを調製した。
(クエン酸水溶液による沈殿法によるもの)
上述の硝酸セリウム水溶液にセリウムの2倍mol量を含むクエン酸水溶液を加え、蒸発乾固させて得た沈殿を600℃で空気中焼成して、CeOを調製した。
(市販品)
市販されている、比表面積の異なるCeOを2種(高表面積および中程度の表面積)、準備した。これらはそれぞれ第一稀元素化学工業製CeO Type-AおよびType-Bであり、比表面積はそれぞれ150m/gおよび100m/gであった。
(低表面積CeO
市販のCeO Type-Aを900℃、6時間、空気中で焼成して、比表面積9m/gのCeOを調製した。
(2)これらのCeOに、Ru(NO)(NO水溶液を含浸させて、各種のRu-CeO触媒を調製した。CeOは、メスシリンダーによる見かけの密度および真密度計による真密度を測定し、それらの差分によって得られる見かけの空隙容積を算出した。CeOの重量に応じて、見かけの空隙容積の1.5倍の水に必要量のRu(NO)(NOを溶解し、そのRu(NO)(NO水溶液中にCeOを室温で1時間浸漬した後、100℃で12時間乾燥させてRu担持CeOを得た。Ru担持CeOは、管状炉中で10%H/N気流中300℃、1時間焼成して目的の触媒を調製した。
また、これに加えて、市販の高表面積CeOにRu(CO)12溶液を含浸させて、Ru-CeO触媒を調製した。上記と同様に測定したCeOの見かけの空隙容積の50倍のテトラヒドロフラン(THF)にRu(CO)12を溶解し、上記と同様の手順で目的の触媒を得た。
得られた各Ru-CeO触媒のRu担持量は、それぞれ1Wt%である。
[Example 1] Preparation of Ru-CeO 2 catalyst using various CeO 2 supports and its NH 3 synthesis activity (1) Various CeO 2 to be used as a support for Ru-CeO 2 catalyst were prepared in the following manner. .
(By precipitation method using alkaline aqueous solution)
Prepare a cerium nitrate aqueous solution with ion-exchanged distilled water in a volume approximately 10 times the weight of cerium nitrate, and gradually add 27% NH 3 water or 0.05-0.1 mol/L KOH or NaOH to adjust the pH to 10. The precipitate obtained above was calcined in air at 600° C. to prepare CeO 2 .
(By precipitation method using citric acid aqueous solution)
A citric acid aqueous solution containing twice the molar amount of cerium was added to the above-mentioned cerium nitrate aqueous solution, and the resulting precipitate was evaporated to dryness and calcined in air at 600° C. to prepare CeO 2 .
(Commercial goods)
Two types of commercially available CeO 2 with different specific surface areas (high surface area and medium surface area) were prepared. These were CeO 2 Type-A and Type-B manufactured by Daiichi Kigenso Kagaku Kogyo, respectively, and the specific surface areas were 150 m 2 /g and 100 m 2 /g, respectively.
(Low surface area CeO 2 )
Commercially available CeO 2 Type-A was calcined in air at 900° C. for 6 hours to prepare CeO 2 with a specific surface area of 9 m 2 /g.
(2) Various Ru--CeO 2 catalysts were prepared by impregnating these CeO 2 with an Ru(NO)(NO 3 ) 3 aqueous solution. For CeO 2 , the apparent density using a graduated cylinder and the true density using a true densitometer were measured, and the apparent void volume obtained from the difference between them was calculated. Depending on the weight of CeO2 , dissolve the required amount of Ru(NO)( NO3 ) 3 in water 1.5 times the apparent pore volume, and add CeO to the Ru(NO)( NO3 ) 3 aqueous solution. 2 was immersed at room temperature for 1 hour and then dried at 100° C. for 12 hours to obtain Ru-supported CeO 2 . The Ru-supported CeO 2 was calcined in a tube furnace at 300° C. for 1 hour in a 10% H 2 /N 2 stream to prepare the desired catalyst.
Additionally, a commercially available high surface area CeO 2 was impregnated with a Ru 3 (CO) 12 solution to prepare a Ru-CeO 2 catalyst. Ru 3 (CO) 12 was dissolved in tetrahydrofuran (THF) 50 times the apparent pore volume of CeO 2 measured in the same manner as above, and the target catalyst was obtained in the same manner as above.
The Ru supported amount of each of the obtained Ru--CeO 2 catalysts was 1 wt%.

これらのRu-CeO触媒を用いて、アンモニアの合成試験を行った。試験は常圧固定床流通反応装置を用いて行った。反応温度400℃で得られたその結果を、図1に示す。
図1に示されるように、硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のRu(NO)(NO(ニトロシル硝酸ルテニウム)の溶液を含浸することにより作製したRu-CeO触媒は、従来のRu(CO)12(Ruカルボニル)を用いて作製した触媒と比べて、高いアンモニア合成活性を有する。これに対し、硝酸セリウムを水酸化ナトリウムやクエン酸により沈殿・焼成して作製したCeOを用いた場合のアンモニア合成活性は、従来のRuカルボニルを用いて作製した触媒よりも低い。
Ammonia synthesis tests were conducted using these Ru-CeO 2 catalysts. The test was conducted using an atmospheric fixed bed flow reactor. The results obtained at a reaction temperature of 400° C. are shown in FIG.
As shown in Figure 1, a solution of strongly acidic Ru(NO)( NO3 ) 3 (ruthenium nitrosyl nitrate) is added to CeO2 , which is prepared by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia. The Ru-CeO 2 catalyst prepared by impregnating Ru 3 (CO) 12 (Ru carbonyl) has higher ammonia synthesis activity than the conventional catalyst prepared using Ru 3 (CO) 12 (Ru carbonyl). On the other hand, the ammonia synthesis activity when using CeO 2 produced by precipitating and calcining cerium nitrate with sodium hydroxide or citric acid is lower than that of a conventional catalyst produced using Ru carbonyl.

また、アンモニア合成活性は、CeOの焼成温度によっても変化し、水酸化カリウムにより沈殿させたCeOを用いた上記触媒では、600℃で焼成したものが最も活性が高かった(図2)。 Furthermore, the ammonia synthesis activity also changes depending on the calcination temperature of CeO 2 , and among the above catalysts using CeO 2 precipitated with potassium hydroxide, the one calcined at 600° C. had the highest activity (FIG. 2).

[実施例2]CeO担体の表面構造と触媒活性の関連性
CeOは塩基性の担体であり、強酸性の溶液で処理するとその表面が一部溶解する。このことが、強酸性のニトロシル硝酸ルテニウムの溶液をCeOに含浸することにより作製した本発明の触媒が高いアンモニア合成活性を有することと関連しているのではないかとの想定の下に、CeOを強酸性の溶液で処理したときに生じるCeO担体の表面の状態を模するものとして、結晶性のCeOに硝酸セリウム水溶液を含浸させ、焼成することで、結晶性CeOの表面に非晶質のCeOを、種々のAmo(非晶質)/Cry(結晶質)の比率で担持した担体を作製し、これにRuを担持した触媒を用いてアンモニア合成反応を行った。
[Example 2] Relationship between surface structure of CeO 2 carrier and catalytic activity CeO 2 is a basic carrier, and its surface partially dissolves when treated with a strongly acidic solution. Under the assumption that this may be related to the high ammonia synthesis activity of the catalyst of the present invention prepared by impregnating CeO2 with a solution of strongly acidic ruthenium nitrosyl nitrate, we To imitate the surface state of a CeO 2 carrier that occurs when 2 is treated with a strongly acidic solution, crystalline CeO 2 is impregnated with a cerium nitrate aqueous solution and fired. Supports were prepared in which amorphous CeO 2 was supported at various Amo (amorphous)/Cry (crystalline) ratios, and an ammonia synthesis reaction was carried out using a catalyst in which Ru was supported on the supports.

上記担体および触媒の調製、および、これを用いたアンモニア合成試験は、具体的には、以下のとおりに行った:
実施例1でも用いた市販の高表面積CeOを空気中900℃で6時間焼成することで、結晶性のCeO(以下、CeO(Cry)という)を調製した。
所定量のCeO(Cry)を各種濃度のCe(NO水溶液に含浸し、100℃で12時間乾燥させた後、10%H/N雰囲気中300℃で1時間焼成することで、CeO(Amo)/CeO(cry)のモル比が、それぞれ0.01、0.02、0.1、0.2、0.5、1、2、10であるCeO(Amo)/CeO(cry)を調製した。また、硝酸セリウムを300℃で4時間焼成することで、CeO(Amo)のみからなるCeOを調製した。これらのCeOについて測定されたBET法による比表面積および細孔容積を図3に示す。黒バーが比表面積を、また白抜き丸が細孔容積を示す。
このようにして調製した各種のCeOを、Ru担持量が1Wt%となるように濃度調節したRu(NO)(NO水溶液中に含浸し、100℃で8時間乾燥させた後、10%H/N雰囲気中300℃で1時間焼成することで、各種のRu-CeO触媒を調製した。
これらのRu-CeO触媒を用いて、アンモニアの合成試験を行った。アンモニア合成反応の反応条件は、実施例1と同様である。その結果を、図4に示す。
Specifically, the preparation of the above-mentioned carrier and catalyst and the ammonia synthesis test using the same were carried out as follows:
Crystalline CeO 2 (hereinafter referred to as CeO 2 (Cry)) was prepared by baking the commercially available high surface area CeO 2 used in Example 1 at 900° C. for 6 hours in air.
A predetermined amount of CeO 2 (Cry) is impregnated into Ce(NO 3 ) 3 aqueous solution at various concentrations, dried at 100°C for 12 hours, and then fired at 300°C for 1 hour in a 10% H 2 /N 2 atmosphere. and the molar ratio of CeO 2 (Amo)/CeO 2 (cry) is 0.01, 0.02, 0.1, 0.2, 0.5, 1, 2, and 10, respectively. )/CeO 2 (cry) was prepared. Furthermore, CeO 2 consisting only of CeO 2 (Amo) was prepared by baking cerium nitrate at 300° C. for 4 hours. The specific surface area and pore volume measured by the BET method for these CeO2s are shown in FIG. The black bar indicates the specific surface area, and the open circle indicates the pore volume.
Various types of CeO 2 prepared in this way were impregnated in an aqueous solution of Ru(NO)(NO 3 ) 3 whose concentration was adjusted so that the amount of Ru supported was 1 wt%, and after drying at 100 ° C. for 8 hours, Various Ru-CeO 2 catalysts were prepared by calcining at 300° C. for 1 hour in a 10% H 2 /N 2 atmosphere.
Ammonia synthesis tests were conducted using these Ru-CeO 2 catalysts. The reaction conditions for the ammonia synthesis reaction are the same as in Example 1. The results are shown in FIG.

これらの実験の結果、Amoの比率を高めるにつれて担体の比表面積及び細孔容積は大きくなる(図3)が、触媒のアンモニア合成活性も同様に一律に高まるわけではなく、Amo/Cry比が1である場合をピークに、それ以上Amoの比率を高めるとアンモニア合成活性がかえって低くなる(図4)ことを見出した。図3と4とから、担体の比表面積17~100m/g、細孔容積0.09~0.25mL/gの範囲、より好ましくは、20~60m/g、0.09~0.2mL/gの範囲で高いアンモニア合成活性が得られたことが分かる。
硝酸セリウムを水酸化カリウムもしくはアンモニアの水溶液を用いて沈殿・焼成して作製したCeOに強酸性のニトロシル硝酸ルテニウムの溶液を含浸することにより作製したRu-CeO触媒においては、CeO担体の表面が、上述のAmo/Cry比が1である場合と類似する構造を有しているものと推察される。
As a result of these experiments, the specific surface area and pore volume of the carrier increase as the Amo ratio increases (Figure 3), but the ammonia synthesis activity of the catalyst also does not increase uniformly; It was found that when the Amo ratio was increased beyond the peak value, the ammonia synthesis activity actually decreased (FIG. 4). From FIGS. 3 and 4, it can be seen that the specific surface area of the carrier is in the range of 17 to 100 m 2 /g and the pore volume is in the range of 0.09 to 0.25 mL/g, more preferably 20 to 60 m 2 /g, 0.09 to 0. It can be seen that high ammonia synthesis activity was obtained in the range of 2 mL/g.
In the Ru-CeO 2 catalyst prepared by impregnating CeO 2 prepared by precipitating and calcining cerium nitrate with an aqueous solution of potassium hydroxide or ammonia with a solution of strongly acidic ruthenium nitrosyl nitrate, It is presumed that the surface has a structure similar to that in the case where the Amo/Cry ratio is 1 as described above.

[実施例3]Ru-CeO2触媒へのMgOの混合効果
Ru-CeO触媒に用いられるRuもCeOも高価な材料である。本発明者らは、Ru-CeO触媒におけるCeOの一部をMgOで置き換えることで、Ru-CeO触媒に含まれるCeOの量を減らすことを試みた。
[Example 3] Effect of mixing MgO into Ru-CeO2 catalyst Both Ru and CeO2 used in the Ru- CeO2 catalyst are expensive materials. The present inventors attempted to reduce the amount of CeO 2 contained in the Ru-CeO 2 catalyst by replacing part of the CeO 2 in the Ru-CeO 2 catalyst with MgO.

具体的には、以下に示す4種類の触媒を調製し、そのアンモニア合成活性を調べた:
(共沈)
硝酸マグネシウム+硝酸セリウム重量の約10倍数の体積のイオン交換蒸留水で硝酸マグネシウムと硝酸セリウムの共水溶液(モル比Mg/Ce=5)を調製し、これに27%NH水溶液を徐々に添加することによりpHを10以上にして得られる沈殿を600℃、4時間、空気中で焼成し、これにRu(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(物理混合)
MgOとCeOを上述の共沈法と同様の方法でそれぞれ沈殿から調製し、モル比Mg/Ce=5で乳鉢によって混合し、得られたものに、Ru(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(表面担持)
所定量を秤量した硝酸セリウム水溶液中に上述の沈殿法によって調製したMgO粉体を浸漬し、蒸発乾固させることで、MgO外表面にCeを析出させ、続いて、空気中600℃で4時間焼成し、CeOが表面に担持したMgO(モル比Mg/Ce=5)を得、これにRu(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成する。
(Ru-CeO2+MgO混合)
実施例1においてNHを用いた沈殿法により得られたCeOにRu(NO水溶液をRu含有量が2.2Wt%となるように含浸担持し、H/N雰囲気中300℃で焼成した後、モル比Mg/Ce=5となるようにMgOをRu-CeOに加えて、乳鉢で混合し、Ru含有量が混合物全体で1Wt%となるRu-CeO+MgO混合触媒を得た。
これらの触媒、及び比較対象として、実施例1においてNHを用いた沈殿法により得られたCeOにRu(NO)(NO水溶液をRu含有量が1Wt%となるように含浸担持した後、H/N雰囲気中300℃で焼成した触媒について、アンモニアの合成試験を行った。アンモニア合成反応の反応条件は、実施例1と同様である。その結果を、図5に示す。
Specifically, the following four types of catalysts were prepared and their ammonia synthesis activity was investigated:
(co-precipitation)
Prepare a co-aqueous solution of magnesium nitrate and cerium nitrate (molar ratio Mg/Ce = 5) with ion-exchanged distilled water in a volume approximately 10 times the weight of magnesium nitrate + cerium nitrate, and gradually add a 27% NH 3 aqueous solution to this. The precipitate obtained by raising the pH to 10 or higher was calcined in air at 600° C. for 4 hours, and impregnated with Ru(NO 3 ) 3 aqueous solution so that the Ru content was 1 Wt%. Calcinate at 300° C. in H 2 /N 2 atmosphere.
(physical mixture)
MgO and CeO 2 were prepared from precipitates using the same method as the coprecipitation method described above, and mixed in a mortar at a molar ratio of Mg/Ce = 5 . After being impregnated and supported in an amount of 1 wt%, it is fired at 300° C. in an H 2 /N 2 atmosphere.
(Surface supported)
The MgO powder prepared by the above-mentioned precipitation method was immersed in a predetermined amount of cerium nitrate aqueous solution and evaporated to dryness to precipitate Ce on the outer surface of MgO, and then heated in air at 600°C for 4 hours. After baking, MgO with CeO 2 supported on the surface (molar ratio Mg/Ce=5) was obtained, which was impregnated with Ru(NO 3 ) 3 aqueous solution so that the Ru content was 1 Wt%, and then H 2 / N2 atmosphere at 300°C.
(Ru-CeO2+MgO mixture)
CeO 2 obtained by the precipitation method using NH 3 in Example 1 was impregnated and supported with Ru(NO 3 ) 3 aqueous solution so that the Ru content was 2.2 Wt%, and the mixture was heated at 300% by weight in an H 2 /N 2 atmosphere. After firing at ℃, MgO is added to Ru-CeO 2 so that the molar ratio Mg/Ce=5, and mixed in a mortar, resulting in a Ru-CeO 2 +MgO mixed catalyst with a Ru content of 1 Wt% in the entire mixture. I got it.
For these catalysts and for comparison, an aqueous solution of Ru(NO)(NO 3 ) 3 was impregnated and supported on CeO 2 obtained by the precipitation method using NH 3 in Example 1 so that the Ru content was 1 Wt%. After that, an ammonia synthesis test was conducted on the catalyst calcined at 300° C. in an H 2 /N 2 atmosphere. The reaction conditions for the ammonia synthesis reaction are the same as in Example 1. The results are shown in FIG.

図5に示されるように、Ru-CeO触媒にMgOを混合することで、MgOの混合量に応じてRu-CeO触媒に含まれるCeOの量を減らすことができ、CeOの量を減らさない場合と匹敵するアンモニア合成活性が得られることを見出した。これにより、高価な材料であるCeOの、同一のRuの量に対する使用量を抑えることができる。
一方、同様の量のRu、CeOおよびMgOを用いても、共沈や物理的混合により得られたCeOおよびMgOの混合物にRuを担持した場合や、MgO外表面にCeOを担持した後、これにRuを担持した場合には、このような効果は見られないことから、このような効果を得るためには、RuはCeOに集約されて担持されている必要があるものと考えられる。
As shown in Figure 5, by mixing MgO into the Ru-CeO 2 catalyst, the amount of CeO 2 contained in the Ru-CeO 2 catalyst can be reduced according to the amount of MgO mixed, and the amount of CeO 2 can be reduced . It was found that an ammonia synthesis activity comparable to that obtained without reducing the amount of ammonia was obtained. This makes it possible to suppress the amount of CeO 2 , which is an expensive material, used for the same amount of Ru.
On the other hand, even if similar amounts of Ru, CeO 2 and MgO are used, Ru is supported on a mixture of CeO 2 and MgO obtained by coprecipitation or physical mixing, or when CeO 2 is supported on the outer surface of MgO. Later, when Ru was supported on this, such an effect was not observed, so in order to obtain such an effect, Ru must be supported in a concentrated manner on CeO2 . Conceivable.

図6に、上述のRu-CeO+MgO混合触媒において、モル比Mg/Ceが1、3または9の混合触媒を更に調製し、これらと、モル比Mg/Ceが5の触媒、及び、上述の(物理混合)に記載した調製法で調製したMgOを含まない触媒、並びに、CeOを含まない触媒のアンモニア合成活性を調べた結果を示す。
図6から、上述のRu-CeO触媒にMgOを混合することの効果は、少なくともMg/Ce比が1~9の範囲で得られ、この範囲で、同じRu担持法による、MgOを含まない触媒のアンモニア合成活性を上回ることが分かる。
FIG. 6 shows that in the Ru-CeO 2 +MgO mixed catalyst described above, a mixed catalyst with a molar ratio Mg/Ce of 1, 3, or 9 was further prepared, and these, a catalyst with a molar ratio Mg/Ce of 5, and the above-mentioned mixed catalyst were further prepared. The results of investigating the ammonia synthesis activity of a catalyst containing no MgO and a catalyst containing no CeO 2 prepared by the preparation method described in (Physical Mixing) are shown below.
From FIG. 6, the effect of mixing MgO into the Ru-CeO 2 catalyst described above is obtained at least when the Mg/Ce ratio is in the range of 1 to 9. It can be seen that this exceeds the ammonia synthesis activity of the catalyst.

[実施例4]Ru-CeO触媒へのFe配合の効果
多くの触媒において、第二成分を添加することにより活性が向上する現象が観察されることがある。そこで、本発明者らは、Ru-CeO触媒において、さらにFeを添加することが触媒のアンモニア合成活性に与える影響について検討した。
[Example 4] Effect of adding Fe to Ru-CeO 2 catalyst In many catalysts, it is sometimes observed that the activity is improved by adding a second component. Therefore, the present inventors investigated the effect of further adding Fe to the Ru-CeO 2 catalyst on the ammonia synthesis activity of the catalyst.

具体的には、実施例1で用いた市販の高表面積CeOの見かけの密度および真密度測定から見かけの空隙容積を算出し、その1.5倍体積のイオン交換蒸留水にFe(NOを溶解した水溶液中にCeOを浸漬させ、600℃、4時間、空気中で焼成し、Fe/CeOを調製した。これにRu(NO)(NO水溶液を用いてRuを1Wt%含浸担持した後、H/N雰囲気中300℃で焼成することで、Ru/Fe/CeO触媒を得た。Ru/Feモル比が0.2~200の範囲の10種類の触媒を、Fe仕込み量を調整しながら調製し、これらの触媒、およびFeを担持させない触媒(Ru/Feが無限大)ならびにRuを担持させない5Wt%Fe担持触媒について、アンモニア合成活性を調べた。得られた結果を図7に示す。 Specifically, the apparent pore volume was calculated from the apparent density and true density measurements of the commercially available high surface area CeO 2 used in Example 1, and Fe(NO 3 ) CeO 2 was immersed in an aqueous solution in which Fe/CeO 2 was dissolved and calcined at 600° C. for 4 hours in air to prepare Fe/CeO 2 . This was impregnated with 1 wt% of Ru using a Ru(NO)(NO 3 ) 3 aqueous solution and supported, and then calcined at 300° C. in an H 2 /N 2 atmosphere to obtain a Ru/Fe/CeO 2 catalyst. Ten types of catalysts with Ru/Fe molar ratios in the range of 0.2 to 200 were prepared while adjusting the amount of Fe charged, and these catalysts, catalysts without Fe supported (Ru/Fe is infinite), and Ru The ammonia synthesis activity of the 5 Wt% Fe supported catalyst was investigated. The obtained results are shown in FIG.

図7から、上述の触媒において、モル比Ru/Fe=5~200の範囲でFeを添加することにより、Feを添加しない場合を上回るアンモニア合成活性が得られることが分かる。特に、モル比Ru/Fe=100~200などの極めて少ない量のFeの共存によっても上記効果が得られることは、本発明の際立った効果であるといえる。 From FIG. 7, it can be seen that by adding Fe in the molar ratio Ru/Fe=5 to 200 in the above-mentioned catalyst, ammonia synthesis activity higher than that when Fe is not added can be obtained. In particular, it can be said that it is a remarkable effect of the present invention that the above effects can be obtained even with the coexistence of an extremely small amount of Fe such as a molar ratio of Ru/Fe=100 to 200.

アンモニアは、各種化合物の合成反応において原料化合物の1つとして用いられる等、化学工業において広く使用されている化合物であり、本発明は、これらの化学工業の分野で広く利用し得るものである。
また、アンモニアは、再生可能エネルギーの貯蔵の形態の一つとして期待されており、本発明は、この分野での利用も期待される。
Ammonia is a compound widely used in the chemical industry, such as being used as one of the raw material compounds in the synthesis reactions of various compounds, and the present invention can be widely used in these fields of the chemical industry.
Furthermore, ammonia is expected to be a form of renewable energy storage, and the present invention is also expected to be used in this field.

Claims (4)

窒素と水素からアンモニアを合成する反応用のCeO担持Ru触媒であって、
CeO担体の表面にモル比Ru/Fe=5~200の範囲でFeが更に担持されていることを特徴とする、触媒。
A CeO 2 supported Ru catalyst for the reaction of synthesizing ammonia from nitrogen and hydrogen, comprising:
A catalyst characterized in that Fe is further supported on the surface of a CeO 2 carrier at a molar ratio Ru/Fe=5 to 200.
CeO担体の表面にモル比Ru/Fe=5~50の範囲でFeが担持されている、請求項1に記載の触媒。 The catalyst according to claim 1, wherein Fe is supported on the surface of the CeO 2 carrier at a molar ratio of Ru/Fe=5 to 50. 窒素と水素からアンモニアを合成する反応用の触媒の製造方法であって、
CeOにFeを担持させてFe/CeOを得て、モル比Ru/Fe=5~200となるように、このFe/CeOにRuを担持させる触媒の製造方法。
A method for producing a catalyst for a reaction that synthesizes ammonia from nitrogen and hydrogen, the method comprising:
A method for producing a catalyst in which Fe/CeO 2 is obtained by supporting Fe on CeO 2 and Ru is supported on this Fe/CeO 2 so that the molar ratio Ru/Fe is 5 to 200.
モル比Ru/Fe=5~50となるようにFe/CeOにRuを担持させる、請求項3に記載の触媒の製造方法。 The method for producing a catalyst according to claim 3, wherein Ru is supported on Fe/CeO 2 so that the molar ratio Ru/Fe=5 to 50.
JP2023116308A 2020-01-08 2023-07-14 Ammonia synthesis catalyst Active JP7527052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023116308A JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020001558A JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst
JP2023116308A JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020001558A Division JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst

Publications (2)

Publication Number Publication Date
JP2023126494A true JP2023126494A (en) 2023-09-07
JP7527052B2 JP7527052B2 (en) 2024-08-02

Family

ID=77058621

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2020001558A Active JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst
JP2023116308A Active JP7527052B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116306A Pending JP2023126492A (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116307A Active JP7454307B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020001558A Active JP7432224B2 (en) 2020-01-08 2020-01-08 Ammonia synthesis catalyst

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2023116306A Pending JP2023126492A (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst
JP2023116307A Active JP7454307B2 (en) 2020-01-08 2023-07-14 Ammonia synthesis catalyst

Country Status (1)

Country Link
JP (4) JP7432224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005062A1 (en) * 2022-06-28 2024-01-04 株式会社豊田中央研究所 Ammonia synthesis catalyst, method for manufacturing same, and method for synthesizing ammonia using said ammonia synthesis catalyst
CN118477639B (en) * 2024-07-09 2024-09-20 临朐大祥精细化工有限公司 Ammonia synthesis catalyst and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679177A (en) * 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc Catalyst and process for synthesizing ammonia
JP4777670B2 (en) * 2005-02-25 2011-09-21 本田技研工業株式会社 Ammonia synthesis catalyst and method for producing the same
JP5411664B2 (en) 2008-11-18 2014-02-12 大阪瓦斯株式会社 High calorie gas production catalyst, production method thereof, and high calorie gas production method using high calorie gas production catalyst
JP6017777B2 (en) * 2011-11-30 2016-11-02 住友化学株式会社 Method for producing catalyst composition for ammonia production and method for producing ammonia
JP6344052B2 (en) 2014-05-20 2018-06-20 株式会社Ihi Ammonia synthesis catalyst and ammonia synthesis method
CN104888774B (en) 2015-06-15 2017-04-12 福州大学 Rare earth element-doped hydrotalcite-like precursor loading ruthenium ammonia synthetic catalyst
JP6762185B2 (en) 2016-09-28 2020-09-30 株式会社日本触媒 Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for ammonia synthesis
JP7075794B2 (en) 2018-03-20 2022-05-26 日揮触媒化成株式会社 Manufacturing method of catalyst for ammonia synthesis

Also Published As

Publication number Publication date
JP7432224B2 (en) 2024-02-16
JP7454307B2 (en) 2024-03-22
JP2023126493A (en) 2023-09-07
JP2021109130A (en) 2021-08-02
JP2023126492A (en) 2023-09-07
JP7527052B2 (en) 2024-08-02

Similar Documents

Publication Publication Date Title
JP7454307B2 (en) Ammonia synthesis catalyst
KR101447683B1 (en) Iron modified Ni-based perovskite type catalyst, Preparing method thereof, and Producing method of synthesis gas from combined steam CO2 reforming of methane using the same
US6808652B2 (en) Modified ⊖-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
CN109126787B (en) Rare earth metal oxide supported ruthenium catalyst for ammonia synthesis and application thereof
US20090152500A1 (en) Iron-Based Water Gas Shift Catalyst
CN110368933B (en) Ruthenium-based ammonia synthesis catalyst with Ce-Ti composite oxide as carrier and preparation method thereof
CN115254100A (en) For CO 2 Preparation and application of metal oxide doped type monatomic catalyst for preparing ethanol by hydrogenation
JP2019011212A (en) Method for producing hydrogen and hydrogen production catalyst
KR101405517B1 (en) Process for preparing nickel based catalysts for SCR of natural gas
WO2021042874A1 (en) Nickel-based catalyst for carbon dioxide methanation, preparation method therefor and application thereof
CN115837275A (en) Perovskite type high-entropy oxide and preparation method and application thereof
CN114160143B (en) CO (carbon monoxide) 2 Catalyst for preparing methanol by hydrogenation and preparation method and application thereof
KR101625537B1 (en) Perovskite type catalyst of high surface area, preparing method thereof, and a method for producing synthesis gas by using the same
CN114308056B (en) Samarium-manganese-mullite-type nickel-based catalyst for autothermal reforming of acetic acid to produce hydrogen
KR100899306B1 (en) Calcium based high temperature carbon dioxide absorbent
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
KR20180116000A (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP4103069B2 (en) Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst
CN115254127B (en) Copper-based solid solution catalyst, and preparation method and application thereof
JP2018187621A (en) Nitrogen oxide occlusion material, method for producing the same, and exhaust gas purification catalyst
JP2000103604A (en) Preparation of reforming catalyst for hydrocarbon and molded product of magnesium oxide for forming the same catalyst support
KR100336797B1 (en) Method for producing methanol from syn gas containing an excessive amount of carbon dioxide, and a catalyst used therein
KR100395095B1 (en) A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst
CN113663676A (en) Biological air-drying conversion catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240716

R150 Certificate of patent or registration of utility model

Ref document number: 7527052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150