JP4103069B2 - Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst - Google Patents

Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst Download PDF

Info

Publication number
JP4103069B2
JP4103069B2 JP2002141167A JP2002141167A JP4103069B2 JP 4103069 B2 JP4103069 B2 JP 4103069B2 JP 2002141167 A JP2002141167 A JP 2002141167A JP 2002141167 A JP2002141167 A JP 2002141167A JP 4103069 B2 JP4103069 B2 JP 4103069B2
Authority
JP
Japan
Prior art keywords
catalyst
dimethyl ether
synthesis catalyst
sol
ether synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002141167A
Other languages
Japanese (ja)
Other versions
JP2003334445A (en
Inventor
薫 武石
啓允 鈴木
幸生 山本
信寿 小長井
文和 木俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2002141167A priority Critical patent/JP4103069B2/en
Publication of JP2003334445A publication Critical patent/JP2003334445A/en
Application granted granted Critical
Publication of JP4103069B2 publication Critical patent/JP4103069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
一酸化炭素(CO)及び水素(H2)からジメチルエーテル(DME)を合成するジメチルエーテル合成触媒、及びその製造方法に関するものである。
【0002】
【従来の技術】
ジメチルエーテル(本明細書中、DMEともいう)は、クリーンで取り扱いの容易な新燃料として最近高い関心を集めており、LPGや軽油代替燃料等として今後需要が高くなると考えられている。
従来、DME合成触媒を調製する方法としては、特開2001−70793、特開2001−179103、特開2001−314769等に記載された共沈法等によるものを挙げることができる。
【0003】
例えば、共沈法では、無機金属塩の水溶液に酸やアルカリを添加することによって金属酸化物又は金属水酸化物を沈殿させている。しかし、共沈法による場合、触媒活性成分の分散性が悪く、熱によって触媒活性成分がシンタリング(凝集)することで改質性能の低下を引き起こすおそれがあった。また、原料中に含まれる不純物を排除しにくく、沈殿時に使用した塩類を不純物として取り込みやすく、沈殿の成長の際にpHのばらつきなどによって均質なものを調製しにくいといった不具合が生じがちであった。
【0004】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたもので、触媒活性成分の分散性が良く、不純物の取り込みが少なく、均質な触媒を得ることができるジメチルエーテル合成触媒の製造方法及び該製造方法によって得られるジメチルエーテル合成触媒を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明は、一酸化炭素と水素からジメチルエーテルを合成するジメチルエーテル合成触媒の製造方法において、
金属アルコキシドの分散液を得る工程と、
上記分散液に酸を加えて、金蔵アルコキシドを加水分解させ、ゾル化する工程と、
上記ゾル化する工程で得られるゾルに、触媒活性成分として用いるCu及びZnを水溶液として加える工程と、
ゾル溶液を蒸発乾燥させてゲルを得る工程と、
得られたゲルを乾燥、焼成、水素還元してDME合成触媒を得る工程とを実施し、ゾル・ゲル法によってジメチルエーテル合成触媒を製造することを特徴とする。
本発明に係るジメチルエーテル合成触媒の製造方法では、ゾル・ゲル法を実施する際に、触媒活性成分を担持するための担体も調製する。該担体は、ルイス酸作用を有する。ルイス酸作用とは、ジメチルエーテル合成反応の中間体であるメタノールを脱水してジメチルエーテル合成反応を促進する作用である。また、担体の含有量は40重量%以上、95重量%以下が好適である。
本発明に係るジメチルエーテル合成触媒の製造方法は、以上の工程を含むものであり、以下に、一部の工程について説明を補足する。
【0006】
金属アルコキシドの分散液を得る工程
この工程では、一般的に、65〜75℃の熱水に金属アルコキシドを分散させ、分散液を得る。
上記分散液に酸を加えて、金属アルコキシドを加水分解させ、ゾル化する工程
この工程では、一般的に、上記分散液に硝酸を加え、pH2〜3に調整する。
上記ゾル化する工程で得られるゾルに、触媒活性成分として用いるCu及びZnを水溶液として加える工程
この工程では、一般的に、Cu及びZnを酸溶液として加え、加温して攪拌する。
【0007】
本発明は、別の側面において、上記製造方法によって製造されるジメチルエーテル合成触媒である。係るジメチルエーテル合成触媒は、触媒活性成分としてCuとZnとを合計で5〜60重量%含有し、重量比でCu/Znが100/0〜40/60の範囲とすることが好適である。
【0008】
【発明の実施の形態】
以下に、本発明に係るジメチルエーテル合成触媒、及びその製造方法を、その実施の形態についてさらに詳細に説明する。
本発明では、ゾル・ゲル法によってDME合成触媒を調製する。触媒調製のための原料として採用することができる金属アルコキシドとしては、アルミニウムイソプロポキシド(Al[OCH(CH323)、アルミニウムエトキシド、アルミニウムブトキシドを挙げることができる。この金属アルコキシドに含有される金属成分は、DME合成触媒中で一般に酸化物の形態で存在し、触媒活性成分を担持する担体としての働きと、メタノールの脱水縮合反応を促進させる働きを主に担う。
【0009】
ゾル・ゲル法では、金属アルコキシドを溶媒(水等)に分散し、これに酸を加え、pH2〜3に調整する。用いられる酸としては、硝酸、塩酸、硫酸を挙げることができる。これによって、加水分解反応を起こさせ、均一なゾルを形成する。このゾルに、触媒活性成分を含む溶液、すなわち触媒金属水溶液を加え充分に攪拌する。触媒金属水溶液としては、Cuについては硝酸銅水溶液、Znについては硝酸亜鉛水溶液を用いる。なお、DME合成触媒の触媒活性成分となり得るものであれば、本発明に採用できるので、Cu、Zn以外にも他の金属を触媒金属の候補とできる。このような他の金属についても、所定の水溶液を用いることで本発明を実施することができる。
【0010】
触媒金属水溶液を加えたゾルをゲル化する。ゲル化にあたっては、混合溶液を蒸発乾燥させることが好適である。一般には、エバポレータで混合溶液を蒸発乾燥させることによってゲル化する。さらに、このゲルを乾燥、焼成後、還元処理することによってDME合成触媒を調製する。
【0011】
ゾル・ゲル法によって調製したDME合成触媒は、担体に担持した触媒金属の分散度が高く、金属の粒子径を小さく抑制することができる。また、触媒金属が担体の中に組み込まれたような状態で担持されるため、触媒自身のシンダリングが起こりにくくなり、熱耐久性にも非常に優れた触媒を得ることができる。従来、前記したように、共沈法では、沈殿時に使用した塩類などが不純物として取り込まれやすかった。しかし、本発明のようにゾル・ゲル法でDME合成触媒を調製すると、焼成時に分解や昇華しやすいものを原料に用いるために、最終的には不純物が少なく、さらに、微細なレベルで触媒金属が均一に分散したDME合成触媒を得ることができる。
【0012】
また、ゾル・ゲル法によってγ−Al23等の担体を調製すると、均質でかつ触媒活性に寄与する細孔径の細孔が多くできるように制御することが可能である。このために、非常に高活性なDME合成触媒を得ることができる。
【0013】
一酸化炭素および水素から、DMEを合成する反応は次式(1)で示される。
3H2+3CO⇔CH3OCH3+CO2 ・・・(1)
しかし、実際には、下記のように
CO+2H2⇔CH3OH ・・(2) メタノール合成反応
2CH3OH⇔CH3OCH3+H2O ・・(3) 脱水反応
CO+H2O⇔H2+CO2 ・・(4) 水性ガスシフト反応
まず、一酸化炭素と水素からメタノールが生成し、次いでメタノールの脱水縮合によりジメチルエーテルが生成する。さらに、水性ガスシフト反応によって水が一酸化炭素と反応して水素と二酸化炭素が生成する。
【0014】
これらの反応を進行させるのには、一般的には、メタノール合成触媒とメタノール脱水触媒および水性ガスシフト触媒がそれぞれ必要となる。しかし、本発明によって得られるDME合成触媒ではこれらの反応が一種類の触媒で可能である。
【0015】
すなわち、触媒金属として銅(Cu)を含有させることによって、上記(2)式のメタノール合成反応が促進される。さらに、亜鉛(Zn)を含有させることによって、上記(4)式の逆シフト反応(水素と二酸化炭素から一酸化炭素と水が生成する)を抑制することができる。このとき、CuとZnの比は100/0〜40/60の範囲で含有させることが好適である。また、CuとZnの総量が触媒全体の5重量%未満であると上記(2)式の反応が起こりにくくなり、60重量%を越えるとAl23の量が減少して高分散性を保てなくなる。このため上記(3)式の反応が起こりにくくなり、改質性能が低下してしまう。そこで、触媒活性成分であるCuとZnの総量は、DME合成触媒中、5〜60重量%の範囲が好適である。これによって、非常に優れた触媒活性を得ることができる。
【0016】
さらに、ゾル・ゲル法によって調製したγ−Al23等の担体は、メタノールを脱水してDMEを合成する(上記(3)式の反応)のに適したルイス(Lewis)酸点を多く持っている。すなわち、ルイス酸作用を有する。このため、上記したような段階的なDME合成反応を促進させる働きがあり、低温から効率よく合成を行うことができる。したがって、DME生成率および選択性の高い非常に優れた触媒を得ることができる。なお、γ−Al23等の担体は、DME合成触媒中、40重量%以上、95重量%含有することで非常に高い改質性能を得ることができる。
【0017】
実施例1
70℃の熱水100ミリリットルの中に、乳鉢ですりつぶしたアルミニウムイソプロポキシド(Al[OCH(CH323以下AIPと示す)9.7901gを加え、攪拌および加熱によってAIPの分散液を得た。この分散液中に硝酸を少量ずつ加え、AIPを溶解しながらpHを2〜3に調整した。この溶液を70℃のまま10分以上攪拌し、加水分解を起こさせ、クリアゾルを形成させた。このゾル溶液に、31.95ミリリットルの167.42g/リットル硝酸銅3水和物水溶液、9.00ミリリットルの79.02g/リットル硝酸亜鉛6水和物水溶液を加え、70℃のまま10分以上攪拌した。さらに、この溶液に硝酸を加え、最終的にpH1〜2に調製した。その後、このゾル溶液をエバポレータと80℃の湯浴を使用し蒸発乾燥することで、ゲル化した粉体約8gを得た。このゲルを150℃で12時間乾燥し、さらに500℃で5時間焼成した後、450℃の水素雰囲気下で10時間還元処理を行った。
【0018】
なお、この還元条件は、触媒活性の比較などを考慮に入れ、反応中の触媒のシンタリングを防ぐために、前処理段階である程度のシンタリングを起こさせた条件である。実際には、250〜300℃の還元を4〜5時間行えば充分である。
以上によって、Cu−Zn(36−4重量%)/Al23触媒を3.9g製造した。このとき、CuとZnの総量は40重量%であり、Cu/Zn=9/1となるように調製した。
【0019】
比較例1
市販のCu−Zn(50−50重量%)触媒(日揮化学■製N211)2gとAl23(住友化学工業■製BK103)2gを物理的に混合してCu−Zn(25−25重量%)/Al23触媒4gを製造した。このとき、Cu−ZnとAl23とは1/1の割合で混合した。
【0020】
DME合成反応試験
実施例1及び比較例1によって調製したCu−Zn(36−4重量%)/Al23(ゾル・ゲル)触媒及びCu−Zn(25−25重量%)/Al23(市販)触媒を常圧固定床流通系反応装置の反応管内に配置した。一酸化炭素と水素と、内部標準ガスとしてのアルゴン(H2/CO/Ar=7.5/7.5/1.5ml/min)を反応管に導入し流通させた。触媒通過後の生成ガスをガスクロマトグラフにて分析することによって、DMEの生成量(Rate of DME production/μmol/g/h)を測定した。この時、触媒を配置した反応管は電気炉によって加熱し、反応温度を150℃〜350℃で制御した。また、サンプル量はそれぞれ0.5gとした。
【0021】
図1に実施例1及び比較例1に示すCu−Zn(36−4重量%)/Al23(ゾル・ゲル)触媒とCu−Zn(25−25重量%)/Al23(市販)触媒の、反応温度に対するDME生成量を示す。結果は、市販品は最大生成量が約9μmol/g/hであるのに対して、本発明のゾル・ゲル触媒は約24μmol/g/hで、2.5倍以上のDME生成量であった。
これより、本発明のゾル・ゲル法にて作製した触媒(実施例1)はDME合成反応を非常に促進させる働きがあることが了解された。
【0022】
また、市販品(比較例1)が活性になるのは300〜325℃であったのに対して、本発明のゾル・ゲル触媒(実施例1)は200〜250℃であり、市販品(比較例1)よりも約100℃も低い温度で活性になっていた。したがって、本発明によるDME合成触媒は非常に低温活性に優れていることが了解される。
【0023】
図2に実施例1に示すCu−Zn(36−4重量%)/Al23(ゾル・ゲル)触媒の、反応時間に対するDME生成量を示す。試験方法は前記DME合成反応試験と同様の方法で、反応温度のみ220℃一定に保ち、75時間まで連続的に原料ガスと接触させたときのDME生成量を測定した。
【0024】
結果は、本発明によるゾル・ゲル触媒(実施例1)は一度活性になってから75時間までほとんど生成量の減少が無かった。これより、本発明によるDME合成触媒は非常に耐久性に優れていることが分かる。
これらの結果より、ゾル・ゲル法にて作製した本発明に係るDME合成触媒は、担持した触媒金属の分散度が高く、金属の粒子径を小さく制御することができるため、非常に高活性で、低温活性に優れた触媒であることが了解される。
また、以上の結果から了解されるように、本発明によれば、触媒金属が担体の中に組み込まれたような状態で担持されるため、金属自身のシンタリングが起こりにくくなり、熱耐久性にも非常に優れた触媒を得ることができる。
【0025】
【発明の効果】
上記したところから明らかなように、本発明によれば、触媒活性成分の分散性が良く、不純物の取り込みが少なく、均質な触媒を得ることができるジメチルエーテル合成触媒の製造方法及び該製造方法によって得られるジメチルエーテル合成触媒が提供される。
【図面の簡単な説明】
【図1】Cu−Zn(36−4重量%)/Al23(ゾル・ゲル)触媒(実施例1)とCu−Zn(25−25重量%)/Al23(市販)触媒(比較例1)の反応温度に対するDME生成量を示すグラフである。
【図2】Cu−Zn(36−4重量%)/Al23(ゾル・ゲル)触媒(実施例1)の反応時間に対するDME生成量を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dimethyl ether synthesis catalyst for synthesizing dimethyl ether (DME) from carbon monoxide (CO) and hydrogen (H 2 ), and a method for producing the same.
[0002]
[Prior art]
Dimethyl ether (also referred to as DME in the present specification) has recently attracted high interest as a clean and easy-to-handle new fuel, and is expected to increase in demand as an alternative fuel for LPG and light oil.
Conventionally, as a method for preparing a DME synthesis catalyst, a coprecipitation method described in JP-A-2001-70793, JP-A-2001-179103, JP-A-2001-314769, and the like can be exemplified.
[0003]
For example, in the coprecipitation method, a metal oxide or a metal hydroxide is precipitated by adding an acid or an alkali to an aqueous solution of an inorganic metal salt. However, when the coprecipitation method is used, the dispersibility of the catalytically active component is poor, and the catalytically active component is sintered (aggregated) by heat, which may cause a reduction in reforming performance. In addition, it is difficult to eliminate impurities contained in the raw material, the salts used during precipitation are likely to be taken up as impurities, and there is a tendency to cause problems such as difficulty in preparing a homogeneous product due to variations in pH during the growth of the precipitate. .
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is obtained by a method for producing a dimethyl ether synthesis catalyst capable of obtaining a homogeneous catalyst with good dispersibility of catalytically active components, low impurity incorporation, and the production method. An object is to provide a catalyst for synthesis of dimethyl ether.
[0005]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a method for producing a dimethyl ether synthesis catalyst for synthesizing dimethyl ether from carbon monoxide and hydrogen.
Obtaining a dispersion of metal alkoxide;
Adding an acid to the dispersion to hydrolyze the gold alkoxide to form a sol;
A step of adding Cu and Zn used as catalytic active components as an aqueous solution to the sol obtained in the step of solification;
Evaporating and drying the sol solution to obtain a gel;
The obtained gel is dried, calcined, and hydrogen reduced to obtain a DME synthesis catalyst, and a dimethyl ether synthesis catalyst is produced by a sol-gel method.
In the method for producing a dimethyl ether synthesis catalyst according to the present invention, a carrier for supporting a catalytically active component is also prepared when the sol-gel method is carried out . The carrier has a Lewis acid action . The Lewis acid action is an action of dehydrating methanol, which is an intermediate of the dimethyl ether synthesis reaction, to promote the dimethyl ether synthesis reaction. The carrier content is preferably 40% by weight or more and 95% by weight or less.
The method for producing a dimethyl ether synthesis catalyst according to the present invention includes the above-described steps, and a supplementary explanation is given below for some steps.
[0006]
Step of obtaining metal alkoxide dispersion In this step, the metal alkoxide is generally dispersed in hot water at 65 to 75 ° C. to obtain a dispersion.
Step of adding acid to the dispersion to hydrolyze the metal alkoxide to form a sol In this step, generally, nitric acid is added to the dispersion to adjust the pH to 2-3.
The sol obtained in the step of the sol, in Step of adding Cu and Zn is used as the catalytically active component as an aqueous solution, generally, it added Cu and Zn as an acid solution, stirred warmed.
[0007]
In another aspect, the present invention is a dimethyl ether synthesis catalyst produced by the above production method. The dimethyl ether synthesis catalyst preferably contains 5 to 60% by weight of Cu and Zn as catalytic active components, and Cu / Zn is preferably in the range of 100/0 to 40/60 by weight ratio.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the dimethyl ether synthesis catalyst and the production method thereof according to the present invention will be described in more detail with respect to the embodiments thereof.
In the present invention, a DME synthesis catalyst is prepared by a sol-gel method. Examples of the metal alkoxide that can be employed as a raw material for catalyst preparation include aluminum isopropoxide (Al [OCH (CH 3 ) 2 ] 3 ), aluminum ethoxide, and aluminum butoxide. The metal component contained in the metal alkoxide is generally present in the form of an oxide in the DME synthesis catalyst, and mainly serves as a carrier for supporting the catalytically active component and to promote the dehydration condensation reaction of methanol. .
[0009]
In the sol-gel method, a metal alkoxide is dispersed in a solvent (water or the like), and an acid is added thereto to adjust the pH to 2-3. Examples of the acid used include nitric acid, hydrochloric acid, and sulfuric acid. This causes a hydrolysis reaction to form a uniform sol. To this sol, a solution containing a catalytically active component, that is, a catalytic metal aqueous solution is added and sufficiently stirred. As the catalytic metal aqueous solution, a copper nitrate aqueous solution is used for Cu, and a zinc nitrate aqueous solution is used for Zn. In addition, since it can employ | adopt for this invention if it can become a catalyst active component of a DME synthesis catalyst, other metals other than Cu and Zn can be used as a catalyst metal candidate. For such other metals, the present invention can be carried out by using a predetermined aqueous solution.
[0010]
The sol to which the catalytic metal aqueous solution is added is gelled. In the gelation, it is preferable to evaporate and dry the mixed solution. Generally, gelation is performed by evaporating and drying the mixed solution with an evaporator. Further, the gel is dried, calcined, and then subjected to a reduction treatment to prepare a DME synthesis catalyst.
[0011]
The DME synthesis catalyst prepared by the sol-gel method has a high degree of dispersion of the catalyst metal supported on the carrier, and can suppress the particle diameter of the metal small. In addition, since the catalyst metal is supported in a state in which it is incorporated in the support, cindering of the catalyst itself is less likely to occur, and a catalyst having excellent thermal durability can be obtained. Conventionally, as described above, in the coprecipitation method, salts used at the time of precipitation have been easily taken up as impurities. However, when a DME synthesis catalyst is prepared by the sol-gel method as in the present invention, a material that is easily decomposed or sublimated during firing is used as a raw material. A DME synthesis catalyst in which is uniformly dispersed can be obtained.
[0012]
In addition, when a carrier such as γ-Al 2 O 3 is prepared by a sol-gel method, it is possible to control so as to increase the number of pores that are homogeneous and contribute to catalytic activity. For this reason, a very highly active DME synthesis catalyst can be obtained.
[0013]
The reaction for synthesizing DME from carbon monoxide and hydrogen is represented by the following formula (1).
3H 2 + 3CO⇔CH 3 OCH 3 + CO 2 (1)
However, in practice, CO + 2H 2 ⇔CH 3 OH (2) Methanol synthesis reaction 2CH 3 OH ⇔CH 3 OCH 3 + H 2 O (3) Dehydration reaction CO + H 2 O ⇔H 2 + CO 2 (4) Water gas shift reaction First, methanol is produced from carbon monoxide and hydrogen, and then dimethyl ether is produced by dehydration condensation of methanol. Furthermore, water reacts with carbon monoxide by the water gas shift reaction to produce hydrogen and carbon dioxide.
[0014]
In order to advance these reactions, generally, a methanol synthesis catalyst, a methanol dehydration catalyst, and a water gas shift catalyst are required. However, in the DME synthesis catalyst obtained by the present invention, these reactions can be performed with one kind of catalyst.
[0015]
That is, by containing copper (Cu) as the catalyst metal, the methanol synthesis reaction of the above formula (2) is promoted. Furthermore, by containing zinc (Zn), the reverse shift reaction (formation of carbon monoxide and water from hydrogen and carbon dioxide) of the above formula (4) can be suppressed. At this time, the ratio of Cu and Zn is preferably contained in the range of 100/0 to 40/60. Further, if the total amount of Cu and Zn is less than 5% by weight of the total catalyst, the reaction of the above formula (2) hardly occurs, and if it exceeds 60% by weight, the amount of Al 2 O 3 decreases and high dispersibility is obtained. I can't keep it. For this reason, reaction of said (3) type | formula becomes difficult to occur, and reforming performance will fall. Therefore, the total amount of Cu and Zn as the catalytically active components is preferably in the range of 5 to 60% by weight in the DME synthesis catalyst. Thereby, a very excellent catalytic activity can be obtained.
[0016]
Furthermore, carriers such as γ-Al 2 O 3 prepared by the sol-gel method have many Lewis acid sites suitable for synthesizing DME by dehydrating methanol (reaction of the above formula (3)). have. That is, it has a Lewis acid action. For this reason, there exists a function which accelerates | stimulates the above-mentioned stepwise DME synthesis reaction, and it can synthesize | combine efficiently from low temperature. Therefore, a very excellent catalyst having a high DME production rate and high selectivity can be obtained. In addition, very high reforming performance can be obtained when the carrier such as γ-Al 2 O 3 is contained in the DME synthesis catalyst in an amount of 40 wt% or more and 95 wt%.
[0017]
Example 1
Add 9.7901 g of aluminum isopropoxide (Al [OCH (CH 3 ) 2 ] 3 hereinafter referred to as AIP) crushed in a mortar into 100 ml of hot water at 70 ° C., and stir and heat the dispersion of AIP. Obtained. Nitric acid was added little by little to this dispersion, and the pH was adjusted to 2-3 while dissolving AIP. This solution was stirred at 70 ° C. for 10 minutes or more to cause hydrolysis to form a clear sol. To this sol solution, 31.95 ml of 167.42 g / liter copper nitrate trihydrate aqueous solution and 9.00 ml of 79.02 g / liter zinc nitrate hexahydrate aqueous solution were added and kept at 70 ° C. for 10 minutes or more. Stir. Furthermore, nitric acid was added to this solution, and finally adjusted to pH 1-2. Thereafter, this sol solution was evaporated and dried using an evaporator and an 80 ° C. hot water bath to obtain about 8 g of a gelled powder. This gel was dried at 150 ° C. for 12 hours, further calcined at 500 ° C. for 5 hours, and then subjected to reduction treatment in a hydrogen atmosphere at 450 ° C. for 10 hours.
[0018]
This reduction condition is a condition in which a certain degree of sintering is caused in the pretreatment stage in order to prevent the sintering of the catalyst during the reaction in consideration of comparison of the catalyst activity. In practice, it is sufficient to perform the reduction at 250 to 300 ° C. for 4 to 5 hours.
Thus, 3.9 g of Cu—Zn (36-4 wt%) / Al 2 O 3 catalyst was produced. At this time, the total amount of Cu and Zn was 40% by weight, and the Cu / Zn was adjusted to 9/1.
[0019]
Comparative Example 1
Commercially available Cu-Zn (50-50 wt%) catalyst (Nikki Chemical ■ Ltd. N211) 2 g and Al 2 O 3 (manufactured by Sumitomo Chemical ■ manufactured BK103) 2 g The physically mixed Cu-Zn (25-25 wt %) / Al 2 O 3 catalyst 4 g was produced. At this time, Cu—Zn and Al 2 O 3 were mixed at a ratio of 1/1.
[0020]
DME synthesis reaction test <br/> was prepared according to Example 1 and Comparative Example 1 Cu-Zn (36-4 wt%) / Al 2 O 3 (sol-gel) catalyst and Cu-Zn (25-25 wt%) / Al 2 O 3 (commercially available) catalyst was placed in the reaction tube of the atmospheric pressure fixed bed flow system reactor. Carbon monoxide, hydrogen, and argon as an internal standard gas (H 2 /CO/Ar=7.5/7.5/1.5 ml / min) were introduced into the reaction tube and allowed to flow. The amount of DME produced (Rate of DME production / μmol / g / h) was measured by analyzing the produced gas after passing through the catalyst with a gas chromatograph. At this time, the reaction tube in which the catalyst was arranged was heated by an electric furnace, and the reaction temperature was controlled at 150 ° C to 350 ° C. Each sample amount was 0.5 g.
[0021]
FIG. 1 shows a Cu—Zn (36-4 wt%) / Al 2 O 3 (sol-gel) catalyst and Cu—Zn (25-25 wt%) / Al 2 O 3 (Example 1 and Comparative Example 1). The amount of DME produced with respect to the reaction temperature of a commercially available catalyst is shown. As a result, the maximum production amount of the commercial product is about 9 μmol / g / h, whereas the sol-gel catalyst of the present invention is about 24 μmol / g / h, which is 2.5 times or more of DME production amount. It was.
From this, it was understood that the catalyst (Example 1) produced by the sol-gel method of the present invention has a function of greatly promoting the DME synthesis reaction.
[0022]
The commercial product (Comparative Example 1) was activated at 300 to 325 ° C., whereas the sol-gel catalyst of the present invention (Example 1) was 200 to 250 ° C., and the commercial product ( It was active at a temperature about 100 ° C. lower than Comparative Example 1). Therefore, it is understood that the DME synthesis catalyst according to the present invention is very excellent in low temperature activity.
[0023]
FIG. 2 shows the amount of DME produced with respect to the reaction time of the Cu—Zn (36-4 wt%) / Al 2 O 3 (sol-gel) catalyst shown in Example 1. The test method was the same as the DME synthesis reaction test described above, and only the reaction temperature was kept constant at 220 ° C., and the amount of DME produced when continuously in contact with the raw material gas for 75 hours was measured.
[0024]
As a result, the production amount of the sol-gel catalyst according to the present invention (Example 1) hardly decreased until 75 hours after it was once activated. This shows that the DME synthesis catalyst according to the present invention is very excellent in durability.
From these results, the DME synthesis catalyst according to the present invention produced by the sol-gel method has a very high activity because the supported catalyst metal has a high degree of dispersion and the metal particle size can be controlled small. It is understood that the catalyst is excellent in low temperature activity.
Further, as understood from the above results, according to the present invention, since the catalytic metal is supported in a state of being incorporated in the carrier, the metal itself is less likely to be sintered, and the heat durability In addition, a very excellent catalyst can be obtained.
[0025]
【The invention's effect】
As is apparent from the above description, according to the present invention, a method for producing a dimethyl ether synthesis catalyst capable of obtaining a homogeneous catalyst with good dispersibility of the catalytically active component, little uptake of impurities, and the production method can be obtained. A dimethyl ether synthesis catalyst is provided.
[Brief description of the drawings]
FIG. 1 Cu—Zn (36-4 wt%) / Al 2 O 3 (sol-gel) catalyst (Example 1) and Cu—Zn (25-25 wt%) / Al 2 O 3 (commercially available) catalyst It is a graph which shows the DME production amount with respect to the reaction temperature of (Comparative Example 1).
FIG. 2 is a graph showing the amount of DME produced with respect to the reaction time of a Cu—Zn (36-4 wt%) / Al 2 O 3 (sol-gel) catalyst (Example 1).

Claims (3)

一酸化炭素と水素からジメチルエーテルを合成するジメチルエーテル合成触媒の製造方法において、
金属アルコキシドの分散液を得る工程と、
上記分散液に酸を加えて、金属アルコキシドを加水分解させ、ゾル化する工程と、
上記ゾル化する工程で得られるゾルに、触媒活性成分として用いるCu及びZnを水溶液として加える工程と、
ゾル溶液を蒸発乾燥させてゲルを得る工程と、
得られたゲルを乾燥、焼成、水素還元してDME合成触媒を得る工程とを実施し、ゾル・ゲル法によってジメチルエーテル合成触媒を製造することを特徴とするジメチルエーテル合成触媒の製造方法。
In a method for producing a dimethyl ether synthesis catalyst for synthesizing dimethyl ether from carbon monoxide and hydrogen,
Obtaining a dispersion of metal alkoxide;
Adding an acid to the dispersion to hydrolyze the metal alkoxide to form a sol;
A step of adding Cu and Zn used as catalytic active components as an aqueous solution to the sol obtained in the step of solification;
Evaporating and drying the sol solution to obtain a gel;
A method for producing a dimethyl ether synthesis catalyst, comprising: drying, calcining, and hydrogen reduction to obtain a DME synthesis catalyst, and producing a dimethyl ether synthesis catalyst by a sol-gel method.
上記金属アルコキシドがアルミニウムアルコキシドであることを特徴とする請求項1のジメチルエーテル合成触媒の製造方法。  The method for producing a dimethyl ether synthesis catalyst according to claim 1, wherein the metal alkoxide is an aluminum alkoxide. 触媒活性成分としてCuとZnとを合計で5〜60重量%含有し、重量比でCu/Znが100/0〜40/60の範囲であることを特徴とする請求項1又は2のジメチルエーテル合成触媒の製造方法によって製造されることを特徴とするジメチルエーテル合成触媒。  The dimethyl ether synthesis according to claim 1 or 2, characterized in that it contains 5 to 60% by weight of Cu and Zn as catalytic active components, and Cu / Zn is in the range of 100/0 to 40/60 by weight ratio. A dimethyl ether synthesis catalyst produced by a method for producing a catalyst.
JP2002141167A 2002-05-16 2002-05-16 Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst Expired - Fee Related JP4103069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002141167A JP4103069B2 (en) 2002-05-16 2002-05-16 Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002141167A JP4103069B2 (en) 2002-05-16 2002-05-16 Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst

Publications (2)

Publication Number Publication Date
JP2003334445A JP2003334445A (en) 2003-11-25
JP4103069B2 true JP4103069B2 (en) 2008-06-18

Family

ID=29701831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002141167A Expired - Fee Related JP4103069B2 (en) 2002-05-16 2002-05-16 Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst

Country Status (1)

Country Link
JP (1) JP4103069B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298782A (en) * 2005-04-15 2006-11-02 National Univ Corp Shizuoka Univ Method for producing dimethyl ether using synthesis gas by dimethyl ether synthesis catalyst
JP4506729B2 (en) * 2006-06-23 2010-07-21 住友化学株式会社 Catalyst for dimethyl ether production
KR100812099B1 (en) 2006-11-28 2008-03-12 한국가스공사 Method of preparing catalyst for making dimethylether from syngas with carbon dioxide

Also Published As

Publication number Publication date
JP2003334445A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP4351913B2 (en) Ceria-based mixed metal oxide structure, its preparation and use
CN108295848B (en) Preparation method of high-dispersion nano catalyst
US7871957B2 (en) Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
AU2010302213B2 (en) CeAlO3 perovskites containing transition metal
US20150005160A1 (en) Exhaust gas purifying catalyst and method for producing same
NZ210549A (en) Modified copper- and zinc- containing catalyst and methanol production
JP5010547B2 (en) Highly active catalyst and method for producing the same
CN112108148A (en) Supported copper-based catalyst for hydrogen production by methanol steam reforming, and preparation method and application thereof
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP3951127B2 (en) Dimethyl ether steam reforming catalyst and method for producing the same
KR100833790B1 (en) Metal catalysts supported on alumina xerogel support, preparation method thereof and hydrogen producing method by steam reforming of lng using said catalyst
CN108499568B (en) Nickel-based catalyst for reforming methane by pressurizing carbon dioxide
JP7454307B2 (en) Ammonia synthesis catalyst
KR101799747B1 (en) Cu-Zn-Al based catalyst for methanol synthesis and its preparation method via alcohol
JP4103069B2 (en) Method for producing dimethyl ether synthesis catalyst and dimethyl ether synthesis catalyst
JPH1179705A (en) Method for reforming methane with co2 and production of metallic catalyst carried by highly heat resistant alumina aerogel and used in same
CN113967476B (en) Perovskite supported cobalt high-efficiency catalyst, preparation method and method for preparing methanol by partial oxidation of methane
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
EP1928788A1 (en) Method for preparing metal oxide containing precious metals
WO2009027882A2 (en) Hydrocarbon decomposition catalyst, process for obtaining said catalyst, and a process for obtaining hydrogen and syngas employing said catalyst
CN115041209B (en) Preparation method of porous nanocomposite and application of porous nanocomposite in ammonia borane hydrolysis hydrogen production
JP4586293B2 (en) NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
US20040002422A1 (en) Method for large-scale production of combustion deposited metal-metal oxide catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees