KR102531947B1 - Catalyst for methane synthesis and preparation method thereof - Google Patents

Catalyst for methane synthesis and preparation method thereof Download PDF

Info

Publication number
KR102531947B1
KR102531947B1 KR1020220092555A KR20220092555A KR102531947B1 KR 102531947 B1 KR102531947 B1 KR 102531947B1 KR 1020220092555 A KR1020220092555 A KR 1020220092555A KR 20220092555 A KR20220092555 A KR 20220092555A KR 102531947 B1 KR102531947 B1 KR 102531947B1
Authority
KR
South Korea
Prior art keywords
catalyst
active component
carbon dioxide
methane
methane synthesis
Prior art date
Application number
KR1020220092555A
Other languages
Korean (ko)
Other versions
KR20220110691A (en
Inventor
김준우
정천우
고동준
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020220092555A priority Critical patent/KR102531947B1/en
Publication of KR20220110691A publication Critical patent/KR20220110691A/en
Application granted granted Critical
Publication of KR102531947B1 publication Critical patent/KR102531947B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/0006Catalysts containing parts with different compositions
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

본 발명은 이산화탄소 및 수소가 존재하는 메탄화 반응 조건에서, 코크가 Ni계 활성 성분에 침적되어 발생하는 활성 저하를 방지할 수 있는 메탄 합성용 촉매를 제공하기 위한 것이다. 본 발명의 메탄 합성용 촉매는 Ni계 활성 성분 및 흡습성 물질을 포함한다. An object of the present invention is to provide a catalyst for methane synthesis capable of preventing activity degradation caused by the deposition of coke on a Ni-based active component under methanation reaction conditions in the presence of carbon dioxide and hydrogen. The catalyst for methane synthesis of the present invention includes a Ni-based active component and a hygroscopic material.

Description

메탄 합성용 촉매 및 이의 제조방법{CATALYST FOR METHANE SYNTHESIS AND PREPARATION METHOD THEREOF}Catalyst for methane synthesis and its manufacturing method {CATALYST FOR METHANE SYNTHESIS AND PREPARATION METHOD THEREOF}

본 발명은 메탄 합성용 촉매 및 이의 제조방법에 관한 것이다. The present invention relates to a catalyst for methane synthesis and a method for preparing the same.

이산화탄소와 수소를 반응시켜 메탄을 합성하는 반응을 메탄화 반응이라 한다. 메탄화 반응에서 사용되는 원료로는 석유화학 산업, 정유 산업, 제철 산업 등 광범위한 산업에서 발생하는 이산화탄소와, 신재생에너지로부터 전기를 공급받아 물의 전기분해를 통해 생성된 수소를 이용할 수 있다. 이러한 메탄화 반응의 공정은 P2G (Power to Gas) 기술로서, 전기로부터 가스상 물질, 즉 메탄을 합성할 수 있는 공정이다.The reaction of synthesizing methane by reacting carbon dioxide and hydrogen is called methanation reaction. As raw materials used in the methanation reaction, carbon dioxide generated in a wide range of industries, such as the petrochemical industry, oil refining industry, and steel industry, and hydrogen generated through electrolysis of water supplied with electricity from renewable energy can be used. The process of this methanation reaction is a P2G (Power to Gas) technology, which is a process capable of synthesizing gaseous material, that is, methane, from electricity.

이산화탄소와 수소를 원료로 하는 메탄화 반응의 반응식은 다음과 같다. The reaction formula of the methanation reaction using carbon dioxide and hydrogen as raw materials is as follows.

CO2 + 4H2 → CH4 + 2H2O, ΔH = -164 kJ/mol 식(1)CO 2 + 4H 2 → CH 4 + 2H 2 O, ΔH = -164 kJ/mol Equation (1)

상기 식(1)로부터 알 수 있는 바와 같이, 이산화탄소로부터 메탄을 합성하기 위해서는 양론비로 이산화탄소 당 4분자의 수소가 필요하다.As can be seen from the above formula (1), in order to synthesize methane from carbon dioxide, 4 molecules of hydrogen per carbon dioxide are required in the stoichiometric ratio.

이러한 메탄화 반응은 발열반응이므로 메탄화 반응이 진행됨에 따라 온도가 상승하면 이산화탄소의 평형전환율이 급격히 감소한다. 고온에서는 흡열반응인 역수성가스전환반응(RWGS, reverse water-gas shift reaction)이 우세하여(식(2) 참조) 메탄화 반응의 평형전환율이 다시 증가한다. Since this methanation reaction is an exothermic reaction, the equilibrium conversion rate of carbon dioxide rapidly decreases when the temperature rises as the methanation reaction progresses. At high temperatures, the reverse water-gas shift reaction (RWGS), an endothermic reaction, dominates (see equation (2)), increasing the equilibrium conversion of the methanation reaction again.

CO2 + H2 → 2H2O 식(2)CO 2 + H 2 → 2H 2 O Equation (2)

한편, 이산화탄소와 수소가 존재하는 조건에서 수소/이산화탄소 비율(H2/CO2)이 낮은 경우 코크(C, coke)가 생성되는 부반응이 일어날 수 있다(식(3) 참조). 또한 메탄화 반응으로 생성된 메탄이 분해되어 코크가 생성되거나(식(4) 참조) RWGS 반응으로 생성된 일산화탄소로부터 코크가 생성될 수 있다(식(5) 참조). On the other hand, when the hydrogen/carbon dioxide ratio (H 2 /CO 2 ) is low in the presence of carbon dioxide and hydrogen, a side reaction in which coke (C) is produced may occur (see Equation (3)). In addition, methane produced by the methanation reaction is decomposed to produce coke (see equation (4)) or coke can be produced from carbon monoxide produced by the RWGS reaction (see equation (5)).

CO2 + 2H2 → C + 2H2O 식(3)CO 2 + 2H 2 → C + 2H 2 O Equation (3)

CH4 ↔ C + H2 식(4)CH 4 ↔ C + H 2 Equation (4)

2CO ↔ C + CO2 식(5)2CO ↔ C + CO 2 Equation (5)

이러한 코크는 촉매의 활성 성분에 침적되어 활성 저하를 유발하므로, 코크를 효율적으로 제거할 수 있는 방안이 요구된다.Since such coke is deposited on the active component of the catalyst and causes a decrease in activity, a method for efficiently removing coke is required.

한국등록특허 제10-0024128호Korean Patent Registration No. 10-0024128

본 발명의 목적은 이산화탄소 및 수소가 존재하는 메탄화 반응 조건에서, 코크가 Ni계 활성 성분에 침적되어 발생하는 활성 저하를 방지할 수 있는 메탄 합성용 촉매를 제공하기 위한 것이다.An object of the present invention is to provide a catalyst for methane synthesis capable of preventing activity degradation caused by the deposition of coke on Ni-based active components under methanation reaction conditions in the presence of carbon dioxide and hydrogen.

본 발명의 일 측면에 따르면, 이산화탄소 및 수소를 이용한 메탄화 반응용 촉매로서, Ni계 활성 성분 및 흡습성 물질을 포함하는 메탄 합성용 촉매가 제공된다. According to one aspect of the present invention, as a catalyst for methanation reaction using carbon dioxide and hydrogen, a catalyst for methane synthesis including a Ni-based active component and a hygroscopic material is provided.

본 발명의 다른 측면에 따르면, Ni 이온 함유 금속 전구체 용액에 염기성 화합물을 투입하여 Ni계 활성 성분을 형성하는 단계, 및 상기 Ni계 활성 성분과 흡습성 물질을 혼합하는 단계를 포함하는 메탄 합성용 촉매 제조방법이 제공된다.According to another aspect of the present invention, preparing a catalyst for methane synthesis comprising the steps of forming a Ni-based active component by adding a basic compound to a Ni ion-containing metal precursor solution, and mixing the Ni-based active component with a hygroscopic material A method is provided.

본 발명에 따르면, 수소 및 이산화탄소를 이용한 메탄화 반응에서, Ni계 활성 성분과 흡습성 물질을 혼합한 촉매를 사용함으로써 코크가 Ni계 활성 성분에 침적되는 것을 방지하여 Ni계 활성 성분의 활성 저하를 방지할 수 있다.According to the present invention, in the methanation reaction using hydrogen and carbon dioxide, by using a catalyst in which a Ni-based active component and a hygroscopic material are mixed, coke is prevented from being deposited on the Ni-based active component to prevent deterioration of the activity of the Ni-based active component can do.

또한 상기 촉매를 사용하는 경우 낮은 수소/이산화탄소 비율을 갖는 메탄화 반응 조건에서도 이산화탄소 전환율 및 메탄 선택도를 높일 수 있다. In addition, when the catalyst is used, the carbon dioxide conversion rate and methane selectivity can be increased even under methanation reaction conditions having a low hydrogen/carbon dioxide ratio.

도 1은 본 발명에 따른 실시예와 비교예에서 온도에 따른 이산화탄소 전환율을 나타낸 그래프이다.
도 2는 본 발명에 따른 실시예와 비교예에서 온도에 따른 메탄 선택도를 나타낸 그래프이다.
도 3은 본 발명에 따른 실시예와 비교예에서 온도에 따른 중량 변화를 나타낸 그래프이다.
1 is a graph showing the carbon dioxide conversion rate according to temperature in Examples according to the present invention and Comparative Examples.
2 is a graph showing methane selectivity according to temperature in Examples according to the present invention and Comparative Examples.
Figure 3 is a graph showing the weight change according to the temperature in Examples and Comparative Examples according to the present invention.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified in various forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명은 수소/이산화탄소 비율이 낮은 메탄화 반응 조건에서 탄소 침적(코킹, coking)이 적게 발생할 수 있도록 Ni계 활성 성분 및 흡습성 물질을 포함하는 메탄 합성용 촉매를 제공한다. The present invention provides a catalyst for methane synthesis comprising a Ni-based active component and a hygroscopic material so that less carbon deposition (coking) can occur under methanation reaction conditions with a low hydrogen/carbon dioxide ratio.

본 발명에서 Ni계 활성 성분은 Ni을 함유하며, Al, Mg 또는 Fe을 추가로 함유할 수 있다. Ni계 활성 성분이 Al을 추가로 함유하는 경우 Al은 Ni을 분산시키기 위한 성분일 수 있다. 이때 Ni계 활성 성분은, 상기 Ni계 활성 성분의 전체 중량을 기준으로 Ni 5 내지 40 중량% 및 Al 10 내지 95 중량%를 포함할 수 있다. Ni의 함량이 5 중량% 미만이면 활성점 개수가 적어 Ni계 활성 성분 투입량 대비 메탄의 생성 효율이 저하될 수 있다. 반면 Ni의 함량이 40 중량%를 초과하면 상대적으로 Al 함량이 낮아지게 되어 Ni 입자가 분산되지 못하고 입자 크기가 커질 수 있다. 입자 크기가 지나치게 커지면 Ni계 활성 성분의 활성이 저하되므로 바람직하지 않다. 이와 반대로, Al의 함량이 10 중량% 미만이면 Ni계 활성 성분의 입자가 매우 커져 Ni계 활성 성분의 활성이 감소할 수 있고, Al의 함량이 95 중량%를 초과하면 상대적으로 Ni 함량이 낮아져 메탄 생성 효율이 저하될 수 있다.In the present invention, the Ni-based active component contains Ni, and may further contain Al, Mg or Fe. When the Ni-based active component further contains Al, Al may be a component for dispersing Ni. In this case, the Ni-based active component may include 5 to 40 wt% of Ni and 10 to 95 wt% of Al based on the total weight of the Ni-based active component. If the content of Ni is less than 5% by weight, the number of active sites is small, so the efficiency of methane production compared to the amount of Ni-based active ingredient added may be reduced. On the other hand, when the content of Ni exceeds 40% by weight, the Al content is relatively low, so the Ni particles may not be dispersed and the particle size may increase. An excessively large particle size is undesirable because the activity of the Ni-based active component is reduced. Conversely, when the Al content is less than 10% by weight, the particles of the Ni-based active component become very large and the activity of the Ni-based active component may decrease, and when the Al content exceeds 95% by weight, the Ni content is relatively low, resulting in methane Production efficiency may be reduced.

한편 Ni계 활성 성분이 Ni, Mg, Fe를 함유하는 경우 Ni, Mg, Fe를 각각 40 : 10 : 5의 중량비로 함유할 수 있다. Meanwhile, when the Ni-based active ingredient contains Ni, Mg, and Fe, Ni, Mg, and Fe may be contained in a weight ratio of 40:10:5, respectively.

상기 Ni계 활성 성분은 예를 들어 공침법(co-precipitation)에 의해 얻을 수 있다. 구체적으로 상기 Ni계 활성 성분은 Ni 이온을 함유하는 금속 전구체 용액에 침전제를 투입하여 침전시킴으로써 얻을 수 있고, 금속 전구체의 음이온은 특별히 한정되지 않으나 NO3 -, CH3COO-, SO4 2-, Cl-, CO3 2- 등일 수 있다. 금속 전구체 용액은 Ni 이온과 함께 Al 이온, Mg 이온 또는 Fe 이온을 추가로 함유할 수 있다. 금속 전구체 용액의 농도는 0.1 내지 1.5M일 수 있으며, 바람직하게는 1.2M일 수 있다. 금속 전구체 용액의 농도가 0.1M에 미치지 못하면 용액의 부피가 지나치게 커져 Ni계 활성 성분의 생산성이 감소한다. 반면, 금속 화합물을 과량 투입하여도 용해도에 의해 제한되어 농도가 1.5M을 초과하는 금속 전구체 용액을 제조하기 어려울 수 있다.The Ni-based active ingredient can be obtained, for example, by co-precipitation. Specifically, the Ni-based active component can be obtained by precipitating by introducing a precipitant into a metal precursor solution containing Ni ions, and the anion of the metal precursor is not particularly limited, but NO 3 - , CH 3 COO - , SO 4 2- , Cl , CO 3 2− , and the like. The metal precursor solution may further contain Al ions, Mg ions or Fe ions together with Ni ions. The concentration of the metal precursor solution may be 0.1 to 1.5M, preferably 1.2M. If the concentration of the metal precursor solution is less than 0.1 M, the volume of the solution becomes too large, and thus the productivity of the Ni-based active component decreases. On the other hand, even if an excessive amount of the metal compound is added, it may be difficult to prepare a metal precursor solution having a concentration of more than 1.5M due to limited solubility.

한편 침전제는 NaOH, Na2CO3, NaHCO3, NH4OH 등의 염기성 화합물 수용액일 수 있으며, 수용액의 농도는 0.1 내지 16.0M일 수 있다. 염기성 화합물 수용액의 농도가 0.1M에 미치지 못하면 용액의 부피가 지나치게 커져 Ni계 활성 성분의 생산성이 감소한다. 반면, 염기성 화합물을 과량 투입하여도 용해도에 의해 제한되어 농도가 16.0M을 초과하는 염기성 화합물 수용액을 제조하기 어려울 수 있다.Meanwhile, the precipitant may be an aqueous solution of a basic compound such as NaOH, Na 2 CO 3 , NaHCO 3 , NH 4 OH, etc., and the concentration of the aqueous solution may be 0.1 to 16.0M. If the concentration of the aqueous solution of the basic compound is less than 0.1 M, the volume of the solution becomes excessively large and the productivity of the Ni-based active component decreases. On the other hand, even if an excessive amount of basic compound is added, it may be difficult to prepare an aqueous basic compound solution having a concentration exceeding 16.0 M due to limited solubility.

금속 전구체 용액의 온도는 상온(20℃) 내지 70℃일 수 있으며, 예를 들어 50℃일 수 있다. 상기 온도 범위에서 금속 전구체 용액을 교반하여 금속 이온을 충분히 용해시킨 후, 금속이 침전되도록 염기성 화합물을 투입할 수 있다. 염기성 화합물은 금속 전구체 용액의 pH가 7 내지 9, 바람직하게는 pH가 7 내지 8이 될 때까지 투입될 수 있다. pH가 7 미만이면 용액 내 금속 이온이 충분히 침전되지 않고, pH가 9를 초과하면 금속 이온이 급격하게 침전되어 금속 입자의 크기가 커지고 촉매 활성이 저하될 수 있다.The temperature of the metal precursor solution may be room temperature (20 °C) to 70 °C, for example, 50 °C. After sufficiently dissolving metal ions by stirring the metal precursor solution in the above temperature range, a basic compound may be added to precipitate the metal. The basic compound may be added until the pH of the metal precursor solution becomes 7 to 9, preferably 7 to 8. If the pH is less than 7, the metal ions in the solution are not sufficiently precipitated, and if the pH exceeds 9, the metal ions are rapidly precipitated and the size of the metal particles may increase and the catalytic activity may decrease.

침전이 완료되면 상온(20℃) 내지 100℃, 바람직하게는 50℃ 내지 95℃, 보다 바람직하게는 60℃ 내지 90℃로 승온한 후 교반하여 침전물을 숙성시킬 수 있다. 이때 숙성 온도가 낮을수록 숙성 시간을 늘리는 것이 바람직하며, 예를 들어 숙성 온도가 90℃인 경우 숙성 시간은 2시간일 수 있다. When the precipitation is completed, the temperature is raised to room temperature (20 ° C) to 100 ° C, preferably 50 ° C to 95 ° C, more preferably 60 ° C to 90 ° C, and then stirred to mature the precipitate. At this time, it is preferable to increase the aging time as the aging temperature decreases. For example, when the aging temperature is 90° C., the aging time may be 2 hours.

이후 침전물 함유 용액을 냉각시키고 증류수를 추가로 투입하여 여과, 세척할 수 있다. 이 과정에서 불필요한 이온들이 제거될 수 있다. 여과된 침전물을 상온(20℃) 내지 150℃, 바람직하게는 90 내지 120℃에서 건조시킨 후 소성하여 금속 산화물 형태의 활성 성분을 얻는다. Thereafter, the precipitate-containing solution may be cooled, and distilled water may be additionally added to filter and wash the solution. In this process, unnecessary ions may be removed. The filtered precipitate is dried at room temperature (20° C.) to 150° C., preferably 90 to 120° C., and then calcined to obtain an active ingredient in the form of a metal oxide.

본 발명에서 흡습성 물질은 메탄화 반응 동안 생성된 수분을 함유 및 방출할 수 있는 물질로서, 코크가 침적된 Ni계 활성 성분에 수분을 제공하여 식(3)의 역반응을 가동시킬 수 있다. 식(3)의 역반응이 진행됨에 따라 Ni계 활성 성분의 비활성화를 억제하고 수소를 추가로 공급하여 메탄을 안정적으로 합성할 수 있다. In the present invention, the hygroscopic material is a material capable of containing and releasing moisture generated during the methanation reaction, and can activate the reverse reaction of equation (3) by providing moisture to the Ni-based active component on which coke is deposited. As the reverse reaction of Formula (3) progresses, methane can be stably synthesized by suppressing the deactivation of the Ni-based active component and additionally supplying hydrogen.

상기 흡습성 물질로는 CHA형 제올라이트, LTA형 제올라이트, USY형 제올라이트, 실리카겔 등을 들 수 있으나 이에 한정되지 않으며, 수분을 함유 및 방출할 수 있는 물질이라면 제한 없이 사용할 수 있다.Examples of the hygroscopic material include, but are not limited to, CHA-type zeolite, LTA-type zeolite, USY-type zeolite, silica gel, and the like, and any material capable of containing and releasing moisture may be used without limitation.

본 발명에서 메탄 합성용 촉매는 촉매 총 중량을 기준으로 흡습성 물질 0.1 내지 20 중량%, 바람직하게는 1 내지 20 중량%, 보다 바람직하게는 5 내지 10 중량%과 잔부 Ni계 활성 성분을 포함할 수 있다. 흡습성 물질의 함량이 0.1 중량% 미만이면 수분 함유 및 방출 효과가 저하되어 코크 침적 방지 성능이 저하될 수 있고, 20 중량%를 초과하면 활성 성분 함량이 상대적으로 적어지므로 메탄 생성량이 감소할 수 있다. In the present invention, the catalyst for methane synthesis may include 0.1 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 10% by weight of a hygroscopic material based on the total weight of the catalyst, and the balance Ni-based active component there is. If the content of the hygroscopic substance is less than 0.1% by weight, the water containing and releasing effect may be lowered, so that the performance of preventing coke deposition may be reduced, and if it exceeds 20% by weight, the active ingredient content is relatively small, so methane production may be reduced.

한편 수소 및 이산화탄소를 이용한 메탄화 반응에서 수소/이산화탄소 양론비는 4이나, 본 발명에 따른 메탄 합성용 촉매를 사용하면 수소/이산화탄소 비율이 4 이하인 경우에도 높은 이산화탄소 전환율 및 메탄 선택도를 나타낸다. 이는 흡습성 물질이 수분을 함유하였다가 방출하는 과정에서 식(3) 반응의 역반응이 일어나 촉매의 비활성화가 억제되고, 수소가 추가로 공급되기 때문이다. 본 발명에서 수소/이산화탄소 비율의 하한은 3일 수 있으며, 하한이 3 미만인 경우에는 이산화탄소에 비해 수소 양이 지나치게 적으므로 메탄화 반응이 잘 일어나지 않으며, 식(3)의 반응이 일어날 가능성이 커지게 된다. 따라서 Ni계 활성 성분에 코크가 침적되어 활성이 저하될 우려가 있다. Meanwhile, in the methanation reaction using hydrogen and carbon dioxide, the stoichiometric ratio of hydrogen/carbon dioxide is 4, but the use of the catalyst for methane synthesis according to the present invention shows high carbon dioxide conversion and methane selectivity even when the hydrogen/carbon dioxide ratio is 4 or less. This is because, in the process in which the hygroscopic material contains and then releases moisture, a reverse reaction of the reaction of Formula (3) occurs, suppressing deactivation of the catalyst, and additionally supplying hydrogen. In the present invention, the lower limit of the hydrogen / carbon dioxide ratio may be 3, and when the lower limit is less than 3, the amount of hydrogen is too small compared to carbon dioxide, so the methanation reaction does not occur well, and the reaction of formula (3) is more likely to occur do. Therefore, there is a risk that coke is deposited on the Ni-based active component and its activity is lowered.

본 발명과 같이 메탄화 반응에서 흡습성 물질을 포함하는 촉매를 사용함으로써 Ni계 활성 성분에 코크가 침적되는 것을 방지할 수 있다. 뿐만 아니라, 코크와 수분이 반응함에 따라 추가 수소 공급이 가능하므로, 낮은 수소/이산화탄소 비율을 갖는 반응 조건에서도 이산화탄소 전환율 및 메탄 선택도를 높일 수 있다. As in the present invention, coke can be prevented from being deposited on the Ni-based active component by using a catalyst containing a hygroscopic material in the methanation reaction. In addition, since additional hydrogen can be supplied as the coke reacts with water, the carbon dioxide conversion rate and methane selectivity can be increased even under reaction conditions with a low hydrogen/carbon dioxide ratio.

실시예Example

이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for understanding of the present invention, but do not limit the present invention.

1. 실시예 11. Example 1

(1) Ni계 활성 성분 제조(1) Manufacture of Ni-based active ingredient

Ni 이온, Mg 이온, Fe 이온을 각각 40:10:5의 중량비로 함유하도록 금속 전구체 용액(1.2 M)을 제조하였다. 50℃에서 상기 금속 전구체 용액을 교반하여 금속 이온을 충분히 용해시켰다. A metal precursor solution (1.2 M) was prepared to contain Ni ions, Mg ions, and Fe ions in a weight ratio of 40:10:5, respectively. The metal precursor solution was stirred at 50° C. to sufficiently dissolve the metal ions.

상기 금속 전구체 용액에 농도가 15.7 M(30 중량%)인 암모니아수(NH4OH)를 투입하여 금속 이온을 침전시켰다. 금속 전구체 용액의 pH가 약 7-8이 되면 암모니아수의 투입을 중단하고, 초기 침전물을 숙성하기 위해 온도를 90℃로 승온한 후 2시간 동안 교반하였다. 숙성 후 침전물 함유 용액을 냉각시키고, 증류수를 추가로 공급하여 여과 및 세척함으로써 불필요한 이온들을 제거하였다. 여과한 침전물을 120℃ 오븐에 넣어 건조시킨 후, 소성로에서 600℃, 5시간 동안 소성하여 금속 산화물 형태로 전환하였다.Ammonia water (NH 4 OH) having a concentration of 15.7 M (30% by weight) was added to the metal precursor solution to precipitate metal ions. When the pH of the metal precursor solution reached about 7-8, the addition of ammonia water was stopped, and the temperature was raised to 90° C. to mature the initial precipitate, followed by stirring for 2 hours. After aging, the precipitate-containing solution was cooled, and filtered and washed by additionally supplying distilled water to remove unnecessary ions. The filtered precipitate was dried in an oven at 120° C., and then calcined in a furnace at 600° C. for 5 hours to convert to a metal oxide form.

(2) 메탄 합성용 촉매 제조(2) Preparation of catalyst for methane synthesis

상기 소성된 금속 산화물 90 중량%와 CHA형 제올라이트 10 중량%를 혼합하여 펠렛 형태의 메탄 합성용 촉매를 제조하였다. 직경이 1-3 mm인 상기 촉매 20mL를 반응기에 주입하고 600℃에서 5시간 동안 환원하여 40Ni10Mg5Fe 및 CHA형 제올라이트를 포함하는 메탄 합성용 촉매를 제조하였다. A pellet type catalyst for methane synthesis was prepared by mixing 90 wt% of the calcined metal oxide and 10 wt% of CHA-type zeolite. 20 mL of the catalyst having a diameter of 1-3 mm was injected into a reactor and reduced at 600° C. for 5 hours to prepare a catalyst for methane synthesis including 40Ni10Mg5Fe and CHA-type zeolite.

2. 비교예 12. Comparative Example 1

실시예와 동일한 방법으로 소성된 금속 산화물을 제조하였다. 상기 금속 산화물 20mL를 반응기에 주입하고 600℃에서 5시간 동안 환원하여 40Ni10Mg5Fe 형태의 Ni계 활성 성분을 제조하였다. A calcined metal oxide was prepared in the same manner as in Example. 20 mL of the metal oxide was injected into a reactor and reduced at 600° C. for 5 hours to prepare a Ni-based active component in the form of 40Ni10Mg5Fe.

3. 온도에 따른 이산화탄소 전환율, 메탄 선택도 측정3. Measurement of carbon dioxide conversion rate and methane selectivity according to temperature

실시예에서 제조된 메탄 합성용 촉매(40Ni10Mg5Fe + CHA형 제올라이트)를 H2 와 CO2가 3.8의 비율로 존재하는 반응기에 투입하고, 온도에 따른 이산화탄소 전환율과 메탄 선택도를 측정하였다. The catalyst for methane synthesis (40Ni10Mg5Fe + CHA-type zeolite) prepared in Example was introduced into a reactor in which H 2 and CO 2 were present at a ratio of 3.8, and carbon dioxide conversion and methane selectivity according to temperature were measured.

한편, 비교예의 Ni계 활성 성분(40Ni10Mg5Fe)을 H2 와 CO2가 4.0의 비율로 존재하는 반응기에 투입하고, 온도에 따른 이산화탄소 전환율과 메탄 선택도를 측정하였다.Meanwhile, the Ni-based active component (40Ni10Mg5Fe) of Comparative Example was introduced into a reactor in which H 2 and CO 2 were present at a ratio of 4.0, and carbon dioxide conversion and methane selectivity according to temperature were measured.

이산화탄소 전환율과 메탄 선택도는 가스 크로마토그래피(GC)를 통해 분석하였으며, 측정된 값을 하기 표 1, 도 1 및 도 2에 나타내었다.Carbon dioxide conversion and methane selectivity were analyzed through gas chromatography (GC), and the measured values are shown in Table 1, FIGS. 1 and 2 below.

온도 (℃)Temperature (℃) CO2 전환율 (%)CO 2 Conversion (%) CH4 선택도 (%)CH 4 selectivity (%) 40Ni10Mg5Fe40Ni10Mg5Fe 40Ni10Mg5Fe + CHA40Ni10Mg5Fe+CHA 40Ni10Mg5Fe40Ni10Mg5Fe 40Ni10Mg5Fe + CHA40Ni10Mg5Fe+CHA 450450 86.586.5 95.295.2 88.988.9 95.795.7 500500 86.986.9 94.294.2 85.585.5 93.493.4 600600 87.587.5 94.994.9 74.974.9 91.591.5 700700 88.488.4 95.395.3 55.255.2 82.182.1

비교예(40Ni10Mg5Fe)의 경우 온도가 증가함에 따라 이산화탄소 전환율은 약간 증가하여 450℃에서는 86.5%, 700℃에서는 88.4%의 이산화탄소 전환율을 나타내었다. 그러나 메탄 선택도는 온도가 증가할수록 급격하게 감소하여 450℃에서는 88.9%, 700℃에서는 55.2%의 메탄 선택도를 나타내었다. 이는 발열반응인 메탄 합성 반응의 특성에 따른 것이다.40Ni10Mg5Fe에 흡습성 물질인 CHA형 제올라이트를 혼합한 실시예의 경우, 비교예보다 높은 이산화탄소 전환율 및 메탄 선택도를 나타내었다. 구체적으로, 이산화탄소 전환율은 비교예에 비해 약 7% 정도 증가하였고, 이는 CHA형 제올라이트가 메탄화 반응 동안 발생한 수분을 흡수하여 반응의 평형이 메탄이 생성되는 방향으로 이동하였기 때문이다. 한편, 메탄 선택도는 비교예 대비 450℃에서 약 7%, 700℃에서 약 27% 증가하였는데, 이는 CHA형 제올라이트가 수분을 흡수하여 RWGS 반응보다 메탄화 반응이 우세하게 되었을 것으로 예상할 수 있다.In the case of the comparative example (40Ni10Mg5Fe), the carbon dioxide conversion rate slightly increased as the temperature increased, showing 86.5% at 450 °C and 88.4% at 700 °C. However, the methane selectivity rapidly decreased as the temperature increased, showing methane selectivities of 88.9% at 450 °C and 55.2% at 700 °C. This is due to the characteristics of the methane synthesis reaction, which is an exothermic reaction. In the case of the example in which 40Ni10Mg5Fe was mixed with the hygroscopic material CHA-type zeolite, the carbon dioxide conversion rate and methane selectivity were higher than those of the comparative example. Specifically, the carbon dioxide conversion rate was increased by about 7% compared to the comparative example, and this is because the CHA-type zeolite absorbed moisture generated during the methanation reaction, shifting the equilibrium of the reaction to the direction of methane production. On the other hand, the methane selectivity increased by about 7% at 450 ° C. and by about 27% at 700 ° C. compared to the comparative example.

4. 온도에 따른 질량 변화 측정4. Measurement of mass change with temperature

흡습성 물질의 첨가에 따른 코크 생성 정도를 확인하기 위해, 메탄화 반응 완료 후 실시예의 메탄 합성용 촉매(40Ni10Mg5Fe + CHA형 제올라이트)와 비교예의 Ni계 활성 성분(40Ni10Mg5Fe)을 취하여 열중량분석(TGA)을 실시하고 그 결과를 도 3에 나타내었다. In order to confirm the degree of coke production according to the addition of the hygroscopic material, after the completion of the methanation reaction, the catalyst for methane synthesis (40Ni10Mg5Fe + CHA-type zeolite) of Example and the Ni-based active component (40Ni10Mg5Fe) of Comparative Example were taken and subjected to thermogravimetric analysis (TGA) was carried out and the results are shown in Figure 3.

산소 분위기에서 500℃까지 승온하는 경우, 실시예와 비교예 모두 Ni가 NiO로 전환되면서 중량이 약 9-10% 증가하였다. 500℃ 이상에서는 40Ni10Mg5Fe에 침적된 코크가 산소와 반응하여 제거된다. 비교예의 경우 500℃~600℃ 구간에서 40Ni10Mg5Fe의 중량이 약 3% 감소하였고, 600~900℃ 구간에서는 중량이 약 1% 감소하였다. 반면 실시예의 경우 500℃~900℃에서 메탄 합성용 촉매의 중량이 1% 미만으로 감소하였다. 상기 결과는 비교예의 40Ni10Mg5Fe에 침적된 코크의 양이 많음을 의미한다. When the temperature was raised to 500 ° C. in an oxygen atmosphere, the weight increased by about 9-10% as Ni was converted to NiO in both Examples and Comparative Examples. Above 500 °C, coke deposited in 40Ni10Mg5Fe reacts with oxygen and is removed. In the case of the comparative example, the weight of 40Ni10Mg5Fe decreased by about 3% in the range of 500 ° C to 600 ° C, and the weight decreased by about 1% in the range of 600 to 900 ° C. On the other hand, in the case of the examples, the weight of the catalyst for methane synthesis was reduced to less than 1% at 500 ° C to 900 ° C. This result means that the amount of coke deposited in 40Ni10Mg5Fe of the comparative example is large.

이러한 결과로부터 메탄화 반응에서 흡습성 물질을 포함하는 촉매를 사용하는 경우, 흡습성 물질로부터 방출된 수분이 코크와 반응하여, 코크 침적이 억제되었음을 알 수 있다. From these results, it can be seen that when a catalyst containing a hygroscopic material was used in the methanation reaction, water released from the hygroscopic material reacted with coke, and coke deposition was suppressed.

Claims (5)

이산화탄소 및 수소를 양론비로 이산화탄소 1 분자 당 4 분자 이하의 수소 비율로 이용한 메탄 합성용 촉매로서,
CHA형 제올라이트인 흡습성 물질 0.1 내지 20 중량% 및 잔부의 활성성분을 포함하며, 상기 활성 성분은 Ni, Mg 및 Fe를 40:10:5의 중량비로 포함하며,
450℃ 이상의 온도에서 CH4 선택도를 갖는, 직경이 1-3mm인, 메탄 합성용 촉매.
A catalyst for methane synthesis using carbon dioxide and hydrogen at a stoichiometric ratio of less than 4 molecules of hydrogen per molecule of carbon dioxide,
0.1 to 20% by weight of a hygroscopic material that is a CHA type zeolite and the balance active component, wherein the active component includes Ni, Mg and Fe in a weight ratio of 40:10:5,
A catalyst for methane synthesis, 1-3 mm in diameter, having CH 4 selectivity at a temperature of 450° C. or higher.
제1항에 있어서,
상기 메탄 합성용 촉매는 CHA형 제올라이트인 흡습성 물질 5 내지 10 중량% 및 잔부의 활성성분을 포함하는, 메탄 합성용 촉매.
According to claim 1,
The catalyst for methane synthesis comprises 5 to 10% by weight of a hygroscopic material that is a CHA-type zeolite and the remainder of the active component.
Ni, Mg 및 Fe 이온 함유 금속 전구체 용액에 염기성 화합물을 투입하여 Ni, Mg 및 Fe 이온을 40:10:5의 중량비로 포함하는 활성 성분을 형성하는 단계, 및
상기 활성 성분과 CHA형 제올라이트인 흡습성 물질을, 흡습성 물질 0.1 내지 20 중량% 및 잔부 활성 성분을 포함하도록 혼합하는 단계를 포함하고,
이산화탄소 및 수소를 양론비로 이산화탄소 1 분자 당 4 분자 이하의 수소 비율로 이용하여 메탄을 합성하는, 메탄 합성용 촉매 제조방법.
Injecting a basic compound into a metal precursor solution containing Ni, Mg, and Fe ions to form an active component containing Ni, Mg, and Fe ions in a weight ratio of 40:10:5, and
Mixing the active ingredient and a hygroscopic material, which is a CHA type zeolite, to include 0.1 to 20% by weight of the hygroscopic material and the balance active ingredient,
A method for preparing a catalyst for methane synthesis, wherein methane is synthesized by using carbon dioxide and hydrogen at a stoichiometric ratio of less than 4 molecules of hydrogen per molecule of carbon dioxide.
제3항에 있어서,
상기 염기성 화합물은 금속 전구체 용액의 pH가 7 내지 9가 되도록 투입되는, 메탄 합성용 촉매 제조방법.
According to claim 3,
The basic compound is added so that the pH of the metal precursor solution is 7 to 9, method for preparing a catalyst for methane synthesis.
제3항에 있어서,
상기 메탄 합성용 촉매는 CHA형 제올라이트인 흡습성 물질 5 내지 10 중량% 및 잔부의 활성성분을 포함하는, 메탄 합성용 촉매 제조방법.
According to claim 3,
The method for preparing a catalyst for methane synthesis, wherein the catalyst for methane synthesis comprises 5 to 10% by weight of a hygroscopic material that is a CHA-type zeolite and the remainder of the active component.
KR1020220092555A 2020-01-31 2022-07-26 Catalyst for methane synthesis and preparation method thereof KR102531947B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220092555A KR102531947B1 (en) 2020-01-31 2022-07-26 Catalyst for methane synthesis and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200012197A KR20210098249A (en) 2020-01-31 2020-01-31 Catalyst for methane synthesis and preparation method thereof
KR1020220092555A KR102531947B1 (en) 2020-01-31 2022-07-26 Catalyst for methane synthesis and preparation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200012197A Division KR20210098249A (en) 2020-01-31 2020-01-31 Catalyst for methane synthesis and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20220110691A KR20220110691A (en) 2022-08-09
KR102531947B1 true KR102531947B1 (en) 2023-05-12

Family

ID=77316278

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200012197A KR20210098249A (en) 2020-01-31 2020-01-31 Catalyst for methane synthesis and preparation method thereof
KR1020220092555A KR102531947B1 (en) 2020-01-31 2022-07-26 Catalyst for methane synthesis and preparation method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200012197A KR20210098249A (en) 2020-01-31 2020-01-31 Catalyst for methane synthesis and preparation method thereof

Country Status (1)

Country Link
KR (2) KR20210098249A (en)

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Benjamin Mutz et al., Operando Raman spectroscopy on CO2 methanation ~ as possible deactivation pathway, Applied Catalysis A: General, 556, 160~171쪽, 2018.1.31.발행
C. Mebrahtu et al., Hydrotalcite based Ni-Fe/(Mg, Al)Ox catalysts ~ and particle size, Catal. Sci. Technol., 2018, 8, 1016~1027쪽, 2018.1.23.발행*
Chalachew Mebrahtu et al., Deactivation mechanism of hydrotalcite-derived ~ the role of Fe in limiting this effect, Catal. Sci. Technol., 2019,9, 4023~4035쪽, 2019.7.11.발행
Jiajian Gao et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv., 2012, 2, 2358~2368쪽, 2012.1.30.발행*
M. Carmen Bacariza et al., Tuning Zeolite Properties towards CO2 Methanation: An Overview, ChemCatChem2019, 11, 2388~2400쪽, 2019.3.25.발행
Novia Amalia Sholeha et al., Enhanced CO2 methanation at mild temperature on Ni/zeolite from kaolin: effect of metal-support interface, RSC Adv., 2021, 11, 16376~16387쪽, 2021.5.4.발행
R.Delmelle et al., Development of improved nickel catalysts for sorption enhanced CO2 methanation, International Journal of Hydrogen Energy, 41 (44), 20185~20191쪽, 2016.9.29.발행*
StefanRönsch et al., Review on methanation - From fundamentals to current projects, Fuel, 166, 276~296쪽, 2015.10.31.발행
Suk-Hwan Kang et al., Co-methanation of CO and CO2 on the NiX-Fe1- X/Al2O3 catalysts; effect of Fe contents, Korean J. Chem. Eng., 28(12), 2282~2286쪽, 2011.9.13.발행

Also Published As

Publication number Publication date
KR20210098249A (en) 2021-08-10
KR20220110691A (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US7001586B2 (en) CO-free hydrogen from decomposition of methane
KR101529906B1 (en) Process for operating hts reactor
EP3967395A2 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
KR20140067676A (en) Iron modified ni-based perovskite type catalyst, preparing method thereof, and producing method of synthesis gas from combined steam co2 reforming of methane using the same
KR20130066263A (en) A method for preparing reducing gas by using cokes oven gas and by-product gas from steel works
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
KR102531947B1 (en) Catalyst for methane synthesis and preparation method thereof
CN112473678A (en) Catalyst for wet-process coke quenching steam mixed reforming of methane and preparation method thereof
EP3596014B1 (en) Catalysts for the reforming of gaseous mixtures
EP0592958A1 (en) A process and a catalyst for producing of hydrogen
CN112569988B (en) Composition containing precipitated epsilon/epsilon' iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
JP2005288259A (en) Catalyst for reforming methane-containing gas and method for manufacturing synthetic gas
US20220048782A1 (en) Oxynitride hydride, supported metal material containing oxynitride hydride, and catalyst for ammonia synthesis
CN114100661A (en) Catalyst for preparing hydrogen by decomposing molybdenum-based ammonia and preparation method thereof
CN109954494B (en) Porous material, preparation method thereof and catalyst composition containing same
CN112569993A (en) Supported epsilon/epsilon' iron carbide-containing composition, preparation method thereof, catalyst and application thereof, and Fischer-Tropsch synthesis method
JP2010058043A (en) Method for manufacturing steam reforming catalyst and hydrogen
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
CN111905791A (en) Catalyst for preparing high-carbon alcohol from synthesis gas and preparation method thereof
KR101725293B1 (en) Nickel supported catalyst for combined steam and carbon dioxide reforming with natural gas
CN112569989B (en) Composition containing X iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
CN110721691A (en) CFAN catalyst, preparation thereof and application thereof in methane hydrogen production
CN112569977B (en) Composition containing precipitated type χ -iron carbide and theta-iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
CN112569994B (en) Composition containing multi-phase iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
CN112569995B (en) Composition containing epsilon/epsilon' iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant