WO2013187436A1 - Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas - Google Patents

Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas Download PDF

Info

Publication number
WO2013187436A1
WO2013187436A1 PCT/JP2013/066200 JP2013066200W WO2013187436A1 WO 2013187436 A1 WO2013187436 A1 WO 2013187436A1 JP 2013066200 W JP2013066200 W JP 2013066200W WO 2013187436 A1 WO2013187436 A1 WO 2013187436A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming catalyst
hydrocarbon
gas
solid solution
reforming
Prior art date
Application number
PCT/JP2013/066200
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 秀人
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013187436A1 publication Critical patent/WO2013187436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • B01J35/30
    • B01J35/40
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention for example, reforming a raw material gas containing a hydrocarbon such as methane to produce a synthesis gas containing hydrogen and carbon monoxide, a method for producing the reforming catalyst, And a method for producing synthesis gas.
  • Gases containing various hydrocarbons are generated from technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances, and a method for converting them into more effective substances is required. ing.
  • Carbon dioxide reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high carbon monoxide concentration by reacting a saturated hydrocarbon such as methane with carbon dioxide in the presence of a catalyst.
  • steam reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high hydrogen concentration by reacting a saturated hydrocarbon such as methane with steam in the presence of a catalyst.
  • the present inventor has proposed a reforming catalyst containing NiO—Sr 2 TiO 4 solid solution in which NiO is dissolved in Sr ⁇ Ti composite oxide as a reforming catalyst capable of suppressing such carbon deposition.
  • a catalyst has proposed a catalyst.
  • the production process of the synthesis gas used as a raw material is preferably performed at a higher pressure.
  • the higher the pressure during synthesis gas production the more likely the carbon deposition to occur on the reforming catalyst. Therefore, if a reforming catalyst that can further suppress the precipitation of carbon can be realized, synthesis gas can be produced under higher pressure.
  • the longer the time for producing the synthesis gas the more likely the carbon deposition to occur on the reforming catalyst. Therefore, if a reforming catalyst that can further suppress the deposition of carbon can be realized, the reforming catalyst can be used continuously over a longer period of time.
  • the present invention solves the above-mentioned problems, and further, while suppressing the precipitation of carbon, reacts a hydrocarbon-based source gas with at least one of carbon dioxide and water vapor to efficiently produce hydrogen and one. It is an object of the present invention to provide a reforming catalyst capable of producing carbon oxide, a production method thereof, and a production method of synthesis gas capable of efficiently producing hydrogen and carbon monoxide.
  • the hydrocarbon-based gas reforming catalyst of the present invention reforms a hydrocarbon-based raw material gas using at least one of carbon dioxide and water vapor, and contains carbon monoxide and hydrogen.
  • a hydrocarbon-based gas reforming catalyst used for generating synthesis gas the main component is a solid solution in which Co is dissolved in a composite oxide of Sr and Ti, and the number of moles of Ti is 1.0. In this case, the number of moles of Sr is in the range of 1.7 to 2.6.
  • the solid solution is preferably a Co—Sr 2 TiO 4 solid solution.
  • the solid solution is preferably a Co—Sr 3 Ti 2 O 7 solid solution.
  • the mole number of Ti when the mole number of Ti is 1.0, the mole number of Co is preferably in the range of 0.04 to 0.30.
  • the hydrocarbon gas reforming catalyst of the present invention is an oxide containing SrTiO 3 , SrCO 3 , and Co or Co produced by allowing carbon dioxide to act on the hydrocarbon gas reforming catalyst. It is preferable to consist of what contains.
  • a mixture containing TiO 2 , SrCO 3 and Co 3 O 4 is 900 ° C. It is preferable to include a step of heat treatment at the above temperature.
  • Co may be mixed in a metal state or a compound such as an oxide.
  • the method for producing a synthesis gas of the present invention comprises the step of preparing the hydrocarbon-based gas reforming catalyst, contacting the hydrocarbon-based gas reforming catalyst and a gas containing carbon dioxide, Carbon monoxide and hydrogen are brought into contact by bringing a pretreatment step, a pretreated hydrocarbon gas reforming catalyst, a hydrocarbon raw material gas, and a gas containing at least one of carbon dioxide and water vapor into contact with each other. And a step of producing a synthesis gas containing
  • a Co—Sr 2 TiO 4 solid solution in which Co is dissolved in the Sr ⁇ Ti composite oxide is produced, and then the Co—Sr 2 TiO 4 solid solution or Co—Sr 3 Ti is produced.
  • Carbon dioxide is allowed to act on the 2 O 7 solid solution to produce SrTiO 3 and SrCO 3, and at least one of Co or an oxide containing Co is deposited on the surface thereof.
  • the precipitated Co or Co-containing oxide becomes fine Co particles.
  • the reforming catalyst of the present invention containing the fine Co particles, it becomes possible to suppress carbon deposition even when the carbon dioxide reforming reaction is performed at a high pressure. It becomes possible to efficiently produce synthesis gas containing carbon monoxide.
  • the conversion rate to a synthetic product increases as the reaction is carried out at a high pressure. Therefore, the production process of the synthesis gas used as a raw material is preferably a high pressure.
  • the reforming catalyst produced by the method in which fine Co, Co-containing oxides, etc. are deposited is carbon as compared with the gas reforming catalyst of Patent Document 1, even under a higher pressure. It can be used without causing precipitation. Further, since the reaction at high pressure is possible, there is an advantage that the reaction apparatus in the reforming reaction can be made more compact.
  • the reforming catalyst produced by the method of the present invention functions as a catalyst when the following reaction is caused by circulating methane and carbon dioxide, which are hydrocarbons, at a high temperature of 700 ° C. to 1100 ° C., for example. .
  • the reaction of the formula (1) is fast, and the reaction rate of the formula (2) is relatively slow, so that the decomposition of CH 4 by the formula (1) proceeds more. Carbon may be deposited. Moreover, carbon may precipitate by the reverse reaction of Formula (2) progressing.
  • the reforming catalyst of the present invention has a reaction function of the formula (1) that is suppressed as compared with the gas reforming catalyst of Patent Document 1 due to the catalytic function of fine Co metal particles.
  • the balance of removing the carbon generated by the reaction of (1) by the reaction of the formula (2) is obtained, and as a result, carbon deposition can be suppressed.
  • the reforming catalyst produced by the method of the present invention is also effective as a catalyst for causing a reaction represented by the following formula (4) between methane, which is a hydrocarbon, and steam at a high temperature. work.
  • the reforming catalyst produced by the method of the present invention comprises a carbon dioxide reforming reaction in which methane, which is a hydrocarbon, and carbon dioxide are reacted as in the above formulas (1) to (3), and a hydrocarbon.
  • Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt tetroxide (Co 3 O 4 ) were converted into a mole of Sr: Ti: Co. They were weighed and mixed so that the ratio was 2.00: 1.00: 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the resulting granular material was calcined in air at 1100 ° C. for 1 h to obtain a reforming catalyst B.
  • Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt tetroxide (Co 3 O 4 ) were converted into a mole of Sr: Ti: Co. They were weighed and mixed so that the ratio was 2.60: 1.00: 0.30. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. And the reforming catalyst H was obtained by baking the obtained granular material in air on 1100 degreeC and 1h conditions.
  • the obtained diffraction line is a diffraction line of SrTiO 3 , SrCO 3 and Co oxide, and is a mixture of SrTiO 3 , SrCO 3 and Co oxide.
  • the catalysts of the examples are “Co—Sr 2 TiO 4 solid solution”, “Co—Sr 3 Ti 2 O 7 solid solution”, or “Co—Sr 2 TiO 4 solid solution and Co—Sr 3 Ti 2 O 7”. It is a catalyst composed of “both solid solutions”.
  • Co solid solution catalysts can be obtained when the mole number of Ti is 1.0 and the mole number of Sr is 1.7 to 2.6 and the mole number of Co is 0.04 to 0.3.
  • thermogravimetric measurement was performed under the flow of carbon dioxide.
  • carbon and carbon dioxide deposited on the sample were reacted as shown in the following formula (5), and the decrease in the sample weight was estimated as the carbon deposition amount.
  • the reforming catalysts A to I, K showed a methane conversion rate close to the equilibrium gas composition under the conditions of 800 ° C. and 9 atm. Did not come. Therefore, it can be seen that the reforming catalyst reforming catalysts A to I, K that form a solid solution with respect to the reforming catalyst J that does not form a solid solution are preferable from the viewpoint of methane conversion.
  • the reforming catalysts A to I have a carbon deposition amount of less than 10% by weight, whereas the reforming catalyst K has a carbon deposition amount of more than 10% by weight and 25.8% by weight. From this result, it can be seen that carbon deposition is suppressed in the reforming catalysts A to I using Co rather than the reforming catalyst K using Ni.
  • the reforming catalyst K corresponds to the reforming catalyst described in Patent Document 1 previously proposed by the inventor, but the amount of carbon deposition is higher than that of Patent Document 1. This is because the reforming test is reforming at 9 atm and high pressure. Therefore, unless it is such a severe condition, the reforming catalyst K has a sufficient effect of suppressing carbon deposition.
  • the reforming catalyst B has a much smaller carbon deposition amount even though the amount of Co added is the same. Further, the amount of carbon deposition tends to increase as the amount of Co added increases, but the reforming catalyst E to which Co is added three times or more of the reforming catalyst J is higher than the reforming catalyst J. Less carbon deposition. From this result, the catalyst A ⁇ I reforming the Co component forms a Sr 2 TiO 4 phase and solid solution than Co component does not form a Sr 2 TiO 4 phase and solid solution reforming catalyst J It turns out that the effect which suppresses carbon precipitation is remarkable.
  • the amount of Co added in the reforming catalysts A to I is preferably small.
  • the amount of Co added in the reforming catalyst I exceeds the amount of carbon deposition because the amount of carbon deposition approaches 10% by weight. Therefore, the amount of Co is preferably 0.04 to 0.30 mol with respect to Ti: 1.00 mol.
  • the reforming catalysts A to I are filled in the reaction tube 1 in a state of containing the Co—Sr 2 TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution. It is not a thing.
  • a Co—Sr 2 TiO 4 solid solution or a Co—Sr 3 Ti 2 O 7 solid solution is reacted with carbon dioxide to form a mixture of SrTiO 3 , SrCO 3 and an oxide containing Co or Co.
  • the reaction tube 1 may be filled.
  • Co oxide may be reduced to metal Co with a reducing gas such as H 2 and then charged into reaction tube 1. Either the reaction with carbon dioxide or the reduction may be first.
  • the reforming catalyst J is a mixture of SrTiO 3 , SrCO 3 and an oxide containing Co or Co after the reforming test, and after the reforming tests A to I and the reforming test.
  • the state of is similar.
  • the maximum catalyst particle diameter of the reforming catalyst J is about 300 nm
  • the metal particle diameter of the other reforming catalyst is about 50 nm.
  • the metal particle diameter is large. It is considered that this is because the reforming catalyst E is not once in a solid solution state.
  • FIGS. 2A is a TEM image of the reforming catalyst A before the reforming test
  • FIG. 2B is a TEM image of the reforming catalyst A after the reforming test
  • 3A is a Co mapping image by EDX of the reforming catalyst A before the reforming test in the same field of view as FIG. 2A
  • FIG. 3B is a diagram of the reforming catalyst A after the reforming test. It is Co mapping image by EDX in the same visual field as 2 (b).
  • FIG. 3B Comparing FIG. 2A before the modification test and FIG. 2B after the modification test, black particles of about 50 nm are deposited on the surface of the crystal in FIG. 2B. In FIG. 3B, this black particle is Co. 3A, it can be seen that Co is uniformly dispersed in each part before the reforming test and that segregated and precipitated after the reforming as seen in FIG. 3B.
  • the temperature condition is usually 700 ° C. or higher, pressure It is desirable to carry out under conditions of 3 atm or more as conditions.
  • the present invention is not limited to the above-described examples, but the conditions in the step of forming a Co—Sr 2 TiO 4 solid solution or a Co—Sr 3 Ti 2 O 7 solid solution, Co—Sr 2 A step of causing carbon dioxide to act on the TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution to generate SrTiO 3 and SrCO 3 , and generating at least one of Co or Co oxide on the surface thereof.
  • Various applications and modifications can be made within the scope of the invention with respect to the conditions in FIG.
  • carbon dioxide reforming for reforming by reacting hydrocarbon and carbon dioxide As described above, according to the present invention, carbon dioxide reforming for reforming by reacting hydrocarbon and carbon dioxide, steam reforming for reforming by reacting hydrocarbon and steam, or carbon dioxide and steam Even when used in any reforming reaction using both of these, the synthesis gas containing hydrogen and carbon monoxide is efficiently produced from the hydrocarbon-based source gas while suppressing the precipitation of carbon. This makes it possible to efficiently produce a reforming catalyst that can be used.
  • the present invention can be widely applied to the field of reforming catalysts and the technical field related to the production of synthesis gas containing at least one of hydrogen and carbon monoxide.

Abstract

Provided are: a reforming catalyst which can make a hydrocarbon-based raw material gas react with carbon dioxide and/or steam while minimizing the deposition of carbon, and thus enables efficient production of hydrogen and carbon monoxide; a method for preparing the same; and a process for manufacturing a synthesis gas. The present invention pertains to a method for preparing a reforming catalyst which comprises SrTiO3, SrCO3 and Co as main components, said method including a step for forming a Co-Sr2TiO4 or Co-Sr3Ti2O7 solid solution which is a solid solution of Co in an Sr/Ti composite oxide and then making carbon dioxide act on the solid solution to form SrTiO3, SrCO3, and Co and/or a Co-containing oxide. In the catalyst, the content of Sr is adjusted to 1.7 to 2.6 moles per mole of Ti. The present invention also pertains to a process for manufacturing a synthesis gas, said process comprising passing a gas which comprises a raw material gas and carbon dioxide and/or steam through a reformer packed with the reforming catalyst to manufacture a synthesis gas that contains both carbon monoxide and hydrogen.

Description

改質用触媒、その製造方法、および合成ガスの製造方法Reforming catalyst, method for producing the same, and method for producing synthesis gas
 本発明は、たとえば、メタンなどの炭化水素を含む原料ガスを改質して、水素および一酸化炭素を含む合成ガスを製造する際に用いられる改質用触媒、改質用触媒の製造方法、および合成ガスの製造方法に関する。 The present invention, for example, reforming a raw material gas containing a hydrocarbon such as methane to produce a synthesis gas containing hydrogen and carbon monoxide, a method for producing the reforming catalyst, And a method for producing synthesis gas.
 石油精製や石油化学などの技術分野からは種々の炭化水素を含むガスが発生するが、必ずしも効率よく種々の物質の原料ガスとして利用できておらず、より有効な物質に変換する方法が求められている。 Gases containing various hydrocarbons are generated from technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances, and a method for converting them into more effective substances is required. ing.
 このような状況の下で、炭化水素を改質することによって水素および一酸化炭素を含む合成ガスを製造する方法として、炭化水素の二酸化炭素改質、炭化水素の水蒸気改質、飽和炭化水素に対して二酸化炭素と水蒸気の両方を触媒の存在下に反応させる二酸化炭素と水蒸気の併用改質などの方法が知られている。 Under these circumstances, as a method for producing synthesis gas containing hydrogen and carbon monoxide by reforming hydrocarbon, carbon dioxide reforming of hydrocarbon, steam reforming of hydrocarbon, saturated hydrocarbon On the other hand, methods such as combined reforming of carbon dioxide and steam in which both carbon dioxide and steam react in the presence of a catalyst are known.
 炭化水素の二酸化炭素改質は、メタンなどの飽和炭化水素と二酸化炭素とを触媒の存在下に反応させ、比較的一酸化炭素濃度の高い合成ガスを製造するのに適している。 Carbon dioxide reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high carbon monoxide concentration by reacting a saturated hydrocarbon such as methane with carbon dioxide in the presence of a catalyst.
 一方、炭化水素の水蒸気改質は、メタンなどの飽和炭化水素と水蒸気とを触媒の存在下に反応させ、比較的水素濃度の高い合成ガスを製造するのに適している。 On the other hand, steam reforming of hydrocarbons is suitable for producing a synthesis gas having a relatively high hydrogen concentration by reacting a saturated hydrocarbon such as methane with steam in the presence of a catalyst.
 また、メタンなどの飽和炭化水素に対して二酸化炭素と水蒸気の両方を触媒の存在下に反応させる二酸化炭素と水蒸気の併用改質の方法には、二酸化炭素と水蒸気の割合を調整することで、製造される合成ガスの水素と一酸化炭素の比を調整できるという利点がある。 In addition, in the method of combined reforming of carbon dioxide and steam in which both carbon dioxide and steam react with saturated hydrocarbons such as methane in the presence of a catalyst, by adjusting the ratio of carbon dioxide and steam, There is an advantage that the ratio of hydrogen and carbon monoxide in the produced synthesis gas can be adjusted.
 これら炭化水素ガスの改質では、炭化水素が分解する過程で触媒上に炭素が析出することがある。触媒上に析出する炭素は徐々に蓄積して触媒活性を低下させ、多量に析出した場合には反応管を閉塞させるおそれがある。このような炭素析出を抑制するために、炭化水素に水蒸気を用いる改質においては、水蒸気と炭化水素の比(以下「水蒸気/炭化水素比」)を高く設定し、水蒸気を過剰に導入しなければならないという問題があった。一方、炭化水素の二酸化炭素改質においては、炭化水素改質条件で炭素の析出を抑制することが困難であった。 In the reforming of these hydrocarbon gases, carbon may be deposited on the catalyst during the process of hydrocarbon decomposition. The carbon deposited on the catalyst gradually accumulates to lower the catalytic activity, and if it is deposited in large quantities, the reaction tube may be blocked. In order to suppress such carbon deposition, in reforming using steam as a hydrocarbon, the ratio of steam to hydrocarbon (hereinafter referred to as “steam / hydrocarbon ratio”) must be set high, and steam must be introduced excessively. There was a problem that had to be done. On the other hand, in carbon dioxide reforming of hydrocarbons, it has been difficult to suppress carbon deposition under hydrocarbon reforming conditions.
 このため、炭化水素の水蒸気改質や二酸化炭素改質において、炭素の析出を抑制できる改質用触媒が望まれていた。 For this reason, a reforming catalyst capable of suppressing carbon deposition in hydrocarbon steam reforming and carbon dioxide reforming has been desired.
 そこで、本発明者は、このような炭素の析出を抑制できる改質用触媒として、特許文献1において、NiOがSr・Ti複合酸化物に固溶したNiO-Sr2TiO4固溶体を含む改質用触媒を提案している。 Therefore, the present inventor has proposed a reforming catalyst containing NiO—Sr 2 TiO 4 solid solution in which NiO is dissolved in Sr · Ti composite oxide as a reforming catalyst capable of suppressing such carbon deposition. Has proposed a catalyst.
国際公開第2010/143676号パンフレットInternational Publication No. 2010/143676 Pamphlet
 本発明が先に提案した改質用触媒を用いると、炭化水素に水蒸気を用いる改質においては、水蒸気の比率を高くすることなく、炭素の析出を抑制することができる。また、先に提案した改質用触媒を用いると、炭化水素に二酸化炭素を用いる改質においても、従来の改質用触媒と比較して、炭素の析出を抑制することができる。 When the reforming catalyst previously proposed by the present invention is used, carbon reforming can be suppressed without increasing the ratio of steam in reforming using steam as a hydrocarbon. In addition, when the previously proposed reforming catalyst is used, carbon deposition can be suppressed even in reforming using carbon dioxide as a hydrocarbon compared to conventional reforming catalysts.
 しかしながら、先に提案した改質用触媒で、従来の改質用触媒に比較して格段に炭素の析出を抑制することができたが、次のような理由により、さらに炭素析出の抑制を望まれている。 However, although the previously proposed reforming catalyst was able to significantly suppress carbon deposition compared to the conventional reforming catalyst, it was desired to further suppress carbon deposition for the following reasons. It is rare.
 化学合成においては、高圧で反応を行わせるほど反応物への転化率が上昇するため、原料として使用する合成ガスの製造工程も、高圧で行われることが望ましい。一般に、合成ガス製造時の圧力が高いほど、改質用触媒に対して炭素の析出が生じやすくなる傾向にある。したがって、より炭素の析出を抑制することができる改質用触媒が実現できれば、より高圧下での合成ガスの製造が可能となる。 In chemical synthesis, since the conversion rate to the reactant increases as the reaction is performed at a higher pressure, the production process of the synthesis gas used as a raw material is preferably performed at a higher pressure. In general, the higher the pressure during synthesis gas production, the more likely the carbon deposition to occur on the reforming catalyst. Therefore, if a reforming catalyst that can further suppress the precipitation of carbon can be realized, synthesis gas can be produced under higher pressure.
 また、合成ガス製造時の温度が低いほど、改質用触媒に対して炭素の析出が生じやすくなる傾向にある。したがって、より炭素の析出を抑制することができる改質用触媒が実現できれば、より低温での合成ガスの製造が可能となる。 Also, the lower the temperature during synthesis gas production, the more likely the carbon deposition to occur on the reforming catalyst. Therefore, if a reforming catalyst capable of further suppressing carbon deposition can be realized, synthesis gas can be produced at a lower temperature.
 さらに、合成ガス製造時の時間が長いほど、改質用触媒に対して炭素の析出が生じやすくなる傾向にある。したがって、より炭素の析出を抑制することができる改質用触媒が実現できれば、より長期間での改質用触媒の連続使用が可能となる。 Furthermore, the longer the time for producing the synthesis gas, the more likely the carbon deposition to occur on the reforming catalyst. Therefore, if a reforming catalyst that can further suppress the deposition of carbon can be realized, the reforming catalyst can be used continuously over a longer period of time.
 本発明は、上記課題を解決するものであり、さらに炭素の析出を抑制しつつ、炭化水素系の原料ガスと、二酸化炭素または水蒸気の少なくともいずれか一方とを反応させ、効率的に水素および一酸化炭素を生成させることが可能な改質用触媒、その製造方法、および効率的に水素および一酸化炭素を生成させることが可能な合成ガスの製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and further, while suppressing the precipitation of carbon, reacts a hydrocarbon-based source gas with at least one of carbon dioxide and water vapor to efficiently produce hydrogen and one. It is an object of the present invention to provide a reforming catalyst capable of producing carbon oxide, a production method thereof, and a production method of synthesis gas capable of efficiently producing hydrogen and carbon monoxide.
 上記課題を解決するために、本発明の炭化水素系ガス改質用触媒は、炭化水素系の原料ガスを二酸化炭素および水蒸気の少なくとも一方を用いて改質し、一酸化炭素と水素とを含む合成ガスを生成するために用いられる、炭化水素系ガス改質用触媒であって、SrおよびTiの複合酸化物にCoが固溶した固溶体を主成分とし、Tiのモル数を1.0とした場合、Srのモル数が1.7~2.6の範囲であることを特徴とすることを特徴としている。 In order to solve the above problems, the hydrocarbon-based gas reforming catalyst of the present invention reforms a hydrocarbon-based raw material gas using at least one of carbon dioxide and water vapor, and contains carbon monoxide and hydrogen. A hydrocarbon-based gas reforming catalyst used for generating synthesis gas, the main component is a solid solution in which Co is dissolved in a composite oxide of Sr and Ti, and the number of moles of Ti is 1.0. In this case, the number of moles of Sr is in the range of 1.7 to 2.6.
 また本発明の炭化水素系ガス改質用触媒は、前記固溶体が、Co-Sr2TiO4固溶体であることが好ましい。 In the hydrocarbon gas reforming catalyst of the present invention, the solid solution is preferably a Co—Sr 2 TiO 4 solid solution.
 また本発明の炭化水素系ガス改質用触媒は、前記固溶体が、Co- Sr3Ti27固溶体であることが好ましい。 In the hydrocarbon gas reforming catalyst of the present invention, the solid solution is preferably a Co—Sr 3 Ti 2 O 7 solid solution.
 また本発明の炭化水素系ガス改質用触媒は、Tiのモル数を1.0とした場合、Coのモル数が0.04~0.30の範囲であることが好ましい。 In the hydrocarbon-based gas reforming catalyst of the present invention, when the mole number of Ti is 1.0, the mole number of Co is preferably in the range of 0.04 to 0.30.
 また、本発明の炭化水素系ガス改質用触媒は、前記炭化水素系ガス改質用触媒に、二酸化炭素を作用させることにより生じたSrTiO3と、SrCO3と、CoまたはCoを含む酸化物とを含んだものからなることが好ましい。 Further, the hydrocarbon gas reforming catalyst of the present invention is an oxide containing SrTiO 3 , SrCO 3 , and Co or Co produced by allowing carbon dioxide to act on the hydrocarbon gas reforming catalyst. It is preferable to consist of what contains.
 また、本発明の炭化水素系ガス改質用触媒の製造方法は、CoとSrとTiとの固溶体酸化物を生成させるにあたって、TiO2とSrCO3とCo34とを含む混合物を900℃以上の温度で熱処理する工程を含むことが好ましい。なお、Coは金属の状態でも酸化物などの化合物の状態で混合されていても良い。 Further, in the method for producing a hydrocarbon gas reforming catalyst according to the present invention, when a solid solution oxide of Co, Sr and Ti is produced, a mixture containing TiO 2 , SrCO 3 and Co 3 O 4 is 900 ° C. It is preferable to include a step of heat treatment at the above temperature. Co may be mixed in a metal state or a compound such as an oxide.
 また、本発明の合成ガスの製造方法は、前記炭化水素系ガス改質用触媒を準備する工程と、その炭化水素系ガス改質用触媒と、二酸化炭素を含むガスとを接触させることにより、前処理する工程と、前処理した炭化水素系ガス改質用触媒と、炭化水素系の原料ガスと、二酸化炭素および水蒸気の少なくとも一方とを含むガスとを接触させることにより、一酸化炭素と水素とを含む合成ガスを生成させる工程と、を含むことが好ましい。 Further, the method for producing a synthesis gas of the present invention comprises the step of preparing the hydrocarbon-based gas reforming catalyst, contacting the hydrocarbon-based gas reforming catalyst and a gas containing carbon dioxide, Carbon monoxide and hydrogen are brought into contact by bringing a pretreatment step, a pretreated hydrocarbon gas reforming catalyst, a hydrocarbon raw material gas, and a gas containing at least one of carbon dioxide and water vapor into contact with each other. And a step of producing a synthesis gas containing
 本発明の改質用触媒の製造方法は、CoがSr・Ti複合酸化物に固溶したCo-Sr2TiO4固溶体を生成させた後、Co-Sr2TiO4固溶体またはCo- Sr3Ti27固溶体に二酸化炭素を作用させて、SrTiO3とSrCO3とを生成し、その表面にCoまたはCoを含む酸化物の少なくともいずれか一方を析出させている。この析出したCoやCoを含む酸化物が微細なCo粒子となる。 In the method for producing the reforming catalyst of the present invention, a Co—Sr 2 TiO 4 solid solution in which Co is dissolved in the Sr · Ti composite oxide is produced, and then the Co—Sr 2 TiO 4 solid solution or Co—Sr 3 Ti is produced. Carbon dioxide is allowed to act on the 2 O 7 solid solution to produce SrTiO 3 and SrCO 3, and at least one of Co or an oxide containing Co is deposited on the surface thereof. The precipitated Co or Co-containing oxide becomes fine Co particles.
 そして、この微細なCo粒子を含む本発明の改質用触媒を用いることにより、高圧で二酸化炭素改質反応を行わせた場合にも、炭素の析出を抑制することが可能になり、水素および一酸化炭素を含む合成ガスを効率良く製造することが可能になる。 Then, by using the reforming catalyst of the present invention containing the fine Co particles, it becomes possible to suppress carbon deposition even when the carbon dioxide reforming reaction is performed at a high pressure. It becomes possible to efficiently produce synthesis gas containing carbon monoxide.
 すなわち、Coが固溶したSr2TiO4またはCoが固溶したSr3Ti27を経て、SrTiO3と、SrCO3と、Coとを含む改質用触媒を製造するようにした場合、Coが一旦Sr2TiO4またはSr3Ti27に固溶するため、その後に析出するCoやCoを含む酸化物等は微細粒子となる。その結果、高圧で炭化水素系の原料ガスと、二酸化炭素または水蒸気の少なくともいずれか一方とを反応させ、改質反応を行わせた場合にも、炭素の析出を抑制することが可能な改質用触媒を得ることが可能になる。 That is, when a reforming catalyst containing SrTiO 3 , SrCO 3 , and Co is produced through Sr 2 TiO 4 in which Co is dissolved or Sr 3 Ti 2 O 7 in which Co is dissolved, Since Co once forms a solid solution in Sr 2 TiO 4 or Sr 3 Ti 2 O 7 , Co and Co-containing oxides and the like which are subsequently precipitated become fine particles. As a result, reforming capable of suppressing carbon deposition even when a hydrocarbon-based source gas is reacted with at least one of carbon dioxide and water vapor at a high pressure to cause a reforming reaction. It becomes possible to obtain a catalyst for use.
 なお、化学合成においては、高圧で反応を行わせるほど合成品への転化率が上昇するため、原料として使用する合成ガスの製造過程も、高圧であることが望ましいとされているが、本発明の方法で製造される、微細なCoやCoを含む酸化物等が析出した改質用触媒は、上述のように、特許文献1のガス改質触媒と比較しても、さらに高圧下でも炭素の析出を招くことなく使用することが可能である。また、高圧での反応が可能になることにより、改質反応における反応装置をさらにコンパクトにできるというメリットもある。 In chemical synthesis, the conversion rate to a synthetic product increases as the reaction is carried out at a high pressure. Therefore, the production process of the synthesis gas used as a raw material is preferably a high pressure. As described above, the reforming catalyst produced by the method in which fine Co, Co-containing oxides, etc. are deposited is carbon as compared with the gas reforming catalyst of Patent Document 1, even under a higher pressure. It can be used without causing precipitation. Further, since the reaction at high pressure is possible, there is an advantage that the reaction apparatus in the reforming reaction can be made more compact.
 本発明の方法で製造される改質用触媒は、例えば、700℃~1100℃の高温において、炭化水素であるメタンと二酸化炭素を流通させることにより、以下の反応を生じさせる場合の触媒として働く。 The reforming catalyst produced by the method of the present invention functions as a catalyst when the following reaction is caused by circulating methane and carbon dioxide, which are hydrocarbons, at a high temperature of 700 ° C. to 1100 ° C., for example. .
式1 Formula 1
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
式2 Formula 2
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
式3 Formula 3
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 なお、メタン(CH4)の二酸化炭素改質反応においては、式(1)のCH4の分解反応および式(2)のCOを生成する反応が進行し、結果として式(3)により二酸化炭素改質反応が表される。 In the carbon dioxide reforming reaction of methane (CH 4 ), the decomposition reaction of CH 4 of formula (1) and the reaction of generating CO of formula (2) proceed, and as a result, carbon dioxide is expressed by formula (3). A reforming reaction is represented.
 特許文献1のガス改質触媒では、式(1)の反応が早く、それに比べて式(2)の反応速度が比較的遅くなるため、式(1)によるCH4の分解の方が進行して、炭素が析出する場合がある。また、式(2)の逆反応が進行することで炭素が析出する場合がある。 In the gas reforming catalyst of Patent Document 1, the reaction of the formula (1) is fast, and the reaction rate of the formula (2) is relatively slow, so that the decomposition of CH 4 by the formula (1) proceeds more. Carbon may be deposited. Moreover, carbon may precipitate by the reverse reaction of Formula (2) progressing.
 これに対して、本発明の改質用触媒は、微細なCo金属粒子の触媒機能により、式(1)の反応が特許文献1のガス改質触媒と比較して抑えられているので、式(1)の反応によって発生した炭素を、式(2)の反応により除去するバランスがとれて、結果的に炭素析出を抑制することができる。 On the other hand, the reforming catalyst of the present invention has a reaction function of the formula (1) that is suppressed as compared with the gas reforming catalyst of Patent Document 1 due to the catalytic function of fine Co metal particles. The balance of removing the carbon generated by the reaction of (1) by the reaction of the formula (2) is obtained, and as a result, carbon deposition can be suppressed.
 また、本発明の方法で製造される改質用触媒は、高温において、炭化水素であるメタンと水蒸気との、以下の式(4)で表される反応を生じさせる場合の触媒としても有効に働く。 Further, the reforming catalyst produced by the method of the present invention is also effective as a catalyst for causing a reaction represented by the following formula (4) between methane, which is a hydrocarbon, and steam at a high temperature. work.
式4 Formula 4
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 さらに、本発明の方法で製造される改質用触媒は、炭化水素であるメタンと二酸化炭素とを上記の式(1)~(3)のように反応させる二酸化炭素改質反応と、炭化水素であるメタンと水蒸気とを上記式(4)のように反応させる水蒸気改質反応とを同時に行わせて、H2とCOの割合が、例えば、体積比でH2/CO=3~1の合成ガスを得る場合にもガス改質触媒として有効に働くものである。 Furthermore, the reforming catalyst produced by the method of the present invention comprises a carbon dioxide reforming reaction in which methane, which is a hydrocarbon, and carbon dioxide are reacted as in the above formulas (1) to (3), and a hydrocarbon. And a steam reforming reaction in which methane and steam react as shown in the above formula (4) at the same time, and the ratio of H 2 and CO is, for example, H 2 / CO = 3 to 1 in volume ratio Even when a synthesis gas is obtained, it works effectively as a gas reforming catalyst.
本発明の実施例にかかる合成ガスの製造方法を実施するのに用いた試験装置の概略構成を示す図である。It is a figure which shows schematic structure of the test apparatus used in order to implement the manufacturing method of the synthesis gas concerning the Example of this invention. 本発明の実施例において製造した改質用触媒Aの改質試験前のTEM像を示す図である。It is a figure which shows the TEM image before the reforming test of the reforming catalyst A manufactured in the Example of this invention. 改質用触媒Aの改質試験後のTEM像を示す図である。It is a figure which shows the TEM image after the reforming test of the reforming catalyst A. 本発明の実施例において製造した改質用触媒Aの改質試験前のCoに関するEDXマッピング像を示す図である。It is a figure which shows the EDX mapping image regarding Co before the reforming test of the reforming catalyst A manufactured in the Example of this invention. 改質用触媒Aの改質試験後のCoに関するEDXマッピング像を示す図である。It is a figure which shows the EDX mapping image regarding Co after the reforming test of the reforming catalyst A. 実施例の触媒BとEのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the catalyst B and E of an Example. 実施例の触媒FとHのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the catalyst F and H of an Example. 実施例の触媒GとIのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the catalysts G and I of an Example.
 以下に本発明の実施例を示して、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention.
[1]改質用触媒の製造
 (1)本発明の実施例にかかる改質用触媒Aの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.04となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において1100℃、1hの条件で焼成することにより改質用触媒Aを得た。
[1] Production of reforming catalyst (1) Production of reforming catalyst A according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt trioxide (Co 3 O 4 ) Were weighed and mixed so that the molar ratio of Sr: Ti: Co was 2.00: 1.00: 0.04. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the resulting granular material was calcined in air at 1100 ° C. for 1 hour to obtain a reforming catalyst A.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase.
 (2)本発明の実施例にかかる改質用触媒Bの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.09となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Bを得た。
(2) Production of reforming catalyst B according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt tetroxide (Co 3 O 4 ) were converted into a mole of Sr: Ti: Co. They were weighed and mixed so that the ratio was 2.00: 1.00: 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the resulting granular material was calcined in air at 1100 ° C. for 1 h to obtain a reforming catalyst B.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた(図4)。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase (FIG. 4).
 (3)本発明の実施例にかかる改質用触媒Cの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.14となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Cを得た。
(3) Production of reforming catalyst C according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and cobalt tetroxide (Co 3 O 4 ) They were weighed and mixed so that the ratio was 2.00: 1.00: 0.14. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the obtained granular material was calcined in air at 1100 ° C. for 1 hour to obtain a reforming catalyst C.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase.
 (4)本発明の実施例にかかる改質用触媒Dの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.20となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Dを得た。
(4) Production of reforming catalyst D according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt trioxide (Co 3 O 4 ) They were weighed and mixed so that the ratio was 2.00: 1.00: 0.20. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the reformed catalyst D was obtained by calcining the obtained granular material in air at 1100 ° C. for 1 hour.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase.
 (5)本発明の実施例にかかる改質用触媒Eの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.30となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Eを得た。
(5) Production of reforming catalyst E according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and cobalt tetroxide (Co 3 O 4 ) The mixture was weighed and mixed so that the ratio was 2.00: 1.00: 0.30. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the resulting granular material was calcined in air at 1100 ° C. for 1 hour to obtain a reforming catalyst E.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線とSr3Ti27構造の回折線であり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相もしくはSr3Ti27相と固溶体を形成していると考えられた(図4)。 As a result of performing X-ray diffraction measurement on the obtained fired body, it was confirmed that the diffraction line of the Sr 2 TiO 4 structure and the diffraction line of the Sr 3 Ti 2 O 7 structure, and the diffraction lines derived from Co oxide were Since it was not confirmed, it was considered that the added Co component formed a solid solution with the Sr 2 TiO 4 phase or the Sr 3 Ti 2 O 7 phase (FIG. 4).
 (6)本発明の実施例にかかる改質用触媒Fの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.18:1.00:0.09となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Fを得た。
(6) Production of reforming catalyst F according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt tetroxide (Co 3 O 4 ) were converted to a mole of Sr: Ti: Co. The mixture was weighed and mixed so that the ratio was 2.18: 1.00: 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the reformed catalyst F was obtained by calcining the obtained granular material in air at 1100 ° C. for 1 hour.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた(図5)。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase (FIG. 5).
 (7)本発明の実施例にかかる改質用触媒Gの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が1.91:1.00:0.09となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Gを得た。
(7) Production of reforming catalyst G according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and cobalt trioxide (Co 3 O 4 ) The mixture was weighed and mixed so that the ratio was 1.91: 1.00: 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, a reforming catalyst G was obtained by calcining the obtained granular material in air at 1100 ° C. for 1 hour.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線とSr3Ti27構造の回折線であり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相もしくはSr3Ti27相と固溶体を形成していると考えられた( 図6)。 As a result of performing X-ray diffraction measurement on the obtained fired body, it was confirmed that the diffraction line of the Sr 2 TiO 4 structure and the diffraction line of the Sr 3 Ti 2 O 7 structure, and the diffraction lines derived from Co oxide were Since it was not confirmed, it was considered that the added Co component formed a solid solution with the Sr 2 TiO 4 phase or the Sr 3 Ti 2 O 7 phase (FIG. 6).
 (8)本発明の実施例にかかる改質用触媒Hの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.60:1.00:0.30となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Hを得た。
(8) Production of reforming catalyst H according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and cobalt tetroxide (Co 3 O 4 ) were converted into a mole of Sr: Ti: Co. They were weighed and mixed so that the ratio was 2.60: 1.00: 0.30. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. And the reforming catalyst H was obtained by baking the obtained granular material in air on 1100 degreeC and 1h conditions.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr2TiO4相と固溶体を形成していると考えられた(図5)。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase (FIG. 5).
 (9)本発明の実施例にかかる改質用触媒Iの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が1.70:1.00:0.30となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Iを得た。
(9) Production of reforming catalyst I according to examples of the present invention Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and cobalt tetroxide (Co 3 O 4 ) The mixture was weighed and mixed so that the ratio was 1.70: 1.00: 0.30. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the resulting granular material was calcined in air at 1100 ° C. for 1 h to obtain a reforming catalyst I.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr3Ti27構造の回折線のみであり、酸化Coに由来する回折線は確認されなかったことから、添加したCo成分はSr3Ti27相と固溶体を形成していると考えられた(図6)。 As a result of performing X-ray diffraction measurement on the obtained fired body, it was confirmed that only the diffraction line of the Sr 3 Ti 2 O 7 structure was confirmed, and no diffraction line derived from oxidized Co was confirmed. The Co component was considered to form a solid solution with the Sr 3 Ti 2 O 7 phase (FIG. 6).
 (10)比較用の改質用触媒Jの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と四三酸化コバルト(Co34)を、Sr:Ti:Coのモル比が2.00:1.00:0.09となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、800℃、1hの条件で焼成することにより改質用触媒Jを得た。
(10) Production of Comparative Reforming Catalyst J Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and tribasic cobalt oxide (Co 3 O 4 ) with a molar ratio of Sr: Ti: Co of 2. It measured and mixed so that it might be set to 00: 1.00: 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the obtained granular material was calcined in air at 800 ° C. for 1 hour to obtain a reforming catalyst J.
 得られた焼成体についてX線回折測定を行った結果、得られた回折線はSrTiO3とSrCO3と酸化Coとの回折線であり、SrTiO3とSrCO3と酸化Coとの混合物であることが確認された。 As a result of performing X-ray diffraction measurement on the obtained fired body, the obtained diffraction line is a diffraction line of SrTiO 3 , SrCO 3 and Co oxide, and is a mixture of SrTiO 3 , SrCO 3 and Co oxide. Was confirmed.
 (11)比較用の改質用触媒Kの製造
 炭酸ストロンチウム(SrCO3)と酸化チタン(TiO2)と酸化ニッケル(NiO)を、Sr:Ti:Niのモル比が2.00:1.00:0.09となるように秤量して混合した。次に、この混合物にバインダーを加えて造粒し、直径2~5mmの球状の造粒体を得た。それから、得られた粒状体を空気中において、1100℃、1hの条件で焼成することにより改質用触媒Kを得た。
(11) Production of Comparative Reforming Catalyst K Strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), and nickel oxide (NiO) were mixed at a molar ratio of Sr: Ti: Ni of 2.00: 1.00. : Weighed and mixed to 0.09. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. Then, the obtained granular material was calcined in air at 1100 ° C. for 1 hour to obtain a reforming catalyst K.
 得られた焼成体についてX線回折測定を行った結果、確認されたのはSr2TiO4構造の回折線のみであり、酸化Niに由来する回折線は確認されなかったことから、添加したNi成分はSr2TiO4相と固溶体を形成していると考えられた。 As a result of performing X-ray diffraction measurement on the obtained fired body, only the diffraction line having the Sr 2 TiO 4 structure was confirmed, and no diffraction line derived from oxidized Ni was confirmed. The component was considered to form a solid solution with the Sr 2 TiO 4 phase.
  [2]改質用触媒のX線回折測定
 図4~6に示したX線回折測定結果より、Sr:(Ti+Co)のモル比を2.0:1.0とした実施例の触媒FとHは、Co量を増してもSr2TiO4構造の単一結晶相となる。従って、CoはTiサイトを置換するかたちでSr2TiO4相に固溶しているものと考えられる。なお、実施例の触媒BについてもSr2TiO4以外の回折線は存在しないように思われるが、31°~32°にかけての回折線は強度が低く、かつ高角側へのシフトも大きいことから、Sr3Ti27相が一部存在している可能性が伺える。
[2] X-ray diffraction measurement of the reforming catalyst From the X-ray diffraction measurement results shown in FIGS. 4 to 6, the catalysts F and H in the examples in which the molar ratio of Sr: (Ti + Co) was 2.0: 1.0 were Co Even if the amount is increased, a single crystal phase of Sr 2 TiO 4 structure is obtained. Therefore, it is considered that Co is dissolved in the Sr 2 TiO 4 phase in the form of replacing the Ti site. Although it seems that there is no diffraction line other than Sr 2 TiO 4 in the catalyst B of the example, the diffraction line from 31 ° to 32 ° is low in intensity and has a large shift to the high angle side. It is possible that a part of the Sr 3 Ti 2 O 7 phase is present.
 また、Sr3Ti27構造を示す実施例の触媒Iにおいても、酸化Coに由来する回折線は確認されないことから、Co成分はSr3Ti27に対しても固溶体を形成し、結果としてCoを微粒化する効果を示すものと考えられる。 In addition, in the catalyst I of the example showing the Sr 3 Ti 2 O 7 structure, since diffraction lines derived from oxidized Co are not confirmed, the Co component also forms a solid solution with respect to Sr 3 Ti 2 O 7 , As a result, it is considered that the effect of atomizing Co is exhibited.
 以上の様に、実施例の触媒は「Co-Sr2TiO4固溶体」、「Co-Sr3Ti27固溶体」、または「Co-Sr2TiO4固溶体とCo-Sr3Ti27固溶体の両方」から構成される触媒である。 As described above, the catalysts of the examples are “Co—Sr 2 TiO 4 solid solution”, “Co—Sr 3 Ti 2 O 7 solid solution”, or “Co—Sr 2 TiO 4 solid solution and Co—Sr 3 Ti 2 O 7”. It is a catalyst composed of “both solid solutions”.
 これらのCo固溶体触媒は、Tiのモル数を1.0とした場合、Srのモル数が1.7~2.6、Coのモル数が0.04~0.3の範囲で得ることが可能である。 These Co solid solution catalysts can be obtained when the mole number of Ti is 1.0 and the mole number of Sr is 1.7 to 2.6 and the mole number of Co is 0.04 to 0.3.
  [3]二酸化炭素を用いた改質試験および特性の評価
 図1に示すように、外部にヒーター2を備えた金属製の反応管1に、上記のようにして製造した改質用触媒を2.5cc充填し、反応管1の入口4から、窒素と二酸化炭素の混合ガス(二酸化炭素の割合:20vol%)を5NL/hの流量で流通させ、ヒーター2により混合ガスの入口温度を800℃に制御した。流通させた混合ガスの温度が安定した後、上記混合ガスの代わりに、10NL/hの流量でメタンと二酸化炭素の混合ガス(CH4:CO2=1:1(容積比))を原料ガスとして流通させた。さらに、反応管1の出口5側に設けた背圧弁6を調整することによって、反応管1内の圧力を絶対圧で9気圧となるように調整し、50時間の改質試験を行った。
[3] Reformation test using carbon dioxide and evaluation of characteristics As shown in FIG. 1, the reforming catalyst produced as described above was placed in a metal reaction tube 1 provided with a heater 2 outside. 0.5 cc is charged, and a mixed gas of nitrogen and carbon dioxide (carbon dioxide ratio: 20 vol%) is circulated at a flow rate of 5 NL / h from the inlet 4 of the reaction tube 1, and the inlet temperature of the mixed gas is set to 800 ° C. by the heater 2. Controlled. After the temperature of the circulated mixed gas is stabilized, instead of the mixed gas, a mixed gas of methane and carbon dioxide (CH 4 : CO 2 = 1: 1 (volume ratio)) at a flow rate of 10 NL / h is a source gas. It was distributed as. Furthermore, by adjusting the back pressure valve 6 provided on the outlet 5 side of the reaction tube 1, the pressure in the reaction tube 1 was adjusted to 9 atm in absolute pressure, and a reforming test for 50 hours was performed.
 改質試験中は10分毎に出口からのガスをサンプリングし、ガスクロマトグラフによりガス組成の確認を行った。 During the reforming test, the gas from the outlet was sampled every 10 minutes, and the gas composition was confirmed by gas chromatography.
 試験終了後は、ガス流通を停止して冷却を行い、反応管1から改質用触媒3を取り出し、二酸化炭素流通下で熱重量測定を行った。なお、熱重量測定では、試料に析出した炭素と二酸化炭素を下記の式(5)のように反応させ、試料重量の減少分を炭素析出量として見積もった。 After completion of the test, the gas flow was stopped and cooled, the reforming catalyst 3 was taken out from the reaction tube 1, and thermogravimetric measurement was performed under the flow of carbon dioxide. In thermogravimetry, carbon and carbon dioxide deposited on the sample were reacted as shown in the following formula (5), and the decrease in the sample weight was estimated as the carbon deposition amount.
式5 Formula 5
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 さらに、試験終了後の改質用触媒3について、X線回折測定、TEM観察、エネルギー分散形X線分光法(EDX)によるCoおよびNiのマッピング測定を実施し、試験終了後の結晶相を確認した。また、TEM観察から析出した金属粒子(Co,Ni)の粒子径を確認した。以下、出口におけるガス組成の測定結果から算出したメタンの転化率と炭素析出量、試験後の結晶相、金属粒子径を表1に示す。 Furthermore, for the reforming catalyst 3 after the test was completed, X-ray diffraction measurement, TEM observation, and Co and Ni mapping measurement by energy dispersive X-ray spectroscopy (EDX) were performed, and the crystal phase after the test was confirmed did. Moreover, the particle diameter of the metal particle (Co, Ni) which precipitated from TEM observation was confirmed. Table 1 shows the methane conversion rate and carbon deposition amount calculated from the measurement results of the gas composition at the outlet, the crystal phase after the test, and the metal particle diameter.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、改質用触媒A~I,Kは、800℃、9気圧の条件下における平衡ガス組成に近いメタン転化率を示したが、改質用触媒Jでは平衡ガス組成には至らなかった。したがって、固溶体を形成していない改質用触媒Jに対して固溶体を形成している改質用触媒改質用触媒A~I,Kの方がメタン転化率の点から好ましいことが分かる。 As shown in Table 1, the reforming catalysts A to I, K showed a methane conversion rate close to the equilibrium gas composition under the conditions of 800 ° C. and 9 atm. Did not come. Therefore, it can be seen that the reforming catalyst reforming catalysts A to I, K that form a solid solution with respect to the reforming catalyst J that does not form a solid solution are preferable from the viewpoint of methane conversion.
 また、改質用触媒A~Iは炭素析出量が10重量%未満であるのに対して、改質用触媒Kは炭素析出量が10重量%を超えた25.8重量%である。この結果から、Niを用いた改質用触媒KよりもCoを用いた改質用触媒A~Iの方が炭素析出が抑えられることが分かる。なお、改質用触媒Kは発明者が先に提案した特許文献1に記載された改質用触媒に相当するものであるが、炭素析出量が特許文献1のものより増加しているのは、改質試験が9気圧と高圧下で改質しているためである。したがって、このような厳しい条件でなければ、改質用触媒Kに炭素析出を抑制する効果は十分に備えている。 The reforming catalysts A to I have a carbon deposition amount of less than 10% by weight, whereas the reforming catalyst K has a carbon deposition amount of more than 10% by weight and 25.8% by weight. From this result, it can be seen that carbon deposition is suppressed in the reforming catalysts A to I using Co rather than the reforming catalyst K using Ni. The reforming catalyst K corresponds to the reforming catalyst described in Patent Document 1 previously proposed by the inventor, but the amount of carbon deposition is higher than that of Patent Document 1. This is because the reforming test is reforming at 9 atm and high pressure. Therefore, unless it is such a severe condition, the reforming catalyst K has a sufficient effect of suppressing carbon deposition.
 また、改質用触媒Bと改質用触媒Jを比較すると、Coの添加量が同じであるにもかかわらず、改質用触媒Bの方が格段に炭素析出量が少ない。また、Coの添加量が多いほど炭素析出量が増加する傾向にあるが、改質用触媒Jの3倍以上のCoを添加している改質用触媒Eは、改質用触媒Jよりも炭素析出量が少ない。この結果から、Co成分がSr2TiO4相と固溶体を形成している改質用触媒A~Iは、Co成分がSr2TiO4相と固溶体を形成していない改質用触媒Jよりも炭素析出を抑制する効果が顕著であることがわかる。 Further, when the reforming catalyst B and the reforming catalyst J are compared, the reforming catalyst B has a much smaller carbon deposition amount even though the amount of Co added is the same. Further, the amount of carbon deposition tends to increase as the amount of Co added increases, but the reforming catalyst E to which Co is added three times or more of the reforming catalyst J is higher than the reforming catalyst J. Less carbon deposition. From this result, the catalyst A ~ I reforming the Co component forms a Sr 2 TiO 4 phase and solid solution than Co component does not form a Sr 2 TiO 4 phase and solid solution reforming catalyst J It turns out that the effect which suppresses carbon precipitation is remarkable.
 さらに、炭素析出量はCoの添加量が多いほど増加する傾向にあることから、改質用触媒A~IにおいてCoの添加量は少ない方が好ましい。例えば、改質用触媒IのCoの添加量を超えて添加した場合、炭素析出量が10重量%に近くなるため好ましくない。したがって、Co量はTi:1.00モルに対して0.04~0.30モルであることが好ましい。 Furthermore, since the carbon deposition amount tends to increase as the amount of Co added increases, the amount of Co added in the reforming catalysts A to I is preferably small. For example, it is not preferable that the amount of Co added in the reforming catalyst I exceeds the amount of carbon deposition because the amount of carbon deposition approaches 10% by weight. Therefore, the amount of Co is preferably 0.04 to 0.30 mol with respect to Ti: 1.00 mol.
 また、表1に示すように、改質試験後の結晶相の結果から、改質用触媒A~IのCo-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体は、改質試験後にはSrTiO3と、SrCO3と、CoやCoを含む酸化物等との混合物となる。これは、Sr2TiO4またはSr3Ti27が二酸化炭素と反応することによりSrTiO3と、SrCO3になるからである。また、Coについては、SrTiO3やSrCO3表面にCoやCoの酸化物等が析出している。ここで、SrTiO3やSrCO3表面に析出している一部のCoが金属として存在しているのは、改質試験中に発生するH2等により還元して金属Coになったためである。 Further, as shown in Table 1, from the result of the crystal phase after the reforming test, the Co—Sr 2 TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution of the reforming catalysts A to I is Later, a mixture of SrTiO 3 , SrCO 3 and an oxide containing Co or Co is obtained. This is because Sr 2 TiO 4 or Sr 3 Ti 2 O 7 reacts with carbon dioxide to become SrTiO 3 and SrCO 3 . As for Co, Co and Co oxides are deposited on the surface of SrTiO 3 and SrCO 3 . Here, part of Co precipitated on the surface of SrTiO 3 or SrCO 3 exists as a metal because it is reduced to H 2 or the like generated during the reforming test to become metallic Co.
 なお、上記実施例においては、改質用触媒A~Iについて、Co-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体を含有する状態で反応管1に充填したが、これに限るものではない。例えば、Co-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体を二酸化炭素と反応させて、SrTiO3と、SrCO3と、CoやCoを含む酸化物等との混合物の状態にした上で、反応管1に充填しても良い。また、Coの酸化物をH2等の還元ガスにより金属Coに還元してから、反応管1に充填しても良い。この二酸化炭素との反応と還元はいずれが先であっても良い。 In the above embodiment, the reforming catalysts A to I are filled in the reaction tube 1 in a state of containing the Co—Sr 2 TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution. It is not a thing. For example, a Co—Sr 2 TiO 4 solid solution or a Co—Sr 3 Ti 2 O 7 solid solution is reacted with carbon dioxide to form a mixture of SrTiO 3 , SrCO 3 and an oxide containing Co or Co. Above, the reaction tube 1 may be filled. Alternatively, Co oxide may be reduced to metal Co with a reducing gas such as H 2 and then charged into reaction tube 1. Either the reaction with carbon dioxide or the reduction may be first.
 また、改質用触媒Jは、改質試験後にはSrTiO3と、SrCO3と、CoやCoを含む酸化物等との混合物になっており、改質用触媒A~Iと改質試験後の状態は似通っている。しかしながら、TEM観察から析出したCoの金属粒子径を見ると、改質用触媒Jは最大の金属粒子径が300nm程度であり、他の改質用触媒の金属粒子径が50nm程度であるのに対して、金属粒子径が大きい。これは、改質用触媒Eが、一旦、固溶した状態になっていないことが要因であると考えられる。 The reforming catalyst J is a mixture of SrTiO 3 , SrCO 3 and an oxide containing Co or Co after the reforming test, and after the reforming tests A to I and the reforming test. The state of is similar. However, looking at the metal particle diameter of the deposited Co from TEM observation, the maximum catalyst particle diameter of the reforming catalyst J is about 300 nm, and the metal particle diameter of the other reforming catalyst is about 50 nm. In contrast, the metal particle diameter is large. It is considered that this is because the reforming catalyst E is not once in a solid solution state.
 この固溶状態について、図2、図3を用いて説明する。図2(a)は改質試験前の改質用触媒AのTEM像であり、図2(b)は改質試験後の改質用触媒AのTEM像である。図3(a)は改質試験前の改質触媒Aの図2(a)と同一視野におけるEDXによるCoマッピング像であり、図3(b)は改質試験後の改質触媒Aの図2(b)と同一視野におけるEDXによるCoマッピング像である。 This solid solution state will be described with reference to FIGS. 2A is a TEM image of the reforming catalyst A before the reforming test, and FIG. 2B is a TEM image of the reforming catalyst A after the reforming test. 3A is a Co mapping image by EDX of the reforming catalyst A before the reforming test in the same field of view as FIG. 2A, and FIG. 3B is a diagram of the reforming catalyst A after the reforming test. It is Co mapping image by EDX in the same visual field as 2 (b).
 改質試験前の図2(a)と改質試験後の図2(b)とを比較すると、図2(b)において結晶の表面に50nm程度の黒い粒子が析出している。図3(b)を見ると、この黒い粒子がCoである。また、図3(a)を見ると、改質試験前はCoが各部に均一に分散しており、図3(b)を見ると、改質後に偏析して析出していることが分かる。 Comparing FIG. 2A before the modification test and FIG. 2B after the modification test, black particles of about 50 nm are deposited on the surface of the crystal in FIG. 2B. In FIG. 3B, this black particle is Co. 3A, it can be seen that Co is uniformly dispersed in each part before the reforming test and that segregated and precipitated after the reforming as seen in FIG. 3B.
 このメカニズムについては、上述した通りである。まず、固溶することによりSr2TiO4内に均一に分散していたCoが、Sr2TiO4相が二酸化炭素と反応してSrTiO3と、SrCO3となる際に、SrTiO3と、SrCO3の表面に固溶限界を超えたCo成分が酸化物として析出する。析出したCoの酸化物は、H2等の還元ガスに触れることで還元され金属Coとなる。 This mechanism is as described above. First, by solid solution were uniformly dispersed in the Sr 2 TiO 4 Co is, Sr 2 TiO 4 phase and SrTiO 3 reacts with carbon dioxide in the SrCO 3, and SrTiO 3, SrCO Co component exceeding the solid solubility limit is deposited as an oxide on the surface of 3 . The deposited Co oxide is reduced to metal Co by contact with a reducing gas such as H 2 .
 このようにSr2TiO4に分散していたCoを析出させることで50nm以下に微粉化することができ、改質用触媒Eと比較して金属の表面積を増加させて活性を向上させることができている。また、Sr2TiO4に部分的に酸化物の状態で担持されることで、炭素の析出を抑制することができている。また同様のメカニズムにより、Sr3Ti27に分散していたCoを析出させることでも、50nm以下に微粉化する効果を得ることができる。上述のように、Co-Sr2TiO4固溶体またはCo-Sr7Ti27固溶体からした、均一かつ微粒子状のCoが存在することにより、高い転化率と炭素析出耐性を得ることが可能となる。 Thus, by precipitating Co dispersed in Sr 2 TiO 4 , it can be pulverized to 50 nm or less, and the surface area of the metal can be increased compared with the reforming catalyst E to improve the activity. is made of. In addition, carbon deposition can be suppressed by being supported partially in an oxide state on Sr 2 TiO 4 . Further, by precipitating Co dispersed in Sr 3 Ti 2 O 7 by the same mechanism, the effect of pulverizing to 50 nm or less can be obtained. As described above, the presence of uniform and fine-grained Co made of Co—Sr 2 TiO 4 solid solution or Co—Sr 7 Ti 2 O 7 solid solution makes it possible to obtain a high conversion rate and carbon deposition resistance. Become.
 なお、本発明にかかる改質用触媒を用いて二酸化炭素改質、水蒸気改質、あるいは二酸化炭素と水蒸気の両方を用いた併用改質を行う場合、通常は、温度条件として700℃以上、圧力条件として3気圧以上の条件下で実施することが望ましい。 In addition, when performing carbon dioxide reforming, steam reforming, or combined reforming using both carbon dioxide and steam using the reforming catalyst according to the present invention, the temperature condition is usually 700 ° C. or higher, pressure It is desirable to carry out under conditions of 3 atm or more as conditions.
 本発明はさらにその他の点においても、上記の実施例に限定されるものではなく、Co-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体を生成させる工程における条件、Co-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体に二酸化炭素を作用させて、SrTiO3と、SrCO3とを生成し、その表面にCoまたはCoの酸化物の少なくともいずれか一方を生じさせる工程における条件、改質反応の具体的な条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。例えば、上記実施例ではCo-Sr2TiO4固溶体またはCo-Sr3Ti27固溶体を生成させる際に、SrCO3とTiO2とCo34を混合・焼成したが、SrCO3とSrTiO3とCo34を混合・焼成しても良い。また、焼成時の温度についても1100℃で行ったが、900℃以上であれば固溶体を生成させることは可能である。 In other respects, the present invention is not limited to the above-described examples, but the conditions in the step of forming a Co—Sr 2 TiO 4 solid solution or a Co—Sr 3 Ti 2 O 7 solid solution, Co—Sr 2 A step of causing carbon dioxide to act on the TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution to generate SrTiO 3 and SrCO 3 , and generating at least one of Co or Co oxide on the surface thereof. Various applications and modifications can be made within the scope of the invention with respect to the conditions in FIG. For example, in the above embodiment, when the Co—Sr 2 TiO 4 solid solution or the Co—Sr 3 Ti 2 O 7 solid solution is produced, SrCO 3 , TiO 2, and Co 3 O 4 are mixed and fired, but SrCO 3 and SrTiO 3 are mixed and fired. 3 and Co 3 O 4 may be mixed and fired. Moreover, although it performed at 1100 degreeC also about the temperature at the time of baking, if it is 900 degreeC or more, it is possible to produce | generate a solid solution.
 上述のように、本発明によれば、炭化水素と二酸化炭素を反応させて改質を行う二酸化炭素改質、炭化水素と水蒸気を反応させて改質を行う水蒸気改質、あるいは二酸化炭素と水蒸気の両方を用いた併用改質のいずれの改質反応に用いた場合にも、炭素の析出を抑制しつつ、炭化水素系の原料ガスから水素および一酸化炭素を含む合成ガスを効率よく製造することが可能な改質用触媒を効率よく製造することが可能になる。 As described above, according to the present invention, carbon dioxide reforming for reforming by reacting hydrocarbon and carbon dioxide, steam reforming for reforming by reacting hydrocarbon and steam, or carbon dioxide and steam Even when used in any reforming reaction using both of these, the synthesis gas containing hydrogen and carbon monoxide is efficiently produced from the hydrocarbon-based source gas while suppressing the precipitation of carbon. This makes it possible to efficiently produce a reforming catalyst that can be used.
 したがって、本発明は、改質用触媒の分野や、水素または一酸化炭素の少なくともいずれか一方を含む合成ガスの製造に関わる技術分野に広く適用することが可能である。 Therefore, the present invention can be widely applied to the field of reforming catalysts and the technical field related to the production of synthesis gas containing at least one of hydrogen and carbon monoxide.
 1     反応管
 2     ヒーター
 3     改質用触媒
 4     反応管の入口
 5     反応管の出口
 6     背圧弁

 
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Heater 3 Reforming catalyst 4 Reaction tube inlet 5 Reaction tube outlet 6 Back pressure valve

Claims (7)

  1.  炭化水素系の原料ガスを二酸化炭素および水蒸気の少なくとも一方を用いて改質し、一酸化炭素と水素とを含む合成ガスを生成するために用いられる、炭化水素系ガス改質用触媒であって、
     SrおよびTiの複合酸化物にCoが固溶した固溶体を主成分とし、
     Tiのモル数を1.0とした場合、Srのモル数が1.7~2.6の範囲であることを特徴とする炭化水素系ガス改質用触媒。
    A hydrocarbon-based gas reforming catalyst used for reforming a hydrocarbon-based raw material gas using at least one of carbon dioxide and steam to produce a synthesis gas containing carbon monoxide and hydrogen. ,
    The main component is a solid solution in which Co is dissolved in a composite oxide of Sr and Ti.
    A hydrocarbon gas reforming catalyst, wherein the mole number of Sr is in the range of 1.7 to 2.6 when the mole number of Ti is 1.0.
  2.  前記固溶体が、Co-Sr2TiO4固溶体であることを特徴とする、請求項1に記載の炭化水素系ガス改質用触媒。 The hydrocarbon-based gas reforming catalyst according to claim 1, wherein the solid solution is a Co-Sr 2 TiO 4 solid solution.
  3.  前記固溶体が、Co- Sr3Ti27固溶体であることを特徴とする、請求項1に記載の炭化水素系ガス改質用触媒。 The hydrocarbon gas reforming catalyst according to claim 1, wherein the solid solution is a Co-Sr 3 Ti 2 O 7 solid solution.
  4.  Tiのモル数を1.0とした場合、Coのモル数が0.04~0.30の範囲であることを特徴とする、請求項1~3のいずれか1項に記載の炭化水素系ガス改質用触媒。 The hydrocarbon gas reforming catalyst according to any one of claims 1 to 3, wherein when the number of moles of Ti is 1.0, the number of moles of Co is in the range of 0.04 to 0.30.
  5.  炭化水素系の原料ガスを二酸化炭素を用いて改質し、一酸化炭素と水素とを含む合成ガスを生成するために用いられる炭化水素系ガス改質用触媒であって、
     請求項1~4のいずれか1項に記載の炭化水素系ガス改質用触媒に、二酸化炭素を作用させることにより生じたSrTiO3と、SrCO3と、CoまたはCoを含む酸化物とを含んだものからなることを特徴とする炭化水素系ガス改質用触媒。
    A hydrocarbon-based gas reforming catalyst used for reforming a hydrocarbon-based source gas with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen,
    The hydrocarbon gas reforming catalyst according to any one of claims 1 to 4, comprising SrTiO 3 produced by the action of carbon dioxide, SrCO 3 and an oxide containing Co or Co. A hydrocarbon-based gas reforming catalyst characterized by comprising a catalyst.
  6.  炭化水素系の原料ガスを二酸化炭素を用いて改質し、一酸化炭素と水素とを含む合成ガスを生成するために用いられる、CoとSrとTiとの固溶体酸化物を主たる成分として含有する炭化水素系ガス改質用触媒の製造方法であって、
     TiO2とSrCO3とCo34とを含む混合物を、900℃以上の温度で熱処理することにより固溶体酸化物を生成させる工程を具備することを特徴とする炭化水素系ガス改質用触媒の製造方法。
    The main component is a solid solution oxide of Co, Sr, and Ti, which is used to generate a synthesis gas containing carbon monoxide and hydrogen by reforming a hydrocarbon-based source gas using carbon dioxide. A method for producing a hydrocarbon gas reforming catalyst, comprising:
    A hydrocarbon gas reforming catalyst comprising a step of producing a solid solution oxide by heat-treating a mixture containing TiO 2 , SrCO 3 and Co 3 O 4 at a temperature of 900 ° C. or higher. Production method.
  7.  請求項1~5のいずれか1項に記載の炭化水素系ガス改質用触媒を準備する工程と、
     前記炭化水素系ガス改質用触媒と、二酸化炭素を含むガスとを接触させることにより、前処理する工程と、
     前記前処理した炭化水素系ガス改質用触媒と、炭化水素系の原料ガスと、二酸化炭素および水蒸気の少なくとも一方とを含むガスとを接触させることにより、一酸化炭素と水素とを含む合成ガスを生成させる工程と、を含むことを特徴とする合成ガスの製造方法。
    Preparing a hydrocarbon-based gas reforming catalyst according to any one of claims 1 to 5;
    A pretreatment step by bringing the hydrocarbon gas reforming catalyst into contact with a gas containing carbon dioxide;
    A synthetic gas containing carbon monoxide and hydrogen by contacting the pretreated hydrocarbon gas reforming catalyst, a hydrocarbon-based raw material gas, and a gas containing at least one of carbon dioxide and water vapor. And a step of generating the synthesis gas.
PCT/JP2013/066200 2012-06-13 2013-06-12 Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas WO2013187436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133393 2012-06-13
JP2012-133393 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187436A1 true WO2013187436A1 (en) 2013-12-19

Family

ID=49758256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066200 WO2013187436A1 (en) 2012-06-13 2013-06-12 Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas

Country Status (1)

Country Link
WO (1) WO2013187436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same
CN108014778A (en) * 2017-12-12 2018-05-11 浙江绿竹环保科技有限公司 A kind of preparation method of modified strontium titanates and products thereof and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117395A (en) * 2001-10-15 2003-04-22 Teikoku Oil Co Ltd Catalyst for reforming and production method of synthetic gas using the same
WO2010001690A1 (en) * 2008-07-04 2010-01-07 株式会社村田製作所 Carbon dioxide reforming process
WO2010143676A1 (en) * 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2011027727A1 (en) * 2009-09-02 2011-03-10 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117395A (en) * 2001-10-15 2003-04-22 Teikoku Oil Co Ltd Catalyst for reforming and production method of synthetic gas using the same
WO2010001690A1 (en) * 2008-07-04 2010-01-07 株式会社村田製作所 Carbon dioxide reforming process
WO2010143676A1 (en) * 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2011027727A1 (en) * 2009-09-02 2011-03-10 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189006A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Catalyst for reforming hydrocarbon-based gas and method for reforming hydrocarbon-based gas using same
CN108014778A (en) * 2017-12-12 2018-05-11 浙江绿竹环保科技有限公司 A kind of preparation method of modified strontium titanates and products thereof and application
CN108014778B (en) * 2017-12-12 2020-08-11 浙江绿竹环保科技有限公司 Preparation method of modified strontium titanate, product and application thereof

Similar Documents

Publication Publication Date Title
Valderrama et al. LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane
Marinho et al. Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen
Arandiyan et al. Methane reforming to syngas over LaNixFe1− xO3 (0≤ x≤ 1) mixed-oxide perovskites in the presence of CO2 and O2
Fang et al. Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support
JP5105007B2 (en) Reverse shift reaction catalyst and synthesis gas production method using the same
Jahangiri et al. Effects of Fe substitutions by Ni in La–Ni–O perovskite-type oxides in reforming of methane with CO2 and O2
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
Jahangiri et al. Synthesis, characterization and catalytic study of Sm doped LaNiO3 nanoparticles in reforming of methane with CO2 and O2
JP5126560B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP5402683B2 (en) Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
CN111111684B (en) Mesoporous silica-loaded tungsten-promoted nickel-based catalyst for autothermal reforming of acetic acid
JP6187282B2 (en) Hydrocarbon reforming catalyst
US20220288568A1 (en) Mesoporous support-immobilized metal oxide-based nanoparticles
Alharthi et al. Mg and Cu incorporated CoFe2O4 catalyst: characterization and methane cracking performance for hydrogen and nano-carbon production
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP2014073436A (en) Hydrocarbon reforming catalyst, as well as hydrocarbon reforming method and tar reforming method using the same
Odedairo et al. Cr‐Doped La‐Ni‐O Catalysts Derived from Perovskite Precursors for CH4‐CO2 Reforming under Microwave Irradiation
KR101724287B1 (en) Ni-based Reforming Catalysts to Produce the Reduction Gas for Iron Ore
Shrestha et al. Isothermal redox cycling of A‐and B‐site substituted manganite‐based perovskites for CO2 conversion
JP5626446B2 (en) Hydrocarbon carbon dioxide reforming catalyst and hydrocarbon carbon dioxide reforming method
CN112569989B (en) Composition containing X iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
CN112569995B (en) Composition containing epsilon/epsilon' iron carbide and theta iron carbide, preparation method, catalyst, application and Fischer-Tropsch synthesis method
JP2013193047A (en) Aluminum-magnesium complex oxide and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP