JP2013111562A - Composition and method for manufacturing ammonia using the composition - Google Patents

Composition and method for manufacturing ammonia using the composition Download PDF

Info

Publication number
JP2013111562A
JP2013111562A JP2011262899A JP2011262899A JP2013111562A JP 2013111562 A JP2013111562 A JP 2013111562A JP 2011262899 A JP2011262899 A JP 2011262899A JP 2011262899 A JP2011262899 A JP 2011262899A JP 2013111562 A JP2013111562 A JP 2013111562A
Authority
JP
Japan
Prior art keywords
ammonia
ruthenium
composition
catalyst
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262899A
Other languages
Japanese (ja)
Other versions
JP6017777B2 (en
Inventor
Katsutoshi Nagaoka
勝俊 永岡
Manami Kono
まなみ 河野
Susumu Kitagawa
進 北川
Hiroshi Kitagawa
宏 北川
Masakazu Higuchi
雅一 樋口
Miho Yamauchi
美穂 山内
Takashi Kajiwara
隆史 梶原
Hideyuki Higashimura
秀之 東村
Daisuke Watabe
大輔 渡部
Shinji Oshima
伸司 大島
Yoshiko Mitsuya
由子 三津家
Kazuo Nagashima
和郎 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Shoei Chemical Inc
Sumitomo Chemical Co Ltd
Oita University
Eneos Corp
Kyoto University NUC
Original Assignee
Hokkaido University NUC
Shoei Chemical Inc
Sumitomo Chemical Co Ltd
Oita University
JX Nippon Oil and Energy Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Shoei Chemical Inc , Sumitomo Chemical Co Ltd, Oita University, JX Nippon Oil and Energy Corp, Kyoto University NUC filed Critical Hokkaido University NUC
Priority to JP2011262899A priority Critical patent/JP6017777B2/en
Publication of JP2013111562A publication Critical patent/JP2013111562A/en
Application granted granted Critical
Publication of JP6017777B2 publication Critical patent/JP6017777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition which enables ammonia to be manufactured at high yield under low pressure conditions, as well as a method for manufacturing ammonia using this composition.SOLUTION: There is provided the composition blending (1) ruthenium, an alloy containing ruthenium or a chemical compound containing ruthenium, (2) a chemical compound containing lanthanoid, and (3) a basic cocatalyst and/or a porous metal complex. The chemical compound containing the lanthanoid is preferably a lanthanoid oxide. The basic cocatalyst is preferably an alkali metal oxide, an alkali metal hydroxide, an alkaline earth metal oxide or an alkaline earth metal hydroxide. The porous metal complex preferably contains at least one kind of metal selected from the group consisting of zinc, copper, magnesium, aluminum, manganese, iron, cobalt and nickel. The method for manufacturing ammonia includes reacting nitrogen with hydrogen using the composition as a catalyst.

Description

本発明は窒素と水素からアンモニアを合成するのに適した組成物及び該組成物を用いたアンモニア製造方法に関するものである。   The present invention relates to a composition suitable for synthesizing ammonia from nitrogen and hydrogen, and an ammonia production method using the composition.

アンモニアは、長きにわたり、鉄系触媒を用いたハーバーボッシュ法により製造されてきた。しかしながらハーバーボッシュ法では、150気圧程度の高圧下で反応を行う必要があるため、設備投資及び消費電力の増大、製造工程の煩雑化等の問題を有する。   Ammonia has long been produced by the Harbor Bosch process using an iron-based catalyst. However, since the Harbor Bosch method requires the reaction to be performed under a high pressure of about 150 atm, it has problems such as equipment investment, increased power consumption, and complicated manufacturing processes.

上記問題に対して、近年では、ルテニウム触媒を用いて10気圧程度の低圧条件下でアンモニアを製造する方法が報告されている。この触媒を用いることにより、低圧条件下でアンモニアが製造可能となるのみならず、一酸化炭素や水によるアンモニア合成阻害を低減することも可能となり、アンモニア収率が向上する(非特許文献1〜3)。   In recent years, a method for producing ammonia under a low pressure condition of about 10 atm using a ruthenium catalyst has been reported for the above problem. By using this catalyst, not only ammonia can be produced under low pressure conditions, but also ammonia synthesis inhibition by carbon monoxide and water can be reduced, and the ammonia yield is improved (Non-Patent Documents 1 to 3). 3).

ルテニウム触媒を用いるアンモニア製造では、ルテニウム触媒を担体に担持させたる場合がある。ルテニウムを担持させる担体としては、触媒の担体として一般的なアルミナが広く用いられている。最近では、アルミナに替えて希土類酸化物を担体として用いることにより、ルテニウムの使用量を低減でき、且つ、反応温度を低くできることが開示されている(特許文献1)。   In ammonia production using a ruthenium catalyst, the ruthenium catalyst may be supported on a carrier. As a carrier for supporting ruthenium, general alumina is widely used as a catalyst carrier. Recently, it has been disclosed that the amount of ruthenium used can be reduced and the reaction temperature can be lowered by using a rare earth oxide as a support instead of alumina (Patent Document 1).

特開平6−79177号公報JP-A-6-79177

秋鹿研一、「触媒」、1996年、第38巻、第4号、p287−292Kenichi Akika, “Catalyst”, 1996, Vol. 38, No. 4, p287-292 秋鹿研一、「触媒」、1998年、第40巻、第8号、p588−595Kenichi Akika, “Catalyst”, 1998, Vol. 40, No. 8, pp. 588-595 秋鹿研一、「触媒」、2003年、第45巻、第1号、p17−19Kenichi Akika, “Catalyst”, 2003, Vol. 45, No. 1, p17-19

しかしながら、上記のアンモニア製造方法では、より低圧条件下においてアンモニアを製造する場合のアンモニア収率が十分なものではなかった。   However, in the above ammonia production method, the ammonia yield when producing ammonia under a lower pressure condition is not sufficient.

本発明は、上記課題に鑑みてなされたものであって、低圧条件下において高収率でアンモニアを製造できる組成物、及び該組成物を用いたアンモニア製造方法を提供することを課題とする。   This invention is made | formed in view of the said subject, Comprising: It aims at providing the composition which can manufacture ammonia by a high yield under low-pressure conditions, and the ammonia manufacturing method using this composition.

本発明では以下の[1]〜[4]の組成物及び[5]のアンモニア製造方法を提供する。
[1](1)ルテニウム、ルテニウムを含む合金又はルテニウムを含む化合物、
(2)ランタノイドを含む化合物、並びに、
(3)塩基性助触媒及び/又は多孔性金属錯体
を配合した組成物。
[2]前記ランタノイドを含む化合物が、ランタノイド酸化物である[1]に記載の組成物。
[3]前記塩基性助触媒が、アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ土類金属酸化物又はアルカリ土類金属水酸化物である、[1]又は[2]に記載の組成物。
[4]前記多孔性金属錯体が、亜鉛、銅、マグネシウム、アルミニウム、マンガン、鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種の金属を有する、[1]〜[3]のいずれか一項に記載の組成物。
[5][1]〜[4]のいずれか一項に記載の組成物を触媒として用い、窒素と水素とを反応させてアンモニアを製造する方法。
In the present invention, the following compositions [1] to [4] and an ammonia production method [5] are provided.
[1] (1) Ruthenium, an alloy containing ruthenium or a compound containing ruthenium,
(2) a compound containing a lanthanoid, and
(3) A composition containing a basic promoter and / or a porous metal complex.
[2] The composition according to [1], wherein the compound containing the lanthanoid is a lanthanoid oxide.
[3] The composition according to [1] or [2], wherein the basic promoter is an alkali metal oxide, an alkali metal hydroxide, an alkaline earth metal oxide, or an alkaline earth metal hydroxide. .
[4] Any one of [1] to [3], wherein the porous metal complex has at least one metal selected from the group consisting of zinc, copper, magnesium, aluminum, manganese, iron, cobalt, and nickel. The composition according to item.
[5] A method for producing ammonia by reacting nitrogen and hydrogen using the composition according to any one of [1] to [4] as a catalyst.

本発明によれば、低圧条件下においても高収率でアンモニアを製造することができる。また、低圧条件下においてアンモニアを製造することができることから、コンプレッサーなどの加圧装置が不要となり、設備投資だけでなく電力消費量を削減することができる。   According to the present invention, ammonia can be produced in high yield even under low pressure conditions. Further, since ammonia can be produced under low pressure conditions, a pressurizing device such as a compressor is not required, and not only capital investment but also power consumption can be reduced.

実施例で用いたアンモニア製造装置を示す模式図である。It is a schematic diagram which shows the ammonia manufacturing apparatus used in the Example. 実施例のアンモニアサンプリング方法を示す模式図である。It is a schematic diagram which shows the ammonia sampling method of an Example.

[組成物]
本発明の第一の態様の組成物は、
(1)ルテニウム、ルテニウムを含む合金又はルテニウムを含む化合物、
(2)ランタノイドを含む化合物、並びに、
(3)塩基性助触媒及び/又は多孔性金属錯体を配合したものである。
当該組成物は、アンモニアの製造において触媒として好適に用いることができる。
以下、各成分を順に説明する。以下、配合成分をそれぞれ、「成分(1)」、「成分(2)」、「成分(3)」という。
[Composition]
The composition of the first aspect of the present invention comprises:
(1) ruthenium, an alloy containing ruthenium or a compound containing ruthenium,
(2) a compound containing a lanthanoid, and
(3) A basic promoter and / or a porous metal complex is blended.
The composition can be suitably used as a catalyst in the production of ammonia.
Hereinafter, each component will be described in order. Hereinafter, the blending components are referred to as “component (1)”, “component (2)”, and “component (3)”, respectively.

(1)ルテニウム、ルテニウムを含む合金又はルテニウムを含む化合物
本発明の組成物において、成分(1)はアンモニア製造における触媒として機能しうる。
成分(1)がルテニウムを含む合金である場合、ルテニウム以外の金属元素としては、ルテニウムと共晶又は固溶体となりうるものであれば特に限定されるものではないが、アンモニア合成反応性を有し、触媒能を向上できることから、鉄、モリブデン及びニッケルからなる群から選ばれる少なくとも1種が好ましく、アンモニア合成に工業的に用いられている点から鉄がより好ましい。
(1) Ruthenium, an alloy containing ruthenium or a compound containing ruthenium In the composition of the present invention, the component (1) can function as a catalyst in ammonia production.
When component (1) is an alloy containing ruthenium, the metal element other than ruthenium is not particularly limited as long as it can be a eutectic or solid solution with ruthenium, but has ammonia synthesis reactivity. At least one selected from the group consisting of iron, molybdenum and nickel is preferable because the catalytic ability can be improved, and iron is more preferable because it is industrially used for ammonia synthesis.

ルテニウムを含む合金は、ルテニウム以外の金属元素を1種のみ含んでいてもよく、2種以上含んでいてもよい。また、ルテニウム及びルテニウム以外の金属元素に加えて、さらに炭素、ケイ素等の非金属元素を含んでいてもよい。   The alloy containing ruthenium may contain only one kind of metal element other than ruthenium, or may contain two or more kinds. Moreover, in addition to ruthenium and metal elements other than ruthenium, nonmetallic elements, such as carbon and silicon, may be included.

成分(1)がルテニウムを含む化合物である場合、該化合物がルテニウム以外に含む配位子としては特に限定されるものではなく、中性配位子であってもイオン性配位子であってもよい。   When component (1) is a compound containing ruthenium, the ligand contained in the compound other than ruthenium is not particularly limited, and even if it is a neutral ligand, it is an ionic ligand. Also good.

ルテニウムを含む化合物として具体的には、塩化ルテニウム、ルテニウムアセチルアセトナート、ルテニウムシアン酸カリウム、ルテニウム酸ナトリウム、ルテニウム酸カリウム、酸化ルテニウム、ドデカカルボニル三ルテニウム、硝酸ルテニウム等が挙げられる。   Specific examples of the compound containing ruthenium include ruthenium chloride, ruthenium acetylacetonate, potassium ruthenium cyanate, sodium ruthenate, potassium ruthenate, ruthenium oxide, dodecacarbonyltriruthenium, and ruthenium nitrate.

成分(1)としては、ルテニウム、ルテニウムを含む合金、ルテニウムを含む化合物のいずれか1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。   As the component (1), only one of ruthenium, an alloy containing ruthenium, and a compound containing ruthenium may be used, or two or more kinds may be used in combination.

成分(1)がルテニウムを含む合金又はルテニウムを含む化合物である場合、該合金又は該化合物中のルテニウムの含有割合は1質量%〜99質量%であることが好ましく、反応性を確保しやすいことから50質量%〜95質量%であることがより好ましい。   When component (1) is an alloy containing ruthenium or a compound containing ruthenium, the content of ruthenium in the alloy or the compound is preferably 1% by mass to 99% by mass, and it is easy to ensure the reactivity. To 50 mass% to 95 mass%.

組成物中の成分(1)の配合割合は、良好な触媒能を奏しうる割合であれば特に限定されるものではないが、0.01〜15質量%であることが好ましく、0.1〜13質量%であることがより好ましく1〜10質量%であることがさらに好ましい。
また、成分(1)がルテニウムである場合、ルテニウムの配合割合は、0.005〜15質量%であることが好ましく、0.05〜13質量%であることがより好ましく0.5〜10質量%であることがさらに好ましい。
The blending ratio of component (1) in the composition is not particularly limited as long as it is a ratio capable of exhibiting good catalytic ability, but is preferably 0.01 to 15% by mass, More preferably, it is 13 mass%, and it is further more preferable that it is 1-10 mass%.
Moreover, when a component (1) is ruthenium, it is preferable that the mixture ratio of ruthenium is 0.005-15 mass%, It is more preferable that it is 0.05-13 mass%, 0.5-10 mass % Is more preferable.

また、成分(1)と後述する成分(2)との合計に対する、成分(1)の配合割合は、0.1〜15質量%であることが好ましく、1〜10質量%であることがより好ましい。0.1質量%以上とすることにより良好な触媒活性を得ることができ、15質量%以下とすることにより触媒活性とコストとのバランスを取ることができる。   Moreover, it is preferable that the mixture ratio of a component (1) with respect to the sum total of a component (1) and the component (2) mentioned later is 0.1-15 mass%, and it is more preferable that it is 1-10 mass%. preferable. By setting it to 0.1% by mass or more, good catalytic activity can be obtained, and by setting it to 15% by mass or less, it is possible to balance catalyst activity and cost.

(2)ランタノイドを含む化合物
本発明の組成物において、成分(2)は前記成分(1)を担持する単体として機能しうる。ランタノイドを含む化合物としては特に限定されるものではなく、15種のランタノイドのいずれを含む化合物であってもよい。
なかでも、ランタノイドとしてランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ジスプロシウムのいずれかを含む化合物であることが好ましく、強塩基性であるためルテニウムへの電子供給及びアンモニア合成が良好となることから、ランタン、セリウム、プラセオジムがより好ましい。
(2) Compound containing lanthanoid In the composition of the present invention, component (2) can function as a simple substance carrying component (1). The compound containing a lanthanoid is not particularly limited, and may be a compound containing any of 15 lanthanoids.
Among them, a compound containing any one of lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, and dysprosium is preferable, and since it is strongly basic, electron supply to ruthenium and ammonia synthesis are good. More preferred are lanthanum, cerium and praseodymium.

また、ランタノイドを含む化合物としては、ランタノイド酸化物、ランタノイド硫化物、ランタノイド水酸化物、ランタノイド硫酸塩等のランタノイドと第16族元素(カルコゲン)とを含む化合物;
ランタノイド塩化物等のランタノイドと第17族元素(ハロゲン)とを含む化合物等が挙げられ、
成分(1)を良好に担持できることから、ランタノイド酸化物が好ましい。即ち、成分(2)としては、ランタン酸化物、セリウム酸化物又はプラセオジム酸化物が好ましい。
Moreover, as a compound containing a lanthanoid, a compound containing a lanthanoid oxide such as a lanthanoid oxide, a lanthanoid sulfide, a lanthanoid hydroxide, a lanthanoid sulfate, and a group 16 element (chalcogen);
A compound containing a lanthanoid such as a lanthanoid chloride and a group 17 element (halogen), etc.
Since the component (1) can be favorably supported, a lanthanoid oxide is preferable. That is, as the component (2), lanthanum oxide, cerium oxide, or praseodymium oxide is preferable.

成分(2)としては、市販のものを用いてもよく、製造してもよい。ランタノイド酸化物である成分(2)を製造する場合、例えば、アルカリ溶液に市販のランタノイド化合物(ランタノイド硝酸塩、ランタノイド硝酸塩の水和物等)を分散し、沈殿法により固形物を得た後、得られた固形物を焼成することにより製造できる。このようにして得られたランタノイド酸化物は、結晶構造が安定しているため、良好に成分(1)を担持可能となる。   As component (2), a commercially available product may be used, or it may be produced. When the component (2) which is a lanthanoid oxide is produced, for example, a commercially available lanthanoid compound (lanthanoid nitrate, lanthanoid nitrate hydrate, etc.) is dispersed in an alkaline solution, and a solid is obtained by precipitation. It can manufacture by baking the obtained solid substance. Since the lanthanoid oxide thus obtained has a stable crystal structure, the component (1) can be favorably supported.

アルカリ溶液としては5〜50質量%、より好ましくは15〜35質量%のアンモニア水が好ましい。
固形物は、沈殿物をろ過することにより得ることができる。
焼成は、250〜900℃、より好ましくは300〜750℃で行うことができる。また、該焼成前に、焼成より低温での仮焼成を行ってもよい。仮焼成の温度は、200〜400℃(但し、焼成より低温)が好ましい。
As an alkaline solution, 5-50 mass%, More preferably, 15-35 mass% ammonia water is preferable.
The solid can be obtained by filtering the precipitate.
Firing can be performed at 250 to 900 ° C, more preferably 300 to 750 ° C. Moreover, you may perform temporary baking at low temperature rather than baking before this baking. The calcination temperature is preferably 200 to 400 ° C. (however, lower temperature than calcination).

組成物中の成分(2)の配合割合は、成分(1)を良好に担持しうる割合であれば特に限定されるものではないが、40〜99.98質量%であることが好ましく、50〜99.8質量%であることがより好ましく70〜98質量%であることがさらに好ましい。   The blending ratio of component (2) in the composition is not particularly limited as long as it is a ratio that can favorably support component (1), but it is preferably 40 to 99.98% by mass, and 50 More preferably, it is -99.8 mass%, and it is further more preferable that it is 70-98 mass%.

(3)塩基性助触媒及び/又は多孔性金属錯体
本発明の組成物において、成分(3)は、成分(1)による触媒効率を向上させるために用いられるものである。成分(3)としては、塩基性助触媒のみを用いてもよく、多孔性金属錯体のみを用いてもよく、両者を組み合わせて用いてもよい。
(3) Basic promoter and / or porous metal complex In the composition of the present invention, component (3) is used to improve the catalyst efficiency of component (1). As a component (3), only a basic promoter may be used, only a porous metal complex may be used, and both may be used in combination.

本発明において塩基性助触媒とは、電子供与性を有し、且つ、成分(1)と成分(2)と共に用いることにより触媒能を促進しうるものをいう。成分(3)は成分(1)のルテニウムに電子を供与することで反応を促進することができる。   In the present invention, the basic co-catalyst means one having an electron donating property and capable of promoting the catalytic ability when used together with the components (1) and (2). The component (3) can promote the reaction by donating an electron to the ruthenium of the component (1).

塩基性助触媒としては特に限定されるものではないが、
アルカリ金属を含む化合物及びアルカリ土類金属を含む化合物が好ましく、
アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ土類金属酸化物及びアルカリ土類金属水酸化物がより好ましく、
アルカリ金属酸化物及びアルカリ金属水酸化物がより好ましい。
The basic promoter is not particularly limited,
Compounds containing alkali metals and compounds containing alkaline earth metals are preferred,
More preferred are alkali metal oxides, alkali metal hydroxides, alkaline earth metal oxides and alkaline earth metal hydroxides,
Alkali metal oxides and alkali metal hydroxides are more preferred.

アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ土類金属酸化物及びアルカリ土類金属水酸化物の原料として用いることのできる前駆体として具体的には、アルカリ金属及びアルカリ土類金属の硝酸塩、硫酸塩、リン酸塩等が挙げられる。   Specific examples of precursors that can be used as raw materials for alkali metal oxides, alkali metal hydroxides, alkaline earth metal oxides, and alkaline earth metal hydroxides include alkali metal and alkaline earth metal nitrates, Examples thereof include sulfates and phosphates.

アルカリ金属及びアルカリ土類金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムが好ましく、成分(1)への電子供与性に優れることから、ナトリウム、カリウム、ルビジウム及びセシウムがより好ましく、セシウムが更に好ましい。   As the alkali metal and alkaline earth metal, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium are preferable, and since they have excellent electron donating property to the component (1), sodium, potassium, Rubidium and cesium are more preferable, and cesium is still more preferable.

多孔性金属錯体としては特に限定されるものではなく、担体等の機能性材料として通常用いられるものを適宜選択することができる。成分(3)として多孔性金属錯体を用いることにより、多孔性金属錯体中に取り込まれたガスが、成分(1)による触媒効率を向上させうる。   The porous metal complex is not particularly limited, and those usually used as a functional material such as a carrier can be appropriately selected. By using a porous metal complex as the component (3), the gas taken into the porous metal complex can improve the catalyst efficiency of the component (1).

多孔性金属錯体としては例えば、文献1(Lowら、「Journal of American Chemical Societry」、2009年、131号、p.15834−15842)や、文献2(Schroderら、「Journal of American Chemical Societry」、2008年、130号、p.6119−6130)に記載のものを用いることができる。   Examples of the porous metal complex include Reference 1 (Low et al., “Journal of American Chemical Society”, 2009, 131, p.15834-15842) and Reference 2 (Schroder et al., “Journal of American Chemical Chemistry,” 2008, 130, p.6119-6130) can be used.

なかでも、亜鉛、銅、マグネシウム、アルミニウム、マンガン、鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種の金属を有するものが好ましく、耐アンモニア性が確保しやすいと推測されることから、以下に示すものがより好ましい。
HKUST−1
(Cu(Benzenetricarboxylate)(HO)を表す。)、
Cr−MIL−101
(CrF(HO)O(Benzenedicarboxylate)・nHOを表す。)、
Al−MIL−110
(Al(OH)12{(OH)(HO)(Benzenetricarboxylate)・nHOを表す。)、
Zn−MOF−74
(Zn(DioxidoBenzenedicarboxylate)を表す。)、
Al−MIL−53
(Al(OH)(Benzenedicarboxylate)を表す。)、
Al−BTB
(Al[benzene−1,3,5−tris(phenylcarboxylate)]を表す。)、
ZIF−8
(Zn(2−Methylimidazolate)・(N,N−dimethylformamide)・(HO)を表す。)、
ZIF−90
([Zn(ICA)、Mg(HCOO)を表す。)。
これらの中でも、350〜400℃で安定して高活性を有することから、Al−BTBがさらに好ましい。
なお、上記の「ICA」は「イミダゾレートー2−カルボキシアルデヒド」を表す。
Among them, those having at least one metal selected from the group consisting of zinc, copper, magnesium, aluminum, manganese, iron, cobalt and nickel are preferable, and it is estimated that ammonia resistance is easily secured. Those shown in FIG.
HKUST-1
(Represents Cu 3 (Benzenetricboxylate) 2 (H 2 O) 3 ),
Cr-MIL-101
(Represents Cr 3 F (H 2 O) O (Benzene dicarboxylicboxylate) 3 · nH 2 O).
Al-MIL-110
(Al 8 (OH) 12 {(OH) 3 (H 2 O) 3 (Benzenetricboxylate) 3 · nH 2 O is represented)],
Zn-MOF-74
(Represents Zn 2 (Dioxodobenzaldehyde)),
Al-MIL-53
(Al (OH) (represents Benzene dicarboxylate)),
Al-BTB
(Represents Al [benzene-1,3,5-tris (phenylcarboxylate)]).
ZIF-8
(Represents Zn (2-methylimidazolate) 2 · (N, N-dimethylformamide) · (H 2 O) 3 ),
ZIF-90
([Zn (ICA) 2 ] n represents Mg (HCOO) 2 ).
Among these, Al-BTB is more preferable because it has high activity stably at 350 to 400 ° C.
The above-mentioned “ICA” represents “imidazolate-2-carboxaldehyde”.

組成物中の成分(3)の配合割合は特に限定されるものではないが、0.01〜15質量%であることが好ましく、0.1〜13質量%であることがより好ましく1〜10質量%であることがさらに好ましい。   The blending ratio of component (3) in the composition is not particularly limited, but is preferably 0.01 to 15% by mass, more preferably 0.1 to 13% by mass. More preferably, it is mass%.

本発明の組成物は、成分(1)〜(3)以外のその他の成分が配合されたものであってもよい。その他の成分としては、本発明の効果を損なわないものであれば特に限定されるものではない。   The composition of the present invention may contain other components other than components (1) to (3). Other components are not particularly limited as long as the effects of the present invention are not impaired.

本発明において、成分(1)〜(3)を配合して組成物を調製する方法は特に限定されるものではないが、アンモニア製造触媒として用いる組成物(以下、「触媒組成物」ということがある。)を調製する場合の一例としては
(i)成分(2)に成分(1)を担持させる工程、及び、
(ii)前記工程(i)の生成物に、さらに成分(3)を配合し、触媒組成物を製造する工程、とを有する調製方法が挙げられる。
以下、各工程を説明する。
In the present invention, the method for preparing the composition by blending the components (1) to (3) is not particularly limited, but a composition used as an ammonia production catalyst (hereinafter referred to as “catalyst composition”). As an example in the case of preparing ()) (i) a step of supporting component (1) on component (2), and
(Ii) The preparation method which has a process of further mix | blending component (3) with the product of the said process (i), and manufacturing a catalyst composition is mentioned.
Hereinafter, each process will be described.

(工程(i))
成分(2)に成分(1)を担持させる方法は特に限定されるものではないが、溶媒又は水中に成分(1)を分散させた後、成分(2)を添加することにより担持させる方法(含浸法)により行うことができる。
(Process (i))
The method of supporting the component (1) on the component (2) is not particularly limited, but the method of supporting the component (2) by adding the component (2) after dispersing the component (1) in a solvent or water ( Impregnation method).

溶媒としては特に限定されるものではないが、アセトン、テトラヒドロフラン等の極性溶媒、メタノール、エタノール等のアルコール系溶媒等が挙げられる。   Although it does not specifically limit as a solvent, Alcohol solvents, such as polar solvents, such as acetone and tetrahydrofuran, methanol, ethanol, etc. are mentioned.

成分(2)の添加後、必要に応じて、混合液の攪拌、溶媒又は水の留去、得られた生成物の乾燥等を行うことができる。   After the addition of component (2), the mixture can be stirred, the solvent or water can be distilled off, and the resulting product can be dried, if necessary.

また、成分(1)として用いるルテニウムがルテニウムを含む化合物である場合、該化合物に含まれる陰イオン又は配位子は、工程(ii)開始前に予め除去されることが好ましい。陰イオン又は配位子の除去は例えば、真空条件下又はHe等の不活性ガスの存在下で、加熱処理することにより行うことができる。加熱は50〜600℃、好ましくは150〜550℃で、0.5〜20時間行うことが好ましい。   Moreover, when the ruthenium used as the component (1) is a compound containing ruthenium, the anion or ligand contained in the compound is preferably removed in advance before the start of the step (ii). The anion or the ligand can be removed by, for example, heat treatment under vacuum conditions or in the presence of an inert gas such as He. Heating is preferably performed at 50 to 600 ° C, preferably 150 to 550 ° C for 0.5 to 20 hours.

(工程(ii))
・塩基性助触媒
成分(3)として塩基性助触媒を用いる場合、例えば、塩基性助触媒水溶液に工程(i)で得られた生成物を添加し、塩基性助触媒を含浸させる含浸法により触媒組成物を調製することができる。
(Step (ii))
-Basic promoter When using a basic promoter as the component (3), for example, by an impregnation method in which the product obtained in step (i) is added to an aqueous basic promoter solution and impregnated with the basic promoter. A catalyst composition can be prepared.

塩基性助触媒の添加後、必要に応じて、混合液の攪拌、水の留去、得られた生成物の乾燥等を行うことができる。   After the addition of the basic promoter, the mixed solution can be stirred, water can be distilled off, and the resulting product can be dried as necessary.

塩基性助触媒の添加量は、成分(1)に対する原子比が0.01〜20質量%となる量であることが好ましい。上記下限値以上とすることにより触媒活性を特に向上させることができ、上記上限値以下とすることにより、過度の塩基性助触媒の存在による触媒活性の低下を防ぐことができる。   The addition amount of the basic promoter is preferably such that the atomic ratio with respect to component (1) is 0.01 to 20% by mass. By setting the lower limit value or more, the catalytic activity can be particularly improved, and by setting the upper limit value or less, it is possible to prevent a decrease in the catalytic activity due to the presence of an excessive basic promoter.

また、塩基性助触媒としてアルカリ金属を含む化合物又はアルカリ土類金属を含む化合物を用いる場合、該化合物に含まれる陰イオン又は配位子を除去することが好ましい。配位子の除去は前記ルテニウム化合物に含まれる陰イオン又は配位子の除去と同様に行うことができる。   When a compound containing an alkali metal or a compound containing an alkaline earth metal is used as the basic promoter, it is preferable to remove an anion or a ligand contained in the compound. The removal of the ligand can be performed in the same manner as the removal of the anion or ligand contained in the ruthenium compound.

・多孔性金属錯体
成分(3)として多孔性金属錯体を用いる場合、例えば、工程(i)で得られた生成物と、多孔性金属錯体とを物理混合により複合化する方法により触媒組成物を調製することができる。物理混合の方法としては、乳鉢による混合、ボールミルによる混合等、公知の方法を用いることができる。
-Porous metal complex When using a porous metal complex as the component (3), for example, the catalyst composition is prepared by a method of complexing the product obtained in step (i) and the porous metal complex by physical mixing. Can be prepared. As the physical mixing method, a known method such as mixing with a mortar or ball mill can be used.

上記の様にして調製された触媒組成物に対して、さらに水素還元反応を行ってもよい。触媒であるルテニウムを金属状態に還元することにより、触媒能が向上する。水素還元反応は100〜700℃、好ましくは300〜600℃において、水素含有雰囲気中で0.5〜20時間行うことが好ましい。   The catalyst composition prepared as described above may be further subjected to a hydrogen reduction reaction. Catalytic performance is improved by reducing ruthenium, which is a catalyst, to a metallic state. The hydrogen reduction reaction is preferably performed at 100 to 700 ° C., preferably 300 to 600 ° C., in a hydrogen-containing atmosphere for 0.5 to 20 hours.

なお、組成物の調製方法は上記方法に限定されるものではなく、例えば、含浸法により成分(2)に塩基性助触媒を含浸させた後に、含浸法によりさらに成分(1)を含浸させてもよい。
また、触媒組成物が塩基性助触媒と多孔性金属錯体との両者を配合したものである場合、工程(i)の後、工程(ii)開始前に多孔性金属錯体と工程(i)の生成物とを物理混合し、その後塩基性助触媒を含浸させてもよく、工程(ii)において塩基性助触媒を含浸させた後に、多孔性金属錯体を物理混合してもよい。
The method for preparing the composition is not limited to the above method. For example, after impregnating the component (2) with the basic promoter in the impregnation method, the component (1) is further impregnated in the impregnation method. Also good.
Further, when the catalyst composition is a combination of both a basic promoter and a porous metal complex, after step (i), before the start of step (ii), the porous metal complex and step (i) The product may be physically mixed and then impregnated with a basic promoter, or after impregnating the basic promoter in step (ii), the porous metal complex may be physically mixed.

[アンモニア製造方法]
本発明の第二の態様のアンモニア製造方法は、上記第一の態様の組成物を触媒として用いるものである。
アンモニアの製造方法は特に限定されるものではないが、例えば、第一の態様の組成物が充填された反応容器内に、水素ガスと窒素ガスとからなる原料ガスを供給することによりアンモニアを製造することができる。
[Ammonia production method]
The ammonia production method of the second aspect of the present invention uses the composition of the first aspect as a catalyst.
The method for producing ammonia is not particularly limited. For example, ammonia is produced by supplying a raw material gas composed of hydrogen gas and nitrogen gas into a reaction vessel filled with the composition of the first aspect. can do.

第一の態様の組成物は、予め粉砕、成型、整粒等を行った後にアンモニアの製造に用いてもよい。   The composition of the first aspect may be used for the production of ammonia after previously pulverizing, molding, sizing and the like.

反応温度は、200℃〜600℃が好ましく、250℃〜500℃がより好ましく、300℃〜450℃がさらに好ましい。本発明のアンモニア製造方法においては、第一の態様の組成物を用いることにより反応容器内が低圧条件下であってもアンモニアを高収率で製造することができる。そのため、反応容器内の圧力は、低圧である1〜20気圧が好ましく、1〜10気圧がより好ましく、1〜5気圧がさらに好ましい。   The reaction temperature is preferably 200 ° C to 600 ° C, more preferably 250 ° C to 500 ° C, and further preferably 300 ° C to 450 ° C. In the ammonia production method of the present invention, by using the composition of the first aspect, ammonia can be produced in a high yield even when the inside of the reaction vessel is under low pressure conditions. Therefore, the pressure in the reaction vessel is preferably 1 to 20 atm which is a low pressure, more preferably 1 to 10 atm, and further preferably 1 to 5 atm.

以下に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

本実施例にて用いる反応装置について以下説明する。
アンモニア製造装置として、図1に示される固定床流通式装置を用いた。常圧実験の際には、内径7mmの石英製のリアクターを使用した。
アンモニア製造の前処理として、検討に用いる組成物(触媒)をリアクターに充填し、500℃、1時間の水素還元を行った。続けて、Arパージを行いながら反応温度である310℃まで降温させ、温度が安定したところで反応ガスの供給を開始し、350℃まで昇温した。反応ガスはN/H=1/3(SV=18000ml/(h・g))とした。反応式は下に示す通りである。
+3H→2NH
The reactor used in this example will be described below.
As the ammonia production apparatus, the fixed bed flow type apparatus shown in FIG. 1 was used. In a normal pressure experiment, a quartz reactor having an inner diameter of 7 mm was used.
As a pretreatment for ammonia production, the reactor was filled with the composition (catalyst) used for the study, and hydrogen reduction was performed at 500 ° C. for 1 hour. Subsequently, the temperature was lowered to 310 ° C. as the reaction temperature while performing Ar purge, and when the temperature was stabilized, supply of the reaction gas was started and the temperature was raised to 350 ° C. The reaction gas was N 2 / H 2 = 1/3 (SV = 18000 ml / (h · g)). The reaction formula is as shown below.
N 2 + 3H 2 → 2NH 3

(反応条件)
触媒量:0.2g
活性化処理条件:H流通下,10ml/min,500℃,1h.
反応温度:350℃
反応圧:0.1MPa(1気圧)
反応ガス:N15ml/分,H45ml/分
(Reaction conditions)
Catalyst amount: 0.2g
Activation treatment conditions: H 2 flow under, 10ml / min, 500 ℃, 1h.
Reaction temperature: 350 ° C
Reaction pressure: 0.1 MPa (1 atm)
Reaction gas: N 2 15 ml / min, H 2 45 ml / min

反応温度は350℃とし、30分間のサンプリングを行った。アンモニアのサンプリング方法の模式図を図2に示す。反応菅の出口ガス(アンモニア、水素、窒素)をアンモニアトラップとして0.001Mまたは0.01M硫酸溶液に通し、アンモニアのみを捕集した。このときの反応式は下に示す通りである。
2NH+HSO→2NH +SO 2−
The reaction temperature was 350 ° C. and sampling was performed for 30 minutes. A schematic diagram of the ammonia sampling method is shown in FIG. The reactor outlet gas (ammonia, hydrogen, nitrogen) was passed through a 0.001 M or 0.01 M sulfuric acid solution as an ammonia trap to collect only ammonia. The reaction formula at this time is as shown below.
2NH 3 + H 2 SO 4 → 2NH 4 + + SO 4 2−

反応菅の出口ガス中のアンモニアとトラップの硫酸溶液から、アンモニウムイオンと硫酸イオンが生成する。この反応での電気伝導度の減少をモニターし、触媒のアンモニア合成への活性を測定した。   Ammonium ions and sulfate ions are produced from the ammonia in the outlet gas of the reaction tank and the sulfuric acid solution in the trap. The decrease in electrical conductivity in this reaction was monitored, and the activity of the catalyst for ammonia synthesis was measured.

さらに、電気伝導度値より計算を行ったアンモニア収率の確認として、イオンクロマトグラフィーでアンモニア濃度を測定した。イオンクロマトグラフィーには、アンモニア合成の各温度で捕集したアンモニアトラップ硫酸溶液を分取し、測定を行った。   Furthermore, as a confirmation of the ammonia yield calculated from the electrical conductivity value, the ammonia concentration was measured by ion chromatography. For ion chromatography, the ammonia trap sulfuric acid solution collected at each temperature of ammonia synthesis was collected and measured.

(イオンクロマトグラフィー分析条件)
カラム:ShodexIC YK−421
カラムサイズ:内径4.6mm,長さ125mm
充填剤:シリカゲルにカルボキシル基を持つポリマーを被覆した弱酸性の陽イオン交換体
溶離液:4mmol/lリン酸溶液
(Ion chromatography analysis conditions)
Column: ShodexIC YK-421
Column size: inner diameter 4.6mm, length 125mm
Filler: Weakly acidic cation exchanger with silica gel coated with polymer having carboxyl group Eluent: 4 mmol / l phosphoric acid solution

なお,アンモニア収率の計算には窒素原子を内部標準として用いた.計算式は次式の通りである.   The nitrogen yield was used as an internal standard for the calculation of ammonia yield. The calculation formula is as follows.

Figure 2013111562
Figure 2013111562

<調製例1−1>
500mLビーカー中で、0.1mol相当のPr(NO・6HO(関東化学社製)を計り取り、イオン交換水400mLを加え攪拌し溶解した。また、別の1Lビーカーに25%アンモニア水200mLを入れ、スターラーにて攪拌した。そして、マイクロチューブポンプを用い、上記硝酸塩水溶液を上記25%アンモニア水に約4時間程度で滴下した後、一晩攪拌を続けた。その後、イオン交換水で濾過洗浄を繰り返した。得られた固形物は乾燥機での70℃、12時間以上の乾燥、排気焼成炉での大気中300℃、3時間の仮焼成を経て、冷却後に乳鉢で粉砕した。さらにマッフル炉にて700℃、3時間、大気中で本焼成し、Pr11を得た。
<Preparation Example 1-1>
In 500mL beaker, 0.1 mol equivalent of Pr (NO 3) 3 · 6H 2 O ( manufactured by Kanto Chemical Co., Inc.) were weighed, and stirred and dissolved by adding ion-exchanged water 400 mL. Moreover, 200 mL of 25% ammonia water was put into another 1 L beaker and stirred with a stirrer. Then, using a microtube pump, the nitrate aqueous solution was dropped into the 25% aqueous ammonia in about 4 hours, and then stirring was continued overnight. Thereafter, filtration and washing with ion-exchanged water were repeated. The obtained solid matter was subjected to drying at 70 ° C. in a dryer for 12 hours or more, pre-baking at 300 ° C. in the air in an exhaust firing furnace for 3 hours, and pulverized in a mortar after cooling. Further, this was calcined in the atmosphere at 700 ° C. for 3 hours in a muffle furnace to obtain Pr 6 O 11 .

<調製例1−2>
500mLビーカー中で、0.1mol相当のCe(NO・6HO(関東化学社製)を計り取り、イオン交換水400mLを加え攪拌し溶解した。また,別の1Lビーカーに25%アンモニア水200mLを入れ、スターラーにて攪拌した。そして、マイクロチューブポンプを用い、上記硝酸塩水溶液を上記25%アンモニア水に約4時間程度で滴下した後、一晩攪拌を続けた。その後、イオン交換水で濾過洗浄を繰り返した。得られた固形物は乾燥機での70℃、12時間以上の乾燥、排気焼成炉での大気中300℃、3時間の仮焼成を経て、冷却後に乳鉢で粉砕した。さらにマッフル炉にて700℃、3時間、大気中で本焼成し、CeOを得た。
<Preparation Example 1-2>
In 500mL beaker, 0.1 mol equivalent of Ce (NO 3) 3 · 6H 2 O ( manufactured by Kanto Chemical Co., Inc.) were weighed, and stirred and dissolved by adding ion-exchanged water 400 mL. Further, 200 mL of 25% aqueous ammonia was put into another 1 L beaker and stirred with a stirrer. Then, using a microtube pump, the nitrate aqueous solution was dropped into the 25% aqueous ammonia in about 4 hours, and then stirring was continued overnight. Thereafter, filtration and washing with ion-exchanged water were repeated. The obtained solid matter was subjected to drying at 70 ° C. in a dryer for 12 hours or more, pre-baking at 300 ° C. in the air in an exhaust firing furnace for 3 hours, and pulverized in a mortar after cooling. Further, this was calcined in the muffle furnace at 700 ° C. for 3 hours in the atmosphere to obtain CeO 2 .

<調製例1−3>
500mLビーカー中で、0.1mol相当のLa(NO・6HO(関東化学社製)を計り取り、イオン交換水400mLを加え攪拌し溶解した。また,別の1Lビーカーに25%アンモニア水200mLを入れ、スターラーにて攪拌した。そして、マイクロチューブポンプを用い、上記硝酸塩水溶液を上記25%アンモニア水に約4時間程度で滴下した後、一晩攪拌を続けた。その後、イオン交換水で濾過洗浄を繰り返した。得られた固形物は乾燥機での70℃、12時間以上の乾燥、排気焼成炉での大気中300℃、3時間の仮焼成を経て、冷却後に乳鉢で粉砕した。さらにマッフル炉にて700℃、3時間、大気中で本焼成し、Laを得た。
<Preparation Example 1-3>
In 500mL beaker, 0.1 mol equivalent of La (NO 3) 3 · 6H 2 O ( manufactured by Kanto Chemical Co., Inc.) were weighed, and stirred and dissolved by adding ion-exchanged water 400 mL. Further, 200 mL of 25% aqueous ammonia was put into another 1 L beaker and stirred with a stirrer. Then, using a microtube pump, the nitrate aqueous solution was dropped into the 25% aqueous ammonia in about 4 hours, and then stirring was continued overnight. Thereafter, filtration and washing with ion-exchanged water were repeated. The obtained solid matter was subjected to drying at 70 ° C. in a dryer for 12 hours or more, pre-baking at 300 ° C. in the air in an exhaust firing furnace for 3 hours, and pulverized in a mortar after cooling. Further, this was calcined in the atmosphere at 700 ° C. for 3 hours in a muffle furnace to obtain La 2 O 3 .

<調製例2−1>
Ru(CO)12(和光純薬工業社製)565mg(0.88mmol)をナスフラスコにいれ、200mlのテトラヒドロフランに溶解させた後に、上記<調製例1−1>で得られた担体(Pr11)5.0mg(4.9mmol)を加え、12時間常温でマグネットスターラーで攪拌した。その後,ロータリーエバポレーターを使用して溶媒を加熱除去した.このとき温浴の温度は70℃まで徐々に上げた.得られた固形物はナスフラスコから焼成皿に移して70℃の乾燥機で1日乾燥させた後、パイレックス(登録商標)ガラス(コーニング社製)のボートに入れ,He流通下の横型管状炉内で350℃,5時間加熱処理することで,ルテニウム化合物の配位子を除去した。このような手順で得られた生成物は、ルテニウムを5質量%担持した5質量%Ru/Pr11であった。
<Preparation Example 2-1>
Ru 3 (CO) 12 (manufactured by Wako Pure Chemical Industries, Ltd.), 565 mg (0.88 mmol) was placed in an eggplant flask, dissolved in 200 ml of tetrahydrofuran, and then the carrier (Pr) obtained in <Preparation Example 1-1> above. 6 O 11 ) 5.0 mg (4.9 mmol) was added, and the mixture was stirred with a magnetic stirrer at room temperature for 12 hours. Thereafter, the solvent was removed by heating using a rotary evaporator. At this time, the temperature of the warm bath was gradually raised to 70 ° C. The obtained solid material was transferred from the eggplant flask to a baking dish and dried for one day with a dryer at 70 ° C., then placed in a Pyrex (registered trademark) glass (Corning) boat and a horizontal tubular furnace under He circulation. The ligand of the ruthenium compound was removed by heat treatment at 350 ° C. for 5 hours. The product obtained by such a procedure was 5 mass% Ru / Pr 6 O 11 carrying 5 mass% of ruthenium.

<調製例2−2>
<調製例1−1>で得られた担体に替えて、<調製例1−2>で得られた担体(CeO)5.0g(29mmol)を用いた以外は上記<調製例2−1>と同様にして、ルテニウムを5質量%担持した5質量%Ru/CeOを調製した。
<Preparation Example 2-2>
<Preparation Example 2-1 above, except that 5.0 g (29 mmol) of the carrier (CeO 2 ) obtained in <Preparation Example 1-2> was used in place of the carrier obtained in <Preparation Example 1-1>. In the same manner as above, 5% by mass Ru / CeO 2 supporting 5% by mass of ruthenium was prepared.

<調製例2−3>
<調製例1−1>で得られた担体に替えて、<調製例1−3>で得られた担体(La)5.0g(15mmol)を用いた以外は上記<調製例2−1>と同様にして、ルテニウムを5質量%担持した5質量%Ru/Laを調製した。
<Preparation Example 2-3>
<Preparation Example 2> except that 5.0 g (15 mmol) of the carrier (La 2 O 3 ) obtained in <Preparation Example 1-3> was used in place of the carrier obtained in <Preparation Example 1-1>. -1> and was similarly prepared 5 wt% Ru / La 2 O 3 was 5 wt% supported ruthenium.

<調製例2−4>
担体には<調製例1−3>に準じて調製したLaを用いた。
RuClのn水和物を157mg、ポリビニルピロリドン666.6mg、エチレングリコール290mlを、アルゴン雰囲気下23℃にて5分間かけて攪拌した。23℃で30分、220℃で2時間攪拌した後、冷却、ろ別し、エタノール、アセトン、ジエチルエーテル、水で洗浄してRuナノ粒子を得た。
得られたRuナノ粒子869mgを40mlエタノールに溶解し、La 2.0gを加えて5分間超音波照射をした。水浴上でメタノールを蒸発させてRuナノ粒子担持触媒2.54gを得た。
元素分析をICP−AES(ICPE−9000、島津製作所社製)にて行ったところ、3.0質量%のRuが担持されていることが判明した。以下、該触媒を3.0質量%Ru/Laと呼称することがある。
<Preparation Example 2-4>
As the carrier, La 2 O 3 prepared according to <Preparation Example 1-3> was used.
157 mg of Ru 3 Cl 3 n hydrate, 666.6 mg of polyvinylpyrrolidone, and 290 ml of ethylene glycol were stirred at 23 ° C. for 5 minutes in an argon atmosphere. After stirring at 23 ° C. for 30 minutes and at 220 ° C. for 2 hours, the mixture was cooled, filtered, and washed with ethanol, acetone, diethyl ether, and water to obtain Ru nanoparticles.
869 mg of the obtained Ru nanoparticles were dissolved in 40 ml of ethanol, 2.0 g of La 2 O 3 was added, and ultrasonic irradiation was performed for 5 minutes. Methanol was evaporated on a water bath to obtain 2.54 g of Ru nanoparticle supported catalyst.
Elemental analysis was performed with ICP-AES (ICPE-9000, manufactured by Shimadzu Corporation), and it was found that 3.0% by mass of Ru was supported. Hereinafter, the catalyst may be referred to as 3.0 mass% Ru / La 2 O 3 .

<調製例2−5>
担体には<調製例1−3>に準じて調製したLaを用いた。
RuClのn水和物を313mg、Fe[Cを43mg、ポリビニルピロリドン266mg、水酸化ナトリウム10mg、エチレングリコール300mlをナスフラスコに入れ、アルゴン雰囲気下140℃まで加熱攪拌した。水素化ホウ素ナトリウム454mgを添加した後、180℃まで昇温し、120分間攪拌した。冷却、濾別し、エタノール、アセトン、ジエチルエーテル、水で洗浄して、RuFeナノ粒子を230mg得た。
得られたRuFeナノ粒子1,050mgを40mlメタノールに溶解し、La 2.0gを加えて5分間超音波照射をした。水浴上でメタノールを蒸発させて、RuFeナノ合金担持触媒2.38gを得た。
元素分析をICP−AESにて行ったところ、4.7質量%のRu及び0.3質量%のFeが担持されていることが判明した。以下、該触媒を4.7質量%Ru―0.3質量%Fe/Laと呼称することがある。
<Preparation Example 2-5>
As the carrier, La 2 O 3 prepared according to <Preparation Example 1-3> was used.
RuCl 3 n-hydrate (313 mg), Fe [C 3 H 8 O 2 ] 3 (43 mg), polyvinylpyrrolidone (266 mg), sodium hydroxide (10 mg), and ethylene glycol (300 ml) were placed in an eggplant flask and heated and stirred to 140 ° C. under an argon atmosphere. . After adding 454 mg of sodium borohydride, the temperature was raised to 180 ° C. and stirred for 120 minutes. The mixture was cooled, filtered and washed with ethanol, acetone, diethyl ether and water to obtain 230 mg of RuFe nanoparticles.
1,050 mg of the obtained RuFe nanoparticles were dissolved in 40 ml of methanol, 2.0 g of La 2 O 3 was added, and ultrasonic irradiation was performed for 5 minutes. Methanol was evaporated on a water bath to obtain 2.38 g of a RuFe nanoalloy supported catalyst.
When elemental analysis was performed by ICP-AES, it was found that 4.7% by mass of Ru and 0.3% by mass of Fe were supported. Hereinafter sometimes referred to as 4.7 mass% Ru-0.3 wt% Fe / La 2 O 3 the catalyst.

<調製例2−6>
担体には<調製例1−3>に準じて調製したLaを用いた。
RuClのn水和物564mg、Ni(CHCO60mg、ポリビニルピロリドン1,333mg、エチレングリコール200mlを、ナスフラスコに入れ、アルゴン雰囲気下170℃まで加熱し、15分間攪拌した。冷却、濾別し、エタノール、アセトン、ジエチルエーテル、水で洗浄して、RuNiナノ粒子を800mg得た。作製したRuNiナノ粒子800mgを40mlメタノールに溶解し、La 1.4gを加えて5分間超音波照射をした。水浴上でメタノールを蒸発させて、RuNiナノ合金担持触媒を1.42g得た。
元素分析をICP−AESにて行ったところ、4.3質量%のRu及び0.1質量%のNiが担持されていることが判明した。以下、該触媒を4.3質量%Ru―0.1質量%Ni/Laと呼称することがある。
<Preparation Example 2-6>
As the carrier, La 2 O 3 prepared according to <Preparation Example 1-3> was used.
RuCl 3 n-hydrate 564 mg, Ni (CH 3 CO 2 ) 2 60 mg, polyvinylpyrrolidone 1,333 mg, and ethylene glycol 200 ml were placed in an eggplant flask, heated to 170 ° C. under an argon atmosphere, and stirred for 15 minutes. The mixture was cooled, filtered, and washed with ethanol, acetone, diethyl ether, and water to obtain 800 mg of RuNi nanoparticles. 800 mg of the prepared RuNi nanoparticles were dissolved in 40 ml of methanol, 1.4 g of La 2 O 3 was added, and ultrasonic irradiation was performed for 5 minutes. Methanol was evaporated on a water bath to obtain 1.42 g of a RuNi nanoalloy supported catalyst.
When elemental analysis was performed by ICP-AES, it was found that 4.3 mass% Ru and 0.1 mass% Ni were supported. Hereinafter, the catalyst may be referred to as 4.3 mass% Ru-0.1 mass% Ni / La 2 O 3 .

<参考例1〜2、比較例1>
表1に示す触媒を用い、上述した方法により350℃でのアンモニア合成活性(単位:%。Ru 1gあたりの合成収率)を測定し、アンモニア収率を算出した。結果を表1に示す。なお、触媒は、乳鉢で充分に粉砕,混合し,ディスク成型にした後,再度,粉砕して250〜500μmに整粒して用いた。
<Reference Examples 1-2, Comparative Example 1>
Using the catalyst shown in Table 1, the ammonia synthesis activity (unit:%, synthesis yield per gram of Ru) at 350 ° C. was measured by the method described above, and the ammonia yield was calculated. The results are shown in Table 1. The catalyst was sufficiently pulverized and mixed in a mortar, formed into a disk, and then pulverized again to adjust the particle size to 250 to 500 μm.

Figure 2013111562
Figure 2013111562

上記結果から、Ruに、Fe、Niのような卑金属を少量合金化し、ランタノイド担体に担持させた参考例1〜2の触媒は、Ru単独でランタノイド担体に担持させた比較例1の触媒に比べて、アンモニア合成活性が高まり、常圧においても高収率でアンモニアを製造できることがわかった。   From the above results, the catalysts of Reference Examples 1 and 2 in which a small amount of a base metal such as Fe and Ni was alloyed with Ru and supported on the lanthanoid carrier were compared with the catalyst of Comparative Example 1 in which Ru alone was supported on the lanthanoid carrier. As a result, it was found that ammonia synthesis activity was enhanced and ammonia could be produced in high yield even at normal pressure.

<実施例1>
Al−BTBと、上記<調製例2−1>で得られた5質量%Ru/Pr11とを、質量比1:9で乳鉢を用いて物理混合した。このような手順でAl−BTB+5質量%Ru/Pr11を得た。得られた触媒を用いて、上述した方法によりアンモニアを製造し、アンモニア収率を算出したところ、0.15%であった。結果を表2に示す。
なお、触媒は、参考例1〜2等と同様に粉砕、混合、成型、再粉砕、整粒した後に用いた。以下の実施例2〜10及び比較例2も同様である。
<Example 1>
Al-BTB and 5 mass% Ru / Pr 6 O 11 obtained in the above <Preparation Example 2-1> were physically mixed using a mortar at a mass ratio of 1: 9. By such a procedure, Al-BTB + 5 mass% Ru / Pr 6 O 11 was obtained. Using the obtained catalyst, ammonia was produced by the method described above, and the ammonia yield was calculated to be 0.15%. The results are shown in Table 2.
The catalyst was used after being pulverized, mixed, molded, reground and sized in the same manner as in Reference Examples 1 and 2. The same applies to Examples 2 to 10 and Comparative Example 2 below.

<実施例2>
以下の手順で、5質量%Ru/Pr11<調製例2−1>にアルカリ金属酸化物を配合した触媒を調製した。なお,触媒中のアルカリ金属とルテニウムの原子比は1.0となるようにした.
300mlビーカーに150mlの蒸留水を入れ、アルカリ金属酸化物の前駆体であるCsNO(関東化学社製)を193mg(0.99mmol)加えてマグネットスターラーで撹拌し,溶解させた。
その後,上記<調製例2−1>で得られた5質量%Ru/Pr11を2.0mg(Ru:0.99mmol)加えて常温で12時間撹拌した。その後、ホットスターラ―上で加熱攪拌により水分を蒸発させ、ペースト状になったものを70℃の乾燥機で充分に乾燥させ、乳鉢で粉砕混合した。
その後、パイレックス(登録商標)ガラス(コーニング社製)のボートにいれ、横型管状炉で100%のH流通下で500℃、1時間加熱処理することで、アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得た。
このような手順で得られた生成物は、Cs及び5質量%のルテニウムを担持したCs/5質量%Ru/Pr11であった。得られた生成物を触媒としてを用いて、上述した方法によりアンモニアを製造し、アンモニア収率を算出したところ、1.01%であった。結果を表2に示す。
<Example 2>
In the following steps, a catalyst obtained by blending the alkali metal oxides were prepared in 5 wt% Ru / Pr 6 O 11 <Preparation Example 2-1>. The atomic ratio of alkali metal to ruthenium in the catalyst was set to 1.0.
150 ml of distilled water was put into a 300 ml beaker, and 193 mg (0.99 mmol) of CsNO 3 (manufactured by Kanto Chemical Co., Ltd.), which is an alkali metal oxide precursor, was added and stirred with a magnetic stirrer to dissolve.
Thereafter, 2.0 mg (Ru: 0.99 mmol) of 5 mass% Ru / Pr 6 O 11 obtained in the above <Preparation Example 2-1> was added and stirred at room temperature for 12 hours. Thereafter, the water was evaporated by heating and stirring on a hot stirrer, and the paste was sufficiently dried with a dryer at 70 ° C. and pulverized and mixed in a mortar.
Then, it is put into a boat made of Pyrex (registered trademark) glass (manufactured by Corning), and heated in a horizontal tubular furnace under 100% H 2 flow at 500 ° C. for 1 hour, so that nitric acid in the alkali metal oxide precursor. The roots were removed to give the product.
The product obtained by such a procedure was Cs / 5 wt% Ru / Pr 6 O 11 supporting Cs and 5 wt% ruthenium. Using the obtained product as a catalyst, ammonia was produced by the method described above, and the ammonia yield was calculated to be 1.01%. The results are shown in Table 2.

<実施例3>
以下の手順で、5質量%Ru/CeO<調製例2−2>にアルカリ金属酸化物を配合した触媒を調製した。なお、触媒中のアルカリ金属とルテニウムの原子比は0.5となるようにした。
300mlビーカーに150mlの蒸留水を入れ、アルカリ金属酸化物の前駆体であるCsNO(関東化学社製)を96mg(0.49mmol)加えてマグネットスターラーで撹拌し、溶解させた。
その後、上記<調製例2−2>で得られた所定量の5質量%Ru/CeOを2.0mg(Ru:0.99mmol)加えて常温で12時間撹拌した。その後、ホットスターラ―上で加熱攪拌により水分を蒸発させ、ペースト状になったものを70℃の乾燥機で充分に乾燥させ、乳鉢で粉砕混合した。
その後、パイレックス(登録商標)ガラス(コーニング社製)のボートにいれ、横型管状炉で100%のH流通下で500℃、1時間加熱処理することで、アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得た。
このような手順で得られた触媒は、Cs/5質量%Ru/CeOであった。得られた触媒を用いて、上述した方法によりアンモニアを製造し、アンモニア収率を算出したところ、0.79%であった。結果を表2に示す。
<Example 3>
The following procedure was used to prepare a catalyst containing a combination of alkali metal oxide 5 wt% Ru / CeO 2 <Preparation Example 2-2>. The atomic ratio of alkali metal to ruthenium in the catalyst was set to 0.5.
150 ml of distilled water was put into a 300 ml beaker, and 96 mg (0.49 mmol) of CsNO 3 (manufactured by Kanto Chemical Co.), which is an alkali metal oxide precursor, was added and stirred with a magnetic stirrer to dissolve.
Thereafter, 2.0 mg (Ru: 0.99 mmol) of a predetermined amount of 5 mass% Ru / CeO obtained in the above <Preparation Example 2-2> was added and stirred at room temperature for 12 hours. Thereafter, the water was evaporated by heating and stirring on a hot stirrer, and the paste was sufficiently dried with a dryer at 70 ° C. and pulverized and mixed in a mortar.
Then, it is put into a boat made of Pyrex (registered trademark) glass (manufactured by Corning), and heated in a horizontal tubular furnace under 100% H 2 flow at 500 ° C. for 1 hour, so that nitric acid in the alkali metal oxide precursor. The roots were removed to give the product.
The catalyst obtained by such a procedure was Cs / 5 mass% Ru / CeO 2 . Using the obtained catalyst, ammonia was produced by the method described above, and the ammonia yield was calculated to be 0.79%. The results are shown in Table 2.

<実施例4>
以下の手順で5質量%Ru/La<調製例2−3>にアルカリ金属酸化物を配合した触媒を調製した。なお、触媒中のアルカリ金属とルテニウムの原子比は0.1となるようにした。
300mlビーカーに150mlの蒸留水を入れ、アルカリ金属酸化物の前駆体であるCsNO(関東化学(株)製)を19mg(0.097mmol)加えてマグネットスターラーで撹拌し、溶解させた。
その後,上記<調製例2−3>で得られた所定量の5質量%Ru/Laを2.0mg(Ru:0.99mmol)加えて常温で12時間撹拌した。
その後、ホットスターラ―上で加熱攪拌により水分を蒸発させ、ペースト状になったものを70℃の乾燥機で充分に乾燥させ、乳鉢で粉砕混合した。
その後、パイレックス(登録商標)ガラス製(コーニング社製)のボートにいれ、横型管状炉で100%のH流通下で500℃、1時間加熱処理することで、アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得た。
このような手順で得られた触媒は、Cs/5質量%Ru/Laであった。得られた触媒を用いて、上述した方法によりアンモニアを製造し、アンモニア収率を算出したところ、0.72%であった。結果を表2に示す。
<Example 4>
A catalyst was prepared by blending the alkali metal oxides in the following steps 5 wt% Ru / La 2 O 3 <Preparation Example 2-3>. The atomic ratio of alkali metal to ruthenium in the catalyst was set to 0.1.
150 ml of distilled water was put into a 300 ml beaker, 19 mg (0.097 mmol) of CsNO 3 (manufactured by Kanto Chemical Co., Ltd.), which is an alkali metal oxide precursor, was added and stirred with a magnetic stirrer to dissolve.
Thereafter, 2.0 mg (Ru: 0.99 mmol) of a predetermined amount of 5 mass% Ru / La 2 O 3 obtained in the above <Preparation Example 2-3> was added and stirred at room temperature for 12 hours.
Thereafter, the water was evaporated by heating and stirring on a hot stirrer, and the paste was sufficiently dried with a dryer at 70 ° C. and pulverized and mixed in a mortar.
Then, it is put into a boat made of Pyrex (registered trademark) glass (manufactured by Corning) and heated in a horizontal tubular furnace under a flow of 100% H 2 at 500 ° C. for 1 hour, so that the alkali metal oxide precursor The nitrate radical was removed to obtain the product.
The catalyst obtained by such a procedure was Cs / 5 mass% Ru / La 2 O 3 . Using the obtained catalyst, ammonia was produced by the method described above, and the ammonia yield was calculated to be 0.72%. The results are shown in Table 2.

<実施例5>
以下の手順で3質量%Ru/La<調製例2−4>にアルカリ金属酸化物を配合した触媒を調製する。なお,触媒中のアルカリ金属とルテニウムの原子比は0.1となるようにする。
300mlビーカーに150mlの蒸留水を入れ、アルカリ金属酸化物の前駆体であるCsNO(関東化学(株)製)を加えてマグネットスターラーで撹拌し,溶解させる。
その後,上記<調製例2−4>で得られた所定量の3質量%Ru/Laを加えて常温で12時間撹拌する。
その後,ホットスターラ―上で加熱攪拌により水分を蒸発させ,ペースト状になったものを70℃の乾燥機で充分に乾燥させ,乳鉢で粉砕混合する。
その後パイレックス(登録商標)ガラス製(コーニング社製)のボートにいれ,横型管状炉で100%のH流通下で500℃,1時間加熱処理することで,アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得る。
このような手順で得られる触媒は、Cs/3wt%Ru/Laである。
<Example 5>
The following steps 3 wt% Ru / La 2 O 3 catalyst containing a combination of alkali metal oxide in <Preparation Example 2-4> is prepared. The atomic ratio of alkali metal to ruthenium in the catalyst is set to 0.1.
Add 150 ml of distilled water to a 300 ml beaker, add CsNO 3 (manufactured by Kanto Chemical Co., Inc.), which is an alkali metal oxide precursor, and stir with a magnetic stirrer to dissolve.
Thereafter, the predetermined amount of 3 mass% Ru / La 2 O 3 obtained in the above <Preparation Example 2-4> is added and stirred at room temperature for 12 hours.
Then, the water is evaporated by heating and stirring on a hot stirrer, and the paste is sufficiently dried with a dryer at 70 ° C. and pulverized and mixed in a mortar.
After that, it was put into a boat made of Pyrex (registered trademark) glass (Corning) and heated in a horizontal tube furnace under 100% H 2 flow at 500 ° C. for 1 hour, so that nitric acid in the alkali metal oxide precursor Remove the roots to obtain the product.
The catalyst obtained by such a procedure is Cs / 3 wt% Ru / La 2 O 3 .

<実施例6>
以下の手順で4.7質量%Ru−0.3質量%Fe/La<調製例2−5>にアルカリ金属酸化物を配合した触媒を調製する。なお,触媒中のアルカリ金属とルテニウムの原子比は0.1となるようにする。
300mlビーカーに150mlの蒸留水を入れ、アルカリ金属酸化物の前駆体であるCsNO(関東化学(株)製)を加えてマグネットスターラーで撹拌し,溶解させる。
その後,上記<調製例2−5>で得られた所定量の4.7質量%Ru−0.3質量%Fe/Laを加えて常温で12時間撹拌する。
その後,ホットスターラ―上で加熱攪拌により水分を蒸発させ,ペースト状になったものを70℃の乾燥機で充分に乾燥させ,乳鉢で粉砕混合する。
その後パイレックス(登録商標)ガラス製(コーニング社製)のボートにいれ,横型管状炉で100%のH流通下で500℃,1時間加熱処理することで,アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得る。
このような手順で得られる触媒は、Cs/4.7質量%Ru−0.3質量%Fe/Laである。
<Example 6>
Preparing a catalyst obtained by blending alkali metal oxide of 4.7 wt% Ru-0.3 wt% Fe / La 2 O 3 <Preparation Example 2-5> by the following procedure. The atomic ratio of alkali metal to ruthenium in the catalyst is set to 0.1.
Add 150 ml of distilled water to a 300 ml beaker, add CsNO 3 (manufactured by Kanto Chemical Co., Inc.), which is an alkali metal oxide precursor, and stir with a magnetic stirrer to dissolve.
Thereafter, the predetermined amount of 4.7% by mass Ru-0.3% by mass Fe / La 2 O 3 obtained in the above <Preparation Example 2-5> is added and stirred at room temperature for 12 hours.
Then, the water is evaporated by heating and stirring on a hot stirrer, and the paste is sufficiently dried with a dryer at 70 ° C. and pulverized and mixed in a mortar.
After that, it was put into a boat made of Pyrex (registered trademark) glass (Corning) and heated in a horizontal tube furnace under 100% H 2 flow at 500 ° C. for 1 hour, so that nitric acid in the alkali metal oxide precursor Remove the roots to obtain the product.
Catalyst obtained by such a procedure is Cs / 4.7 wt% Ru-0.3 wt% Fe / La 2 O 3.

<実施例7>
以下の手順で4.3質量%Ru−0.1質量%Ni/La<調製例2−6>にアルカリ金属酸化物を配合した触媒を調製する。なお,触媒中のアルカリ金属とルテニウムの原子比は0.1となるようにする。
300mlビーカーに150mlの蒸留水を入れアルカリ金属酸化物の前駆体(CsNO(関東化学(株)製)を加えてマグネットスターラーで撹拌し,溶解させる。その後,上記<調製例2−6>で得られた所定量の4.3質量%Ru−0.1質量%Ni/Laを加えて常温で12時間撹拌する。その後,ホットスターラ―上で加熱攪拌により水分を蒸発させ,ペースト状になったものを70℃の乾燥機で充分に乾燥させ,乳鉢で粉砕混合する。その後パイレックス(登録商標)ガラス製(コーニング社製)のボートにいれ,横型管状炉で100%のH流通下で500℃,1時間加熱処理することで,アルカリ金属酸化物前駆体中の硝酸根を除去し、生成物を得る。
このような手順で得られた触媒は、Cs/4.3質量%Ru−0.1質量%Ni/Laである。
<Example 7>
Preparing a catalyst obtained by blending alkali metal oxide of 4.3 wt% Ru-0.1 wt% Ni / La 2 O 3 <Preparation Example 2-6> by the following procedure. The atomic ratio of alkali metal to ruthenium in the catalyst is set to 0.1.
In a 300 ml beaker, 150 ml of distilled water is added, an alkali metal oxide precursor (CsNO 3 (manufactured by Kanto Chemical Co., Inc.)) is added and stirred and dissolved with a magnetic stirrer. It was added to the resultant 4.3 wt% Ru-0.1 wt% Ni / La 2 O 3 in a predetermined amount and stirred at room temperature for 12 hours then hot stirrer -. water is evaporated by heating and stirring on, the paste The resulting product is thoroughly dried in a dryer at 70 ° C. and pulverized and mixed in a mortar, then placed in a Pyrex (registered trademark) glass (Corning) boat and 100% H 2 in a horizontal tube furnace. The nitrate radical in the alkali metal oxide precursor is removed by heat treatment at 500 ° C. for 1 hour under flow to obtain a product.
The catalyst obtained in this procedure is a Cs / 4.3 wt% Ru-0.1 wt% Ni / La 2 O 3.

<実施例8>
Al−BTBと、上記<調製例2−4>で得られた3質量%Ru/Laとを、質量比1:9で乳鉢を用いて物理混合する。
このような手順でAl−BTB+3質量%Ru/Laを得る。
<Example 8>
Al-BTB and 3 mass% Ru / La 2 O 3 obtained in the above <Preparation Example 2-4> are physically mixed using a mortar at a mass ratio of 1: 9.
Obtain Al-BTB + 3 wt% Ru / La 2 O 3 in such a procedure.

<実施例9>
Al−BTBと、上記<調製例2−5>で得られた4.7質量%Ru−0.3質量%Fe/Laとを、質量比1:9で乳鉢を用いて物理混合する。
このような手順でAl−BTB+4.7質量%Ru−0.3質量%Fe/Laを得る。
<Example 9>
Physical mixing of Al-BTB and 4.7% by mass Ru-0.3% by mass Fe / La 2 O 3 obtained in the above <Preparation Example 2-5> using a mortar at a mass ratio of 1: 9 To do.
Obtain Al-BTB + 4.7 wt% Ru-0.3 wt% Fe / La 2 O 3 in such a procedure.

<実施例10>
Al−BTBと、上記<調製例2−6>で得られた4.3質量%Ru−0.1質量%Ni/Laとを、質量比1:9で乳鉢を用いて物理混合する。
このような手順でAl−BTB+4.3質量%Ru−0.1質量%Ni/Laを得る。
<Example 10>
And al-BTB, and 4.3 wt% Ru-0.1 wt% Ni / La 2 O 3 obtained in the above <Preparation Example 2-6>, a weight ratio of 1: 9 using a mortar in a physical mixture To do.
Obtain Al-BTB + 4.3 wt% Ru-0.1 wt% Ni / La 2 O 3 in such a procedure.

<比較例2>
上記比較例1において得られた触媒を用いて、上述した方法によりアンモニアを製造し、アンモニア収率を算出したところ、0.06%であった。結果を表2に示す。
<Comparative example 2>
Ammonia was produced by the method described above using the catalyst obtained in Comparative Example 1, and the ammonia yield was calculated to be 0.06%. The results are shown in Table 2.

Figure 2013111562
Figure 2013111562

上記結果から、塩基性助触媒を配合した実施例2〜4の触媒、並びに多孔性金属錯体を配合した実施例1の触媒を用いた場合、塩基性助触媒及び多孔性金属錯体を配合していない比較例2の触媒に比べて、常圧においても高収率でアンモニアを製造できることがわかった。   From the above results, when using the catalyst of Examples 2 to 4 blended with the basic promoter and the catalyst of Example 1 blended with the porous metal complex, the basic promoter and the porous metal complex were blended. It was found that ammonia can be produced in a high yield even at normal pressure as compared with the catalyst of Comparative Example 2 that is not present.

Claims (5)

(1)ルテニウム、ルテニウムを含む合金又はルテニウムを含む化合物、
(2)ランタノイドを含む化合物、並びに、
(3)塩基性助触媒及び/又は多孔性金属錯体
を配合した組成物。
(1) ruthenium, an alloy containing ruthenium or a compound containing ruthenium,
(2) a compound containing a lanthanoid, and
(3) A composition containing a basic promoter and / or a porous metal complex.
前記ランタノイドを含む化合物が、ランタノイド酸化物である、請求項1に記載の組成物。   The composition according to claim 1, wherein the compound containing the lanthanoid is a lanthanoid oxide. 前記塩基性助触媒が、アルカリ金属酸化物、アルカリ金属水酸化物、アルカリ土類金属酸化物又はアルカリ土類金属水酸化物である、請求項1又は2に記載の組成物。   The composition according to claim 1 or 2, wherein the basic promoter is an alkali metal oxide, an alkali metal hydroxide, an alkaline earth metal oxide, or an alkaline earth metal hydroxide. 前記多孔性金属錯体が、亜鉛、銅、マグネシウム、アルミニウム、マンガン、鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種の金属を有する、請求項1〜3のいずれか一項に記載の組成物。   The composition according to any one of claims 1 to 3, wherein the porous metal complex has at least one metal selected from the group consisting of zinc, copper, magnesium, aluminum, manganese, iron, cobalt, and nickel. object. 請求項1〜4のいずれか一項に記載の組成物を触媒として用い、窒素と水素とを反応させてアンモニアを製造する方法。   A method for producing ammonia by reacting nitrogen and hydrogen using the composition according to any one of claims 1 to 4 as a catalyst.
JP2011262899A 2011-11-30 2011-11-30 Method for producing catalyst composition for ammonia production and method for producing ammonia Active JP6017777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262899A JP6017777B2 (en) 2011-11-30 2011-11-30 Method for producing catalyst composition for ammonia production and method for producing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262899A JP6017777B2 (en) 2011-11-30 2011-11-30 Method for producing catalyst composition for ammonia production and method for producing ammonia

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016192154A Division JP2017001037A (en) 2016-09-29 2016-09-29 Catalyst composition for manufacturing ammonia, manufacturing method of catalyst composition for manufacturing ammonia and ammonia manufacturing method

Publications (2)

Publication Number Publication Date
JP2013111562A true JP2013111562A (en) 2013-06-10
JP6017777B2 JP6017777B2 (en) 2016-11-02

Family

ID=48707687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262899A Active JP6017777B2 (en) 2011-11-30 2011-11-30 Method for producing catalyst composition for ammonia production and method for producing ammonia

Country Status (1)

Country Link
JP (1) JP6017777B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066468A (en) * 2013-09-26 2015-04-13 住友化学株式会社 Ammonia synthesis catalyst and ammonia producing method
WO2016133213A1 (en) * 2015-02-20 2016-08-25 国立大学法人大分大学 Ammonia synthesis catalyst and method for producing same
JP2016155123A (en) * 2015-02-20 2016-09-01 国立大学法人 大分大学 Ammonia synthesis catalyst and production method thereof
JP2017018907A (en) * 2015-07-13 2017-01-26 国立大学法人 大分大学 Composition for ammonia synthesis catalyst and method for producing the same, and method for synthesizing ammonia
WO2017014313A1 (en) * 2015-07-23 2017-01-26 昭栄化学工業株式会社 Metal oxide nanocrystal production method, multi-element oxide nanocrystal production method and metal oxide nanocrystal
JP2017148810A (en) * 2017-05-26 2017-08-31 住友化学株式会社 Ammonia synthesis catalyst and ammonia producing method
WO2019059190A1 (en) 2017-09-25 2019-03-28 国立研究開発法人科学技術振興機構 Composite oxide, metal-supporting material and ammonia synthesis catalyst
JP2019162604A (en) * 2018-03-20 2019-09-26 日揮触媒化成株式会社 Method of producing ammonia synthesis catalyst
WO2019216304A1 (en) 2018-05-07 2019-11-14 国立研究開発法人科学技術振興機構 Composite oxide, metal-supported material, and ammonia synthesis catalyst
CN111871418A (en) * 2020-06-29 2020-11-03 润泰化学(泰兴)有限公司 Coated nano catalyst for one-step synthesis of isobutyraldehyde from methanol and ethanol and preparation method thereof
JP2021109130A (en) * 2020-01-08 2021-08-02 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst
WO2021153738A1 (en) 2020-01-31 2021-08-05 国立研究開発法人科学技術振興機構 Ammonia synthesis catalyst
CN113471457A (en) * 2021-07-13 2021-10-01 福建师范大学 Preparation and application of cationic MOFs derivative catalyst
CN116062785A (en) * 2023-03-10 2023-05-05 福州大学 Ruthenium doped lanthanum sulfide catalyst and preparation and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001037A (en) * 2016-09-29 2017-01-05 住友化学株式会社 Catalyst composition for manufacturing ammonia, manufacturing method of catalyst composition for manufacturing ammonia and ammonia manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106445A (en) * 1989-09-21 1991-05-07 Shinnenshiyou Syst Kenkyusho:Kk Catalyst for preparing ammonia
JPH0679177A (en) * 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc Catalyst and process for synthesizing ammonia
JPH08141399A (en) * 1994-11-24 1996-06-04 Mitsui Toatsu Chem Inc Ammonia synthesizing catalyst and preparation thereof
JP2001246251A (en) * 2000-03-09 2001-09-11 Nkk Corp Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia
JP2002052341A (en) * 2000-07-06 2002-02-19 Haldor Topsoe As Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst
JP2004261728A (en) * 2003-03-03 2004-09-24 Jfe Engineering Kk Ammonia synthesizing catalyst and method for manufacturing the same
JP2006231229A (en) * 2005-02-25 2006-09-07 Honda Motor Co Ltd Ammonia synthesis catalyst and its production method
WO2010010050A1 (en) * 2008-07-21 2010-01-28 Basf Se Method for technical extraction of propene
JP2011056488A (en) * 2009-09-09 2011-03-24 Yusaku Takita Ammonia reforming catalyst and method of manufacturing hydrogen using the same
JP2011126775A (en) * 2009-12-15 2011-06-30 Samsung Electronics Co Ltd Hybrid porous material and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106445A (en) * 1989-09-21 1991-05-07 Shinnenshiyou Syst Kenkyusho:Kk Catalyst for preparing ammonia
JPH0679177A (en) * 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc Catalyst and process for synthesizing ammonia
JPH08141399A (en) * 1994-11-24 1996-06-04 Mitsui Toatsu Chem Inc Ammonia synthesizing catalyst and preparation thereof
JP2001246251A (en) * 2000-03-09 2001-09-11 Nkk Corp Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia
JP2002052341A (en) * 2000-07-06 2002-02-19 Haldor Topsoe As Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst
JP2004261728A (en) * 2003-03-03 2004-09-24 Jfe Engineering Kk Ammonia synthesizing catalyst and method for manufacturing the same
JP2006231229A (en) * 2005-02-25 2006-09-07 Honda Motor Co Ltd Ammonia synthesis catalyst and its production method
WO2010010050A1 (en) * 2008-07-21 2010-01-28 Basf Se Method for technical extraction of propene
JP2011056488A (en) * 2009-09-09 2011-03-24 Yusaku Takita Ammonia reforming catalyst and method of manufacturing hydrogen using the same
JP2011126775A (en) * 2009-12-15 2011-06-30 Samsung Electronics Co Ltd Hybrid porous material and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAO HUO, ET AL.: "Efficient La-Ba-MgO Supported Ru Catalysts for Ammonia Synthesis", CATALYSIS LETTERS, vol. Volume 141, Issue 9, JPN6016012577, 2 July 2011 (2011-07-02), pages 1275 - 1281, ISSN: 0003291012 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066468A (en) * 2013-09-26 2015-04-13 住友化学株式会社 Ammonia synthesis catalyst and ammonia producing method
CN107530686A (en) * 2015-02-20 2018-01-02 国立研究开发法人科学技术振兴机构 ammonia synthesis catalyst and preparation method thereof
WO2016133213A1 (en) * 2015-02-20 2016-08-25 国立大学法人大分大学 Ammonia synthesis catalyst and method for producing same
JP2016155123A (en) * 2015-02-20 2016-09-01 国立大学法人 大分大学 Ammonia synthesis catalyst and production method thereof
EP3260198A4 (en) * 2015-02-20 2018-12-05 Japan Science and Technology Agency Ammonia synthesis catalyst and method for producing same
JP2017018907A (en) * 2015-07-13 2017-01-26 国立大学法人 大分大学 Composition for ammonia synthesis catalyst and method for producing the same, and method for synthesizing ammonia
WO2017014313A1 (en) * 2015-07-23 2017-01-26 昭栄化学工業株式会社 Metal oxide nanocrystal production method, multi-element oxide nanocrystal production method and metal oxide nanocrystal
KR20180033207A (en) * 2015-07-23 2018-04-02 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR MANUFACTURING METAL OXIDE NANO CRYSTALS, METHOD FOR MANUFACTURING MULTI-OXIDE OXIDE NANO CRYSTALS,
JPWO2017014313A1 (en) * 2015-07-23 2018-05-24 昭栄化学工業株式会社 Metal oxide nanocrystal manufacturing method, multi-element oxide nanocrystal manufacturing method, and metal oxide nanocrystal
US10640882B2 (en) 2015-07-23 2020-05-05 Shoei Chemical Inc. Method for producing nanocrystals and nanocrystal production device
US10745822B2 (en) 2015-07-23 2020-08-18 Shoei Chemical Inc. Method for producing metal oxide nanocrystals, method for producing multi-element oxide nanocrystals, and metal oxide nanocrystals
KR102498433B1 (en) 2015-07-23 2023-02-13 소에이 가가쿠 고교 가부시키가이샤 Method for producing metal oxide nanocrystals, method for producing multi-element oxide nanocrystals, and metal oxide nanocrystals
JP2017148810A (en) * 2017-05-26 2017-08-31 住友化学株式会社 Ammonia synthesis catalyst and ammonia producing method
WO2019059190A1 (en) 2017-09-25 2019-03-28 国立研究開発法人科学技術振興機構 Composite oxide, metal-supporting material and ammonia synthesis catalyst
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP2019162604A (en) * 2018-03-20 2019-09-26 日揮触媒化成株式会社 Method of producing ammonia synthesis catalyst
JP7075794B2 (en) 2018-03-20 2022-05-26 日揮触媒化成株式会社 Manufacturing method of catalyst for ammonia synthesis
WO2019216304A1 (en) 2018-05-07 2019-11-14 国立研究開発法人科学技術振興機構 Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP2021109130A (en) * 2020-01-08 2021-08-02 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst
JP7432224B2 (en) 2020-01-08 2024-02-16 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst
JP7454307B2 (en) 2020-01-08 2024-03-22 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst
JP7527052B2 (en) 2020-01-08 2024-08-02 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst
WO2021153738A1 (en) 2020-01-31 2021-08-05 国立研究開発法人科学技術振興機構 Ammonia synthesis catalyst
CN111871418A (en) * 2020-06-29 2020-11-03 润泰化学(泰兴)有限公司 Coated nano catalyst for one-step synthesis of isobutyraldehyde from methanol and ethanol and preparation method thereof
CN113471457A (en) * 2021-07-13 2021-10-01 福建师范大学 Preparation and application of cationic MOFs derivative catalyst
CN113471457B (en) * 2021-07-13 2022-10-21 福建师范大学 Preparation and application of cationic MOFs derivative catalyst
CN116062785A (en) * 2023-03-10 2023-05-05 福州大学 Ruthenium doped lanthanum sulfide catalyst and preparation and application thereof

Also Published As

Publication number Publication date
JP6017777B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6017777B2 (en) Method for producing catalyst composition for ammonia production and method for producing ammonia
CN109305924B (en) Synthetic method of aminoanisole compound
CN112044434B (en) Single-atom noble metal/transition metal oxide composite material and preparation method and application thereof
WO2021253712A1 (en) Novel metal composite oxide catalyst and preparation method therefor
CN102258998B (en) Ammonia synthesis catalyst and preparation method thereof
WO2019128914A1 (en) Copper-based catalyst for synthesizing dihydric alcohol by means of ester hydrogenation and preparation method therefor and use thereof
JP6573494B2 (en) Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia
JP2013111563A (en) Composition and ammonia production method using the same
JP2017001037A (en) Catalyst composition for manufacturing ammonia, manufacturing method of catalyst composition for manufacturing ammonia and ammonia manufacturing method
Zhao et al. A novel Cu–Mn/Ca–Zr catalyst for the synthesis of methyl formate from syngas
CN114284516A (en) Catalyst with low Pt loading capacity, preparation method and application thereof
CN113457722B (en) Methane carbon dioxide dry reforming catalyst and preparation method and application thereof
JP5105709B2 (en) Water gas shift reaction catalyst
CN109908898B (en) Fischer-Tropsch synthesis catalyst and preparation method thereof
CN103285903B (en) Hydrogenation catalyst, and preparation method and application thereof
CN105642290A (en) Preparation method of catalyst for reforming of methane and carbon dioxide to prepare syngas
CN103288574B (en) A kind of benzene selective hydrogenation prepares the method for tetrahydrobenzene
CN105727972A (en) Preparation method of catalyst for methane reforming with carbon dioxide to synthetic gas
TWI749373B (en) Catalyst and method for manufacturing the same and method for hydrogenation of aromatic epoxy compound
WO2014128204A1 (en) Catalyst manufacturing method
JP2015218091A (en) Ammonia synthesis catalyst and ammonia synthesis method
JPWO2019013272A1 (en) Intermetallic compound, hydrogen absorbing / releasing material, catalyst and method for producing ammonia
JP2011224554A (en) Catalyst for decomposing ammonia, method for producing the catalyst, and method for producing hydrogen using the catalyst
CN113600208B (en) CuCoMn/Al 2 O 3 Catalyst, preparation method and application thereof
JP2018076261A (en) Method for producing sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6017777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250