JP6573494B2 - Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia - Google Patents

Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia Download PDF

Info

Publication number
JP6573494B2
JP6573494B2 JP2015139856A JP2015139856A JP6573494B2 JP 6573494 B2 JP6573494 B2 JP 6573494B2 JP 2015139856 A JP2015139856 A JP 2015139856A JP 2015139856 A JP2015139856 A JP 2015139856A JP 6573494 B2 JP6573494 B2 JP 6573494B2
Authority
JP
Japan
Prior art keywords
ammonia
composition
ruthenium
ammonia synthesis
synthesis catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015139856A
Other languages
Japanese (ja)
Other versions
JP2017018907A5 (en
JP2017018907A (en
Inventor
勝俊 永岡
勝俊 永岡
勝俊 佐藤
勝俊 佐藤
和也 今村
和也 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority to JP2015139856A priority Critical patent/JP6573494B2/en
Publication of JP2017018907A publication Critical patent/JP2017018907A/en
Publication of JP2017018907A5 publication Critical patent/JP2017018907A5/ja
Application granted granted Critical
Publication of JP6573494B2 publication Critical patent/JP6573494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法に関する。   The present invention relates to a composition for an ammonia synthesis catalyst, a method for producing the same, and a method for synthesizing ammonia.

炭化水素からの水素製造技術や水素利用技術、例えば燃料電池などは盛んに研究開発されている。一方、刺激臭のある無色の気体で水によく溶け、アルカリ性を示し、圧縮により容易に液化するアンモニアは、全世界で1億6,000万トン(2010年)製造されている。その大部分は肥料や化学薬品・化学繊維、冷媒などの原料として使用されてきた。アンモニアは、水素含有量が多く;貯蔵、水素の取り出しが容易;炭素を含まないので、利用時に二酸化炭素が発生しない;ハンドリング技術、安全管理、医療法が確立され、輸送・貯蔵のプロセスが容易、といった特徴がある。旧来のアンモニア利用目的による製造設備は、老朽化して衰退の一途であるが、最近新しい水素エネルギーとしてのアンモニア活用が注目されている。すなわち、最近、特にアフリカ大陸等で、太陽エネルギーをもとにアンモニアを製造し、安全で効率的な貯蔵・輸送を経て、地域や家庭、自動車などで直接的に、あるいは改質して得られる水素を提供しようとしていること等から、今後のアンモニア合成プラントの更新に伴い収率の高いアンモニア合成触媒の開発が期待されている。   Hydrogen production technology from hydrocarbons and hydrogen utilization technology such as fuel cells are actively researched and developed. On the other hand, ammonia, which is a colorless gas with an irritating odor, dissolves well in water, shows alkalinity, and is easily liquefied by compression, is produced worldwide by 160 million tons (2010). Most of them have been used as raw materials for fertilizers, chemicals, chemical fibers and refrigerants. Ammonia is high in hydrogen content; easy to store and extract hydrogen; no carbon, so no carbon dioxide is generated when used; handling technology, safety management, medical law is established, transportation and storage process is easy There are features such as. Old production facilities for the purpose of using ammonia are aging and declining. Recently, the use of ammonia as new hydrogen energy has attracted attention. That is, in recent years, especially in the continent of Africa, ammonia is produced based on solar energy, and after safe and efficient storage and transportation, it can be obtained directly or modified in areas, homes, cars, etc. The development of a high yield ammonia synthesis catalyst is expected with the renewal of the ammonia synthesis plant in the future due to the provision of hydrogen.

アンモニアは、長きにわたり、鉄系触媒を用いたハーバーボッシュ法により製造されてきた。しかしながらハーバーボッシュ法では、200気圧程度の高圧下で反応を行う必要があるため、設備投資及び消費電力の増大、製造工程の煩雑化等の問題を有する。   Ammonia has long been produced by the Harbor Bosch process using an iron-based catalyst. However, since the Harbor Bosch method needs to carry out the reaction under a high pressure of about 200 atm, it has problems such as equipment investment, increased power consumption, and complicated manufacturing processes.

上記問題に対して、近年では、ルテニウム触媒を用いて10気圧程度の低圧条件下でアンモニアを製造する方法が報告されている。この触媒を用いることにより、低圧条件下でアンモニアが製造可能となるのみならず、一酸化炭素や水によるアンモニア合成阻害を低減することも可能となり、アンモニア収率が向上する。ルテニウム触媒を用いるアンモニア製造では、ルテニウム触媒を担体に担持させたる場合がある。ルテニウムを担持させる担体としては、触媒の担体として一般 的なアルミナが広く用いられている。最近では、アルミナに替えて希土類酸化物を担体として用いることにより、ルテニウムの使用量を低減でき、且つ、反応温 度を低くできることが開示されている(特許文献1)。しかしながら、上記のアンモニア製造方法では、より低圧条件下においてアンモニアを製造する場合のアンモニア収率が十分なものではなかった。   In recent years, a method for producing ammonia under a low pressure condition of about 10 atm using a ruthenium catalyst has been reported for the above problem. By using this catalyst, not only ammonia can be produced under low pressure conditions, but also ammonia synthesis inhibition by carbon monoxide and water can be reduced, and the ammonia yield is improved. In ammonia production using a ruthenium catalyst, the ruthenium catalyst may be supported on a carrier. As a carrier for supporting ruthenium, alumina generally used as a catalyst carrier is widely used. Recently, it has been disclosed that the amount of ruthenium used can be reduced and the reaction temperature can be lowered by using a rare earth oxide as a support instead of alumina (Patent Document 1). However, in the above ammonia production method, the ammonia yield when producing ammonia under a lower pressure condition is not sufficient.

そこで、本発明者らは、先般、低圧条件下において高収率でアンモニアを製造できる組成物、及び該組成物を用いたアンモニア製造方法を提供することを目的とし、ルテニウム;ランタノイド;ならびに塩基性助触媒および/または多孔性金属錯体を配合した組成物をアンモニア合成触媒とすることを見出した(特許文献2)。この組成物は、水溶液中での含浸法により調製されたものであるが、アンモニア合成活性は不十分であり、さらに高活性な触媒の開発が求められていた。   Therefore, the present inventors have recently aimed to provide a composition capable of producing ammonia in a high yield under low pressure conditions, and a method for producing ammonia using the composition. Ruthenium; lanthanoid; It has been found that a composition containing a promoter and / or a porous metal complex is used as an ammonia synthesis catalyst (Patent Document 2). This composition was prepared by an impregnation method in an aqueous solution, but its ammonia synthesis activity was insufficient, and the development of a highly active catalyst was demanded.

特開平6−79177号公報JP-A-6-79177 特開2013−111562号公報JP 2013-111562 A

本発明は、上記の課題を解決し、アンモニア合成活性がさらに向上したアンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a composition for an ammonia synthesis catalyst having further improved ammonia synthesis activity, a method for producing the same, and a method for synthesizing ammonia.

本発明は上記の課題を解決するために、以下の発明を提供するものである。
(1)A.ルテニウムもしくはその合金、またはルテニウムを含む化合物、B.ランタノイドを含む化合物、ならびにC.塩基性助触媒を物理混合してなるアンモニア合成触媒用組成物。
(2)ランタノイドを含む化合物がランタノイド酸化物である上記(1)に記載のアンモニア合成触媒用組成物。
(3)塩基性助触媒が、アルカリ金属の酸化物もしくは水酸化物、またはアルカリ土類金属の酸化物もしくは水酸化物である上記(1)または(2)に記載のアンモニア合成触媒用組成物。
(4)物理混合が水分を含まない乾式の摩砕混合である上記(1)〜(3)のいずれかに記載のアンモニア合成触媒用組成物。
(5)上記(1)〜(4)のいずれかに記載のアンモニア合成触媒用組成物を触媒として、窒素と水素を反応させてアンモニアを製造することを特徴とするアンモニアの合成方法。
(6)A.ルテニウムもしくはその合金、またはルテニウムを含む化合物、B.ランタノイドを含む化合物、ならびにC.塩基性助触媒を物理混合してアンモニア合成触媒用組成物を得ることを特徴とするアンモニア合成触媒用組成物の製造方法。
(7)物理混合して得られたアンモニア合成触媒用組成物を還元反応に供する上記(6)に記載のアンモニア合成触媒用組成物の製造方法。
In order to solve the above problems, the present invention provides the following inventions.
(1) A. Ruthenium or an alloy thereof, or a compound containing ruthenium, B. Compounds containing lanthanoids, and C.I. A composition for an ammonia synthesis catalyst obtained by physically mixing a basic promoter.
(2) The composition for an ammonia synthesis catalyst according to the above (1), wherein the compound containing a lanthanoid is a lanthanoid oxide.
(3) The composition for an ammonia synthesis catalyst according to the above (1) or (2), wherein the basic promoter is an alkali metal oxide or hydroxide, or an alkaline earth metal oxide or hydroxide. .
(4) The composition for an ammonia synthesis catalyst according to any one of the above (1) to (3), wherein the physical mixing is dry milling mixing not containing water.
(5) A method for synthesizing ammonia, characterized in that ammonia is produced by reacting nitrogen and hydrogen using the composition for ammonia synthesis catalyst according to any one of (1) to (4) as a catalyst.
(6) A. Ruthenium or an alloy thereof, or a compound containing ruthenium, B. Compounds containing lanthanoids, and C.I. A method for producing a composition for ammonia synthesis catalyst, comprising physically mixing a basic promoter to obtain a composition for ammonia synthesis catalyst.
(7) The method for producing an ammonia synthesis catalyst composition as described in (6) above, wherein the composition for ammonia synthesis catalyst obtained by physical mixing is subjected to a reduction reaction.

本発明によれば、アンモニア合成活性がさらに向上したアンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, the composition for ammonia synthesis catalysts which further improved ammonia synthesis activity, its manufacturing method, and the synthesis method of ammonia can be provided.

実施例1、比較例1、および比較例2の各触媒用組成物のアンモニア生成活性を比較した図を示す。The figure which compared the ammonia production | generation activity of each catalyst composition of Example 1, the comparative example 1, and the comparative example 2 is shown. 実施例1〜4の各触媒用組成物と比較例1のアンモニア生成活性を比較した図を示す。The figure which compared the composition for catalysts of Examples 1-4 and the ammonia production | generation activity of the comparative example 1 is shown.

本発明において、物理混合とは、いわゆる乾式摩砕混合であり、水溶液を用いないで、または水以外の乾燥有機溶媒を用いて、固体状態にある2種類またはそれ以上の異なる原料をそのまま混ぜ合わせて摩砕し均質な状態の組成を得ることを言う。この物理混合手段としては、たとえば、乳鉢、ボールミル,ビーズミル等の各種の摩砕機器による乾式摩砕混合する方法を適用することができる。   In the present invention, physical mixing is so-called dry milling mixing, in which two or more different raw materials in a solid state are mixed as they are without using an aqueous solution or using a dry organic solvent other than water. To obtain a homogeneous composition. As this physical mixing means, for example, a dry grinding and mixing method using various grinding devices such as a mortar, ball mill, and bead mill can be applied.

前記物理混合の際、水以外の乾燥有機溶媒を用いて摩砕混合する場合は、混合効率を向上させるものであり,当該乾燥有機溶媒としては、例えばトルエン,アセトン,脱水アルコールなどを適量加えてもよい。   In the case of physical mixing, in the case of grinding and mixing using a dry organic solvent other than water, the mixing efficiency is improved. As the dry organic solvent, for example, an appropriate amount of toluene, acetone, dehydrated alcohol or the like is added. Also good.

本発明のアンモニア合成触媒用組成物は、A.ルテニウムもしくはその合金、またはルテニウムを含む化合物、B.ランタノイドを含む化合物、ならびにC.塩基性助触媒を物理混合により配合してなる。   The composition for an ammonia synthesis catalyst of the present invention comprises A. Ruthenium or an alloy thereof, or a compound containing ruthenium, B. Compounds containing lanthanoids, and C.I. A basic promoter is blended by physical mixing.

触媒成分のA成分である、ルテニウムもしくはその合金、またはルテニウムを含む化合物において、これらは2種以上を組み合わせて用い得る。合金に含まれるルテニウム以外の金属元素としては、たとえば鉄、モリブデン及びニッケルからなる群から選ばれる少なくとも1種が好ましく、アンモニア合成に工業的に用いられている点から鉄が最も好ましい。この場合、さらに炭素、ケイ素等の非金属元素を含んでいてもよい。ルテニウムを含む化合物としては、ルテニウム以外に含む配位子としては特に限定されず、中性配位子であってもイオン性配位子であってもよい。具体的には、塩化ルテニウム、ルテニウムアセチルアセトナート、ルテニウムシアン酸カリウム、ルテニウム酸ナトリウム、ルテニウム酸カリウム、酸化ルテニウム、ドデカカルボニル三ルテニウム、硝酸ルテニウム等が挙げられる。ルテニウムを含む合金またはルテニウムを含む化合物である場合、合金又は化合物中のルテニウムの含有割合は1質量%〜99質量%であることが好ましく、反応性を確保しやすいことから50質量%〜95質量%であることがより好ましい。組成物中のA成分の配合割合は、良好な触媒能を奏しうる割合であれば特に限定されるものではないが、0.01〜15質量%であることが好ましく、0.1〜13質量%であることがより好ましく、1〜10質量%であることがさらに好ましい。   In the ruthenium or its alloy or the compound containing ruthenium which is the component A of the catalyst component, these may be used in combination of two or more. As the metal element other than ruthenium contained in the alloy, for example, at least one selected from the group consisting of iron, molybdenum and nickel is preferable, and iron is most preferable because it is industrially used for ammonia synthesis. In this case, nonmetallic elements such as carbon and silicon may be further contained. The ruthenium-containing compound is not particularly limited as a ligand other than ruthenium, and may be a neutral ligand or an ionic ligand. Specific examples include ruthenium chloride, ruthenium acetylacetonate, potassium ruthenium cyanate, sodium ruthenate, potassium ruthenate, ruthenium oxide, dodecacarbonyl triruthenium, ruthenium nitrate and the like. In the case of an alloy containing ruthenium or a compound containing ruthenium, the content ratio of ruthenium in the alloy or compound is preferably 1% by mass to 99% by mass, and 50% by mass to 95% by mass is easy to ensure reactivity. % Is more preferable. The blending ratio of the component A in the composition is not particularly limited as long as it has a good catalytic ability, but is preferably 0.01 to 15% by mass, preferably 0.1 to 13% by mass. %, More preferably 1 to 10% by mass.

また、A成分がルテニウムである場合、ルテニウムの配合割合は、0.005〜15質量%であることが好ましく、0.05〜13質量%であることがより好ましく、0.5〜10質量%であることがさらに好ましい。   Moreover, when A component is ruthenium, it is preferable that the mixture ratio of ruthenium is 0.005-15 mass%, It is more preferable that it is 0.05-13 mass%, 0.5-10 mass% More preferably.

本発明組成物において、B成分はA成分を担持するための担体の役割を果たす。   In the composition of the present invention, the B component serves as a carrier for supporting the A component.

ランタノイドを含む化合物としては特に限定されず、15種のランタノイドのいずれを含む化合物であってもよいが、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ジスプロシウム、テルビウムのいずれかを含む化合物であることが好ましく、強塩基性であるためルテニウムへの電子供給及びアンモニア合成が良好となることから、ランタン、セリウム、プラセオジム、テルビウムがさらに好ましい。   The compound containing lanthanoid is not particularly limited, and may be a compound containing any of 15 lanthanoids, but is a compound containing any of lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, and terbium. It is preferable that lanthanum, cerium, praseodymium, and terbium are more preferable because they are strongly basic and therefore provide good electron supply to ruthenium and ammonia synthesis.

また、ランタノイドを含む化合物としては、ランタノイド酸化物、ランタノイド硫化物、ランタノイド水酸化物、ランタノイド硫酸塩等のランタノイドと第16族元素(カルコゲン)とを含む化合物;ランタノイド塩化物等のランタノイドと第17族元素(ハロゲン)とを含む化合物等が挙げられる。そして、A成分を良好に担持できることから、ランタン酸化物、セリウム酸化物またはプラセオジム酸化物であるランタノイド酸化物が好ましく、最も好ましくはプラセオジム酸化物である。   In addition, examples of the compound containing lanthanoid include a compound containing a lanthanoid oxide such as a lanthanoid oxide, a lanthanoid sulfide, a lanthanoid hydroxide, and a lanthanoid sulfate, and a group 16 element (chalcogen); And compounds containing a group element (halogen). And since A component can be carry | supported favorably, the lanthanoid oxide which is a lanthanum oxide, a cerium oxide, or a praseodymium oxide is preferable, Most preferably, it is a praseodymium oxide.

ランタノイド酸化物であるB成分を製造する場合、たとえば、アルカリ溶液に市販のランタノイド化合物(ランタノイド硝酸塩、ランタノイド硝酸塩の水和物等)を分散し、沈殿法により固形物を得た後、得られた固形物を焼成することにより製造できる。このようにして得られたランタノイド酸化物は、結晶構造が安定しているため、良好にA成分を担持し得る。アルカリ溶液としては5〜50質量%、より好ましくは15〜35質量%のアンモニア水が好ましい。固形物は、沈殿物をろ過することにより得ることができる。焼成は、250〜900℃、より好ましくは300〜750℃で行うことができる。また、焼成前に、焼成より低温での仮焼成を行ってもよい。仮焼成の温度は、200〜400℃(焼成より低温)が好ましい。   When the B component which is a lanthanoid oxide is produced, for example, a commercially available lanthanoid compound (lanthanoid nitrate, lanthanoid nitrate hydrate, etc.) is dispersed in an alkaline solution and obtained after obtaining a solid by a precipitation method. It can be produced by firing a solid. Since the lanthanoid oxide thus obtained has a stable crystal structure, it can support the component A well. As an alkaline solution, 5-50 mass%, More preferably, 15-35 mass% ammonia water is preferable. The solid can be obtained by filtering the precipitate. Firing can be performed at 250 to 900 ° C, more preferably 300 to 750 ° C. Moreover, you may perform temporary baking at lower temperature than baking before baking. The pre-baking temperature is preferably 200 to 400 ° C. (lower temperature than baking).

組成物中のB成分の配合割合は、A成分を良好に担持しうる割合であれば特に限定されるものではないが、40〜99.98質量%であることが好ましく、50〜99.8質量%であることがより好ましく、70〜98質量%であることがさらに好ましい。   The blending ratio of the B component in the composition is not particularly limited as long as it can support the A component satisfactorily, but is preferably 40 to 99.98% by mass, and preferably 50 to 99.8. It is more preferable that it is mass%, and it is further more preferable that it is 70-98 mass%.

また、A成分とB成分との合計に対する、A成分の配合割合は、0.1〜15質量%であることが好ましく、1〜10質量%であることがより好ましい。0.1質量%以上とすることにより良好な触媒活性を得ることができ、15質量%以下とすることにより触媒活性とコストとのバランスを取ることができる。   Moreover, it is preferable that the mixture ratio of A component with respect to the sum total of A component and B component is 0.1-15 mass%, and it is more preferable that it is 1-10 mass%. By setting it to 0.1% by mass or more, good catalytic activity can be obtained, and by setting it to 15% by mass or less, it is possible to balance catalyst activity and cost.

本発明の組成物において、C成分である塩基性助触媒は、A成分による触媒効率を向上させるために用いられるものである。本発明において塩基性助触媒とは、電子供与性を有し、かつ、A成分とB成分とともに用いることにより触媒能を促進しうるものをいう。C成分は、A成分のルテニウムに電子を供与することにより反応を促進することができる。   In the composition of the present invention, the basic co-catalyst as the C component is used for improving the catalytic efficiency of the A component. In the present invention, the basic co-catalyst means an electron-donating substance that can promote catalytic ability when used together with the A component and the B component. The component C can promote the reaction by donating an electron to the ruthenium of the component A.

塩基性助触媒としては特に限定されるものではないが、アルカリ金属を含む化合物またはアルカリ土類金属を含む化合物が好ましく、アルカリ金属の酸化物もしくは水酸化物、またはアルカリ土類金属の酸化物もしくは水酸化物であるのがさらに好ましく、アルカリ金属酸化物または水酸化物が最も好ましい。   The basic cocatalyst is not particularly limited, but a compound containing an alkali metal or a compound containing an alkaline earth metal is preferable, and an alkali metal oxide or hydroxide, or an alkaline earth metal oxide or More preferred are hydroxides, and alkali metal oxides or hydroxides are most preferred.

アルカリ金属酸化物もしくは水酸化物、またはアルカリ土類金属酸化物もしくは酸化物の原料として用いられる前駆体としては、具体的にはアルカリ金属またはアルカリ土類金属の硝酸塩、硫酸塩、リン酸塩、炭酸塩等が挙げられる。   As precursors used as raw materials for alkali metal oxides or hydroxides, or alkaline earth metal oxides or oxides, specifically, alkali metal or alkaline earth metal nitrates, sulfates, phosphates, And carbonates.

アルカリ金属およびアルカリ土類金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチ ウム及びバリウムが好ましく、A成分への電子供与性に優れることから、ナトリウム、カリウム、ルビジウムおよびセシウムがより好ましく、セシウムが最も好ましい。   As the alkali metal and alkaline earth metal, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium are preferable. And cesium is more preferred, and cesium is most preferred.

組成物中のC成分の配合割合は特に限定されないが、0.01〜15質量%であることが好ましく、0.1〜13質量%であることがより好ましく、1〜10質量%であることがさらに好ましい。また、C成分の配合割合は、A成分に対する原子比が0.01〜20質量%となる量であることが好ましい。その下限値以上とすることにより触媒活性を特に 向上させることができ、上限値以下とすることにより、過度の塩基性助触媒の存在による触媒活性の低下を防ぐことができるからである。   Although the compounding ratio of the C component in the composition is not particularly limited, it is preferably 0.01 to 15% by mass, more preferably 0.1 to 13% by mass, and 1 to 10% by mass. Is more preferable. Moreover, it is preferable that the mixture ratio of C component is the quantity from which the atomic ratio with respect to A component will be 0.01-20 mass%. This is because the catalyst activity can be particularly improved by setting it to the lower limit value or more, and the decrease of the catalyst activity due to the presence of an excessive basic promoter can be prevented by setting the upper limit value or less.

前記A〜C成分の混合順序に特に制限はなく、これらと同時に、または逐次のいずれの添加方法でもよいが、B成分にA成分を添加して摩砕混合した後、更にC成分を加えることで逐次的に混合することが好ましい。   The mixing order of the components A to C is not particularly limited, and any addition method may be used simultaneously or sequentially. However, after adding the component A to the component B and grinding and mixing, the component C is further added. It is preferable to mix sequentially.

また、必ずしもA、B、Cの成分を全て摩砕によって混合する必要はなく、いずれか一成分の混合にのみ摩砕混合を用いることも出来る。例えばB成分にA成分の供給源を湿式含浸、焼成によって担持した後、C成分を摩砕混合することもできる。   Moreover, it is not always necessary to mix all components A, B, and C by grinding, and grinding mixing can be used only for mixing any one of the components. For example, the component A may be supported by wet impregnation and calcination with the supply source of the component A, and then the component C may be ground and mixed.

本発明の組成物は、本発明の効果を損なわない限り、A〜C成分以外の成分が配合されていてもよい。   As long as the effect of this invention is not impaired, components other than A-C component may be mix | blended with the composition of this invention.

本発明のアンモニアの合成方法においては、上記のアンモニア合成触媒用組成物を触媒として、窒素と水素を反応させてアンモニアを製造する。アンモニアの合成方法は特に限定されないが、たとえば、アンモニア合成触媒用組成物が充填された反応容器内に、水素ガスと窒素ガスとからなる原料ガスを供給することによりアンモニアを製造することができる。反応温度は、200℃〜600℃が好ましく、250℃〜500℃がより好ましく、300℃〜450℃がさらに好ましい。反応容器内の圧力は、低圧である1〜50気圧が好ましく、1〜40気圧がより好ましく、1〜30気圧がさらに好ましい。   In the ammonia synthesis method of the present invention, ammonia is produced by reacting nitrogen and hydrogen using the composition for ammonia synthesis catalyst as a catalyst. The method for synthesizing ammonia is not particularly limited. For example, ammonia can be produced by supplying a raw material gas composed of hydrogen gas and nitrogen gas into a reaction vessel filled with a composition for ammonia synthesis catalyst. The reaction temperature is preferably 200 ° C to 600 ° C, more preferably 250 ° C to 500 ° C, and further preferably 300 ° C to 450 ° C. The pressure in the reaction vessel is preferably a low pressure of 1 to 50 atm, more preferably 1 to 40 atm, and further preferably 1 to 30 atm.

本発明のアンモニア合成触媒用組成物によれば、アンモニア収率は、たとえばCs/Ru:1〜5、390℃、9気圧で、4.5〜5.5%であり、従来触媒よりも高く、安定して得られる。一般的にアンモニア合成反応は高圧であるほどアンモニア収率が増加する傾向があるので,本発明のアンモニア合成触媒用組成物を用いることで30気圧程度或いは30気圧を超える高圧条件でも高い収率が得られることが予想される。   According to the composition for an ammonia synthesis catalyst of the present invention, the ammonia yield is, for example, Cs / Ru: 1 to 5, 390 ° C., 9 atm, 4.5 to 5.5%, which is higher and more stable than the conventional catalyst. can get. In general, the ammonia synthesis reaction tends to increase the ammonia yield as the pressure is increased. Therefore, by using the composition for an ammonia synthesis catalyst of the present invention, a high yield can be obtained even under a high pressure condition of about 30 atmospheres or over 30 atmospheres. Expected to be obtained.

収率は、ある物質を得るための化学プロセスにおいて、理論上得ることが可能なその物質の最大量(理論収量)に対する実際に得られた物質の量(収量)の比率である。そのプロセスがすぐれているかどうかの指標の一つとされる。例えば水素と窒素からアンモニアを合成する反応において窒素1molと水素3molからは理論上2molのアンモニアが得られる(N+3H→2NH)。実際に窒素1molと水素3molからアンモニア合成を行なった場合に1molのアンモニアが得られたならば、収率は、アンモニアの収量(1mol)/アンモニアの理論収量(2mol)= 50 %となる。またこのように反応物が反応の化学量論比と同じ割合で供給されている場合には、理論収量(2mol) = ある反応物の供給量(H2では3mol)×生成物の化学反応式での係数(化学量論係数, 2)/ある反応物の化学量論係数(H2では3)が成り立つので、これを使って反応物の供給量と化学反応式から収率を計算することができる。この反応で窒素2molと水素3molで反応を行なったとすると理論上は窒素が1mol 余り、やはり2molのアンモニアが得られる。このように反応物が反応の化学量論比と異なる割合で供給されている場合は、反応物の供給量/反応式での反応物の係数が最も小さい反応物(限定反応物質と呼ばれる)のみが理論上完全に消費される。この例では理論上水素が完全に消費されるので水素が限定反応物質である。このような場合は限定反応物質のみに対して、理論収量 = 限定反応物質の供給量×生成物の化学量論係数/限定反応物質の化学量論係数が成り立ち、これを使って収率を計算することができる。 Yield is the ratio of the amount of substance actually obtained (yield) to the maximum amount of substance that can theoretically be obtained (theoretical yield) in a chemical process for obtaining a substance. One of the indicators of whether the process is good. For example, in a reaction of synthesizing ammonia from hydrogen and nitrogen, theoretically 2 mol of ammonia can be obtained from 1 mol of nitrogen and 3 mol of hydrogen (N 2 + 3H 2 → 2NH 3 ). If 1 mol of ammonia is actually obtained when ammonia is synthesized from 1 mol of nitrogen and 3 mol of hydrogen, the yield is ammonia yield (1 mol) / theoretical yield of ammonia (2 mol) = 50%. Further, when the reaction as is supplied at the same rate as the stoichiometric ratio of the reaction, the theoretical yield (2 mol) = supply amount of a reaction product (in H 2 3 mol) × reaction formula of the product Coefficient (stoichiometric coefficient, 2) / stoichiometric coefficient of a reactant (3 in H 2 ) holds, so use this to calculate the yield from the reactant feed rate and chemical reaction equation Can do. If this reaction is performed with 2 mol of nitrogen and 3 mol of hydrogen, theoretically, 1 mol of nitrogen is obtained, and 2 mol of ammonia is obtained. In this way, when reactants are supplied at a rate different from the stoichiometric ratio of the reaction, only the reactant (referred to as a limited reactant) having the smallest reactant coefficient in the reactant supply rate / reaction equation. Is completely consumed in theory. In this example, hydrogen is theoretically completely consumed, so hydrogen is the limiting reactant. In such a case, the theoretical yield = limited reactant supply amount x product stoichiometry coefficient / limited reactant stoichiometry coefficient, which is used to calculate the yield for the limited reactant only. can do.

本発明のアンモニア合成触媒用組成物は、上記のようにA.ルテニウムもしくはその合金、またはルテニウムを含む化合物、B.ランタノイドを含む化合物、ならびにC.塩基性助触媒を前記物理混合により配合してアンモニア合成触媒用組成物を得ることにより得られる。   As described above, the composition for an ammonia synthesis catalyst of the present invention comprises A.I. Ruthenium or an alloy thereof, or a compound containing ruthenium, B. Compounds containing lanthanoids, and C.I. It is obtained by blending a basic promoter with the above physical mixing to obtain a composition for an ammonia synthesis catalyst.

本発明においては、前記物理混合により配合して得られたアンモニア合成触媒用組成物を還元反応に供して、ルテニウムを金属状態まで還元することにより、触媒活性を向上させ得る。還元は、好適には水素還元によることができ、たとえば100〜700℃、好ましくは300〜600℃で水素含有雰囲気下で、0.5〜20時間行われる。   In the present invention, the catalytic activity can be improved by subjecting the composition for ammonia synthesis catalyst obtained by blending by the physical mixing to a reduction reaction to reduce ruthenium to a metallic state. The reduction can suitably be performed by hydrogen reduction, for example, 100 to 700 ° C., preferably 300 to 600 ° C., in a hydrogen-containing atmosphere for 0.5 to 20 hours.

以下、実施例により本発明をさらに詳細に説明するが,本発明はここに提示する実施例に限定されるものではない。表1は実施例及び比較例として記載のアンモニア合成触媒用組成物についてまとめたものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the Example shown here. Table 1 summarizes the compositions for ammonia synthesis catalysts described as examples and comparative examples.

1.アンモニア合成触媒用組成物の製造
実施例1
0.25リットルの28%アンモニア水に硝酸プラセオジムの8%水溶液0.25リットルを加えた混合液を、常温で11時間撹拌した。その結果得られた水酸化プラセオジム沈殿物を分離後、常温の水で洗浄し、ろ過してから、70℃で一晩乾燥させた。
1. Production Example 1 of Composition for Ammonia Synthesis Catalyst
A mixed solution obtained by adding 0.25 liter of an 8% aqueous solution of praseodymium nitrate to 0.25 liter of 28% ammonia water was stirred at room temperature for 11 hours. The resulting praseodymium hydroxide precipitate was separated, washed with room temperature water, filtered, and dried overnight at 70 ° C.

乾燥した水酸化プラセオジムを、300℃で3時間、次に550℃で3時間、次に700℃で5時間の段階的焼成処理を施すことにより、酸化プラセオジムに変えた。   The dried praseodymium hydroxide was converted to praseodymium oxide by a stepwise calcination treatment at 300 ° C. for 3 hours, then at 550 ° C. for 3 hours, and then at 700 ° C. for 5 hours.

続いて常温まで冷却した酸化プラセオジムの4gを、0.46gのルテニウムカルボニルを溶解した0.2リットルのテトラヒドロフラン溶液に加えて、一晩撹拌した。次に、蒸発により溶液からテトラヒドロフランを除去し、ヘリウムガスが流通する雰囲気中において350℃で、5時間焼成して、ルテニウムカルボニルを分解し有機配位子を除去した。これにより酸化プラセオジム(B)にルテニウム(A)が担持された組成物を調製した。このとき、ルテニウムの酸化プラセオジムに対する担持量は5質量%であった。   Subsequently, 4 g of praseodymium oxide cooled to room temperature was added to a 0.2 liter tetrahydrofuran solution in which 0.46 g of ruthenium carbonyl was dissolved, and stirred overnight. Next, the tetrahydrofuran was removed from the solution by evaporation, followed by baking at 350 ° C. for 5 hours in an atmosphere in which helium gas circulated to decompose ruthenium carbonyl and remove the organic ligand. Thus, a composition in which ruthenium (A) was supported on praseodymium oxide (B) was prepared. At this time, the loading of ruthenium on praseodymium oxide was 5% by mass.

続いて、調製した粉末状のルテニウム-酸化プラセオジム組成物をアルミナ乳鉢を用いて5分間摩砕した。摩砕したルテニウム-酸化プラセオジム組成物を2g秤量し、別のメノウ乳鉢に加えた。ここに炭酸セシウムの粉末0.17gを加え更に10分間摩砕した。得られた摩砕混合組成物を整形した後、破砕して250〜500μmのペレットにした。こののち、このペレットを後述のアンモニア製造装置に充填して、500℃、1時間の水素還元を行って、炭酸セシウムを分解して、酸化セシウム-ルテニウム-酸化プラセオジムからなる触媒用組成物を得た。この触媒組成物中のセシウム/ルテニウムの比は1/1(mol/mol)であった。
実施例2〜3
実施例1と同じ方法でルテニウム担持量5wt%、セシウム/ルテニウムの比が、0.1/1/〜5/1(mol/mol)のセシウム-ルテニウム-酸化プラセオジム組成物を得た。
比較例1
0.25リットルの28%アンモニア水に硝酸プラセオジムの8%水溶液0.25リットルを加えた混合液を、常温で11時間撹拌した。その結果得られた水酸化プラセオジム沈殿物を分離後、常温の水で洗浄し、ろ過してから、70℃で一晩乾燥させた。
Subsequently, the powdery ruthenium-oxide praseodymium composition thus prepared was ground for 5 minutes using an alumina mortar. 2 g of the ground ruthenium-praseodymium composition was weighed and added to another agate mortar. To this was added 0.17 g of cesium carbonate powder, and the mixture was further ground for 10 minutes. The resulting milled mixed composition was shaped and then crushed into 250-500 μm pellets. After that, the pellet is filled in an ammonia production apparatus described later, and hydrogen reduction is performed at 500 ° C. for 1 hour to decompose cesium carbonate to obtain a composition for catalyst composed of cesium oxide-ruthenium-praseodymium. It was. The ratio of cesium / ruthenium in this catalyst composition was 1/1 (mol / mol).
Examples 2-3
A cesium-ruthenium-praseodymium oxide composition having a ruthenium loading of 5 wt% and a cesium / ruthenium ratio of 0.1 / 1 / -5 / 1 (mol / mol) was obtained in the same manner as in Example 1.
Comparative Example 1
A mixed solution obtained by adding 0.25 liter of an 8% aqueous solution of praseodymium nitrate to 0.25 liter of 28% ammonia water was stirred at room temperature for 11 hours. The resulting praseodymium hydroxide precipitate was separated, washed with room temperature water, filtered, and dried overnight at 70 ° C.

乾燥した水酸化プラセオジムを、300℃で3時間、次に550℃で3時間、次に700℃で5時間の段階的焼成処理を施すことにより、酸化プラセオジムに変えた。   The dried praseodymium hydroxide was converted to praseodymium oxide by a stepwise calcination treatment at 300 ° C. for 3 hours, then at 550 ° C. for 3 hours, and then at 700 ° C. for 5 hours.

続いて常温まで冷却した酸化プラセオジムの4gを、0.46gのルテニウムカルボニルを溶解した0.2リットルのテトラヒドロフラン溶液に加えて、一晩撹拌した。次に、蒸発により溶液からテトラヒドロフランを除去し、ヘリウムガスが流通する雰囲気中において350℃で、5時間焼成して、ルテニウムカルボニルを分解し有機配位子を除去した。これにより酸化プラセオジム(B)にルテニウム(A)が担持された組成物を調製した。この組成物は摩砕処理を行ってはおらず,ルテニウムの酸化プラセオジムに対する担持量は5質量%であった。この触媒組成物中のセシウム/ルテニウムの比は1/1(mol/mol)であった。
比較例2
比較例1と手順でルテニウム担持量5質量%のルテニウム-酸化プラセオジム組成物を調製した。粉砕後のルテニウム-酸化プラセオジム組成物2gをビーカー中の精製水100mLに加え、撹拌した。ここに炭酸セシウム0.17gを加え、撹拌、含浸させた後、ホットスターラを用いて蒸発乾固した。蒸発乾固後の混合組成物を摩砕することなく整形、破砕して250〜500μmのペレットにした後、これを後述のアンモニア製造装置に充填して、500℃、1時間の水素還元を行うことで、酸化セシウム-ルテニウム-酸化プラセオジムからなる触媒用組成物を得た。この触媒組成物中のセシウム/ルテニウムの比は1/1(mol/mol)であった。
2.触媒用組成物のアンモニア生成活性の測定
アンモニア製造装置として、固定床流通式管型反応装置を用いた。常圧実験の際には、内径7mmの石英製のリアクターを使用した。アンモニア製造の前処理として、検討に用いる組成物(触媒)をリアクターに充填し、400℃、1時間、あるいは500℃、1時間の水素還元を行った。続けて、Arパージを行いながら反応温度である310℃まで降温させ、温度が安定したところで反応ガスの供給を開始し、350℃まで昇温した。反応ガスはN/H=1/3(SV=18000ml/(h・g))とした。反応式は下に示す通りである。
+3H→2NH
(反応条件)
組成物(触媒量):0.2g
活性化処理条件:H流通下、10mL/min、500℃、1時間
反応温度:310〜430℃
反応圧:0.9MPa
反応ガス:N15mL/分、H45mL/分
空間速度:18000mLh−1−1
生成ガス分析:電気伝導度計
反応温度は310℃〜430℃とし、30分間のサンプリングを行った。アンモニアのサンプリング方法の模式図を図2に示す。反応菅の出口ガス(アンモニア、水素、窒素)をアンモニアトラップとして0.001Mまたは0.01M硫酸溶液に通し、アンモニアのみを捕集した。このときの反応式は下に示す通りである。
2NH+HSO→2NH +SO 2−
反応菅の出口ガス中のアンモニアとトラップの硫酸溶液から、アンモニウムイオンと硫酸イオンが生成する。この反応での電気伝導度の減少をモニターし、触媒のアンモニア合成への活性を測定した。
3.アンモニア生成活性
実施例1、比較例1、および比較例2の各触媒用組成物のアンモニア生成活性を比較した結果を図1に示す。いずれも500℃、1時間の水素還元を行った後に活性を比較した。比較例1の触媒用組成物に炭酸セシウムを添加して前記物理混合した実施例1の触媒用組成物は、350℃以上で比較例1の触媒用組成物よりも高いアンモニア生成活性を示し、特に390℃において約5.3%のアンモニア収率を示した。これに対して、Csを従来の蒸発乾固法で調製した比較例2の触媒用組成物は、比較例1の触媒用組成物よりも低いアンモニア収率を示した。このことから、本発明においてCsを添加して前記物理混合することで活性向上の効果が得られること、ならびに従来の含浸法ではむしろ触媒活性の低下が起きることが分かった。
Subsequently, 4 g of praseodymium oxide cooled to room temperature was added to a 0.2 liter tetrahydrofuran solution in which 0.46 g of ruthenium carbonyl was dissolved, and stirred overnight. Next, the tetrahydrofuran was removed from the solution by evaporation, followed by baking at 350 ° C. for 5 hours in an atmosphere in which helium gas circulated to decompose ruthenium carbonyl and remove the organic ligand. Thus, a composition in which ruthenium (A) was supported on praseodymium oxide (B) was prepared. This composition was not subjected to grinding treatment, and the amount of ruthenium supported on praseodymium oxide was 5% by mass. The ratio of cesium / ruthenium in this catalyst composition was 1/1 (mol / mol).
Comparative Example 2
A ruthenium-praseodymium oxide composition having a ruthenium loading of 5% by mass was prepared in the same manner as in Comparative Example 1. 2 g of the ruthenium-praseodymium oxide composition after pulverization was added to 100 mL of purified water in a beaker and stirred. Cesium carbonate 0.17g was added here, and after stirring and impregnation, it was evaporated to dryness using a hot stirrer. The mixed composition after evaporation to dryness is shaped and crushed without grinding into 250-500 μm pellets, which are then filled into an ammonia production apparatus described later and subjected to hydrogen reduction at 500 ° C. for 1 hour. As a result, a catalyst composition comprising cesium oxide-ruthenium-praseodymium was obtained. The ratio of cesium / ruthenium in this catalyst composition was 1/1 (mol / mol).
2. Measurement of ammonia production activity of catalyst composition A fixed bed flow tubular reactor was used as the ammonia production apparatus. In a normal pressure experiment, a quartz reactor having an inner diameter of 7 mm was used. As a pretreatment for ammonia production, the reactor was filled with the composition (catalyst) used for the study, and hydrogen reduction was performed at 400 ° C. for 1 hour, or at 500 ° C. for 1 hour. Subsequently, the temperature was lowered to 310 ° C. as the reaction temperature while performing Ar purge, and when the temperature was stabilized, supply of the reaction gas was started and the temperature was raised to 350 ° C. The reaction gas was N 2 / H 2 = 1/3 (SV = 18000 ml / (h · g)). The reaction formula is as shown below.
N 2 + 3H 2 → 2NH 3
(Reaction conditions)
Composition (catalyst amount): 0.2 g
Activation treatment conditions: under H 2 flow, 10 mL / min, 500 ° C., 1 hour, reaction temperature: 310 to 430 ° C.
Reaction pressure: 0.9 MPa
Reaction gas: N 2 15 mL / min, H 2 45 mL / min Space velocity: 18000 mLh −1 g −1
Analysis of generated gas: electric conductivity meter The reaction temperature was 310 ° C to 430 ° C, and sampling was performed for 30 minutes. A schematic diagram of the ammonia sampling method is shown in FIG. The reactor outlet gas (ammonia, hydrogen, nitrogen) was passed through a 0.001 M or 0.01 M sulfuric acid solution as an ammonia trap to collect only ammonia. The reaction formula at this time is as shown below.
2NH 3 + H 2 SO 4 → 2NH 4 + + SO 4 2−
Ammonium ions and sulfate ions are produced from the ammonia in the outlet gas of the reaction tank and the sulfuric acid solution in the trap. The decrease in electrical conductivity in this reaction was monitored, and the activity of the catalyst for ammonia synthesis was measured.
3. Ammonia Production Activity FIG. 1 shows the results of comparing the ammonia production activities of the catalyst compositions of Example 1, Comparative Example 1, and Comparative Example 2. In either case, the activity was compared after hydrogen reduction at 500 ° C. for 1 hour. The catalyst composition of Example 1, which was physically mixed by adding cesium carbonate to the catalyst composition of Comparative Example 1, showed higher ammonia production activity than the catalyst composition of Comparative Example 1 at 350 ° C. or higher. In particular, the ammonia yield was about 5.3% at 390 ° C. In contrast, the catalyst composition of Comparative Example 2 in which Cs was prepared by a conventional evaporation to dryness showed a lower ammonia yield than the catalyst composition of Comparative Example 1. From this, it has been found that the effect of improving the activity can be obtained by adding Cs in the present invention and the above-mentioned physical mixing, and that the catalytic activity is rather lowered in the conventional impregnation method.

図2は実施例1〜4の各触媒用組成物と比較例1のアンモニア生成活性を比較した図である。Csを添加して摩砕することによってアンモニア生成活性が向上している様子が分かる。特に、350℃までの温度域ではCsの添加量がCs/Ru=0.1/1(mol/mol)の触媒用組成物が、また350℃以上の温度域ではCsの添加量がCs/Ru=1〜5(mol/mol)の触媒用組成物が高いアンモニア収率を示し、高い促進効果が得られることが分かった。   FIG. 2 is a graph comparing the ammonia-forming activity of each catalyst composition of Examples 1 to 4 and Comparative Example 1. It can be seen that the ammonia production activity is improved by adding Cs and grinding. In particular, in the temperature range up to 350 ° C, the composition for the catalyst with Cs addition amount of Cs / Ru = 0.1 / 1 (mol / mol), and in the temperature range of 350 ° C or more, the addition amount of Cs is Cs / Ru = It was found that 1 to 5 (mol / mol) of the catalyst composition showed a high ammonia yield and a high acceleration effect was obtained.

本発明によれば、アンモニア合成活性がさらに向上したアンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法を提供し得る。すなわち、水素貯蔵・輸送技術の水素キャリアとして必須であるアンモニアを収率高く合成するために必要な高活性化触媒とその製造方法を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, the composition for ammonia synthesis catalysts which further improved ammonia synthesis activity, its manufacturing method, and the synthesis method of ammonia can be provided. That is, it is possible to provide a highly activated catalyst necessary for synthesizing ammonia, which is essential as a hydrogen carrier for hydrogen storage / transport technology, with a high yield and a method for producing the catalyst.

Claims (6)

ルテニウムもしくはその合金またはルテニウムを含む化合物(A)がランタノイドを含む化合物(B)に担持された組成物と、塩基性助触媒(C)とを物理混合して、電圧を印加しないで水素ガスと窒素ガスからアンモニアを合成するためのアンモニア合成触媒用組成物を得ることを特徴とするアンモニア合成触媒用組成物の製造方法A composition in which ruthenium or an alloy thereof or a ruthenium-containing compound (A) is supported on a compound (B) containing a lanthanoid and a basic promoter (C) are physically mixed , and hydrogen gas is applied without applying a voltage. A method for producing an ammonia synthesis catalyst composition, comprising obtaining an ammonia synthesis catalyst composition for synthesizing ammonia from nitrogen gas . ランタノイドを含む化合物がランタノイド酸化物である請求項1に記載のアンモニア合成触媒用組成物の製造方法The method for producing a composition for an ammonia synthesis catalyst according to claim 1, wherein the compound containing the lanthanoid is a lanthanoid oxide. 塩基性助触媒が、アルカリ金属の酸化物もしくは水酸化物、またはアルカリ土類金属の酸化物もしくは水酸化物である請求項1または2に記載のアンモニア合成触媒用組成物の製造方法The method for producing a composition for an ammonia synthesis catalyst according to claim 1 or 2, wherein the basic promoter is an alkali metal oxide or hydroxide, or an alkaline earth metal oxide or hydroxide. 物理混合が水分を含まない乾式の摩砕混合である請求項1〜3のいずれか1項に記載のアンモニア合成触媒用組成物の製造方法The method for producing a composition for an ammonia synthesis catalyst according to any one of claims 1 to 3, wherein the physical mixing is a dry milling mixture containing no water. 請求項1〜4のいずれか1項に記載のアンモニア合成触媒用組成物を触媒として、窒素と水素を反応させてアンモニアを製造することを特徴とするアンモニアの合成方法 A method for synthesizing ammonia, comprising producing ammonia by reacting nitrogen and hydrogen using the composition for an ammonia synthesis catalyst according to any one of claims 1 to 4 as a catalyst . 物理混合してなるアンモニア合成触媒用組成物を還元反応に供する請求項に記載のアンモニア合成触媒用組成物の製造方法。 The method for producing a composition for ammonia synthesis catalyst according to claim 1 , wherein the composition for ammonia synthesis catalyst obtained by physical mixing is subjected to a reduction reaction.
JP2015139856A 2015-07-13 2015-07-13 Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia Active JP6573494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139856A JP6573494B2 (en) 2015-07-13 2015-07-13 Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139856A JP6573494B2 (en) 2015-07-13 2015-07-13 Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia

Publications (3)

Publication Number Publication Date
JP2017018907A JP2017018907A (en) 2017-01-26
JP2017018907A5 JP2017018907A5 (en) 2018-08-09
JP6573494B2 true JP6573494B2 (en) 2019-09-11

Family

ID=57887318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139856A Active JP6573494B2 (en) 2015-07-13 2015-07-13 Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia

Country Status (1)

Country Link
JP (1) JP6573494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230159115A (en) * 2022-05-13 2023-11-21 순천대학교 산학협력단 Ammonia Synthesis Catalyst Having Ammonia Synthesis Activity At Low Temperature And Low Pressure And Method For Manufacturing Ammonia Using The Same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689823A4 (en) 2017-09-25 2021-06-30 Japan Science and Technology Agency Composite oxide, metal-supporting material and ammonia synthesis catalyst
EP3805159A4 (en) 2018-05-07 2021-07-07 Japan Science and Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
JPWO2021153738A1 (en) 2020-01-31 2021-08-05
JP2022061257A (en) 2020-10-06 2022-04-18 株式会社豊田中央研究所 Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for producing ammonia
CN114797894B (en) * 2022-05-09 2024-03-01 山西潞宝兴海新材料有限公司 Supported ruthenium-nickel alloy ammonia synthesis catalyst and preparation method and application thereof
KR20240081994A (en) * 2022-12-01 2024-06-10 서강대학교산학협력단 Method of preparing sodium bicarbonate and ammonia using a catalytic reaction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777670B2 (en) * 2005-02-25 2011-09-21 本田技研工業株式会社 Ammonia synthesis catalyst and method for producing the same
JP6017777B2 (en) * 2011-11-30 2016-11-02 住友化学株式会社 Method for producing catalyst composition for ammonia production and method for producing ammonia
JP6285101B2 (en) * 2013-03-06 2018-02-28 株式会社日本触媒 Catalyst for ammonia synthesis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230159115A (en) * 2022-05-13 2023-11-21 순천대학교 산학협력단 Ammonia Synthesis Catalyst Having Ammonia Synthesis Activity At Low Temperature And Low Pressure And Method For Manufacturing Ammonia Using The Same
KR102703595B1 (en) 2022-05-13 2024-09-05 국립순천대학교산학협력단 Ammonia Synthesis Catalyst Having Ammonia Synthesis Activity At Low Temperature And Low Pressure And Method For Manufacturing Ammonia Using The Same

Also Published As

Publication number Publication date
JP2017018907A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6573494B2 (en) Composition for ammonia synthesis catalyst, method for producing the same, and method for synthesizing ammonia
Ruan et al. Synergy of the catalytic activation on Ni and the CeO 2–TiO 2/Ce 2 Ti 2 O 7 stoichiometric redox cycle for dramatically enhanced solar fuel production
US20210016254A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
US11866342B2 (en) Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP7352487B2 (en) Ammonia decomposition catalyst
US7001586B2 (en) CO-free hydrogen from decomposition of methane
WO2022070597A1 (en) Ammonia decomposition catalyst
CN112041271B (en) Composite oxide, metal carrier, and ammonia synthesis catalyst
JP2019011212A (en) Method for producing hydrogen and hydrogen production catalyst
JP2020037535A (en) Methanation system for carbon dioxide
US11795062B2 (en) Electron or hydride ion intake/release material, electron or hydride ion intake/release composition, transition metal-supported material and catalyst, and use in relation thereto
Jianxin et al. Ammonia synthesis over ruthenium catalysts using barium-doped zirconia as supports prepared by citric acid method
JP7515392B2 (en) CO2 methanation catalyst and its manufacturing method and method for manufacturing methane
JP2021142465A (en) Ammonia dehydrogenation catalyst, method for producing ammonia dehydrogenation catalyst, and method for producing hydrogen with ammonia dehydrogenation catalyst
US20180345255A1 (en) Steam reforming catalyst for hydrocarbons
US20050065024A1 (en) Catalyst for the generation of CO-free hydrogen from methane
JP7090253B2 (en) Method for producing intermetallic compounds, hydrogen absorption / release materials, catalysts and ammonia
Nimbalkar et al. Nickel‐Tin Nanoalloy Supported ZnO Catalysts from Mixed‐Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1, 2‐Propanediol
JP2006223985A (en) Water gas shift reaction catalyst
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP2018034090A (en) HYDROGENATION CATALYST FOR γ-VALEROLACTONE, AND METHOD FOR PRODUCING 1,4-PENTANEDIOL FROM γ-VALEROLACTONE USING THE CATALYST
JP2003251197A (en) Visible light responding photocatalyst comprising rare- earth element, hydrogen manufacturing method using the same and decomposition method for harmful chemical substance
US20220126276A1 (en) Catalyst for ammonia synthesis and method for synthesizing ammonia using the same
CN118475407A (en) Method for producing photocatalyst and method for producing hydrogen and oxygen using the photocatalyst
JP2023074002A (en) Ammonia-decomposing catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190813

R150 Certificate of patent or registration of utility model

Ref document number: 6573494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250