JP2001246251A - Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia - Google Patents

Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia

Info

Publication number
JP2001246251A
JP2001246251A JP2000064271A JP2000064271A JP2001246251A JP 2001246251 A JP2001246251 A JP 2001246251A JP 2000064271 A JP2000064271 A JP 2000064271A JP 2000064271 A JP2000064271 A JP 2000064271A JP 2001246251 A JP2001246251 A JP 2001246251A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
activated carbon
ammonia synthesis
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000064271A
Other languages
Japanese (ja)
Other versions
JP3788172B2 (en
Inventor
Kenichi Akishika
研一 秋鹿
Koji Inazu
晃司 稲津
Yoshihiro Hasegawa
義洋 長谷川
Masakazu Okubo
正和 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000064271A priority Critical patent/JP3788172B2/en
Publication of JP2001246251A publication Critical patent/JP2001246251A/en
Application granted granted Critical
Publication of JP3788172B2 publication Critical patent/JP3788172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a highly active ruthenium catalyst having ruthenium carried on active carbon which is used for synthesis of ammonia and a method for synthesizing ammonia using the same. SOLUTION: The catalyst having ruthenium carried on active carbon is prepared by a process comprising the steps of adding an alkaline metal salt or an alkaline earth metal salt to the catalyst precursor having ruthenium carried on active carbon treated with hydrogen, then raising the temperature to 350 to 400 deg.C under hydrogen atmosphere, followed by heating the resultant catalyst precursor to 500 to 600 deg.C at a heating speed of 10-60 deg.C to subject to an activation treatment. The synthesis of ammonia is conducted by using the catalyst having ruthenium carried on active carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアンモニア合成用の
活性炭担持ルテニウム触媒の製造方法及びその触媒を用
いるアンモニア合成方法に関する。
The present invention relates to a method for producing an activated carbon-supported ruthenium catalyst for ammonia synthesis and a method for ammonia synthesis using the catalyst.

【0002】[0002]

【従来の技術】従来のアンモニア合成においては、鉄を
主成分とし、促進剤として、アルミナ、酸化カリウム等
を添加した鉄系触媒が使用されている。しかし、この触
媒は低温の温度領域ではアンモニア合成活性が低いの
で、この触媒を使用する工業的な装置においては、反応
速度を大きくするために、反応温度を400〜500℃
の高温にし、平衡理論上では不利な温度領域で合成反応
を行わなければならない。このような条件で合成反応を
行うと、反応ガスの循環比が大きくなり、このために、
反応器や、生成したアンモニアと未反応ガスを分離する
ための分離器や、未反応ガスをアンモニア合成反応器に
戻すためのコンプレッサーなどの装置が大きくなってし
まう。さらに、コンプレッサーの動力や、ガスの冷却、
加熱のために多大のエネルギーを必要とする。
2. Description of the Related Art In a conventional ammonia synthesis, an iron-based catalyst containing iron as a main component and adding alumina, potassium oxide and the like as a promoter is used. However, since this catalyst has a low ammonia synthesis activity in a low temperature range, in an industrial apparatus using this catalyst, the reaction temperature is set to 400 to 500 ° C. in order to increase the reaction rate.
And the synthesis reaction must be performed in a temperature range that is disadvantageous in terms of equilibrium theory. When the synthesis reaction is performed under such conditions, the circulation ratio of the reaction gas increases, and
Equipment such as a reactor, a separator for separating generated ammonia from unreacted gas, and a compressor for returning unreacted gas to the ammonia synthesis reactor becomes large. In addition, compressor power, gas cooling,
Requires a lot of energy for heating.

【0003】上記の問題に対処し、鉄系触媒に代わる触
媒として、低温、低圧の条件でもアンモニアを合成する
ことができるルテニウム系触媒が開発されている。これ
らの触媒は、特開平7−256104号公報、特開平9
−168739号公報、特開平9−239272号公報
等に提案されており、鉄系触媒に比べて、低温、低圧で
の活性が高く、また、一酸化炭素や水による阻害が少な
いなどの特性を有している。
In response to the above problems, a ruthenium-based catalyst capable of synthesizing ammonia even at low temperature and low pressure has been developed as a catalyst replacing the iron-based catalyst. These catalysts are disclosed in JP-A-7-256104,
No. 168,739, Japanese Patent Application Laid-Open No. 9-239272, etc., have properties such as high activity at low temperature and low pressure and less inhibition by carbon monoxide and water as compared with iron-based catalysts. Have.

【0004】このため、ルテニウム系触媒の一つである
活性炭担持ルテニウム触媒は、アンモニア合成用触媒の
中で最も実用に適した触媒であるものとして注目されて
いる。
[0004] For this reason, a ruthenium catalyst supported on activated carbon, which is one of the ruthenium-based catalysts, has attracted attention as one of the most practically suitable catalysts for ammonia synthesis.

【0005】従来、活性炭担持ルテニウム触媒は次の方
法により製造されている。活性炭を水素雰囲気下で加熱
して不純物を除去したもの(以下、水素処理活性炭、又
はHTACと記す)に、アセチルアセトナトルテニウム
などのルテニウム錯体を溶解させた有機溶媒を含浸さ
せ、これを乾燥した後、ヘリウム又は窒素雰囲気中で加
熱し、活性炭担持ルテニウム触媒の前駆体を製造する。
Conventionally, activated carbon-supported ruthenium catalysts have been produced by the following method. The activated carbon was heated under a hydrogen atmosphere to remove impurities (hereinafter referred to as hydrogen-treated activated carbon or HTAC), impregnated with an organic solvent in which a ruthenium complex such as acetylacetonatoruthenium was dissolved, and dried. Thereafter, the precursor is heated in a helium or nitrogen atmosphere to produce a precursor of a ruthenium catalyst supported on activated carbon.

【0006】次いで、この前駆体を、促進剤であるアル
カリ金属又はアルカリ土類金属の塩を溶解した水溶液に
添加し、乾燥した後、水素雰囲気下で加熱する活性化処
理を行うことにより活性炭担持ルテニウム触媒を得てい
る。
Next, the precursor is added to an aqueous solution in which an alkali metal or alkaline earth metal salt as a promoter is dissolved, dried, and then activated in a hydrogen atmosphere to perform an activation treatment. A ruthenium catalyst has been obtained.

【0007】[0007]

【発明が解決しようとする課題】上記のような状況にあ
って、アンモニア合成装置の建設経費、運転経費を低減
するために、アンモニア合成活性がさらに向上した活性
炭担持ルテニウム触媒の出現が望まれている。
Under the circumstances described above, in order to reduce the construction cost and operation cost of the ammonia synthesizing apparatus, it has been desired to develop an activated carbon-supported ruthenium catalyst with further improved ammonia synthesis activity. I have.

【0008】本発明は、高活性な活性炭担持ルテニウム
触媒の製造方法及びその触媒を用いるアンモニア合成方
法を提供することを目的とする。
It is an object of the present invention to provide a method for producing a highly active ruthenium catalyst supported on activated carbon and a method for synthesizing ammonia using the catalyst.

【0009】[0009]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。第1の発明に係る触媒の製造方法は、
水素処理活性炭にルテニウムを担持させたアンモニア合
成用活性炭担持ルテニウム触媒の前駆体に、アルカリ金
属塩又はアルカリ土類金属塩を添加し、次いで、水素雰
囲気下で350℃〜400℃まで昇温させた後、10℃
〜60℃/hの昇温速度で500℃〜600℃まで加熱
し、活性化処理することを特徴としている。
The above object is achieved by the following invention. The method for producing a catalyst according to the first invention comprises:
An alkali metal salt or an alkaline earth metal salt was added to a precursor of an activated carbon-supported ruthenium catalyst for ammonia synthesis in which ruthenium was supported on hydrogen-treated activated carbon, and then heated to 350 ° C. to 400 ° C. under a hydrogen atmosphere. After 10 ℃
It is characterized in that it is heated to a temperature of 500 ° C. to 600 ° C. at a rate of temperature rise of 60 ° C./h to perform an activation treatment.

【0010】第2の発明に係る触媒の製造方法は、第1
の発明において、アンモニア合成用活性炭担持ルテニウ
ム触媒の前駆体が、水素処理活性炭にルテニウム錯体を
溶解させた溶媒を含浸させ、このルテニウム錯体を含む
水素処理活性炭を窒素又は不活性ガス雰囲気下で200
℃〜450℃まで加熱したものであることを特徴として
いる。
[0010] The method for producing a catalyst according to the second aspect of the present invention comprises the steps of:
In the invention, the precursor of the activated carbon-supported ruthenium catalyst for ammonia synthesis is impregnated with a solvent obtained by dissolving a ruthenium complex in the hydrogen-treated activated carbon, and the hydrogen-treated activated carbon containing the ruthenium complex is placed in a nitrogen or inert gas atmosphere for 200 hours.
It is characterized by being heated to a temperature of from 450C to 450C.

【0011】第3の発明に係る触媒の製造方法は、第1
の発明において、アンモニア合成用活性炭担持ルテニウ
ム触媒の前駆体が、水素処理活性炭に塩化ルテニウムを
溶解させた溶媒を含浸させ、この塩化ルテニウムを含む
水素処理活性炭を水素雰囲気下で350℃〜500℃ま
で加熱したものであることを特徴としている。
[0011] The method for producing a catalyst according to a third aspect of the present invention comprises the steps of:
In the invention, the precursor of the activated carbon-supported ruthenium catalyst for ammonia synthesis is impregnated with a solvent obtained by dissolving ruthenium chloride in the hydrogen-treated activated carbon, and the hydrogen-treated activated carbon containing the ruthenium chloride is heated to 350 ° C. to 500 ° C. under a hydrogen atmosphere. It is characterized by being heated.

【0012】第4の発明に係るアンモニア合成方法は、
第1〜第3の発明のうちの何れかの製造方法により製造
されたアンモニア合成用活性炭担持ルテニウム触媒を用
いてアンモニア合成することを特徴としている。
[0012] A fourth aspect of the present invention provides a method for synthesizing ammonia.
The present invention is characterized in that ammonia is synthesized by using an activated carbon-supported ruthenium catalyst for ammonia synthesis manufactured by any one of the first to third inventions.

【0013】本発明者らは、高活性のアンモニア合成用
活性炭担持ルテニウム触媒を開発するための研究を行っ
てきたが、その過程において、触媒の前駆体にアルカリ
金属等の促進剤の塩を添加した後に行う活性化処理の条
件によって、得られる触媒の活性が大幅に異なることを
見出した。特に、促進剤として添加されたアルカリ金属
塩又はアルカリ土類金属塩の水素化分解が完了する36
5℃付近から所定加熱保持温度までの昇温速度が非常に
大きな影響を及ぼす。すなわち、この温度領域における
加熱を緩やかな昇温速度で行うことにより、極めて高活
性な触媒が得られる。
The present inventors have been conducting research to develop a highly active ruthenium catalyst supported on activated carbon for ammonia synthesis. In the process, a salt of a promoter such as an alkali metal was added to a catalyst precursor. It has been found that the activity of the obtained catalyst varies greatly depending on the conditions of the activation treatment performed after the above. In particular, the hydrogenolysis of the alkali metal salt or alkaline earth metal salt added as a promoter is completed.
The rate of temperature rise from around 5 ° C. to the predetermined heating holding temperature has a very large effect. That is, by performing the heating in this temperature range at a gentle heating rate, an extremely highly active catalyst can be obtained.

【0014】高活性な触媒を得るためには、まず、前駆
体に促進剤の塩を添加したものを促進剤の塩の水素化分
解が完了する温度(365℃)付近、すなわち、350
℃〜400℃、好ましくは360℃〜380℃まで加熱
する。この温度までの昇温期間においては、水分の蒸
発、ルテニウムの再還元、促進剤の塩の水素化分解など
が起こるが、触媒機能に大きく影響する活性点構築に関
わる主要な反応は起こらないので、その加熱に際して
は、必ずしも緩やかに昇温しなくてよい。
In order to obtain a highly active catalyst, first, a catalyst obtained by adding a salt of a promoter to a precursor is heated to a temperature near the completion of hydrogenolysis of the salt of the promoter (365 ° C.), ie, 350 ° C.
C. to 400.degree. C., preferably 360.degree. During the heating period up to this temperature, water evaporation, ruthenium re-reduction, hydrogenolysis of the promoter salt, etc. occur, but the main reaction related to the construction of the active site, which greatly affects the catalytic function, does not occur. However, the heating does not necessarily have to be carried out slowly.

【0015】次いで、所定加熱保持温度に達するまでは
10℃〜60℃/h、好ましくは20℃〜40℃/hの
昇温速度で緩やかに昇温させる。緩やかな昇温速度で加
熱した後の保持温度は500℃〜600℃、好ましくは
530℃〜570℃である。このような処理操作によ
り、高活性な活性炭担持ルテニウム触媒が得られる。上
記の活性化処理条件は本発明者らが行った実験結果に基
づいて定められたものであり、これについては後述す
る。
Then, the temperature is gradually increased at a heating rate of 10 ° C. to 60 ° C./h, preferably 20 ° C. to 40 ° C./h until the temperature reaches a predetermined heating holding temperature. The holding temperature after heating at a gradual heating rate is 500 ° C to 600 ° C, preferably 530 ° C to 570 ° C. By such a treatment operation, a highly active ruthenium catalyst carrying activated carbon can be obtained. The activation processing conditions are determined based on the results of experiments performed by the present inventors, and will be described later.

【0016】上記の活性化処理条件により高活性な触媒
が得られるメカニズムは次のごとくであると考えられ
る。活性化処理においては、350℃〜400℃を超え
て緩やかに昇温しなければならない温度領域に入った辺
りからルテニウムの触媒作用により活性炭と水素の反応
によるメタンの生成が始まり、500℃付近からメタン
の生成量は急激に増加する。そして、活性炭と水素との
反応によるメタン生成が触媒の機能を高める重要な役割
をしているものと考えられる。すなわち、担体である活
性炭の表面を適度に反応させて、メタンを放出すること
により、活性炭に担持されているルテニウムと促進剤の
配置(分散状態)が最適化され、アンモニア合成活性が
向上するものと考えられる。そして、このメタン生成の
度合いは昇温速度によって異なるものであった。
The mechanism by which a highly active catalyst can be obtained under the above-mentioned activation treatment conditions is considered to be as follows. In the activation treatment, the generation of methane due to the reaction between activated carbon and hydrogen by the catalytic action of ruthenium starts around a temperature entering a temperature region where the temperature must be increased slowly from 350 ° C. to 400 ° C., and from around 500 ° C. Methane production increases sharply. Then, it is considered that methane generation by the reaction between activated carbon and hydrogen plays an important role in enhancing the function of the catalyst. That is, by appropriately reacting the surface of the activated carbon as a carrier and releasing methane, the arrangement (dispersed state) of ruthenium supported on the activated carbon and the promoter is optimized, and ammonia synthesis activity is improved. it is conceivable that. And the degree of this methane production was different depending on the heating rate.

【0017】ところで、前述のように、アンモニア合成
用活性炭担持ルテニウム触媒は、水素処理活性炭にルテ
ニウムを担持させた前駆体に促進剤を添加した後、水素
雰囲気下で活性化処理することにより得られる。そし
て、その基となる前駆体は、水素処理活性炭にルテニウ
ム化合物を溶解させた溶媒を含浸させ、これを加熱処理
したものであるが、本発明においては、上記前駆体を製
造する際に使用するルテニウム源として、ルテニウム錯
体の他に塩化ルテニウムを選定することができる。この
両者の価格について記すと、例えば、塩化ルテニウムの
単位ルテニウム量当たりの価格は従来から使用されてい
るアセチルアセトナトルテニウムのそれの1/6以下で
ある。このため、ルテニウム源として塩化ルテニウムを
使用することができれば、触媒の製造コストが大幅に低
減される。
As described above, the activated carbon-supported ruthenium catalyst for ammonia synthesis can be obtained by adding an accelerator to a precursor obtained by supporting ruthenium on hydrotreated activated carbon, and then performing an activation treatment in a hydrogen atmosphere. . The precursor serving as the base is impregnated with a solvent obtained by dissolving a ruthenium compound in hydrogen-treated activated carbon, and is subjected to heat treatment.In the present invention, the precursor is used for producing the precursor. As the ruthenium source, ruthenium chloride can be selected in addition to the ruthenium complex. In terms of the price of both, for example, the price per unit amount of ruthenium chloride is less than 1/6 that of the conventionally used acetylacetonatoruthenium. For this reason, if ruthenium chloride can be used as a ruthenium source, the production cost of the catalyst will be greatly reduced.

【0018】従来から、ルテニウム源として塩化ルテニ
ウムを使用すると、触媒に残留する塩素が触媒上のルテ
ニウムから電子を吸引してしまうため、電気陰性度が高
いアルカリ金属などの促進剤を添加しても、触媒活性を
高めることはできないものと考えられている。このた
め、ルテニウム源として塩化ルテニウムを用いようとす
る場合には、塩素を除去することができ、かつ触媒上に
ルテニウムを分散させることができる方法を開発しなけ
ればならない。この点について、本発明者らにより、塩
素が効率よく取り除かれ、かつルテニウムが触媒上によ
く分散できるる方法が見出されている。すなわち、塩化
ルテニウムを含浸させた水素処理活性炭を水素雰囲気下
で加熱して所定温度に保持することにより、塩素が効率
よく取り除かれ、ルテニウムが触媒上によく分散でき
る。
Conventionally, when ruthenium chloride is used as a ruthenium source, chlorine remaining in the catalyst attracts electrons from ruthenium on the catalyst, so that even if an accelerator such as an alkali metal having a high electronegativity is added, It is believed that the catalyst activity cannot be increased. Therefore, when using ruthenium chloride as a ruthenium source, a method must be developed that can remove chlorine and disperse ruthenium on the catalyst. In this regard, the present inventors have found a method by which chlorine can be efficiently removed and ruthenium can be well dispersed on the catalyst. That is, by heating the hydrogen-treated activated carbon impregnated with ruthenium chloride in a hydrogen atmosphere and maintaining it at a predetermined temperature, chlorine is efficiently removed and ruthenium can be well dispersed on the catalyst.

【0019】ルテニウム源として塩化ルテニウムを使用
する場合、水素処理活性炭に塩化ルテニウムを含浸させ
たものを脱塩素処理する際の温度および時間によって、
最終製品である触媒の活性が大幅に異なる。これは、脱
塩素処理時の昇温過程において、その初期の段階で塩化
水素が生成して塩素が除去され、さらに昇温すると、活
性炭と水素の反応によりメタンが生成し、触媒上にルテ
ニウムがよく分散することができることに起因してい
る。塩化水素の生成による脱塩素は200℃付近から始
まり、300℃付近で終わる。そして、さらに昇温する
と、上述のように、メタンの生成が始まり、500℃付
近からその生成量が急激に増加し、過度となってしま
う。このようなことから、本発明においては、触媒の前
駆体を製造するための脱塩素処理を350℃〜500℃
で行う。この温度領域は脱塩素反応が完了する温度より
高く、かつ触媒上のルテニウム粒子が凝集,肥大化させ
る急激なメタンの生成が起こる温度よりも低い温度領域
である。
When ruthenium chloride is used as the ruthenium source, the temperature and time for dechlorination of the hydrogen-treated activated carbon impregnated with ruthenium chloride are determined according to the temperature and time.
The activity of the final catalyst is significantly different. This is because during the temperature rise process during the dechlorination treatment, hydrogen chloride is generated and chlorine is removed in the initial stage, and when the temperature is further raised, methane is generated by the reaction of activated carbon and hydrogen, and ruthenium is formed on the catalyst. This is because they can be well dispersed. Dechlorination due to the production of hydrogen chloride starts around 200 ° C. and ends around 300 ° C. When the temperature is further increased, as described above, the generation of methane starts, and the amount of the generated methane rapidly increases from around 500 ° C. and becomes excessive. For this reason, in the present invention, the dechlorination treatment for producing the catalyst precursor is performed at 350 ° C to 500 ° C.
Do with. This temperature range is higher than the temperature at which the dechlorination reaction is completed, and lower than the temperature at which the rapid generation of methane at which the ruthenium particles on the catalyst agglomerates and enlarges occurs.

【0020】[0020]

【発明の実施の形態】本発明におけるアンモニア合成用
活性炭担持ルテニウム触媒の製造方法は次に記すとおり
である。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a ruthenium catalyst supported on activated carbon for ammonia synthesis according to the present invention is as follows.

【0021】1)ルテニウム源がルテニウム錯体である
ときの製造方法 水素処理活性炭の製造 活性炭を水素雰囲気下で500℃〜915℃、好ましく
は900℃程度で、50時間〜500時間、好ましくは
90時間程度加熱し、不純物が除去された水素処理活性
炭を得る。なお、加熱温度を1000℃以上にすると、
活性炭の黒鉛化が進み、担体としての性質が変化するの
で、加熱温度は1000℃より低くする必要がある。
1) Production method when the ruthenium source is a ruthenium complex Production of hydrogen-treated activated carbon Activated carbon is heated under a hydrogen atmosphere at 500 ° C. to 915 ° C., preferably at about 900 ° C., for 50 hours to 500 hours, preferably 90 hours. By heating to a certain degree, hydrogen-treated activated carbon from which impurities have been removed is obtained. When the heating temperature is 1000 ° C. or higher,
Since the graphitization of activated carbon proceeds and the properties of the carrier change, the heating temperature must be lower than 1000 ° C.

【0022】ルテニウムの含浸 テトラヒドロフラン、アセトン、アセトニトリルなどの
非プロトン性極性有機溶媒に、ルテニウム源として、ア
セチルアセトナトルテニウムを溶解し、この溶液を上記
の方法により製造された水素処理活性炭に含浸させる。
アセチルアセトナトルテニウムの含浸量は活性炭に対
し、ルテニウム換算で、0.5〜10wt%、好ましく
は3wt%程度にする。次いで、減圧下で溶媒を留去す
る。この溶媒留去は、温度を5℃〜120℃、好ましく
は常温で行う。圧力は10-3〜750Torr、好ましくは
50Torrで行う。
Impregnation of ruthenium Acetylacetonate ruthenium as a ruthenium source is dissolved in an aprotic polar organic solvent such as tetrahydrofuran, acetone or acetonitrile, and this solution is impregnated into the hydrogenated activated carbon produced by the above method.
The impregnated amount of acetylacetonate ruthenium is 0.5 to 10% by weight, preferably about 3% by weight in terms of ruthenium, based on activated carbon. Then, the solvent is distilled off under reduced pressure. This solvent distillation is performed at a temperature of 5 ° C to 120 ° C, preferably at room temperature. The pressure is from 10 -3 to 750 Torr, preferably 50 Torr.

【0023】触媒の前駆体の製造 上記の方法により水素処理活性炭にルテニウム錯体を含
浸させた後に乾燥したものを、窒素又は不活性ガス雰囲
気下で200℃〜450℃、好ましくは400℃程度で
1〜30時間、好ましくは4時間程度加熱することによ
り、ルテニウム源がルテニウム錯体である活性炭担持ル
テニウム触媒の前駆体を得る。
Preparation of Catalyst Precursor The hydrogen-treated activated carbon impregnated with the ruthenium complex by the above-mentioned method and then dried is placed in a nitrogen or inert gas atmosphere at 200 ° C. to 450 ° C., preferably at about 400 ° C. for 1 hour. By heating for about 30 hours, preferably about 4 hours, a precursor of the activated carbon-supported ruthenium catalyst whose ruthenium source is a ruthenium complex is obtained.

【0024】促進剤の添加 上記の方法により製造された前駆体に、促進剤の塩で
あるアルカリ金属塩又はアルカリ土類金属塩の水溶液を
加え、これを50℃〜120℃に加熱して乾燥する。
Addition of Accelerator To the precursor produced by the above method, an aqueous solution of an alkali metal salt or an alkaline earth metal salt, which is a salt of the accelerator, is added, and the mixture is heated to 50 ° C. to 120 ° C. and dried. I do.

【0025】アルカリ金属としては、セシウム、ルビジ
ウム、カリウム、ナトリウムなどを使用することができ
る。又、アルカリ土類金属としては、バリウム、カルシ
ウムなどを使用することができる。添加する塩の形態
は、硝酸塩、酢酸塩、ギ酸塩などであってもよいが、こ
のうち、硝酸塩が最も水素化分解されやすいので、好ま
しいものである。
As the alkali metal, cesium, rubidium, potassium, sodium and the like can be used. Further, as the alkaline earth metal, barium, calcium and the like can be used. The salt to be added may be in the form of nitrate, acetate, formate, or the like. Of these, nitrate is preferred because it is most easily hydrocracked.

【0026】促進剤の添加量は、バリウム、カルシウム
の場合、ルテニウムに対し0.01〜10倍のモル量、
好ましくは2倍程度のモル量であるのがよい。又、セシ
ウム、ルビジウムの場合、ルテニウムに対し1〜50倍
のモル量、好ましくは20倍程度のモル量であるのがよ
い。又、カリウム、ナトリウムの場合、ルテニウムに対
し1〜30倍のモル量、好ましくは15倍程度のモル量
であるのがよい。
In the case of barium and calcium, the amount of the accelerator is 0.01 to 10 times the molar amount of ruthenium,
Preferably, the molar amount is about twice. In the case of cesium and rubidium, the molar amount is preferably 1 to 50 times, preferably about 20 times the amount of ruthenium. In the case of potassium and sodium, the molar amount is preferably 1 to 30 times, preferably about 15 times the molar amount of ruthenium.

【0027】活性化処理 上記の方法により前駆体に促進剤が添加されたものを、
水素雰囲気下で加熱して350℃〜400℃まで昇温さ
せる。引き続いて、10℃〜60℃/h、好ましくは2
0℃〜40℃/hの昇温速度で500℃〜600℃、好
ましくは530℃〜570℃まで加熱し、その温度で1
〜20時間、好ましくは5時間程度保持する。この処理
により、高活性なアンモニア合成用活性炭担持ルテニウ
ム触媒が得られる。
Activation Treatment The precursor obtained by adding an accelerator to the precursor by the above method is
The temperature is increased from 350 ° C. to 400 ° C. by heating in a hydrogen atmosphere. Subsequently, 10 ° C. to 60 ° C./h, preferably 2 ° C.
Heat to 500 ° C to 600 ° C, preferably 530 ° C to 570 ° C at a heating rate of 0 ° C to 40 ° C / h.
Hold for about 20 hours, preferably about 5 hours. By this treatment, a highly active ruthenium catalyst carrying activated carbon for ammonia synthesis can be obtained.

【0028】なお、活性化処理時の圧力は0.1〜20
MPaG、好ましくは0.2MPaG以上にするのがよい。
The pressure during the activation process is 0.1 to 20.
It is good to be more than MPaG, preferably 0.2MPaG.

【0029】2)ルテニウム源が塩化ルテニウムである
ときの製造方法 水素処理活性炭の製造 ルテニウム源がルテニウム錯体の場合と同じ。
2) Production method when the ruthenium source is ruthenium chloride Production of hydrotreated activated carbon Same as in the case where the ruthenium source is a ruthenium complex.

【0030】ルテニウムの含浸 アセトン、水、メタノールなどの強極性溶媒に塩化ルテ
ニウムを溶解し、この溶液を上記の方法により製造され
た水素処理活性炭に含浸させる。塩化ルテニウムの含浸
量は活性炭に対し、ルテニウム換算で、0.1〜20w
t%、好ましくは5wt%程度にする。次いで、減圧下
で溶媒を留去する。この溶媒留去は温度を5℃〜120
℃、好ましくは常温で行う。圧力は10-3〜750Tor
r、好ましくは50Torrで行う。
Ruthenium impregnation Ruthenium chloride is dissolved in a strong polar solvent such as acetone, water, methanol, etc., and this solution is impregnated into the hydrotreated activated carbon produced by the above method. The impregnation amount of ruthenium chloride is 0.1 to 20 w
t%, preferably about 5 wt%. Then, the solvent is distilled off under reduced pressure. The solvent is distilled off at a temperature of 5 ° C to 120 ° C.
C., preferably at room temperature. Pressure is 10 -3 to 750 Torr
r, preferably at 50 Torr.

【0031】触媒の前駆体の製造 上記の方法により水素処理活性炭に塩化ルテニウムを含
浸させた後に乾燥させたものを、水素雰囲気下で400
℃〜500℃、好ましくは450℃程度で6〜60時
間、好ましくは12時間程度加熱することにより、塩化
ルテニウムの塩素が塩化水素として除去される。この脱
塩素処理により、ルテニウム源が塩化ルテニウムである
活性炭担持ルテニウム触媒の前駆体が得られる。
Preparation of Catalyst Precursor The hydrogen-treated activated carbon impregnated with ruthenium chloride according to the method described above and then dried was placed in a hydrogen atmosphere for 400 hours.
By heating at 6 to 60 hours, preferably about 12 hours at about 500 to about 500 ° C., preferably about 450 ° C., chlorine of ruthenium chloride is removed as hydrogen chloride. By this dechlorination treatment, a precursor of an activated carbon-supported ruthenium catalyst in which the ruthenium source is ruthenium chloride is obtained.

【0032】促進剤の添加 ルテニウム源がルテニウム錯体の場合と同じ。Addition of accelerator Same as when the ruthenium source is a ruthenium complex.

【0033】活性化処理 ルテニウム源がルテニウム錯体の場合と同じ方法によ
り、高活性なアンモニア合成用活性炭担持ルテニウム触
媒が得られる。
Activation Treatment By the same method as in the case where the ruthenium source is a ruthenium complex, a highly active ruthenium catalyst carrying activated carbon for ammonia synthesis can be obtained.

【0034】上記の方法により製造された活性炭担持ル
テニウム触媒をアンモニア合成装置の反応器へ充填し、
アンモニア合成を行えば、極めて効率のよいアンモニア
合成を行うことができる。この際の反応条件は次の通り
に設定するのがよい。 反応ガスの組成:水素と窒素のモル比が1:3〜4:
1、好ましくは2.5:1以下 反応温度:300℃〜500℃、好ましくは350℃〜
400℃ 反応圧力:0〜30MPaG、好ましくは0.5MPaG以上
The activated carbon-supported ruthenium catalyst produced by the above method is charged into a reactor of an ammonia synthesis apparatus,
If ammonia synthesis is performed, very efficient ammonia synthesis can be performed. The reaction conditions at this time are preferably set as follows. Composition of reaction gas: molar ratio of hydrogen to nitrogen is 1: 3 to 4:
1, preferably 2.5: 1 or less Reaction temperature: 300 ° C to 500 ° C, preferably 350 ° C to
400 ° C. Reaction pressure: 0 to 30 MPaG, preferably 0.5 MPaG or more

【0035】[0035]

【実施例】(実施例1) (活性炭担持ルテニウム触媒の製造)ルテニウム源とし
てルテニウム錯体を使用し、活性炭担持ルテニウム触媒
を製造した。市販の活性炭を水素雰囲気下で900℃に
加熱し、不純物が除去された水素処理活性炭を得た。こ
の水素処理活性炭に、アセチルアセトナトルテニウムを
溶解させたテトラヒドロフランを含浸させ、溶媒を留去
させた。次いで、ヘリウム雰囲気下で加熱処理をし、活
性炭担持ルテニウム触媒の前駆体を得た。この前駆体に
促進剤の塩として硝酸ルテニウム又は硝酸バリウムの水
溶液を添加した後、乾燥させた。そして、前駆体に促進
剤が添加されたものを、水素雰囲気下で365℃まで加
熱した後、緩やかに加熱し、アンモニア合成用活性炭担
持ルテニウム触媒を得た。この際、昇温速度を20℃/
h〜600℃/h、加熱処理温度を300℃〜600℃
に変えた処理を行い、活性化処理条件が異なる触媒を調
製した。この際、ある条件で生成するメタンを質量分析
計により分析し、任意単位を用いた各条件でのメタン生
成量の相対的な比較を行った。
EXAMPLES (Example 1) (Production of ruthenium catalyst supporting activated carbon) A ruthenium complex was used as a ruthenium source to produce a ruthenium catalyst supporting activated carbon. A commercially available activated carbon was heated to 900 ° C. in a hydrogen atmosphere to obtain a hydrogen-treated activated carbon from which impurities were removed. The hydrogenated activated carbon was impregnated with tetrahydrofuran in which acetylacetonatoruthenium was dissolved, and the solvent was distilled off. Next, heat treatment was performed in a helium atmosphere to obtain a precursor of a ruthenium catalyst supporting activated carbon. An aqueous solution of ruthenium nitrate or barium nitrate as a salt of the accelerator was added to the precursor, and the precursor was dried. Then, a precursor obtained by adding a promoter to a precursor was heated to 365 ° C. in a hydrogen atmosphere, and then slowly heated to obtain a ruthenium catalyst carrying activated carbon for ammonia synthesis. At this time, the heating rate was 20 ° C. /
h to 600 ° C / h, heat treatment temperature 300 to 600 ° C
, And catalysts having different activation treatment conditions were prepared. At this time, methane generated under a certain condition was analyzed by a mass spectrometer, and the relative amount of methane generated under each condition using an arbitrary unit was compared.

【0036】(アンモニア合成活性の測定)上記の触媒
を高圧固定床流通系の反応装置に充填し、水素と窒素の
混合ガス(H2 :N2 =3:1)を流通させ、反応温度
315℃、反応圧力を常圧又は1.0MPaG、空間速度1
5000〜18000にしてアンモニア合成反応を行っ
た。アンモニア合成活性は、触媒層通過後のガスを希硫
酸中に吹き込んでアンモニアを吸収させ、吸収液の電気
伝導度の減少から算出した。
(Measurement of Ammonia Synthesis Activity) The above catalyst was charged into a high pressure fixed bed flow reactor, and a mixed gas of hydrogen and nitrogen (H 2 : N 2 = 3: 1) was passed therethrough. ° C, reaction pressure at normal pressure or 1.0 MPaG, space velocity 1
The ammonia synthesis reaction was performed at 5000 to 18000. The ammonia synthesis activity was calculated from the decrease in the electric conductivity of the absorbing solution by absorbing the ammonia by blowing the gas after passing through the catalyst layer into dilute sulfuric acid.

【0037】(実験結果)図1は活性化処理温度とアン
モニア合成活性の関係を示す図である。この実験で使用
した触媒は上記の方法により製造された触媒のうち、促
進剤がセシウムのものであった。触媒活性は活性化処理
温度により大幅に変動し、活性化処理温度を550℃に
した場合には極めて高い値(約5000μmol/g/
h)を示し、最大値となった。このような活性化処理温
度による触媒活性の変化は、前述のように、ある温度以
上に加熱すると、担体である活性炭と水素が反応してメ
タン生成し、このメタンの生成に伴う一部活性炭の消失
が触媒の機能を高める重要な役割をしているものと考え
られる。なお、活性化処理温度を550℃にした場合に
得られた触媒の活性の値(約5000μmol/g/h)
は従来最も活性が高いルテニウム触媒の一つとされてき
た酸化セリウム担持ルテニウム触媒を使用した際に得ら
れる値に対し、約2.5倍であり、極めて高い値であっ
た。
(Experimental Results) FIG. 1 is a diagram showing the relationship between the activation treatment temperature and the ammonia synthesis activity. The catalyst used in this experiment was a catalyst produced by the above method, and the promoter was cesium. The catalyst activity greatly varies depending on the activation treatment temperature, and when the activation treatment temperature is 550 ° C., an extremely high value (about 5000 μmol / g / g) is obtained.
h) and reached the maximum value. As described above, when the catalyst is heated above a certain temperature, the activated carbon reacts with activated carbon and hydrogen to react with hydrogen to generate methane. It is considered that the disappearance plays an important role in enhancing the function of the catalyst. The value of the activity of the catalyst obtained when the activation treatment temperature was set to 550 ° C. (about 5000 μmol / g / h)
Is about 2.5 times the value obtained when a ruthenium catalyst supported on cerium oxide, which has been regarded as one of the most active ruthenium catalysts, is extremely high.

【0038】図2は前駆体に硝酸セシウムが添加された
ものについて、活性化処理温度とメタン生成量の関係を
調べた結果を示す図である。図2に示すように、350
℃〜400℃を超える温度領域に入った辺りから活性炭
と水素の反応によるメタンの生成が始まる。このメタン
の生成量は450℃を超える辺りから増加の度合いが大
きくなり、500℃付近から急激に増加する。そして、
このメタン生成量が急激に増加しはじめる温度領域で活
性化処理をすることにより、図1に示すような極めて高
い触媒活性が得られている。
FIG. 2 is a graph showing the results of examining the relationship between the activation treatment temperature and the amount of methane produced for a precursor obtained by adding cesium nitrate to a precursor. As shown in FIG.
The methane starts to be generated by the reaction between activated carbon and hydrogen around the temperature range of over 400C to 400C. The amount of methane generated increases more at around 450 ° C. and sharply increases at around 500 ° C. And
By performing the activation treatment in a temperature range where the amount of methane production starts to rapidly increase, an extremely high catalytic activity as shown in FIG. 1 is obtained.

【0039】表1は活性化処理時の昇温速度が触媒の活
性に及ぼす影響を調べた結果を示す。表1に示すよう
に、得られる触媒の活性は昇温速度を緩やかにするに従
って高くなるので、できるだけ緩やかに昇温するのがよ
い。しかし、あまり緩やかにすると、活性化処理に長時
間を要するので、昇温速度は10℃/h以上程度にする
のが適当であると思われる。又、昇温速度を上げると、
得られる触媒の活性が低下するので、昇温速度は60℃
/h以下程度するのがよい。
Table 1 shows the results of examining the effect of the rate of temperature increase during the activation treatment on the activity of the catalyst. As shown in Table 1, the activity of the obtained catalyst becomes higher as the heating rate becomes slower. Therefore, the temperature should be raised as slowly as possible. However, if the temperature is too slow, it takes a long time for the activation treatment. Therefore, it is considered appropriate to set the heating rate to about 10 ° C./h or more. Also, increasing the heating rate
Since the activity of the obtained catalyst is reduced, the heating rate is 60 ° C.
/ H or less.

【0040】[0040]

【表1】 [Table 1]

【0041】表2は活性化処理時の圧力と触媒のアンモ
ニア合成活性の関係を示す図である。表2に示すよう
に、活性化処理時の圧力を高くすると、アンモニア合成
活性が高い触媒が得られる。
Table 2 shows the relationship between the pressure during the activation treatment and the ammonia synthesis activity of the catalyst. As shown in Table 2, when the pressure during the activation treatment is increased, a catalyst having a high ammonia synthesis activity can be obtained.

【0042】[0042]

【表2】 [Table 2]

【0043】(実施例2) (活性炭担持ルテニウム触媒の製造)ルテニウム源とし
て塩化ルテニウムを使用し、これを実施例1で使用した
水素処理活性炭に担持させて活性炭担持ルテニウム触媒
を製造した。この実施例2における製造方法と実施例1
における製造方法の相違は、水素処理活性炭にルテニウ
ム源を含浸させる工程と、触媒の前駆体を製造する脱塩
素処理工程である。
Example 2 (Production of Ruthenium Catalyst Supported on Activated Carbon) Ruthenium chloride was used as a ruthenium source, and the ruthenium catalyst was supported on the hydrotreated activated carbon used in Example 1 to produce a ruthenium catalyst supported on activated carbon. Manufacturing method in Embodiment 2 and Embodiment 1
Are different in a step of impregnating the hydrogen-treated activated carbon with a ruthenium source and a step of dechlorination for producing a catalyst precursor.

【0044】実施例1で使用した水素処理活性炭に、塩
化ルテニウムを溶解させたアセトンを含浸させ、乾燥さ
せた。次いで、水素気流中で12時間加熱して脱塩素処
理し、活性炭担持ルテニウム触媒の前駆体を得た。そし
て、実施例1の場合と同様に、硝酸ルテニウム又は硝酸
バリウムの水溶液を添加した後、水素雰囲気下で加熱し
て活性化処理し、アンモニア合成用活性炭担持ルテニウ
ム触媒を得た。この際、加熱処理温度を400℃〜50
0℃に変えた処理を行い、活性化処理条件が異なる触媒
を調製した。
The hydrogen-treated activated carbon used in Example 1 was impregnated with acetone in which ruthenium chloride was dissolved, and dried. Next, the precursor was heated and dechlorinated in a hydrogen stream for 12 hours to obtain a precursor of an activated carbon-supported ruthenium catalyst. Then, in the same manner as in Example 1, an aqueous solution of ruthenium nitrate or barium nitrate was added, followed by heating and activation in a hydrogen atmosphere to obtain a ruthenium catalyst carrying activated carbon for ammonia synthesis. At this time, the heat treatment temperature is set to 400 ° C to 50 ° C.
The treatment was performed at 0 ° C. to prepare catalysts having different activation treatment conditions.

【0045】(アンモニア合成活性の測定)実施例1の
場合と同一方法及び同一条件で行った。
(Measurement of Ammonia Synthesis Activity) The measurement was performed in the same manner and under the same conditions as in Example 1.

【0046】(実験結果)表3及び図3はルテニウム源
として塩化ルテニウムを使用して触媒の前駆体を得る際
の脱塩素処理温度と得られた触媒の活性の関係を示す。
ただし、この実験で製造した触媒は促進剤として添加さ
れたものがバリウムであった。この表及び図に示すよう
に、得られた触媒のアンモニア合成活性は脱塩素処理温
度によって大きく影響された。そして、触媒の活性は脱
塩素処理温度を約450℃にしたときに最大となった。
これは処理温度の変化により異なると考えられる因子に
は触媒の表面積,触媒上のルテニウム粒子の大きさ,残
留塩素量,活性炭の消失の程度,およびそれぞれをもた
らす各反応の速度があるが,おそらく450℃、12時
間程度の処理において,これらの因子の作用の総和に相
当するものが最も高くなるためと考えられる。
(Experimental Results) Table 3 and FIG. 3 show the relationship between the dechlorination temperature and the activity of the obtained catalyst when a catalyst precursor is obtained using ruthenium chloride as a ruthenium source.
However, the catalyst produced in this experiment had barium added as a promoter. As shown in this table and figure, the ammonia synthesis activity of the obtained catalyst was greatly affected by the dechlorination treatment temperature. The activity of the catalyst became maximum when the dechlorination treatment temperature was set to about 450 ° C.
Factors that may vary with changes in treatment temperature include the surface area of the catalyst, the size of the ruthenium particles on the catalyst, the amount of residual chlorine, the extent of loss of activated carbon, and the rate of each reaction that results in each. This is probably because the treatment corresponding to the sum of the effects of these factors becomes the highest in the treatment at 450 ° C. for about 12 hours.

【0047】[0047]

【表3】 [Table 3]

【0048】表4はルテニウム源として塩化ルテニウム
を使用して触媒の前駆体を得る際の脱塩素処理温度と得
られた触媒の活性の関係を示す。ただし、この実験で製
造した触媒は促進剤としてセシウムが添加されたもので
あった。この表のように、得られた触媒のアンモニア合
成活性は、表1及び図3に示すバリウム添加触媒と同様
の傾向を示し、脱塩素処理温度を約450℃にしたとき
に最大となった。
Table 4 shows the relationship between the dechlorination temperature and the activity of the obtained catalyst when a catalyst precursor is obtained using ruthenium chloride as a ruthenium source. However, the catalyst produced in this experiment had cesium added as a promoter. As shown in this table, the ammonia synthesis activity of the obtained catalyst showed the same tendency as that of the barium-added catalyst shown in Table 1 and FIG. 3, and became maximum when the dechlorination treatment temperature was set to about 450 ° C.

【0049】[0049]

【表4】 [Table 4]

【0050】表5はルテニウム源として塩化ルテニウム
を使用して触媒の前駆体を得る際の脱塩素処理時間と得
られた触媒の活性の関係を示す。ただし、この実験で製
造した触媒は促進剤としてバリウムが添加されたもので
あった。この表においては、脱塩素処理温度が400℃
の場合には、脱塩素処理時間が24時間のときに最も高
いアンモニア合成活性が得られ、脱塩素処理温度が45
0℃の場合には、脱塩素処理時間が12時間のときに最
も高いアンモニア合成活性が得られた。このように、得
られる触媒の活性は、脱塩素処理時間によって異なり、
適度な時間で処理した際に高い値が得られるが、さら
に、この適度の処理時間は処理温度によって異なる。
Table 5 shows the relationship between the dechlorination time and the activity of the obtained catalyst when a catalyst precursor is obtained using ruthenium chloride as a ruthenium source. However, the catalyst produced in this experiment had barium added as a promoter. In this table, the dechlorination treatment temperature is 400 ° C.
In the case of the above, the highest ammonia synthesis activity was obtained when the dechlorination treatment time was 24 hours, and the dechlorination treatment temperature was 45 hours.
In the case of 0 ° C., the highest ammonia synthesis activity was obtained when the dechlorination treatment time was 12 hours. Thus, the activity of the resulting catalyst depends on the dechlorination time,
Although a high value is obtained when processing is performed for an appropriate time, the appropriate processing time further differs depending on the processing temperature.

【0051】[0051]

【表5】 [Table 5]

【0052】表6はルテニウム源が異なる2種類の触媒
について、アンモニア合成活性を比較した結果を示す。
比較した触媒はルテニウム源として塩化ルテニウムを使
用して製造した触媒とルテニウム錯体を使用して製造し
た触媒であった。表6に示すように、塩化ルテニウムの
使用は,ルテニウム錯体を使用した場合に困難であるル
テニウム含有量増加が比較的容易にでき,より高活性な
触媒を製造することを可能とし,事実1.6倍程度の活
性を実現できた。
Table 6 shows the results of comparing the ammonia synthesis activities of two types of catalysts having different ruthenium sources.
The catalysts compared were a catalyst made using ruthenium chloride as the ruthenium source and a catalyst made using the ruthenium complex. As shown in Table 6, the use of ruthenium chloride makes it possible to relatively easily increase the ruthenium content, which is difficult when using a ruthenium complex, and to produce a more active catalyst. About 6 times the activity was achieved.

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【発明の効果】本発明は、水素処理活性炭にルテニウム
を担持させた触媒の前駆体に、アルカリ金属塩又はアル
カリ土類金属塩を添加し、次いで、水素雰囲気下で35
0℃〜400℃まで昇温させた後、10℃〜60℃/h
の昇温速度で500℃〜600℃まで加熱し、活性化処
理することを特徴とするアンモニア合成触媒の製造方法
である。
According to the present invention, an alkali metal salt or an alkaline earth metal salt is added to a precursor of a catalyst in which ruthenium is supported on hydrogen-treated activated carbon, and then the resultant is added under hydrogen atmosphere.
After raising the temperature to 0 ° C to 400 ° C, 10 ° C to 60 ° C / h
A method for producing an ammonia synthesis catalyst, characterized in that the catalyst is heated to 500 ° C. to 600 ° C. at a rate of temperature rise and activated.

【0055】本発明によれば、触媒前駆体の活性化処理
に際し、本発明者らが見出した活性化処理条件、すなわ
ち、所定の昇温速度で、所定温度まで加熱することによ
り、極めて高いアンモニア合成活性を有する触媒を製造
することができる。
According to the present invention, in the activation treatment of the catalyst precursor, an extremely high ammonia concentration is obtained by heating to a predetermined temperature at a predetermined heating rate under the activation processing conditions found by the present inventors. A catalyst having synthetic activity can be produced.

【0056】又、本発明によれば、水素処理活性炭に担
持させるルテニウム源として安価な塩化ルテニウムを使
用することができるので、触媒の製造コストが大幅に低
減される。
Further, according to the present invention, inexpensive ruthenium chloride can be used as a source of ruthenium to be supported on the hydrotreated activated carbon, so that the production cost of the catalyst is greatly reduced.

【0057】さらに、本発明のアンモニア合成方法によ
れば、上記の高活性なアンモニア合成触媒を用いるの
で、非常に高いアンモニア転化率が得られる。このた
め、原料ガスのリサイクル比を小さくすることができる
ので、アンモニア合成装置の小型化されて建設費が低減
されると共に、未反応ガスのリサイクルに要する動力
や、加熱、冷却などに要するエネルギーを大幅に削減す
ることができる。
Further, according to the ammonia synthesis method of the present invention, since the above-mentioned highly active ammonia synthesis catalyst is used, a very high conversion rate of ammonia can be obtained. For this reason, since the recycle ratio of the raw material gas can be reduced, the size of the ammonia synthesizing apparatus is reduced and the construction cost is reduced, and the power required for recycling the unreacted gas and the energy required for heating and cooling are reduced. It can be significantly reduced.

【0058】又、本発明により製造された触媒を使用し
てアンモニア合成を行えば、低温、低圧でアンモニア合
成反応を行うことができるので、エネルギーの消費量が
一層低減される。
When ammonia is synthesized using the catalyst produced according to the present invention, the ammonia synthesis reaction can be carried out at low temperature and low pressure, so that the energy consumption can be further reduced.

【0059】又、本発明により製造された触媒を使用す
れば、原料ガスのリサイクル比を小さくし、或いは低
温、低圧でアンモニア合成反応を行うことことができる
ので、著しく省エネルギー、高効率となり、反応装置を
コンパクトにできる。このため、反応装置を船舶などに
搭載することが可能になり、従来にない新規の用途に供
することができる。
Further, when the catalyst produced according to the present invention is used, the ammonia gas synthesis reaction can be carried out at a low temperature and a low pressure by reducing the recycle ratio of the raw material gas. The device can be made compact. For this reason, it becomes possible to mount the reaction apparatus on a ship or the like, and it is possible to use the reaction apparatus for a new application that has not been used before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】活性化処理温度と触媒のアンモニア合成活性と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the activation treatment temperature and the ammonia synthesis activity of a catalyst.

【図2】活性化処理温度とメタン生成量の関係の関係を
示す図である。
FIG. 2 is a diagram showing a relationship between an activation treatment temperature and a methane generation amount.

【図3】脱塩素処理温度と触媒のアンモニア合成活性の
関係を示す図である。
FIG. 3 is a graph showing the relationship between the dechlorination temperature and the ammonia synthesis activity of a catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 正和 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4G069 AA03 AA08 AA09 BA08A BA08B BA27C BB08C BB12C BC01A BC08A BC13B BC13C BC70A BC70B BC70C BD01C BD12C BE11C CB82 DA06 FA02 FA08 FB14 FB19 FB20 FB30 FC04 FC07  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masakazu Okubo 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4G069 AA03 AA08 AA09 BA08A BA08B BA27C BB08C BB12C BC01A BC08A BC13B BC13C BC70A BC70B BC70C BD01C BD12C BE11C CB82 DA06 FA02 FA08 FB14 FB19 FB20 FB30 FC04 FC07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素処理活性炭にルテニウムを担持させ
たアンモニア合成用活性炭担持ルテニウム触媒の前駆体
に、アルカリ金属塩又はアルカリ土類金属塩を添加し、
次いで、水素雰囲気下で350℃〜400℃まで昇温さ
せた後、10℃〜60℃/hの昇温速度で500℃〜6
00℃まで加熱し、活性化処理することを特徴とするア
ンモニア合成触媒の製造方法。
An alkali metal salt or an alkaline earth metal salt is added to a precursor of an activated carbon-supported ruthenium catalyst for ammonia synthesis in which ruthenium is supported on hydrotreated activated carbon,
Next, the temperature is raised to 350 ° C. to 400 ° C. in a hydrogen atmosphere, and then 500 ° C. to 6 ° C. at a rate of 10 ° C. to 60 ° C./h.
A method for producing an ammonia synthesis catalyst, comprising heating to 00 ° C. and performing an activation treatment.
【請求項2】 アンモニア合成用活性炭担持ルテニウム
触媒の前駆体が、水素処理活性炭にルテニウム錯体を溶
解させた溶媒を含浸させ、このルテニウム錯体を含む水
素処理活性炭を窒素又は不活性ガス雰囲気下で200℃
〜450℃まで加熱したものであることを特徴とする請
求項1に記載のアンモニア合成用活性炭担持ルテニウム
触媒の製造方法。
2. A precursor of an activated carbon-supported ruthenium catalyst for ammonia synthesis is impregnated with a solvent obtained by dissolving a ruthenium complex in the hydrogen-treated activated carbon, and the hydrogen-treated activated carbon containing the ruthenium complex is subjected to a nitrogen or inert gas atmosphere for 200 hours. ° C
The method for producing an activated carbon-supported ruthenium catalyst for ammonia synthesis according to claim 1, wherein the catalyst is heated to -450 ° C.
【請求項3】 アンモニア合成用活性炭担持ルテニウム
触媒の前駆体が、水素処理活性炭に塩化ルテニウムを溶
解させた溶媒を含浸させ、この塩化ルテニウムを含む水
素処理活性炭を水素雰囲気下で350℃〜500℃まで
加熱したものであることを特徴とする請求項1に記載の
アンモニア合成用活性炭担持ルテニウム触媒の製造方
法。
3. A precursor of an activated carbon-supported ruthenium catalyst for ammonia synthesis is impregnated with a solvent obtained by dissolving ruthenium chloride in hydrogenated activated carbon, and the hydrogenated activated carbon containing ruthenium chloride is heated to 350 ° C. to 500 ° C. in a hydrogen atmosphere. The method for producing an activated carbon-supported ruthenium catalyst for ammonia synthesis according to claim 1, wherein the catalyst is heated to a maximum temperature.
【請求項4】 請求項1〜請求項3の何れかの製造方法
により製造されたアンモニア合成用活性炭担持ルテニウ
ム触媒を用いてアンモニアを合成することを特徴とする
アンモニア合成方法。
4. An ammonia synthesis method, characterized in that ammonia is synthesized using a ruthenium catalyst supported on activated carbon for ammonia synthesis produced by the production method according to any one of claims 1 to 3.
JP2000064271A 2000-03-09 2000-03-09 Method for producing ammonia synthesis catalyst and method for ammonia synthesis Expired - Lifetime JP3788172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064271A JP3788172B2 (en) 2000-03-09 2000-03-09 Method for producing ammonia synthesis catalyst and method for ammonia synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064271A JP3788172B2 (en) 2000-03-09 2000-03-09 Method for producing ammonia synthesis catalyst and method for ammonia synthesis

Publications (2)

Publication Number Publication Date
JP2001246251A true JP2001246251A (en) 2001-09-11
JP3788172B2 JP3788172B2 (en) 2006-06-21

Family

ID=18583992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064271A Expired - Lifetime JP3788172B2 (en) 2000-03-09 2000-03-09 Method for producing ammonia synthesis catalyst and method for ammonia synthesis

Country Status (1)

Country Link
JP (1) JP3788172B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212933A (en) * 2008-05-07 2008-09-18 Jfe Engineering Kk Ammonia synthesis catalyst and its manufacturing method
CN100421788C (en) * 2006-03-03 2008-10-01 厦门大学 Mixed ruthenium base amino synthetic catalyst and its preparing method
JP2013111562A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Composition and method for manufacturing ammonia using the composition
WO2017149963A1 (en) 2016-03-01 2017-09-08 三菱重工業株式会社 Activated carbon, method for treating activated carbon, ammonia synthesis catalyst, and method for producing ammonia synthesis catalyst
WO2018169076A1 (en) 2017-03-17 2018-09-20 国立大学法人東京工業大学 Metal support, supported metal catalyst, production method for ammonia, production method for hydrogen, and production method for cyanamide compound
CN114950415A (en) * 2022-06-08 2022-08-30 福州大学 Preparation method of Ru-based catalyst with stable size and application of Ru-based catalyst in ammonia synthesis
CN115041189A (en) * 2022-05-09 2022-09-13 山西潞宝集团焦化有限公司 Mesoporous carbon limited ruthenium-cobalt alloy ammonia synthesis catalyst and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421788C (en) * 2006-03-03 2008-10-01 厦门大学 Mixed ruthenium base amino synthetic catalyst and its preparing method
JP2008212933A (en) * 2008-05-07 2008-09-18 Jfe Engineering Kk Ammonia synthesis catalyst and its manufacturing method
JP2013111562A (en) * 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd Composition and method for manufacturing ammonia using the composition
WO2017149963A1 (en) 2016-03-01 2017-09-08 三菱重工業株式会社 Activated carbon, method for treating activated carbon, ammonia synthesis catalyst, and method for producing ammonia synthesis catalyst
WO2018169076A1 (en) 2017-03-17 2018-09-20 国立大学法人東京工業大学 Metal support, supported metal catalyst, production method for ammonia, production method for hydrogen, and production method for cyanamide compound
US11819827B2 (en) 2017-03-17 2023-11-21 Japan Science And Technology Agency Supported metal material, supported metal catalyst, method of producing ammonia, method of producing hydrogen and method of producing cyanamide compound
CN115041189A (en) * 2022-05-09 2022-09-13 山西潞宝集团焦化有限公司 Mesoporous carbon limited ruthenium-cobalt alloy ammonia synthesis catalyst and preparation method and application thereof
CN115041189B (en) * 2022-05-09 2024-03-01 山西潞宝兴海新材料有限公司 Ruthenium-cobalt alloy ammonia synthesis catalyst with mesoporous carbon confinement, and preparation method and application thereof
CN114950415A (en) * 2022-06-08 2022-08-30 福州大学 Preparation method of Ru-based catalyst with stable size and application of Ru-based catalyst in ammonia synthesis

Also Published As

Publication number Publication date
JP3788172B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
EP2209759B1 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
CA2823676A1 (en) Hydrogenation catalyst comprising nickel on carbon
JP2001246251A (en) Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia
JP6280443B2 (en) Catalyst, catalyst production method, ammonia synthesis method, ammonia decomposition method
CN88101657A (en) Produce the method for amine
CN115155573B (en) Method for preparing vinyl chloride by hydrochlorination of acetylene in fixed bed by using ultralow-content gold-based catalyst modified by nitrogen and sulfur
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
JPH09239272A (en) Production of ammonia synthesis catalyst
WO1992018447A1 (en) Process for producing hydrochloromethanes
WO2019017399A1 (en) Ammonia synthesis catalyst
EP0133778B1 (en) Methanol conversion process
JPS59204145A (en) Production of carbonyl compound
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
CN111036204B (en) Glycerol hydrogenolysis method
JP6344052B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JPH02129131A (en) Production of 1,1,2,2-tetrafluoroethane (r-134)
JP2001157840A (en) Catalyst for hydrogenating carboxylic acid
JP7403504B2 (en) Method for producing 1-chloro-2,2-difluoroethylene
CN113617352A (en) Catalyst for hydrofining crude terephthalic acid and preparation method thereof
CN114713244B (en) Hydrodechlorination catalyst, preparation method and application thereof
CN114716297B (en) Preparation method of E-1, 4-hexafluoro-2-butene
JP7089527B2 (en) Catalyst for nuclear hydrogenation reaction
JPS62252736A (en) Production of trifluoroethylene
GB2033776A (en) Catalyst for the production of ammonia
JP2006055752A (en) Ammonia synthesizing catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3788172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

EXPY Cancellation because of completion of term