WO2019017399A1 - Ammonia synthesis catalyst - Google Patents

Ammonia synthesis catalyst Download PDF

Info

Publication number
WO2019017399A1
WO2019017399A1 PCT/JP2018/026953 JP2018026953W WO2019017399A1 WO 2019017399 A1 WO2019017399 A1 WO 2019017399A1 JP 2018026953 W JP2018026953 W JP 2018026953W WO 2019017399 A1 WO2019017399 A1 WO 2019017399A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia synthesis
catalyst
synthesis catalyst
range
ruthenium
Prior art date
Application number
PCT/JP2018/026953
Other languages
French (fr)
Japanese (ja)
Inventor
政康 西
英行 高木
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019530573A priority Critical patent/JP6736073B2/en
Publication of WO2019017399A1 publication Critical patent/WO2019017399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an industrially available catalyst used for the direct synthesis of ammonia from hydrogen and nitrogen, and more particularly to a ruthenium catalyst using mesoporous carbon as a carrier.
  • the chemical reaction for directly synthesizing ammonia from nitrogen and hydrogen is an exothermic reaction with a decrease in the number of moles (standard heat of formation is -46.1 kJ ⁇ mol -1 ) represented by the following chemical reaction formula, and is equilibrium theory The reaction is more favored by lower temperature and higher pressure.
  • Iron-based catalysts used in conventional ammonia synthesis have low catalytic activity at low temperatures of 300-400 ° C., and the reaction must be carried out at high temperatures of 400-600 ° C., which is equilibrium disadvantage in the above chemical reaction Absent. For this reason, there is a need to increase the recirculation ratio of the reaction gas and to increase the SV value (space velocity), etc., and there is a problem that the operating cost increases.
  • Non-Patent Documents 1 to 3 and Patent Documents 1 to 4 when ruthenium is used as a catalyst, high catalytic activity is obtained even at a low temperature of 200 to 400 ° C. , And reported that operating costs can be reduced.
  • Non-Patent Document 4 and Patent Document 6 if the activated carbon is reduced in advance in a hydrogen atmosphere before ruthenium is supported, impurities such as S, N, O, Cl existing on the activated carbon surface can be removed, and the catalyst activity is improved. It also reports that it does.
  • Non-Patent Document 7 heat treatment of activated carbon in an inert atmosphere reduces specific surface area and reduces catalytic activity, After that, when activated by CO 2 or steam, partially graphitized carbon with a high specific surface area is obtained, and it is reported that the catalytic activity is improved. Also, Ichikawa et al., Patent Document 7 and Patent Document 8, Alan Iper Foster et al., Patent Document 9, Forni-Luchio et al., Patent Document 10, a ruthenium catalyst carrier having a high specific surface area as a catalyst.
  • Non-patent document 8 Patent document 11, Patent document 12 etc.
  • Zhou Yaping et al The use of mesoporous carbon with SiO 2 as a template is proposed.
  • sufficient catalytic activity can not be obtained only by using a carbon material such as activated carbon or graphite as a ruthenium catalyst carrier, and in Non-Patent Documents 1 to 8 and Patent Documents 1 to 10, an alkali is used as a promoter. It is reported that high catalytic activity can be obtained by using metals and alkaline earth metals, and it is also reported that the effect is remarkable when Cs is used among alkali metals and Ba is used among alkaline earth metals. ing.
  • graphite with a high specific surface area has high resistance to methanation and is excellent in the heat resistance of the catalyst, but has a smaller specific surface area compared to activated carbon, and the catalytic activity remains comparable to activated carbon to improve catalytic activity. It can not solve the essential problem of that.
  • mesoporous carbon produced using SiO 2 as a template has a fundamental problem that the catalytic activity at low temperature is lower than when using activated carbon, and additionally, SiO 2 is produced with hydrofluoric acid at the time of production. It is not suitable for industrial mass production of catalysts because the removal cost is high in terms of manufacturing equipment and environmental load.
  • the present invention provides a ruthenium catalyst for ammonia synthesis with improved ammonia synthesis activity and improved heat resistance using a carrier material suitable for industrial mass production. To be an issue.
  • the present inventors use a carbon material obtained by heat-treating mesoporous carbon prepared using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C. or less in an inert atmosphere as a support, using a ruthenium catalyst and a support therefor. It was found that by supporting an alkali metal or alkaline earth metal as a catalyst, it is possible to obtain an ammonia synthesis catalyst in which the ammonia synthesis activity is improved and the heat resistance is improved.
  • the present carbon material is characterized in that it can maintain a relatively high specific surface area while maintaining graphitization of carbon by heat treatment, and can maintain the pore structure of the original mesoporous carbon. Do.
  • mesoporous carbon prepared using MgO as a template Unlike mesoporous carbon prepared using MgO as a template (see, for example, JP-A-2010-208887), it is necessary to use a strong acid such as hydrofluoric acid in the manufacturing process, unlike mesoporous carbon prepared using SiO 2 as a template. Rather, they are low cost in terms of manufacturing equipment and are friendly industrial raw materials in terms of environmental impact. For this reason, mesoporous carbon produced using MgO as a template is a material very suitable for industrial mass production of a catalyst, and it is possible to use the mesoporous carbon produced using SiO 2 used in Non-Patent Document 9 as a template Are of completely different industrial value.
  • mesoporous carbon produced using MgO as a template has the property of being able to maintain a high specific surface area even when heat-treated in an inert atmosphere. That is, mesoporous carbon produced using MgO as a template improves the crystallinity of carbon when heat-treated at 1200 ° C.
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is 0.375 nm or less It approaches 0.3354 nm which is the theoretical value of the interlayer distance of graphite.
  • the interlayer distance is 0.368 nm, and at 1800 ° C., 0.355 nm, and at 2100 ° C., 0.340 nm, which is closer to the theoretical value of the interlayer distance.
  • mesoporous carbon produced using MgO as a template has a specific surface area of 1200 m 2 / g and an average pore diameter of 10 nm at a heat treatment temperature of 1500 ° C., 900 m 2 / g at 11 000 ° C, 11 nm and 2100 ° C.
  • the specific surface area decreases and the average pore diameter tends to increase to 280 m 2 / g and 14 nm, but even if the heat treatment temperature is 2500 ° C., the specific surface area as high as 150 m 2 / g And an average pore diameter close to that of the original mesoporous carbon of 20 nm.
  • Non-Patent Document 9 describes using mesoporous carbon produced with SiO 2 as a template as a support, but the catalytic activity at a low temperature of 300 to 400 ° C. is equivalent to or less than that using activated carbon
  • the heat treatment of mesoporous carbon in an inert atmosphere has not been described in advance, and the above-mentioned effects according to the present invention are far from predictable.
  • An ammonia synthesis catalyst comprising a catalyst component and a cocatalyst component supported on a carrier, wherein the catalyst component is ruthenium, the cocatalyst component is an alkali metal or alkaline earth metal, and the carrier is
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is in the range of 0.339 nm to 0.375 nm, and the specific surface area is in the range of 150 m 2 / g to 1400 m 2 / g, average pore size
  • An ammonia synthesis catalyst characterized in that it is a carbon material having a diameter of 8 nm or more and 20 nm or less.
  • the interlayer distance of the carrier is in the range of 0.340 nm to 0.368 nm, the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g, and the average pore diameter is 10 nm to 14 nm
  • the ammonia synthesis catalyst according to ⁇ 1> which is in the range of ⁇ 3>
  • the ammonia synthesis catalyst according to ⁇ 1> or ⁇ 2>, wherein the supported amount of ruthenium is 1% or more and 15% or less in mass% with respect to the mass of the carrier.
  • ⁇ 4> The ammonia synthesis catalyst according to any one of ⁇ 1> to ⁇ 3>, wherein the promoter component is an alkali metal.
  • ⁇ 5> The ammonia synthesis catalyst according to ⁇ 4>, wherein the supported amount of alkali metal is 1.5 or more and 15 or less in molar ratio to ruthenium.
  • ⁇ 6> The ammonia synthesis catalyst according to ⁇ 4> or ⁇ 5>, wherein the alkali metal is at least one selected from the group consisting of sodium, potassium, rubidium and cesium.
  • the substance mass of ammonia generated per unit time of reaction per unit mass of the catalyst is 3.4 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more, ⁇ 4> to ⁇ 6>
  • ⁇ 8> The ammonia synthesis catalyst according to any one of ⁇ 1> to ⁇ 3>, wherein the co-catalyst component is an alkaline earth metal.
  • the co-catalyst component is an alkaline earth metal.
  • the supported amount of alkaline earth metal is 0.5 or more and 10 or less in molar ratio to ruthenium.
  • the alkaline earth metal is at least one selected from the group consisting of calcium, strontium and barium.
  • the amount of ammonia produced per unit time of reaction per unit mass of the catalyst is 5.7 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more, ⁇ 8> to ⁇ 10>
  • the ammonia synthesis catalyst as described in any one.
  • the support is prepared by heat-treating mesoporous carbon prepared using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C.
  • the heat treatment temperature is in the range of 1500 ° C. to 2100 ° C.
  • the interlayer distance of the support is in the range of 0.340 nm to 0.368 nm
  • the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g
  • the amount of ammonia produced per unit time of reaction per unit mass of catalyst is 3.4 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more using an alkali metal as a cocatalyst, alkali as a cocatalyst
  • An ammonia synthesis catalyst is obtained which has an extremely high ammonia synthesis activity of 5.7 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more using a rare earth metal and is excellent in heat resistance.
  • the contrast diagram of the methanation reactivity of the catalyst which uses the catalyst of this invention, and activated carbon as a support The solid line shows the catalyst of the present invention, and the broken line shows a catalyst with activated carbon as a carrier.
  • the present invention is an ammonia synthesis catalyst comprising a catalyst component and a cocatalyst component supported on a carrier, wherein the catalyst component is ruthenium, the cocatalyst component is an alkali metal or an alkaline earth metal, and the carrier is
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is in the range of 0.339 nm to 0.375 nm, and the specific surface area is in the range of 150 m 2 / g to 1400 m 2 / g. It is a carbon material having a pore diameter in the range of 8 nm or more and 20 nm or less, and is a content of an ammonia synthesis catalyst.
  • the amount of ammonia produced per unit time of reaction per unit mass of catalyst is 3.4 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more using an alkali metal as a cocatalyst, and alkali as a cocatalyst It has extremely high ammonia synthesis activity of 5.7 mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 or more using a rare earth metal.
  • the interlayer distance is in the range of 0.340 nm to 0.368 nm
  • the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g
  • the average pore diameter is in the range of 10 nm to 14 nm. Is more preferable.
  • the average pore diameter of the support used in the present invention is less than 8 nm, the pores are easily clogged by a ruthenium catalyst or a cocatalyst, high catalytic activity can not be obtained, and if the average pore diameter exceeds 20 nm
  • the average pore diameter of the support used in the present invention is preferably 8 nm to 20 nm, and more preferably 10 nm to 14 nm, because the specific surface area and the pore volume decrease, leading to a decrease in catalyst activity due to a decrease in the catalyst loading amount. It is more preferable that
  • the range of the supported amount of the ruthenium catalyst used in the present invention is not particularly limited as long as high catalytic activity can be obtained, but if the amount by mass based on the mass of the support is less than 1%, the supported amount of the catalyst is insufficient and sufficient catalyst The activity is not obtained, and if it exceeds 15%, the catalyst activity is lowered due to clogging of pores by the ruthenium catalyst and aggregation of the ruthenium catalyst, so it is preferably 1% or more and 15% or less, preferably 2.5% or more and 10% or less It is more preferable that
  • conventionally known methods such as a impregnation method, a mechanochemical method, a vacuum evaporation method can be adopted for supporting the ruthenium catalyst used in the present invention, and ruthenium chloride, ruthenium nitrate, nitosilol are used as raw materials of the ruthenium catalyst.
  • Conventionally known materials such as ruthenium nitrate, potassium ruthenate
  • the range of the supported amount of the cocatalyst used in the present invention is not particularly limited as long as high catalytic activity can be obtained, but when the cocatalyst is an alkali metal, the supported amount of catalyst is insufficient when the molar ratio to ruthenium is less than 1.5 Sufficient catalyst activity can not be obtained, and if it exceeds 15, it causes blockage of the pores of the support and aggregation of the cocatalyst, so that the catalyst activity is lowered, so 1.5 or more and 15 or less is preferable, and 2.5 or more and 10 or less It is more preferable that When the promoter is an alkaline earth metal, if the molar ratio to ruthenium is less than 0.5, the supported amount of the catalyst is insufficient and sufficient catalytic activity can not be obtained, and if it exceeds 10, pore clogs of the support and aggregation of the promoter occurs.
  • the catalyst activity is preferably 0.5 or more and 10 or less, and more preferably 1 or more and 5 or less.
  • conventionally known methods such as impregnation method, heating and melting method, vacuum evaporation method, metal hydride adsorption decomposition method can be adopted for supporting the cocatalyst used in the present invention, and existing materials for cocatalyst can be used.
  • Alkali metal salts or alkaline earth metal salts may be employed.
  • the alkali metal used for the co-catalyst of the present invention may be at least one or more selected from the group consisting of sodium, potassium, rubidium and cesium, and among them, cesium has a remarkable effect as a co-catalyst So most preferred.
  • the alkaline earth metal used for the co-catalyst of the present invention may be at least one selected from the group consisting of calcium, strontium and barium, and among these, barium has a remarkable effect as a co-catalyst. Most preferred.
  • the support used in the present invention can be prepared by heat-treating mesoporous carbon produced using MgO as a template in an inert atmosphere at a temperature of 1200 ° C. or more and 2500 ° C. or less.
  • the mesoporous carbon prepared using MgO as a template improves the crystallinity of carbon when heat-treated at 1200 ° C. or higher, and the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis becomes 0.375 nm or less It is preferable because it improves, and the interlayer distance is 0.368 nm or less at 1500 ° C. or more, which is more preferable because the catalytic activity is further improved.
  • mesoporous carbon prepared using MgO as a template can maintain a high specific surface area of 150 m 2 / g and a large average pore diameter of 20 nm even at a heat treatment temperature of 2500 ° C., and support catalyst components and cocatalyst components It is preferable because high catalytic activity can be maintained without significantly reducing the amount, and when the heat treatment temperature is 2100 ° C. or less, the specific surface area is 280 m 2 / g or more, the average pore diameter is 14 nm or less, and the catalytic activity is further enhanced. So more preferable.
  • the gas used to form the inert atmosphere when performing the heat treatment in the present invention is not particularly limited, but high purity nitrogen gas, high purity argon gas, high purity helium gas, etc. are available at cost and availability. Preferred in terms of ease.
  • Example 1 MgO-based mesoporous carbon (Toyo Carbon Co., Ltd., C Novel P (3) 010, BET specific surface area 1600 m 2 / g, average pore diameter 10 nm) is heat-treated at 1500 ° C. for 1 hour in high purity nitrogen gas atmosphere And obtained MPC (1500).
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis of MPC (1500) was 0.368 nm, the specific surface area was 1200 m 2 / g, and the average pore diameter was 10 nm.
  • a ruthenium solution is prepared by diluting a nitrosyl ruthenium (III) nitrate solution (Wako Pure Chemical Industries, Ltd.) to a predetermined concentration. Separately, a predetermined amount of cesium carbonate (Wako Pure Chemical Industries, Ltd.) is dissolved in water to prepare a cesium solution. Take 1 g of MPC (1500) and add to 100 mL of ruthenium solution and impregnate with stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, heat treatment is performed at 400 ° C.
  • Ru / MPC (1500) which is ruthenium-supported mesoporous carbon.
  • 1 g of Ru / MPC (1500) is collected, added to 100 mL of the cesium solution, and impregnated while stirring for 30 minutes.
  • the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour.
  • the catalyst was heat-treated at 450 ° C. for 10 hours in a hydrogen stream to prepare ruthenium-cesium-supported mesoporous carbon catalyst 10Ru-2.5Cs / MPC (1500).
  • the amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
  • Example 2 The same mesoporous carbon as in Example 1 was heat-treated at 1800 ° C. for 1 hour in an inert atmosphere to obtain MPC (1800).
  • the interlayer distance of MPC (1800) was 0.355 nm, the specific surface area was 900 m 2 / g, and the average pore diameter was 11 nm. Except for this, the same operation as in Example 1 was performed to prepare Ru / MPC (1800) and 10Ru-2.5Cs / MPC (1800).
  • the amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
  • Example 3 The same mesoporous carbon as in Example 1 was heat-treated at 2100 ° C. for 1 hour in an inert atmosphere to obtain MPC (2100).
  • the interlayer distance of MPC (2100) was 0.340 nm, the specific surface area was 280 m 2 / g, and the average pore diameter was 14 nm.
  • the same operation as in Example 1 was carried out except for the above, to prepare 10Ru-2.5Cs / MPC (2100).
  • the amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
  • AC which is obtained by treating activated carbon (Large Gas Chemicals Co., Ltd., HG15-119) in a hydrogen stream at 500 ° C. for 3 hours.
  • the interlayer distance of AC was 0.382 nm
  • the specific surface area was 1700 m 2 / g
  • the average pore diameter was 0.9 nm.
  • Ru / AC and 10Ru-2.5Cs / AC were prepared.
  • the amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
  • Example 4 The characteristics of the catalysts of Examples 1 to 3 of the present invention and the carriers used therefor, and the catalysts of Comparative Example 1 of the prior art and the carriers used therein were measured by the following methods.
  • the H 2 / N 2 molar ratio of the reaction gas was 3, the pressure was 0.99 MPa, and the catalyst activity was measured at 350 and 400 ° C.
  • the catalyst activity is represented by the amount of substance of ammonia (mmol ⁇ g ⁇ 1 ⁇ h ⁇ 1 ) produced per unit time of reaction per unit mass of catalyst.
  • Method 2 Measurement Method of Specific Surface Area of Carrier and Interlayer Distance of 002 Plane Derived from Laminated Structure of Carbon
  • the specific surface area of the carrier was measured by BET method using N 2 as an adsorption gas.
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon of the carrier was determined from the value of 2 ⁇ of the peak corresponding to the 002 plane in X-ray diffraction analysis.
  • Method 3 established a carrier 30mg only was supported Ru in a quartz reaction tube of the measuring method the inner diameter 10mm methanation temperature of the catalyst, while raising the temperature at a rate of 10 ° C. / min up to 900 ° C. with H 2 gas stream Then, methane contained in the gas at the outlet of the reaction tube was analyzed by a mass spectrometer.
  • Examples 1 to 3 show 11 times to 17.5 times higher catalytic activity as compared with Comparative Example 1, and the catalyst of the present invention has an effect that the catalytic activity is largely improved as compared with the catalyst of the prior art. .
  • Examples 1 to 3 differ from Comparative Example 1 in that they show high catalytic activity at 350 ° C. lower than 400 ° C., and the catalyst of the present invention is higher at a lower temperature than the catalyst of the prior art. There is also an effect that catalytic activity can be obtained and energy consumption in ammonia synthesis can be reduced.
  • the interlayer distance, specific surface area and average pore diameter of the 002 plane derived from the layered structure of carbon in the X-ray diffraction analysis of the carrier used in Examples 1 to 3 and Comparative Example 1 are shown in Table 2. From the physical properties of each support shown in Table 2, the difference in ammonia synthesis activity of each catalyst shown in Table 1 is considered as follows.
  • the interlayer distance of the 002 plane of mesoporous carbon prepared using MgO as a template approaches 0.3354 nm which is the theoretical value of the interlayer distance of graphite as the heat treatment temperature in an inert atmosphere increases, and the carbon crystal as the heat treatment temperature increases. Sex is improving.
  • the number of delocalized ⁇ electrons in the support increases and the number of electrons donated from the support to the ruthenium catalyst increases, so the amount of ammonia produced per unit surface area of the support is It is considered to increase.
  • the specific surface area of mesoporous carbon produced using MgO as a template decreases as the heat treatment temperature in the inert atmosphere increases, it can maintain a relatively high value of 280 m 2 / g at 2100 ° C.
  • the average pore diameter can maintain a relatively large value of 14 nm before heat treatment.
  • mesoporous carbon produced using MgO as a template for the catalyst of the present invention as a template does not require the use of a strong acid such as hydrofluoric acid at the time of production, and only by heat treatment once in advance in an inert atmosphere It is a support material suitable for industrial mass production of catalysts, as compared to supports used in prior art catalysts, in that it can be a support from which highly active catalysts can be obtained.
  • Examples 1 to 4 an example was shown using cesium which is an alkali metal as a co-catalyst.
  • Examples 5 to 8 below show cases where barium, which is an alkaline earth metal, is used as a co-catalyst.
  • MgO-based mesoporous carbon (Toyo Carbon Co., Ltd., C Novel P (3) 010, BET specific surface area 1600 m 2 / g, average pore diameter 10 nm) is heat-treated at 1500 ° C. for 1 hour in high purity nitrogen gas atmosphere And obtained MPC (1500).
  • the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis of MPC (1500) was 0.368 nm, the specific surface area was 1200 m 2 / g, and the average pore diameter was 10 nm.
  • a ruthenium solution is prepared by diluting a nitrosyl ruthenium (III) nitrate solution (Wako Pure Chemical Industries, Ltd.) to a predetermined concentration. Separately, a predetermined amount of barium nitrate (Wako Pure Chemical Industries, Ltd.) is dissolved in water to prepare a barium solution. Take 1 g of MPC (1500) and add to 100 mL of ruthenium solution and impregnate with stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, heat treatment is performed at 400 ° C.
  • Ru / MPC (1500) which is ruthenium-supported mesoporous carbon.
  • 1 g of Ru / MPC (1500) is collected, added to 100 mL of barium solution, and impregnated while stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, the catalyst was heat-treated at 450 ° C. for 10 hours in a hydrogen stream to prepare ruthenium, a barium-supported mesoporous carbon catalyst 10Ru-1.8Ba / MPC (1500). The amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
  • Example 6 The same mesoporous carbon as in Example 5 was heat-treated at 1800 ° C. for 1 hour in an inert atmosphere to obtain MPC (1800).
  • the interlayer distance of MPC (1800) was 0.355 nm, the specific surface area was 900 m 2 / g, and the average pore diameter was 11 nm. Except for this, the same operation as in Example 5 was performed to prepare Ru / MPC (1800) and 10Ru-1.8Ba / MPC (1800).
  • the amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
  • Example 7 The same mesoporous carbon as in Example 5 was heat-treated at 2100 ° C. for 1 hour in an inert atmosphere to obtain MPC (2100).
  • the interlayer distance of MPC (2100) was 0.340 nm, the specific surface area was 280 m 2 / g, and the average pore diameter was 14 nm.
  • the same operation as in Example 5 was carried out except for the above, to prepare 10Ru-1.8Ba / MPC (2100).
  • the amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
  • AC which is obtained by treating activated carbon (Large Gas Chemicals Co., Ltd., HG15-119) in a hydrogen stream at 500 ° C. for 3 hours.
  • the interlayer distance of AC was 0.382 nm
  • the specific surface area was 1700 m 2 / g
  • the average pore diameter was 0.9 nm.
  • the same operation as in Example 1 was performed to prepare Ru / AC, 10Ru-1.8Ba / AC.
  • the amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
  • Example 8 With respect to the catalysts of Examples 5 to 7 and the catalyst of Comparative Example 2 which is the prior art, the catalyst activity of ammonia synthesis of the catalyst was measured by the same catalyst activity measuring method as used in Example 4. The results are shown in Table 3. Examples 5 to 7 show 1.2 to 2.0 times higher catalytic activity as compared to Comparative Example 2, and the catalyst of the present invention has an effect that the catalytic activity is largely improved as compared with the catalyst of the prior art. . Further, Examples 5 to 7 are different from Comparative Example 2 showing substantially the same catalytic activity at either temperature, in that they show high catalytic activity at 380 ° C. lower than 400 ° C.
  • the present invention provides a ruthenium catalyst for ammonia synthesis, which has improved ammonia synthesis activity and improved heat resistance using a carrier material suitable for industrial mass production. Value is extremely large.
  • Ammonia is a compound widely used in the chemical industry, such as being used as one of the raw material compounds in synthesis reactions of various compounds, and the present invention can be widely used in the field of the chemical industry.

Abstract

Provided is an ammonia synthesis catalyst having a configuration in which a catalytic component and a promoter component are supported on a carrier. The ammonia synthesis catalyst is characterized in that: the catalytic component is ruthenium, and the promoter component is an alkali metal or an alkaline-earth metal; and the carrier is a carbon material, in which an inter-layer distance between 002 planes derived from the carbon lamination structure is in the range of 0.339-0.375 nm, the specific surface area is in a range of 150-1400 m2/g, and the average pore diameter is in the range of 8-20 nm, the foregoing all being determined by X-ray diffraction analysis.

Description

アンモニア合成触媒Ammonia synthesis catalyst
 本発明は、水素と窒素からアンモニアを直接合成する目的に使用する工業的に利用可能な触媒に関するものであり、特に、担体にメソポーラスカーボンを用いたルテニウム触媒に関するものである。 The present invention relates to an industrially available catalyst used for the direct synthesis of ammonia from hydrogen and nitrogen, and more particularly to a ruthenium catalyst using mesoporous carbon as a carrier.
 窒素と水素からアンモニアを直接合成する化学反応は、以下の化学反応式で表される、モル数の減少を伴う発熱反応(標準生成熱は-46.1kJ・mol-1)であり、平衡論的にこの反応は低温、高圧ほど有利になる。
Figure JPOXMLDOC01-appb-C000001
 従来のアンモニア合成において使用されている鉄系の触媒は300~400℃の低温での触媒活性が低く、上記化学反応において平衡論的に不利な400~600℃の高温で反応を行わざるを得ない。このため、反応ガスの再循環比を大きくし、SV値(空間速度)を高くする等の必要があり、運転経費が増大するという課題があった。
 これに対して、秋鹿・尾崎らは、非特許文献1~非特許文献3および特許文献1~特許文献4において、ルテニウムを触媒に用いると200~400℃の低温においても高い触媒活性が得られ、運転経費が抑制できること等を報告している。
 このルテニウム触媒を担持する担体に関して、秋鹿・尾崎らは、非特許文献2、非特許文献3、特許文献1、特許文献4および特許文献5において、担体に活性炭を用いると高活性な触媒が得られることを報告している。さらに、非特許文献4および特許文献6において、ルテニウム担持前にあらかじめ活性炭を水素雰囲気中で還元処理すると、活性炭表面に存在するS, N, O, Cl等の不純物を除去でき、触媒活性が向上することも報告している。
 Zbigniew Kowalczykらは、非特許文献5および非特許文献6において、また、Xiaoling Zhengらは、非特許文献7において、活性炭を不活性雰囲気中で熱処理すると比表面積が減少し触媒活性は低下するものの、その後にCO2あるいは水蒸気等で賦活すると高比表面積の部分黒鉛化炭素が得られ、触媒活性が向上することを報告している。
 また、市川らは、特許文献7および特許文献8おいて、アラン・アイパー・フォスターらは、特許文献9において、フォルニ・ルチオらは、特許文献10において、ルテニウム触媒の担体に高比表面積の黒鉛を用いると高い触媒活性が得られることをそれぞれ報告している。
 さらに、近年、メソ孔を有するメソポーラスカーボンの研究開発が進んでいるところ(非特許文献8、特許文献11、特許文献12等)、Zhou Yapingらは、非特許文献9において、ルテニウム触媒の担体にSiO2を鋳型としたメソポーラスカーボンを用いることを提案している。
 一方、ルテニウム触媒の担体に活性炭や黒鉛などの炭素材料を用いるだけでは十分な触媒活性は得られず、非特許文献1~非特許文献8、特許文献1~特許文献10において、助触媒にアルカリ金属やアルカリ土類金属を用いることにより高い触媒活性を得られることが報告されており、アルカリ金属の中ではCs、アルカリ土類金属の中ではBaを用いると効果が顕著であることも報告されている。
The chemical reaction for directly synthesizing ammonia from nitrogen and hydrogen is an exothermic reaction with a decrease in the number of moles (standard heat of formation is -46.1 kJ · mol -1 ) represented by the following chemical reaction formula, and is equilibrium theory The reaction is more favored by lower temperature and higher pressure.
Figure JPOXMLDOC01-appb-C000001
Iron-based catalysts used in conventional ammonia synthesis have low catalytic activity at low temperatures of 300-400 ° C., and the reaction must be carried out at high temperatures of 400-600 ° C., which is equilibrium disadvantage in the above chemical reaction Absent. For this reason, there is a need to increase the recirculation ratio of the reaction gas and to increase the SV value (space velocity), etc., and there is a problem that the operating cost increases.
On the other hand, Akiha and Ozaki et al., In Non-Patent Documents 1 to 3 and Patent Documents 1 to 4, when ruthenium is used as a catalyst, high catalytic activity is obtained even at a low temperature of 200 to 400 ° C. , And reported that operating costs can be reduced.
Akiha, Ozaki et al., Non-Patent Document 2, Non-Patent Document 3, Patent Document 1, Patent Document 4 and Patent Document 5 for this ruthenium catalyst-supporting carrier, when activated carbon is used as the carrier, a highly active catalyst is obtained. Is reported to be Furthermore, in Non-Patent Document 4 and Patent Document 6, if the activated carbon is reduced in advance in a hydrogen atmosphere before ruthenium is supported, impurities such as S, N, O, Cl existing on the activated carbon surface can be removed, and the catalyst activity is improved. It also reports that it does.
Zbigniew Kowalczyk et al., Non-Patent Document 5 and Non-Patent Document 6, and Xiaoling Zheng et al., Non-Patent Document 7 heat treatment of activated carbon in an inert atmosphere reduces specific surface area and reduces catalytic activity, After that, when activated by CO 2 or steam, partially graphitized carbon with a high specific surface area is obtained, and it is reported that the catalytic activity is improved.
Also, Ichikawa et al., Patent Document 7 and Patent Document 8, Alan Iper Foster et al., Patent Document 9, Forni-Luchio et al., Patent Document 10, a ruthenium catalyst carrier having a high specific surface area as a catalyst. Report that high catalytic activity can be obtained using
Furthermore, in recent years, research and development of mesoporous carbon having mesopores has been advanced (Non-patent document 8, Patent document 11, Patent document 12 etc.), Zhou Yaping et al. The use of mesoporous carbon with SiO 2 as a template is proposed.
On the other hand, sufficient catalytic activity can not be obtained only by using a carbon material such as activated carbon or graphite as a ruthenium catalyst carrier, and in Non-Patent Documents 1 to 8 and Patent Documents 1 to 10, an alkali is used as a promoter. It is reported that high catalytic activity can be obtained by using metals and alkaline earth metals, and it is also reported that the effect is remarkable when Cs is used among alkali metals and Ba is used among alkaline earth metals. ing.
特公昭48-23800号公報Japanese Patent Publication No. 48-23800 特開昭48-00184号公報Japanese Patent Application Laid-Open No. 48-00184 特開昭48-00185号公報Japanese Patent Application Laid-Open No. 48-00185 特公昭51-44509号公報Japanese Patent Publication No. 51-44509 特公昭54-37592号公報Japanese Patent Publication No. 54-37592 特開平9-168739号公報Japanese Patent Laid-Open No. 9-168739 特開昭47-14085号公報Japanese Patent Application Laid-Open No. 47-14085 特公昭49-16037号公報Japanese Patent Publication No.49-16037 特開昭53-57193号公報Japanese Patent Application Laid-Open No. 53-57193 特表2005-511278号公報Japanese Patent Application Publication No. 2005-511278 特開2006-62954号公報Japanese Patent Application Laid-Open No. 2006-62954 特開2010-208887号公報JP, 2010-208887, A
 アンモニアの直接合成に用いられるルテニウム触媒に用いられている従来の炭素系の担体は、いくつかの課題を有している。
 活性炭の表面にはS, N, O, Cl等からなる不純物が存在し、触媒反応の阻害要因になっているところ、活性炭を水素気流中で熱処理すると不純物が除去され触媒活性は高くなるが、高温で水素処理する必要があるため危険を伴い、触媒を工業的に大量生産することには適していない。
 また、活性炭は炭素の結晶性が低いのでメタン化に対する耐性が低く、触媒の耐熱性が劣るという課題も有している。これらの課題を解決する目的で活性炭を不活性雰囲気中で高温熱処理し、炭素の結晶性を向上させると、細孔の狭小化・閉塞が進行して比表面積が大きく低下し、触媒活性が著しく低下するという別の課題を生じる。このため、結晶性を高めた活性炭を再度賦活処理して比表面積を回復させて触媒活性の向上を図っているが、高温での熱処理に加えて賦活操作を行うという二段階の工程を必要とするため、触媒を工業的に大量生産することには適していない。
 一方、高比表面積の黒鉛はメタン化に対する耐性が高く、触媒の耐熱性には優れているものの、活性炭と比べると比表面積が小さく、触媒活性は活性炭と同程度に留まり、触媒活性を向上させるという本質的な課題を解決し得ないものである。
 さらに、SiO2を鋳型として作製されたメソポーラスカーボンは、低温での触媒活性が活性炭を用いた場合よりも低いという根本的な課題を有しており、加えて、製造時にSiO2をフッ酸で除去するため、製造設備や環境負荷の点で高コストになるので、触媒を工業的に大量生産する材料には適していない。
Conventional carbon-based supports used in ruthenium catalysts used for direct synthesis of ammonia have several challenges.
Impurities consisting of S, N, O, Cl, etc. exist on the surface of activated carbon, which is a factor that inhibits the catalytic reaction. When activated carbon is heat-treated in a hydrogen stream, the impurities are removed and the catalytic activity becomes high. It is dangerous because it needs to be treated with hydrogen at high temperature, and it is not suitable for industrial mass production of catalysts.
In addition, activated carbon has low crystallinity of carbon, so resistance against methanation is low, and there is also a problem that heat resistance of the catalyst is poor. In order to solve these problems, when activated carbon is heat-treated at high temperature in an inert atmosphere to improve the crystallinity of carbon, narrowing and clogging of the pores proceed and the specific surface area is greatly reduced, and the catalytic activity is remarkably It causes another problem of falling. For this reason, activated carbon with enhanced crystallinity is activated again to recover the specific surface area to improve the catalytic activity, but a two-step process of performing activation operation in addition to heat treatment at high temperature is required It is not suitable for industrial mass production of catalysts.
On the other hand, graphite with a high specific surface area has high resistance to methanation and is excellent in the heat resistance of the catalyst, but has a smaller specific surface area compared to activated carbon, and the catalytic activity remains comparable to activated carbon to improve catalytic activity. It can not solve the essential problem of that.
Furthermore, mesoporous carbon produced using SiO 2 as a template has a fundamental problem that the catalytic activity at low temperature is lower than when using activated carbon, and additionally, SiO 2 is produced with hydrofluoric acid at the time of production. It is not suitable for industrial mass production of catalysts because the removal cost is high in terms of manufacturing equipment and environmental load.
 上記の従来技術の有する課題を踏まえて、本願発明は、工業的大量生産に適した担体材料を用いて、アンモニア合成活性が向上し、耐熱性が向上した、アンモニア合成用のルテニウム触媒を提供することを課題とする。 In view of the above problems of the prior art, the present invention provides a ruthenium catalyst for ammonia synthesis with improved ammonia synthesis activity and improved heat resistance using a carrier material suitable for industrial mass production. To be an issue.
 本発明者らは、MgOを鋳型として作製されたメソポーラスカーボンを不活性雰囲気中において1200℃以上2500℃以下の温度で熱処理することにより得られた炭素材料を担体として用い、これにルテニウム触媒と助触媒としてアルカリ金属またはアルカリ土類金属を担持させることで、アンモニア合成活性が向上し、耐熱性が向上したアンモニア合成触媒を得ることができることを見出した。なお、本炭素材料は、熱処理によりカーボンの黒鉛化が進行する一方で、比較的高い比表面積を維持することができ、かつ、元のメソポーラスカーボンの細孔構造を維持することができることを特徴とする。 The present inventors use a carbon material obtained by heat-treating mesoporous carbon prepared using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C. or less in an inert atmosphere as a support, using a ruthenium catalyst and a support therefor. It was found that by supporting an alkali metal or alkaline earth metal as a catalyst, it is possible to obtain an ammonia synthesis catalyst in which the ammonia synthesis activity is improved and the heat resistance is improved. The present carbon material is characterized in that it can maintain a relatively high specific surface area while maintaining graphitization of carbon by heat treatment, and can maintain the pore structure of the original mesoporous carbon. Do.
 MgOを鋳型として作製されたメソポーラスカーボン(例えば、特開2010-208887号公報参照)は、SiO2を鋳型として作製されたメソポーラスカーボンとは異なり、製造工程においてフッ酸などの強酸を使用する必要がなく、製造設備の点で低コストであり、環境負荷の点で優しい工業原料である。このため、MgOを鋳型として作製されたメソポーラスカーボンは触媒の工業的大量生産に非常に適した材料である点で、非特許文献9で用いられているSiO2を鋳型として作製されたメソポーラスカーボンとは工業的価値がまったく異なるものである。 Unlike mesoporous carbon prepared using MgO as a template (see, for example, JP-A-2010-208887), it is necessary to use a strong acid such as hydrofluoric acid in the manufacturing process, unlike mesoporous carbon prepared using SiO 2 as a template. Rather, they are low cost in terms of manufacturing equipment and are friendly industrial raw materials in terms of environmental impact. For this reason, mesoporous carbon produced using MgO as a template is a material very suitable for industrial mass production of a catalyst, and it is possible to use the mesoporous carbon produced using SiO 2 used in Non-Patent Document 9 as a template Are of completely different industrial value.
 また、一般的に高比表面積の炭素材料は、不活性雰囲気中において高温で熱処理すると、結晶性の向上とともに比表面積が著しく低下するところ、後述の実施例4において確認されているとおり、理由は不明であるが、MgOを鋳型として作製されたメソポーラスカーボンは、不活性雰囲気中で熱処理した場合であっても、高い比表面積を維持できるという性質を有する。
 すなわち、MgOを鋳型として作製されたメソポーラスカーボンは、1200℃以上で熱処理するとカーボンの結晶性が向上し、X線回折分析による炭素の積層構造に由来する002面の層間距離は0.375nm以下と、黒鉛の層間距離の理論値である0.3354nmに近づく。熱処理する温度が1500℃であると層間距離は0.368nmとなり、1800℃では0.355nm、2100℃では0.340nmと、黒鉛の層間距離の理論値になお一層近づく。一方で、MgOを鋳型として作製されたメソポーラスカーボンは、熱処理温度が1500℃では、比表面積は1200m2/g、平均細孔直径は10nm、1800℃では900m2/g、11nm、2100℃では、280m2/g、14nmと、熱処理温度の上昇につれて、比表面積が減少し、平均細孔直径が大きくなる傾向は認められるものの、熱処理温度が2500℃であっても150m2/gという高い比表面積と20nmという元のメソポーラスカーボンに近い大きさの平均細孔直径を維持することができる。
 このように、MgOを鋳型として作製されたメソポーラスカーボンを不活性雰囲気中において1200℃以上2500℃以下の温度で熱処理することにより、一方で、触媒活性に寄与する炭素材料の黒鉛化が進行するとともに、他方で、高い比表面積と元のメソポーラスカーボンに近い平均細孔直径が維持されることで、得られた炭素材料にルテニウム触媒と助触媒を担持させる際に触媒成分と助触媒成分の担持量が大きく減少することがないことによって、アンモニア合成活性が向上し、耐熱性が向上した、アンモニア合成用のルテニウム触媒を得ることができる。
 本発明は、本発明者らにより得られた、これらの知見に基づいてなされたものである。
In general, when a carbon material having a high specific surface area is heat-treated at high temperature in an inert atmosphere, the specific surface area is significantly reduced along with the improvement of crystallinity, as confirmed in Example 4 to be described later. Although unknown, mesoporous carbon produced using MgO as a template has the property of being able to maintain a high specific surface area even when heat-treated in an inert atmosphere.
That is, mesoporous carbon produced using MgO as a template improves the crystallinity of carbon when heat-treated at 1200 ° C. or higher, and the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is 0.375 nm or less It approaches 0.3354 nm which is the theoretical value of the interlayer distance of graphite. When the temperature for heat treatment is 1500 ° C., the interlayer distance is 0.368 nm, and at 1800 ° C., 0.355 nm, and at 2100 ° C., 0.340 nm, which is closer to the theoretical value of the interlayer distance. On the other hand, mesoporous carbon produced using MgO as a template has a specific surface area of 1200 m 2 / g and an average pore diameter of 10 nm at a heat treatment temperature of 1500 ° C., 900 m 2 / g at 11 000 ° C, 11 nm and 2100 ° C. As the heat treatment temperature rises, the specific surface area decreases and the average pore diameter tends to increase to 280 m 2 / g and 14 nm, but even if the heat treatment temperature is 2500 ° C., the specific surface area as high as 150 m 2 / g And an average pore diameter close to that of the original mesoporous carbon of 20 nm.
Thus, while heat treating the mesoporous carbon produced by using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C. or less in an inert atmosphere, on the other hand, the graphitization of the carbon material contributing to the catalytic activity proceeds On the other hand, by maintaining a high specific surface area and an average pore diameter close to that of the original mesoporous carbon, the supported amount of the catalyst component and the cocatalyst component when supporting the ruthenium catalyst and the cocatalyst on the obtained carbon material Since the ammonia synthesis activity is improved and the heat resistance is improved, a ruthenium catalyst for ammonia synthesis can be obtained.
The present invention has been made based on these findings obtained by the present inventors.
 このような作用効果はMgOを鋳型として作製されたメソポーラスカーボンを上述の温度で熱処理することによって得られる炭素材料を触媒担体として用いることで得られる効果であり、非特許文献5等で用いられている活性炭にはない、新規な作用効果である。また、非特許文献9には、SiO2を鋳型として作製されたメソポーラスカーボンを担体に用いることは記載されているが、300~400℃の低温での触媒活性は活性炭を用いた場合と同等以下であるし、あらかじめメソポーラスカーボンを不活性雰囲気中で熱処理することも記載されておらず、本発明による上記作用効果は到底予測し得ないものである。 Such an effect is an effect obtained by using, as a catalyst support, a carbon material obtained by heat-treating mesoporous carbon prepared using MgO as a template at the above temperature, and it is used in Non-Patent Document 5 etc. It is a novel effect not found in activated carbon. In addition, Non-Patent Document 9 describes using mesoporous carbon produced with SiO 2 as a template as a support, but the catalytic activity at a low temperature of 300 to 400 ° C. is equivalent to or less than that using activated carbon The heat treatment of mesoporous carbon in an inert atmosphere has not been described in advance, and the above-mentioned effects according to the present invention are far from predictable.
 すなわち、この出願は、以下の発明を提供するものである。
〈1〉触媒成分と助触媒成分を担体に担持してなるアンモニア合成触媒であって、前記触媒成分がルテニウムであり、前記助触媒成分がアルカリ金属またはアルカリ土類金属であり、前記担体が、X線回折分析による炭素の積層構造に由来する002面の層間距離が0.339nm以上0.375nm以下の範囲であり、比表面積が150m2/g以上1400m2/g以下の範囲であり、平均細孔直径が8nm以上20nm以下の範囲である炭素材料であることを特徴とする、アンモニア合成触媒。
〈2〉前記担体の前記層間距離が0.340nm以上0.368nm以下の範囲であり、前記比表面積が280m2/g以上1200m2/g以下の範囲であり、前記平均細孔直径が10nm以上14nm以下の範囲であることを特徴とする、〈1〉に記載のアンモニア合成触媒。
〈3〉ルテニウムの担持量が担体の質量に対する質量%で1%以上15%以下であることを特徴とする、〈1〉または〈2〉に記載のアンモニア合成触媒。
〈4〉前記助触媒成分がアルカリ金属であることを特徴とする、〈1〉~〈3〉のいずれかに記載のアンモニア合成触媒。
〈5〉アルカリ金属の担持量がルテニウムに対するモル比で1.5以上15以下であることを特徴とする、〈4〉に記載のアンモニア合成触媒。
〈6〉前記アルカリ金属が、ナトリウム、カリウム、ルビジウム、セシウムからなる群から選ばれる少なくとも一種類以上であることを特徴とする、〈4〉または〈5〉に記載のアンモニア合成触媒。
〈7〉前記触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が3.4mmol・g-1・h-1以上であることを特徴とする、〈4〉~〈6〉のいずれかに記載のアンモニア合成触媒。
〈8〉前記助触媒成分がアルカリ土類金属であることを特徴とする、〈1〉~〈3〉のいずれかに記載のアンモニア合成触媒。
〈9〉アルカリ土類金属の担持量がルテニウムに対するモル比で0.5以上10以下であることを特徴とする、〈8〉に記載のアンモニア合成触媒。
〈10〉前記アルカリ土類金属が、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも一種類以上であることを特徴とする、〈8〉または〈9〉に記載のアンモニア合成触媒。
〈11〉前記触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が5.7mmol・g-1・h-1以上であることを特徴とする、〈8〉~〈10〉のいずれかに記載のアンモニア合成触媒。
〈12〉MgOを鋳型として作製されたメソポーラスカーボンを不活性雰囲気中において1200℃以上2500℃以下の温度で熱処理することによって前記担体を調製し、これにルテニウムおよびアルカリ金属またはアルカリ土類金属を担持させることを特徴とする、〈1〉~〈11〉のいずれかに記載のアンモニア合成触媒の製造方法。
〈13〉前記熱処理温度が1500℃以上2100℃以下の範囲であって、前記担体の前記層間距離が0.340nm以上0.368nm以下の範囲であり、前記比表面積が280m2/g以上1200m2/g以下の範囲であり、前記平均細孔直径が10nm以上14nm以下の範囲であることを特徴とする、〈12〉に記載のアンモニア合成触媒の製造方法。
That is, this application provides the following invention.
(1) An ammonia synthesis catalyst comprising a catalyst component and a cocatalyst component supported on a carrier, wherein the catalyst component is ruthenium, the cocatalyst component is an alkali metal or alkaline earth metal, and the carrier is The interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is in the range of 0.339 nm to 0.375 nm, and the specific surface area is in the range of 150 m 2 / g to 1400 m 2 / g, average pore size An ammonia synthesis catalyst characterized in that it is a carbon material having a diameter of 8 nm or more and 20 nm or less.
<2> The interlayer distance of the carrier is in the range of 0.340 nm to 0.368 nm, the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g, and the average pore diameter is 10 nm to 14 nm The ammonia synthesis catalyst according to <1>, which is in the range of
<3> The ammonia synthesis catalyst according to <1> or <2>, wherein the supported amount of ruthenium is 1% or more and 15% or less in mass% with respect to the mass of the carrier.
<4> The ammonia synthesis catalyst according to any one of <1> to <3>, wherein the promoter component is an alkali metal.
<5> The ammonia synthesis catalyst according to <4>, wherein the supported amount of alkali metal is 1.5 or more and 15 or less in molar ratio to ruthenium.
<6> The ammonia synthesis catalyst according to <4> or <5>, wherein the alkali metal is at least one selected from the group consisting of sodium, potassium, rubidium and cesium.
<7> The substance mass of ammonia generated per unit time of reaction per unit mass of the catalyst is 3.4 mmol · g −1 · h −1 or more, <4> to <6> The ammonia synthesis catalyst as described in any one.
<8> The ammonia synthesis catalyst according to any one of <1> to <3>, wherein the co-catalyst component is an alkaline earth metal.
<9> The ammonia synthesis catalyst according to <8>, wherein the supported amount of alkaline earth metal is 0.5 or more and 10 or less in molar ratio to ruthenium.
<10> The ammonia synthesis catalyst according to <8> or <9>, wherein the alkaline earth metal is at least one selected from the group consisting of calcium, strontium and barium.
<11> The amount of ammonia produced per unit time of reaction per unit mass of the catalyst is 5.7 mmol · g −1 · h −1 or more, <8> to <10> The ammonia synthesis catalyst as described in any one.
<12> The support is prepared by heat-treating mesoporous carbon prepared using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C. or less in an inert atmosphere, and ruthenium and an alkali metal or alkaline earth metal are supported thereon A method for producing an ammonia synthesis catalyst according to any one of <1> to <11>, characterized in that
<13> The heat treatment temperature is in the range of 1500 ° C. to 2100 ° C., the interlayer distance of the support is in the range of 0.340 nm to 0.368 nm, and the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g The method for producing an ammonia synthesis catalyst according to <12>, wherein the average pore diameter is in the range of 10 nm to 14 nm.
 本発明によれば、触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が、助触媒としてアルカリ金属を用いて3.4mmol・g-1・h-1以上、助触媒としてアルカリ土類金属を用いて5.7mmol・g-1・h-1以上という、極めて高いアンモニア合成活性を有し、耐熱性にも優れる、アンモニア合成触媒が得られる。 According to the present invention, the amount of ammonia produced per unit time of reaction per unit mass of catalyst is 3.4 mmol · g −1 · h −1 or more using an alkali metal as a cocatalyst, alkali as a cocatalyst An ammonia synthesis catalyst is obtained which has an extremely high ammonia synthesis activity of 5.7 mmol · g −1 · h −1 or more using a rare earth metal and is excellent in heat resistance.
本発明の触媒と活性炭を担体とする触媒のメタン化反応性の対比図。実線が本発明の触媒、破線が活性炭を担体とする触媒を示す。The contrast diagram of the methanation reactivity of the catalyst which uses the catalyst of this invention, and activated carbon as a support. The solid line shows the catalyst of the present invention, and the broken line shows a catalyst with activated carbon as a carrier.
 本願発明は、触媒成分と助触媒成分を担体に担持してなるアンモニア合成触媒であって、前記触媒成分がルテニウムであり、前記助触媒成分がアルカリ金属またはアルカリ土類金属であり、前記担体が、X線回折分析による炭素の積層構造に由来する002面の層間距離が0.339nm以上0.375nm以下の範囲であり、比表面積が150m2/g以上1400m2/g以下の範囲であり、平均細孔直径が8nm以上20nm以下の範囲である炭素材料であることを特徴とする、アンモニア合成触媒を内容とするものである。
 本願発明の触媒は、触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が、助触媒としてアルカリ金属を用いて3.4mmol・g-1・h-1以上、助触媒としてアルカリ土類金属を用いて5.7mmol・g-1・h-1以上という、極めて高いアンモニア合成活性を有する。
 前記担体は、前記層間距離が0.340nm以上0.368nm以下の範囲であり、前記比表面積が280m2/g以上1200m2/g以下の範囲であり、前記平均細孔直径が10nm以上14nm以下の範囲であることが、より好ましい。
The present invention is an ammonia synthesis catalyst comprising a catalyst component and a cocatalyst component supported on a carrier, wherein the catalyst component is ruthenium, the cocatalyst component is an alkali metal or an alkaline earth metal, and the carrier is The interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis is in the range of 0.339 nm to 0.375 nm, and the specific surface area is in the range of 150 m 2 / g to 1400 m 2 / g. It is a carbon material having a pore diameter in the range of 8 nm or more and 20 nm or less, and is a content of an ammonia synthesis catalyst.
In the catalyst of the present invention, the amount of ammonia produced per unit time of reaction per unit mass of catalyst is 3.4 mmol · g −1 · h −1 or more using an alkali metal as a cocatalyst, and alkali as a cocatalyst It has extremely high ammonia synthesis activity of 5.7 mmol · g −1 · h −1 or more using a rare earth metal.
In the carrier, the interlayer distance is in the range of 0.340 nm to 0.368 nm, the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g, and the average pore diameter is in the range of 10 nm to 14 nm. Is more preferable.
 本願発明に用いる担体の平均細孔直径が8nm未満であると、ルテニウム触媒や助触媒により細孔が閉塞しやすくなり、高い触媒活性が得られず、また、平均細孔直径が20nmを超えると、比表面積や細孔容積が減少し、触媒担持量の低下による触媒活性の低下を招くため、本願発明に用いる担体の平均細孔直径は、8nm以上20nm以下であることが好ましく、10nm以上14nm以下であることがより好ましい。 If the average pore diameter of the support used in the present invention is less than 8 nm, the pores are easily clogged by a ruthenium catalyst or a cocatalyst, high catalytic activity can not be obtained, and if the average pore diameter exceeds 20 nm The average pore diameter of the support used in the present invention is preferably 8 nm to 20 nm, and more preferably 10 nm to 14 nm, because the specific surface area and the pore volume decrease, leading to a decrease in catalyst activity due to a decrease in the catalyst loading amount. It is more preferable that
 本願発明に用いるルテニウム触媒の担持量の範囲は、高い触媒活性が得られれば特に限定されるものではないが、担体の質量に対する質量%で1%未満では触媒担持量が不足し、十分な触媒活性が得られないし、15%を超えるとルテニウム触媒による細孔の閉塞やルテニウム触媒の凝集により触媒活性の低下を招くので、1%以上15%以下であることが好ましく、2.5%以上10%以下であることがより好ましい。
 また、本願発明に用いるルテニウム触媒の担持には、含侵法、メカノケミカル法、真空蒸着法など従来公知の方法を採用することができ、ルテニウム触媒の原料には、塩化ルテニウム、硝酸ルテニウム、ニトシロル硝酸ルテニウム、ルテニウム酸カリウム、ルテニウムアセチルアセトナート錯体、ルテニウムカルボニル錯体など従来公知の原料を採用し得る。
The range of the supported amount of the ruthenium catalyst used in the present invention is not particularly limited as long as high catalytic activity can be obtained, but if the amount by mass based on the mass of the support is less than 1%, the supported amount of the catalyst is insufficient and sufficient catalyst The activity is not obtained, and if it exceeds 15%, the catalyst activity is lowered due to clogging of pores by the ruthenium catalyst and aggregation of the ruthenium catalyst, so it is preferably 1% or more and 15% or less, preferably 2.5% or more and 10% or less It is more preferable that
In addition, conventionally known methods such as a impregnation method, a mechanochemical method, a vacuum evaporation method can be adopted for supporting the ruthenium catalyst used in the present invention, and ruthenium chloride, ruthenium nitrate, nitosilol are used as raw materials of the ruthenium catalyst. Conventionally known materials such as ruthenium nitrate, potassium ruthenate, ruthenium acetylacetonate complex, ruthenium carbonyl complex and the like can be adopted.
 本願発明に用いる助触媒の担持量の範囲は、高い触媒活性が得られれば特に限定されるものではないが、助触媒がアルカリ金属の場合、ルテニウムに対するモル比で1.5未満では触媒担持量が不足し、十分な触媒活性が得られず、15を超えると担体の細孔の閉塞や助触媒の凝集による触媒活性の低下を招くので、1.5以上15以下であることが好ましく、2.5以上10以下であることがより好ましい。助触媒がアルカリ土類金属の場合、ルテニウムに対するモル比で0.5未満では触媒担持量が不足し、十分な触媒活性が得られず、10を超えると担体の細孔の閉塞や助触媒の凝集による触媒活性の低下を招くので、0.5以上10以下であることが好ましく、1以上5以下であることがより好ましい。
 また、本願発明に用いる助触媒の担持には、含侵法、加熱溶融法、真空蒸着法、金属水素化物吸着分解法など従来公知の方法を採用することができ、助触媒の原料には既存のアルカリ金属塩またはアルカリ土類金属塩を採用し得る。
 加えて、本願発明の助触媒に用いるアルカリ金属は、ナトリウム、カリウム、ルビジウム、セシウムからなる群から選ばれる少なくとも一種類以上であればよく、その中でも、セシウムは助触媒としての効果が顕著であるので最も好ましい。また、本願発明の助触媒に用いるアルカリ土類金属は、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも一種類以上であればよく、その中でも、バリウムは助触媒としての効果が顕著であるので最も好ましい。
The range of the supported amount of the cocatalyst used in the present invention is not particularly limited as long as high catalytic activity can be obtained, but when the cocatalyst is an alkali metal, the supported amount of catalyst is insufficient when the molar ratio to ruthenium is less than 1.5 Sufficient catalyst activity can not be obtained, and if it exceeds 15, it causes blockage of the pores of the support and aggregation of the cocatalyst, so that the catalyst activity is lowered, so 1.5 or more and 15 or less is preferable, and 2.5 or more and 10 or less It is more preferable that When the promoter is an alkaline earth metal, if the molar ratio to ruthenium is less than 0.5, the supported amount of the catalyst is insufficient and sufficient catalytic activity can not be obtained, and if it exceeds 10, pore clogs of the support and aggregation of the promoter occurs. In order to reduce the catalyst activity, it is preferably 0.5 or more and 10 or less, and more preferably 1 or more and 5 or less.
In addition, conventionally known methods such as impregnation method, heating and melting method, vacuum evaporation method, metal hydride adsorption decomposition method can be adopted for supporting the cocatalyst used in the present invention, and existing materials for cocatalyst can be used. Alkali metal salts or alkaline earth metal salts may be employed.
In addition, the alkali metal used for the co-catalyst of the present invention may be at least one or more selected from the group consisting of sodium, potassium, rubidium and cesium, and among them, cesium has a remarkable effect as a co-catalyst So most preferred. In addition, the alkaline earth metal used for the co-catalyst of the present invention may be at least one selected from the group consisting of calcium, strontium and barium, and among these, barium has a remarkable effect as a co-catalyst. Most preferred.
 本願発明に用いる前記担体は、MgOを鋳型として作製されたメソポーラスカーボンを不活性雰囲気中において1200℃以上2500℃以下の温度で熱処理することによって調製することができる。
 MgOを鋳型として作製されたメソポーラスカーボンは、1200℃以上で熱処理するとカーボンの結晶性が向上し、X線回折分析による炭素の積層構造に由来する002面の層間距離は0.375nm以下となり触媒活性が向上するので好ましく、1500℃以上であると層間距離は0.368nm以下となり触媒活性が一層向上するのでより好ましい。
 一方で、MgOを鋳型として作製されたメソポーラスカーボンは熱処理温度が2500℃であっても150m2/gという高い比表面積と20nmという大きな平均細孔直径を維持でき、触媒成分と助触媒成分の担持量を大きく減少することなく高い触媒活性が維持できるので好ましく、熱処理する温度が2100℃以下であると比表面積は280m2/g以上、平均細孔直径は14nm以下となり、触媒活性が一層高くなるのでより好ましい。
The support used in the present invention can be prepared by heat-treating mesoporous carbon produced using MgO as a template in an inert atmosphere at a temperature of 1200 ° C. or more and 2500 ° C. or less.
The mesoporous carbon prepared using MgO as a template improves the crystallinity of carbon when heat-treated at 1200 ° C. or higher, and the interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis becomes 0.375 nm or less It is preferable because it improves, and the interlayer distance is 0.368 nm or less at 1500 ° C. or more, which is more preferable because the catalytic activity is further improved.
On the other hand, mesoporous carbon prepared using MgO as a template can maintain a high specific surface area of 150 m 2 / g and a large average pore diameter of 20 nm even at a heat treatment temperature of 2500 ° C., and support catalyst components and cocatalyst components It is preferable because high catalytic activity can be maintained without significantly reducing the amount, and when the heat treatment temperature is 2100 ° C. or less, the specific surface area is 280 m 2 / g or more, the average pore diameter is 14 nm or less, and the catalytic activity is further enhanced. So more preferable.
 本願発明において熱処理を行う際の不活性雰囲気を構成するために用いられるガスは、特に限定されるものではないが、高純度窒素ガス、高純度アルゴンガス、高純度ヘリウムガス等がコストと入手の容易さの点で好ましい。 The gas used to form the inert atmosphere when performing the heat treatment in the present invention is not particularly limited, but high purity nitrogen gas, high purity argon gas, high purity helium gas, etc. are available at cost and availability. Preferred in terms of ease.
 次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
(実施例1)
 MgOを鋳型とするメソポーラスカーボン(東洋炭素(株)、CNovel P(3)010,BET比表面積1600m2/g、平均細孔直径10nm)を、高純度窒素ガス雰囲気中、1500℃で1時間熱処理し、MPC(1500)を得た。MPC(1500)のX線回折分析による炭素の積層構造に由来する002面の層間距離は0.368nm、比表面積は1200m2/g、平均細孔直径は10nmであった。
 ニトロシル硝酸ルテニウム(III)溶液(和光純薬工業(株))を所定の濃度に希釈し、ルテニウム溶液を調製する。これとは別に、所定量の炭酸セシウム(和光純薬工業(株))を水に溶解し、セシウム溶液を調製する。
 MPC(1500)を1g採取し、ルテニウム溶液100mLに添加後、30分間撹拌しながら含侵する。続いて、エバポレーターを用いて溶媒を除去し、110℃で1時間乾燥する。その後、不活性雰囲気中400℃で1時間熱処理し、ルテニウム担持メソポーラスカーボンであるRu/MPC(1500)を得る。
 次に、Ru/MPC(1500)を1g採取し、セシウム溶液100mLに添加後、30分間撹拌しながら含侵する。続いて、エバポレーターを用いて溶媒を除去し、110℃で1時間乾燥する。その後、触媒を水素気流中450℃で10時間熱処理し、ルテニウム、セシウム担持メソポーラスカーボン触媒である10Ru-2.5Cs/MPC(1500)を調製した。Ru担持量は10wt%、Cs/Ru比は2.5であった。
Example 1
MgO-based mesoporous carbon (Toyo Carbon Co., Ltd., C Novel P (3) 010, BET specific surface area 1600 m 2 / g, average pore diameter 10 nm) is heat-treated at 1500 ° C. for 1 hour in high purity nitrogen gas atmosphere And obtained MPC (1500). The interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis of MPC (1500) was 0.368 nm, the specific surface area was 1200 m 2 / g, and the average pore diameter was 10 nm.
A ruthenium solution is prepared by diluting a nitrosyl ruthenium (III) nitrate solution (Wako Pure Chemical Industries, Ltd.) to a predetermined concentration. Separately, a predetermined amount of cesium carbonate (Wako Pure Chemical Industries, Ltd.) is dissolved in water to prepare a cesium solution.
Take 1 g of MPC (1500) and add to 100 mL of ruthenium solution and impregnate with stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, heat treatment is performed at 400 ° C. for 1 hour in an inert atmosphere to obtain Ru / MPC (1500) which is ruthenium-supported mesoporous carbon.
Next, 1 g of Ru / MPC (1500) is collected, added to 100 mL of the cesium solution, and impregnated while stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, the catalyst was heat-treated at 450 ° C. for 10 hours in a hydrogen stream to prepare ruthenium-cesium-supported mesoporous carbon catalyst 10Ru-2.5Cs / MPC (1500). The amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
(実施例2)
 実施例1と同じメソポーラスカーボンを、不活性雰囲気中、1800℃で1時間熱処理し、MPC(1800)を得た。MPC(1800)の層間距離は0.355nm、比表面積は900m2/g、平均細孔直径は11nmであった。それ以外は実施例1と同様の操作を行い、Ru/MPC(1800)、10Ru-2.5Cs/MPC(1800)を調製した。Ru担持量は10wt%、Cs/Ru比は2.5であった。
(Example 2)
The same mesoporous carbon as in Example 1 was heat-treated at 1800 ° C. for 1 hour in an inert atmosphere to obtain MPC (1800). The interlayer distance of MPC (1800) was 0.355 nm, the specific surface area was 900 m 2 / g, and the average pore diameter was 11 nm. Except for this, the same operation as in Example 1 was performed to prepare Ru / MPC (1800) and 10Ru-2.5Cs / MPC (1800). The amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
(実施例3)
 実施例1と同じメソポーラスカーボンを、不活性雰囲気中、2100℃で1時間熱処理し、MPC(2100)を得た。MPC(2100)の層間距離は0.340nm、比表面積は280m2/g、平均細孔直径は14nmであった。それ以外は実施例1と同様の操作を行い、10Ru-2.5Cs/MPC(2100)を調製した。Ru担持量は10wt%、Cs/Ru比は2.5であった。
(Example 3)
The same mesoporous carbon as in Example 1 was heat-treated at 2100 ° C. for 1 hour in an inert atmosphere to obtain MPC (2100). The interlayer distance of MPC (2100) was 0.340 nm, the specific surface area was 280 m 2 / g, and the average pore diameter was 14 nm. The same operation as in Example 1 was carried out except for the above, to prepare 10Ru-2.5Cs / MPC (2100). The amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
(比較例1)
 メソポーラスカーボンに替えて、活性炭(大ガスケミカルズ(株)、HG15-119)を水素気流中500℃で3時間処理したものであるACを用いた。ACの層間距離は0.382nm、比表面積は1700m2/g、平均細孔直径は0.9nmであった。それ以外は実施例1と同様の操作を行いRu/AC、10Ru-2.5Cs/ACを調製した。Ru担持量は10wt%、Cs/Ru比は2.5であった。
(Comparative example 1)
Instead of mesoporous carbon, AC, which is obtained by treating activated carbon (Large Gas Chemicals Co., Ltd., HG15-119) in a hydrogen stream at 500 ° C. for 3 hours, is used. The interlayer distance of AC was 0.382 nm, the specific surface area was 1700 m 2 / g, and the average pore diameter was 0.9 nm. The same operation as in Example 1 was followed except that Ru / AC and 10Ru-2.5Cs / AC were prepared. The amount of Ru supported was 10 wt%, and the Cs / Ru ratio was 2.5.
(実施例4)
 以下の方法により、本願発明の実施例1~3の触媒及びそれに用いた担体、並びに従来技術である比較例1の触媒及びそれに用いた担体の特性測定を行った。
(方法1)触媒活性の測定方法
 内径30mmの石英製反応管に触媒0.2gを設置し、H2とN2の混合ガスの流量をSV=9000h-1に設定し、触媒活性測定温度まで昇温する。混合ガスを流した状態でアンモニア合成反応を行い、反応管出口のガスを採取し、ガスクロマトグラフでアンモニア濃度を定量分析する。反応ガスのH2/N2モル比は3、圧力は0.99MPaとし、350と400℃で触媒活性を測定した。触媒活性は、触媒の単位質量当たり、反応の単位時間当たりに生成したアンモニアの物質量(mmol・g-1・h-1)で表す。
(方法2)担体の比表面積と炭素の積層構造に由来する002面の層間距離の測定方法
担体の比表面積は、吸着ガスにN2を用いて、BET法で測定した。
 担体の炭素の積層構造に由来する002面の層間距離は、X線回折分析における002面に相当するピークの2θの値から求めた。
(方法3)触媒のメタン化温度の測定方法
 内径10mmの石英製反応管にRuのみを担持した担体30mgを設置し、H2気流中で900℃まで10℃/minの速度で昇温しながら、反応管出口のガス中に含まれるメタンを質量分析装置で分析した。
(Example 4)
The characteristics of the catalysts of Examples 1 to 3 of the present invention and the carriers used therefor, and the catalysts of Comparative Example 1 of the prior art and the carriers used therein were measured by the following methods.
(Method 1) Method of measuring catalyst activity 0.2 g of catalyst was placed in a quartz reaction tube with an inner diameter of 30 mm, the flow rate of mixed gas of H 2 and N 2 was set to SV = 9000 h −1 , and the temperature was raised to the catalyst activity measurement temperature Warm up. Ammonia synthesis reaction is performed in a state where the mixed gas flows, the gas at the outlet of the reaction tube is collected, and the ammonia concentration is quantitatively analyzed by a gas chromatograph. The H 2 / N 2 molar ratio of the reaction gas was 3, the pressure was 0.99 MPa, and the catalyst activity was measured at 350 and 400 ° C. The catalyst activity is represented by the amount of substance of ammonia (mmol · g −1 · h −1 ) produced per unit time of reaction per unit mass of catalyst.
(Method 2) Measurement Method of Specific Surface Area of Carrier and Interlayer Distance of 002 Plane Derived from Laminated Structure of Carbon The specific surface area of the carrier was measured by BET method using N 2 as an adsorption gas.
The interlayer distance of the 002 plane derived from the laminated structure of carbon of the carrier was determined from the value of 2θ of the peak corresponding to the 002 plane in X-ray diffraction analysis.
(Method 3) established a carrier 30mg only was supported Ru in a quartz reaction tube of the measuring method the inner diameter 10mm methanation temperature of the catalyst, while raising the temperature at a rate of 10 ° C. / min up to 900 ° C. with H 2 gas stream Then, methane contained in the gas at the outlet of the reaction tube was analyzed by a mass spectrometer.
 実施例1~3の触媒と比較例1の触媒のアンモニア合成の触媒活性を測定した結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~3は比較例1に比較して11倍から17.5倍の高い触媒活性を示しており、本願発明の触媒は従来技術の触媒に比較して触媒活性が大きく向上するという効果を有する。また、実施例1~3は400℃よりも低温の350℃で高い触媒活性を示す点で比較例1とは異なっており、本願発明の触媒は従来技術の触媒に比較してより低温で高い触媒活性が得られ、アンモニア合成におけるエネルギー消費量を低減できるという効果も有する。
The results of measuring the catalyst activity of the ammonia synthesis of the catalysts of Examples 1 to 3 and the catalyst of Comparative Example 1 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Examples 1 to 3 show 11 times to 17.5 times higher catalytic activity as compared with Comparative Example 1, and the catalyst of the present invention has an effect that the catalytic activity is largely improved as compared with the catalyst of the prior art. . Moreover, Examples 1 to 3 differ from Comparative Example 1 in that they show high catalytic activity at 350 ° C. lower than 400 ° C., and the catalyst of the present invention is higher at a lower temperature than the catalyst of the prior art. There is also an effect that catalytic activity can be obtained and energy consumption in ammonia synthesis can be reduced.
 実施例1~3および比較例1において用いた担体のX線回折分析における炭素の積層構造に由来する002面の層間距離、比表面積および平均細孔直径を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示された各担体の物理的特性から、表1に示された各触媒のアンモニア合成活性の違いについて、以下のように考察される。
 MgOを鋳型として作製されたメソポーラスカーボンの002面の層間距離は、不活性雰囲気中での熱処理温度が高いほど黒鉛の層間距離の理論値である0.3354nmに近づき、熱処理温度が高いほどカーボンの結晶性は向上している。カーボンの結晶性が向上すると担体中の非局在化したπ電子の数が増加し、担体からルテニウム触媒へ供与される電子の数が増えることで、担体の単位表面積当たりのアンモニアの生成量は増加するものと考えられる。一方、MgOを鋳型として作製されたメソポーラスカーボンの比表面積は、不活性雰囲気中での熱処理温度が高いほど小さくなるものの、2100℃で280m2/gと、比較的高い値を維持することができ、一方で、平均細孔直径は、14nmと、熱処理以前の比較的大きな値を維持することができている。これらの作用が相まって、熱処理温度が1500~2100℃の範囲で、高いアンモニア合成の触媒活性が得られたものと考えられる。
 一方、活性炭は、層間距離が0.382nmでありカーボンの結晶性が非常に低いため、担体からルテニウム触媒へ供与される電子の数が著しく少ないこと、および、比表面積は大きいものの、平均細孔直径がより小さいミクロ孔であることが原因となり、アンモニア合成の触媒活性が低いと考えられる。
The interlayer distance, specific surface area and average pore diameter of the 002 plane derived from the layered structure of carbon in the X-ray diffraction analysis of the carrier used in Examples 1 to 3 and Comparative Example 1 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
From the physical properties of each support shown in Table 2, the difference in ammonia synthesis activity of each catalyst shown in Table 1 is considered as follows.
The interlayer distance of the 002 plane of mesoporous carbon prepared using MgO as a template approaches 0.3354 nm which is the theoretical value of the interlayer distance of graphite as the heat treatment temperature in an inert atmosphere increases, and the carbon crystal as the heat treatment temperature increases. Sex is improving. As the crystallinity of carbon improves, the number of delocalized π electrons in the support increases and the number of electrons donated from the support to the ruthenium catalyst increases, so the amount of ammonia produced per unit surface area of the support is It is considered to increase. On the other hand, although the specific surface area of mesoporous carbon produced using MgO as a template decreases as the heat treatment temperature in the inert atmosphere increases, it can maintain a relatively high value of 280 m 2 / g at 2100 ° C. On the other hand, the average pore diameter can maintain a relatively large value of 14 nm before heat treatment. It is considered that, due to the combined effects, high ammonia synthesis catalytic activity was obtained at a heat treatment temperature in the range of 1500 to 2100 ° C.
On the other hand, since activated carbon has an interlayer distance of 0.382 nm and the crystallinity of carbon is very low, the number of electrons donated from the support to the ruthenium catalyst is extremely small, and although the specific surface area is large, the average pore diameter It is considered that the catalytic activity of ammonia synthesis is low due to the fact that the micropores are smaller.
 次に、本願発明の実施例2と比較例1の触媒調製の過程で得られるRu/MPC(1800)とRu/ACを水素気流中で900℃まで昇温した場合のメタン生成の様子を、図1に示す。実線が本発明の触媒、破線が活性炭を担体とする触媒を示す。
 従来技術の触媒で担体に用いられている活性炭にルテニウムを担持したRu/ACは、300℃付近からメタンの生成が始まり625℃付近に極めて大きなピークを生じるのに対して、本願発明の触媒で担体に用いているMgOを鋳型として作製されたメソポーラスカーボンをあらかじめ不活性雰囲気中1800℃で熱処理した担体にルテニウムを担持したRu/MPC(1800)は、550℃を超える付近からごくわずかなメタン生成が観察されるのみである。すなわち、本願発明に係る触媒は、従来技術の触媒に比較して、耐熱性の点で極めて優れている。
Next, the state of methane formation when Ru / MPC (1800) and Ru / AC obtained in the process of catalyst preparation of Example 2 of the present invention and Comparative Example 1 were heated to 900 ° C. in a hydrogen stream, It is shown in FIG. The solid line shows the catalyst of the present invention, and the broken line shows a catalyst with activated carbon as a carrier.
Ru / AC in which ruthenium is supported on activated carbon, which is used as a carrier in the catalyst of the prior art, starts to produce methane from around 300 ° C. and produces a very large peak around 625 ° C. Ru / MPC (1800) in which ruthenium is supported on a support obtained by heat-treating, in an inert atmosphere, mesoporous carbon prepared using MgO used as a support as a template in advance in a inert atmosphere, produces very slight methanation from around 550 ° C Is only observed. That is, the catalyst according to the present invention is extremely excellent in heat resistance as compared with the catalyst of the prior art.
 また、本願発明の触媒に用いるMgOを鋳型として作製されたメソポーラスカーボンは、製造時にフッ酸などの強酸を使用する必要がない点、および、あらかじめ不活性雰囲気中で一回、熱処理するだけで、高活性な触媒を得られる担体とすることができる点で、従来技術の触媒に用いられている担体に比較して、触媒の工業的大量生産に適した担体材料である。 In addition, mesoporous carbon produced using MgO as a template for the catalyst of the present invention as a template does not require the use of a strong acid such as hydrofluoric acid at the time of production, and only by heat treatment once in advance in an inert atmosphere It is a support material suitable for industrial mass production of catalysts, as compared to supports used in prior art catalysts, in that it can be a support from which highly active catalysts can be obtained.
 実施例1~4においては、助触媒としてアルカリ金属であるセシウムを用いた事例を示した。以下の実施例5~8においては、助触媒としてアルカリ土類金属であるバリウムを用いた事例を示す。 In Examples 1 to 4, an example was shown using cesium which is an alkali metal as a co-catalyst. Examples 5 to 8 below show cases where barium, which is an alkaline earth metal, is used as a co-catalyst.
(実施例5)
 MgOを鋳型とするメソポーラスカーボン(東洋炭素(株)、CNovel P(3)010,BET比表面積1600m2/g、平均細孔直径10nm)を、高純度窒素ガス雰囲気中、1500℃で1時間熱処理し、MPC(1500)を得た。MPC(1500)のX線回折分析による炭素の積層構造に由来する002面の層間距離は0.368nm、比表面積は1200m2/g、平均細孔直径は10nmであった。
 ニトロシル硝酸ルテニウム(III)溶液(和光純薬工業(株))を所定の濃度に希釈し、ルテニウム溶液を調製する。これとは別に、所定量の硝酸バリウム(和光純薬工業(株))を水に溶解し、バリウム溶液を調製する。
 MPC(1500)を1g採取し、ルテニウム溶液100mLに添加後、30分間撹拌しながら含侵する。続いて、エバポレーターを用いて溶媒を除去し、110℃で1時間乾燥する。その後、不活性雰囲気中400℃で1時間熱処理し、ルテニウム担持メソポーラスカーボンであるRu/MPC(1500)を得る。
 次に、Ru/MPC(1500)を1g採取し、バリウム溶液100mLに添加後、30分間撹拌しながら含侵する。続いて、エバポレーターを用いて溶媒を除去し、110℃で1時間乾燥する。その後、触媒を水素気流中450℃で10時間熱処理し、ルテニウム、バリウム担持メソポーラスカーボン触媒である10Ru-1.8Ba/MPC(1500)を調製した。Ru担持量は10wt%、Ba/Ru比は1.8であった。
(Example 5)
MgO-based mesoporous carbon (Toyo Carbon Co., Ltd., C Novel P (3) 010, BET specific surface area 1600 m 2 / g, average pore diameter 10 nm) is heat-treated at 1500 ° C. for 1 hour in high purity nitrogen gas atmosphere And obtained MPC (1500). The interlayer distance of the 002 plane derived from the laminated structure of carbon by X-ray diffraction analysis of MPC (1500) was 0.368 nm, the specific surface area was 1200 m 2 / g, and the average pore diameter was 10 nm.
A ruthenium solution is prepared by diluting a nitrosyl ruthenium (III) nitrate solution (Wako Pure Chemical Industries, Ltd.) to a predetermined concentration. Separately, a predetermined amount of barium nitrate (Wako Pure Chemical Industries, Ltd.) is dissolved in water to prepare a barium solution.
Take 1 g of MPC (1500) and add to 100 mL of ruthenium solution and impregnate with stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, heat treatment is performed at 400 ° C. for 1 hour in an inert atmosphere to obtain Ru / MPC (1500) which is ruthenium-supported mesoporous carbon.
Next, 1 g of Ru / MPC (1500) is collected, added to 100 mL of barium solution, and impregnated while stirring for 30 minutes. Subsequently, the solvent is removed using an evaporator and dried at 110 ° C. for 1 hour. Thereafter, the catalyst was heat-treated at 450 ° C. for 10 hours in a hydrogen stream to prepare ruthenium, a barium-supported mesoporous carbon catalyst 10Ru-1.8Ba / MPC (1500). The amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
(実施例6)
 実施例5と同じメソポーラスカーボンを、不活性雰囲気中、1800℃で1時間熱処理し、MPC(1800)を得た。MPC(1800)の層間距離は0.355nm、比表面積は900m2/g、平均細孔直径は11nmであった。それ以外は実施例5と同様の操作を行い、Ru/MPC(1800)、10Ru-1.8Ba/MPC(1800)を調製した。Ru担持量は10wt%、Ba/Ru比は1.8であった。
(Example 6)
The same mesoporous carbon as in Example 5 was heat-treated at 1800 ° C. for 1 hour in an inert atmosphere to obtain MPC (1800). The interlayer distance of MPC (1800) was 0.355 nm, the specific surface area was 900 m 2 / g, and the average pore diameter was 11 nm. Except for this, the same operation as in Example 5 was performed to prepare Ru / MPC (1800) and 10Ru-1.8Ba / MPC (1800). The amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
(実施例7)
 実施例5と同じメソポーラスカーボンを、不活性雰囲気中、2100℃で1時間熱処理し、MPC(2100)を得た。MPC(2100)の層間距離は0.340nm、比表面積は280m2/g、平均細孔直径は14nmであった。それ以外は実施例5と同様の操作を行い、10Ru-1.8Ba/MPC(2100)を調製した。Ru担持量は10wt%、Ba/Ru比は1.8であった。
(Example 7)
The same mesoporous carbon as in Example 5 was heat-treated at 2100 ° C. for 1 hour in an inert atmosphere to obtain MPC (2100). The interlayer distance of MPC (2100) was 0.340 nm, the specific surface area was 280 m 2 / g, and the average pore diameter was 14 nm. The same operation as in Example 5 was carried out except for the above, to prepare 10Ru-1.8Ba / MPC (2100). The amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
(比較例2)
 メソポーラスカーボンに替えて、活性炭(大ガスケミカルズ(株)、HG15-119)を水素気流中500℃で3時間処理したものであるACを用いた。ACの層間距離は0.382nm、比表面積は1700m2/g、平均細孔直径は0.9nmであった。それ以外は実施例1と同様の操作を行いRu/AC、10Ru-1.8Ba/ACを調製した。Ru担持量は10wt%、Ba/Ru比は1.8であった。
(Comparative example 2)
Instead of mesoporous carbon, AC, which is obtained by treating activated carbon (Large Gas Chemicals Co., Ltd., HG15-119) in a hydrogen stream at 500 ° C. for 3 hours, is used. The interlayer distance of AC was 0.382 nm, the specific surface area was 1700 m 2 / g, and the average pore diameter was 0.9 nm. Except for this, the same operation as in Example 1 was performed to prepare Ru / AC, 10Ru-1.8Ba / AC. The amount of Ru supported was 10 wt%, and the Ba / Ru ratio was 1.8.
(実施例8)
 実施例5~7の触媒及び従来技術である比較例2の触媒について、実施例4で用いたのと同様の触媒活性測定方法により、触媒のアンモニア合成の触媒活性を測定した。
結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例5~7は比較例2に比較して1.2倍から2.0倍の高い触媒活性を示しており、本願発明の触媒は従来技術の触媒に比較して触媒活性が大きく向上するという効果を有する。また、実施例5~7は400℃よりも低温の380℃で高い触媒活性を示す点で、どちらの温度でもほぼ同一の触媒活性を示す比較例2とは異なっており、本願発明の触媒は従来技術の触媒に比較してより低温で高い触媒活性が得られ、アンモニア合成におけるエネルギー消費量を低減できるという効果も有する。
 このように、助触媒としてアルカリ土類金属を用いた場合も、助触媒としてアルカリ金属を用いた場合と同様の、優れた効果が得られている。
(Example 8)
With respect to the catalysts of Examples 5 to 7 and the catalyst of Comparative Example 2 which is the prior art, the catalyst activity of ammonia synthesis of the catalyst was measured by the same catalyst activity measuring method as used in Example 4.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Examples 5 to 7 show 1.2 to 2.0 times higher catalytic activity as compared to Comparative Example 2, and the catalyst of the present invention has an effect that the catalytic activity is largely improved as compared with the catalyst of the prior art. . Further, Examples 5 to 7 are different from Comparative Example 2 showing substantially the same catalytic activity at either temperature, in that they show high catalytic activity at 380 ° C. lower than 400 ° C. Compared with the prior art catalysts, high catalytic activity can be obtained at lower temperatures, and also has the effect of being able to reduce energy consumption in ammonia synthesis.
As described above, also in the case of using an alkaline earth metal as the cocatalyst, the same excellent effect as in the case of using an alkali metal as the cocatalyst is obtained.
 以上述べたように、本願発明は、工業的大量生産に適した担体材料を用いて、アンモニア合成活性が向上し、耐熱性が向上した、アンモニア合成用のルテニウム触媒を提供するものであり、工業的価値が極めて大きいものである。 As described above, the present invention provides a ruthenium catalyst for ammonia synthesis, which has improved ammonia synthesis activity and improved heat resistance using a carrier material suitable for industrial mass production. Value is extremely large.
 アンモニアは、各種化合物の合成反応において原料化合物の1つとして用いられる等、化学工業において広く使用されている化合物であり、本願発明は、これらの化学工業の分野で広く利用し得るものである。 Ammonia is a compound widely used in the chemical industry, such as being used as one of the raw material compounds in synthesis reactions of various compounds, and the present invention can be widely used in the field of the chemical industry.

Claims (13)

  1.  触媒成分と助触媒成分を担体に担持してなるアンモニア合成触媒であって、前記触媒成分がルテニウムであり、前記助触媒成分がアルカリ金属またはアルカリ土類金属であり、前記担体が、X線回折分析による炭素の積層構造に由来する002面の層間距離が0.339nm以上0.375nm以下の範囲であり、比表面積が150m2/g以上1400m2/g以下の範囲であり、平均細孔直径が8nm以上20nm以下の範囲である炭素材料であることを特徴とする、アンモニア合成触媒。 An ammonia synthesis catalyst comprising a catalyst component and a promoter component supported on a carrier, wherein the catalyst component is ruthenium, the promoter component is an alkali metal or an alkaline earth metal, and the carrier is X-ray diffraction The interlayer distance of the 002 plane derived from the laminated structure of carbon by analysis is in the range of 0.339 nm to 0.375 nm, the specific surface area is in the range of 150 m 2 / g to 1400 m 2 / g, and the average pore diameter is 8 nm An ammonia synthesis catalyst characterized in that it is a carbon material in the range of not less than 20 nm.
  2.  前記担体の前記層間距離が0.340nm以上0.368nm以下の範囲であり、前記比表面積が280m2/g以上1200m2/g以下の範囲であり、前記平均細孔直径が10nm以上14nm以下の範囲であることを特徴とする、請求項1に記載のアンモニア合成触媒。 The interlayer distance of the carrier is in the range of 0.340 nm to 0.368 nm, the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g, and the average pore diameter is in the range of 10 nm to 14 nm. The ammonia synthesis catalyst according to claim 1, characterized in that
  3.  ルテニウムの担持量が担体の質量に対する質量%で1%以上15%以下であることを特徴とする、請求項1または2に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to claim 1 or 2, wherein the supported amount of ruthenium is 1% or more and 15% or less in mass% with respect to the mass of the carrier.
  4.  前記助触媒成分がアルカリ金属であることを特徴とする、請求項1~3のいずれか一項に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to any one of claims 1 to 3, wherein the cocatalyst component is an alkali metal.
  5.  アルカリ金属の担持量がルテニウムに対するモル比で1.5以上15以下であることを特徴とする、請求項4に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to claim 4, wherein the supported amount of alkali metal is 1.5 or more and 15 or less in molar ratio to ruthenium.
  6.  前記アルカリ金属が、ナトリウム、カリウム、ルビジウム、セシウムからなる群から選ばれる少なくとも一種類以上であることを特徴とする、請求項4または5に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to claim 4 or 5, wherein the alkali metal is at least one selected from the group consisting of sodium, potassium, rubidium and cesium.
  7.  前記触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が3.4mmol・g-1・h-1以上であることを特徴とする、請求項4~6のいずれか一項に記載のアンモニア合成触媒。 The substance amount of ammonia generated per unit time of the reaction per unit mass of the catalyst is 3.4 mmol · g -1 · h -1 or more, The method according to any one of claims 4 to 6, Ammonia synthesis catalyst as described.
  8.  前記助触媒成分がアルカリ土類金属であることを特徴とする、請求項1~3のいずれか一項に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to any one of claims 1 to 3, wherein the cocatalyst component is an alkaline earth metal.
  9.  アルカリ土類金属の担持量がルテニウムに対するモル比で0.5以上10以下であることを特徴とする、請求項8に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to claim 8, wherein the supported amount of the alkaline earth metal is 0.5 or more and 10 or less in molar ratio to ruthenium.
  10.  前記アルカリ土類金属が、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも一種類以上であることを特徴とする、請求項8または9に記載のアンモニア合成触媒。 The ammonia synthesis catalyst according to claim 8 or 9, wherein the alkaline earth metal is at least one selected from the group consisting of calcium, strontium and barium.
  11.  前記触媒の単位質量当たり、反応の単位時間当たりに生成するアンモニアの物質量が5.7mmol・g-1・h-1以上であることを特徴とする、請求項8~10のいずれか一項に記載のアンモニア合成触媒。 11. The method according to any one of claims 8 to 10, wherein the amount of ammonia produced per unit time of reaction per unit mass of the catalyst is 5.7 mmol · g −1 · h −1 or more. Ammonia synthesis catalyst as described.
  12.  MgOを鋳型として作製されたメソポーラスカーボンを不活性雰囲気中において1200℃以上2500℃以下の温度で熱処理することによって前記担体を調製し、これにルテニウムおよびアルカリ金属またはアルカリ土類金属を担持させることを特徴とする、請求項1~11のいずれか一項に記載のアンモニア合成触媒の製造方法。 The support is prepared by heat-treating mesoporous carbon prepared using MgO as a template at a temperature of 1200 ° C. or more and 2500 ° C. or less in an inert atmosphere, and supporting this with ruthenium and an alkali metal or alkaline earth metal The method for producing an ammonia synthesis catalyst according to any one of claims 1 to 11, characterized in that
  13.  前記熱処理温度が1500℃以上2100℃以下の範囲であって、前記担体の前記層間距離が0.340nm以上0.368nm以下の範囲であり、前記比表面積が280m2/g以上1200m2/g以下の範囲であり、前記平均細孔直径が10nm以上14nm以下の範囲であることを特徴とする、請求項12に記載のアンモニア合成触媒の製造方法。 The heat treatment temperature is in the range of 1500 ° C. to 2100 ° C., the interlayer distance of the carrier is in the range of 0.340 nm to 0.368 nm, and the specific surface area is in the range of 280 m 2 / g to 1200 m 2 / g. The method for producing an ammonia synthesis catalyst according to claim 12, wherein the average pore diameter is in the range of 10 nm to 14 nm.
PCT/JP2018/026953 2017-07-19 2018-07-18 Ammonia synthesis catalyst WO2019017399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019530573A JP6736073B2 (en) 2017-07-19 2018-07-18 Ammonia synthesis catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017140063 2017-07-19
JP2017-140063 2017-07-19
JP2018049745 2018-03-16
JP2018-049745 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019017399A1 true WO2019017399A1 (en) 2019-01-24

Family

ID=65016027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026953 WO2019017399A1 (en) 2017-07-19 2018-07-18 Ammonia synthesis catalyst

Country Status (2)

Country Link
JP (1) JP6736073B2 (en)
WO (1) WO2019017399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157243A (en) * 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500754A (en) * 1983-03-18 1985-05-23 ザ エム ダブリュー ケロッグ コンパニー Method for manufacturing a catalyst for ammonia production
JP2005511278A (en) * 2001-12-05 2005-04-28 ウニヴェルシタ’ デリ ストゥディ ディ ミラノ Catalyst for ammonia synthesis
JP2006088058A (en) * 2004-09-24 2006-04-06 Tokyo Institute Of Technology Catalyst carrier, method for producing catalyst carrier, catalyst, method for producing ammonia and reactor
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500754A (en) * 1983-03-18 1985-05-23 ザ エム ダブリュー ケロッグ コンパニー Method for manufacturing a catalyst for ammonia production
JP2005511278A (en) * 2001-12-05 2005-04-28 ウニヴェルシタ’ デリ ストゥディ ディ ミラノ Catalyst for ammonia synthesis
JP2006088058A (en) * 2004-09-24 2006-04-06 Tokyo Institute Of Technology Catalyst carrier, method for producing catalyst carrier, catalyst, method for producing ammonia and reactor
WO2008093731A1 (en) * 2007-02-01 2008-08-07 National Institute Of Advanced Industrial Science And Technology Electrode catalyst for fuel cell and fuel cell using the same
WO2010104102A1 (en) * 2009-03-10 2010-09-16 東洋炭素株式会社 Porous carbon and process for producing same
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157243A (en) * 2019-03-27 2020-10-01 国立研究開発法人産業技術総合研究所 Ammonia synthesis catalyst

Also Published As

Publication number Publication date
JPWO2019017399A1 (en) 2020-04-16
JP6736073B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6680919B2 (en) Supported metal catalyst
Li et al. Highly selective Pd@ mpg-C 3 N 4 catalyst for phenol hydrogenation in aqueous phase
Dong et al. Palladium nanoparticles embedded in metal–organic framework derived porous carbon: synthesis and application for efficient Suzuki–Miyaura coupling reactions
JP2012532010A (en) Catalysts for oxidative coupling of hydrocarbons
CN113198506A (en) Monoatomic iron-loaded nitrogen-doped porous carbon catalyst and preparation method and application thereof
WO2018164182A1 (en) Ammonia synthesis catalyst, and use thereof
Znaiguia et al. Toward longer life catalysts for dehydration of glycerol to acrolein
CN107413366B (en) Preparation method of phenol hydrogenation catalyst
Wang et al. One-pot synthesized MoC imbedded in ordered mesoporous carbon as a catalyst for N 2 H 4 decomposition
Lin et al. Preparation of a highly efficient carbon-supported ruthenium catalyst by carbon monoxide treatment
Ganji et al. Palladium supported on a novel ordered mesoporous polypyrrole/carbon nanocomposite as a powerful heterogeneous catalyst for the aerobic oxidation of alcohols to carboxylic acids and ketones on water
JP2007511343A (en) Catalyst and gas phase method using the catalyst
Yu et al. Direct amination of benzene to aniline with H 2 O 2 and NH 3· H 2 O over Cu/SiO 2 catalyst
KR102233648B1 (en) Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst
JP6736073B2 (en) Ammonia synthesis catalyst
Yuan et al. Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotube catalyst
CN113526523A (en) Mesoporous ZSM-5 molecular sieve with deep short pores and application thereof in preparation of pyridine base
KR101632502B1 (en) Method of manufacturing a mixed metal oxide catalyst and removing method of carbon monoxide in hydrogen
KR102255171B1 (en) Method of preparing Cs-Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Cs-Pd catalyst
CN107321357B (en) Preparation method and application of acetic acid hydrogenation catalyst
JP6650840B2 (en) Method for producing MgO-supported catalyst
CN107349947B (en) Acetic acid hydrogenation catalyst and application thereof
JP2007112666A (en) Vanadium oxide (iii) and its manufacturing method
JP6344052B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JP4359447B2 (en) Method for producing monohydroxyacetone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834677

Country of ref document: EP

Kind code of ref document: A1