JP7089527B2 - Catalyst for nuclear hydrogenation reaction - Google Patents

Catalyst for nuclear hydrogenation reaction Download PDF

Info

Publication number
JP7089527B2
JP7089527B2 JP2019539389A JP2019539389A JP7089527B2 JP 7089527 B2 JP7089527 B2 JP 7089527B2 JP 2019539389 A JP2019539389 A JP 2019539389A JP 2019539389 A JP2019539389 A JP 2019539389A JP 7089527 B2 JP7089527 B2 JP 7089527B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation reaction
nuclear hydrogenation
ruox
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539389A
Other languages
Japanese (ja)
Other versions
JPWO2019044584A1 (en
Inventor
智照 水崎
弘康 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Publication of JPWO2019044584A1 publication Critical patent/JPWO2019044584A1/en
Application granted granted Critical
Publication of JP7089527B2 publication Critical patent/JP7089527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に使用される触媒に関する。 The present invention relates to a catalyst used in a nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

従来から、芳香族化合物の核水添反応は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等を合成するために利用されている。そして、芳香族化合物の核水添反応に使用される触媒としてはルテニウム触媒が知られている。 Traditionally, nuclear hydrogenation reactions of aromatic compounds have been used to synthesize polyamide-imide resins and the like, which are raw materials for high-performance plastic products. A ruthenium catalyst is known as a catalyst used for a nuclear hydrogenation reaction of an aromatic compound.

例えば、特許文献1(特開2009-286747号公報)には、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤として有用なN,N-ジメチルシクロヘキシルアミン類を効率的に経済性良く製造する方法を提供することを目的とし、芳香族化合物をルテニウム触媒等及び水素の存在下で核水添反応させ、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させるN,N-ジメチルシクロへキシルアミン類の製造法が開示されている(特許文献1、[要約])。 For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2009-286747) efficiently contains N, N-dimethylcyclohexylamines useful as catalysts for producing polyurethane foam, epoxy curing agents, resist stripping agents, and corrosion inhibitors for steel. The cyclohexyl compound obtained by subjecting an aromatic compound to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen is used for the noble metal catalyst, formaldehyde derivative and hydrogen. A method for producing N, N-dimethylcyclohexylamines to be subjected to a reduction methylation reaction in the presence is disclosed (Patent Document 1, [Summary]).

より具体的には、アルミナ(担体)にルテニウムが5%担持されたルテニウム触媒が開示されている(特許文献1、[0032]実施例1及び[0034]実施例2等)。 More specifically, a ruthenium catalyst in which 5% of ruthenium is supported on an alumina (carrier) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2 and the like).

特開2009-286747号公報Japanese Unexamined Patent Publication No. 2009-286747

しかしながら、上記のような従来のルテニウム触媒では、芳香族化合物の核水添反応において反応物の転化率をより向上させるという観点からは、未だ改善の余地があることを本発明者らは見出した。 However, the present inventors have found that there is still room for improvement in the conventional ruthenium catalyst as described above from the viewpoint of further improving the conversion rate of the reactant in the nuclear hydrogenation reaction of the aromatic compound. ..

そこで、本発明は、かかる技術的事情に鑑みてなされたものであって、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒を提供することを目的とする。 Therefore, the present invention has been made in view of such technical circumstances, and provides a catalyst for a nuclear hydrogenation reaction having a catalytic activity superior to that of a conventional ruthenium catalyst in a nuclear hydrogenation reaction of an aromatic compound. The purpose is to do.

本件発明者らは、核水添反応に用いられるルテニウム触媒において、担体上に担持される触媒粒子に含まれるルテニウムの状態に着目し、触媒活性の更なる向上を実現する構成について鋭意検討を行った。 The present inventors have focused on the state of ruthenium contained in the catalyst particles supported on the carrier in the ruthenium catalyst used for the nuclear hydrogenation reaction, and have diligently studied the configuration for further improving the catalytic activity. rice field.

その結果、X線光電子分光分析法(XPS)により測定されるルテニウム触媒の表面近傍の分析領域におけるRu(0価)の割合RRuに対するRu(0価)Ru酸化物の割合RRuOxの割合が下記の条件を満たしていることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。As a result, the ratio of Ru (0 valence) Ru oxide to the ratio R Ru in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) is the ratio of R RuOx . We have found that satisfying the following conditions is effective in improving the catalytic activity, and have completed the present invention.

より具体的には、本発明は、以下の技術的事項により構成される。
即ち、本発明は、
芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子には、Ru(0価)とRu酸化物とが含まれており、
X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒を提供する。
0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)
More specifically, the present invention comprises the following technical matters.
That is, the present invention
A catalyst for a nuclear hydrogenation reaction used in a nuclear hydrogenation reaction for hydrogenating at least one of the π bonds of the aromatic ring of an aromatic compound having one or more amino groups bonded to the aromatic ring.
It contains a carrier and catalyst particles supported on the carrier.
The catalyst particles contain Ru (zero valence) and Ru oxide.
The ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfying the condition of equation (1),
A catalyst for a nuclear hydrogenation reaction is provided.
0.60 ≤ {R RuOx / (R RuOx + R Ru )} ≤ 0.90 ... Equation (1)

ここで、本発明においては、XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。Here, in the present invention, the ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom) in the analysis region near the surface of the nuclear hydrogenation reaction catalyst observed by XPS. %) Is a numerical value calculated under the condition that the total of these two components is 100%.

本発明において、上記式(1)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で0.90以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。In the present invention, the value of R RuOx / (R RuOx + R Ru ) represented by the above formula (1) is 0.60 or more and 0.90 or less, so that it can be used for the nuclear hydrogenation reaction of the present invention. The catalyst can exhibit better catalytic activity than the conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。 Although the detailed reason why the catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity has not been fully elucidated, the present inventors consider as follows.

即ち、式(1)を満たす構造の核水添反応用触媒は、Ru(0価)に対するRu酸化物)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。 That is, in the nuclear hydrogenation reaction catalyst having a structure satisfying the formula (1), the ratio of Ru oxide to Ru (0 valence) is higher than that of the conventional nuclear hydrogenation reaction catalyst. It is speculated that the activity against hydrogenation is improved.

また、本発明の核水添反応用触媒において、触媒粒子に含まれるRu酸化物はその一部に水酸基が結合した状態であってもよい。 Further, in the catalyst for nuclear hydrogenation reaction of the present invention, the Ru oxide contained in the catalyst particles may be in a state in which a hydroxyl group is bonded to a part thereof.

本発明によれば、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒が提供される。 According to the present invention, there is provided a catalyst for nuclear hydrogenation reaction having a catalytic activity superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring.

本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the XPS apparatus for explaining the analysis condition of the X-ray photoelectron spectroscopy (XPS) in this invention.

<核水添反応用触媒>
以下、本発明の核水添反応用触媒の好適な実施形態について詳細に説明する。
本発明の水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の当該芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用されるものである。
<Catalyst for nuclear hydrogenation reaction>
Hereinafter, preferred embodiments of the catalyst for nuclear hydrogenation reaction of the present invention will be described in detail.
The hydrogenation catalyst of the present invention is used for a nuclear hydrogenation reaction in which at least one of the π bonds of the aromatic ring of an aromatic compound having one or more amino groups bonded to the aromatic ring is hydrogenated. ..

例えば、下記の化学反応式(1)で示される、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物1]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物2]」に転化する核水添反応に使用することができる。

Figure 0007089527000001
For example, the aromatic ring of the aromatic compound "4-tert-Butylaniline, reactant 1 in the following reaction formula (1)" represented by the following chemical reaction formula (1). It can be used in a nuclear hydrogenation reaction in which the π bond is hydrogenated and converted to "4-tert-Butylcyclohexylamine [(4-tert-Butylcyclohexylamine, product 2 in the following reaction equation (1)]".
Figure 0007089527000001

本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでいればよく、触媒粒子の担持の形態については特に制限はなく、種々の構造を採り得る。 The catalyst for nuclear hydrogenation reaction of the present invention may contain a carrier and catalyst particles supported on the carrier, and the form of supporting the catalyst particles is not particularly limited, and various structures are adopted. obtain.

(担体)
担体としては、触媒粒子を担持することができ、かつ表面積が比較的大きいものであれば特に制限されないが、触媒粒子を含んだ溶液中で良好な分散性を有し、不活性であることが好ましい。
(Carrier)
The carrier is not particularly limited as long as it can support the catalyst particles and has a relatively large surface area, but it may have good dispersibility in a solution containing the catalyst particles and may be inert. preferable.

不活性担体としては、例えば、炭素系材料(カーボン)、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましく、アルミナが特に好ましい。
また、上記アルミナ担体については、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであるのが好ましい。
As the inert carrier, for example, a carbon-based material (carbon), silica, alumina, Syrian carmina, magnesia and the like are preferable, and alumina is particularly preferable.
Further, for the above alumina carrier, the pore diameter PS determined by the BJH method is 8.00 nm to 12.00 nm, and the pore volume PV determined by the BJH method is 0.250 cm 3 / g to 0.400 cm 3 / g. Is preferable.

ここで、本発明において、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter)である。 Here, in the present invention, the pore diameter PS is obtained from the desorption isotherm, which is the relationship between the relative pressure and the adsorption amount when the adsorbent (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. (BJH Desorption average pore diameter). Further, in the present invention, the pore volume PV is also a value obtained by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).

炭素系材料としては、例えば、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。 Examples of the carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized product of activated carbon, carbon nanofibers, carbon nanotubes and the like.

なお、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。 As the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Further, as the conductive carbon black, trade names such as "Ketjen Black EC300J", "Ketchen Black EC600", "Carbon EPC" and the like (manufactured by Lion Chemical Co., Ltd.) can be exemplified.

(触媒粒子)
次に、本発明において上記担体に担持される触媒粒子は、Ru(0価)とRu酸化物とを含んでおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)
(Catalyst particles)
Next, in the present invention, the catalyst particles carried on the carrier contain Ru (zero valence) and Ru oxide, and are measured in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS). , Ru (0 valence) ratio R Ru (atom%) and Ru oxide ratio R RuOx (atom%) satisfy the condition of the following formula (1).
0.60 ≤ {R RuOx / (R RuOx + R Ru )} ≤ 0.90 ... Equation (1)

上記担体への上記触媒粒子の担持量は、本発明の効果を損なわない範囲であれば特に限定されるものではなく、本発明の核水添反応用触媒が採用される反応系、反応条件により適宜設定される。通常0.5~10wt%程度であればよい。 The amount of the catalyst particles supported on the carrier is not particularly limited as long as the effect of the present invention is not impaired, and depends on the reaction system and reaction conditions in which the catalyst for nuclear hydrogenation reaction of the present invention is adopted. It is set appropriately. Usually, it may be about 0.5 to 10 wt%.

なお、ここでいう担持量とは、式:{触媒粒子の質量/(触媒粒子の質量+担体の質量)}×100で得られる値(率)のことをいう。ここで、触媒粒子の質量とは、触媒粒子に含まれるRu(0価)とRu酸化物とを合わせたRu成分の質量を示す。 The supported amount here means a value (rate) obtained by the formula: {mass of catalyst particles / (mass of catalyst particles + mass of carrier)} × 100. Here, the mass of the catalyst particles indicates the mass of the Ru component including Ru (0 valence) and Ru oxide contained in the catalyst particles.

本発明の核水添反応用触媒は、上記の式(1)に示される{RRuOx/(RRuOx+RRu)}の値が0.60以上で0.90以下となる構成とすることにより、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。The catalyst for nuclear hydrogenation reaction of the present invention has a configuration in which the value of {R RuOx / (R RuOx + R Ru )} represented by the above formula (1) is 0.60 or more and 0.90 or less. Therefore, in the nuclear hydrogenation reaction of the aromatic compound, it is possible to exhibit a catalytic activity superior to that of the conventional ruthenium catalyst.

この{RRuOx/(RRuOx+RRu)}の値が大きいと、核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより多く存在し、この{RRuOx/(RRuOx+RRu)}の値が小さいと、核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより少なく存在することを意味する。When the value of {R RuOx / (R RuOx + R Ru )} is large, more Ru oxides are present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction as compared with Ru (0 valence), and this {R When the value of RuOx / (R RuOx + R Ru )} is small, it means that Ru oxide is present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction in a smaller amount than Ru (0 valence).

そして、本発明の核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより多く存在すると、詳細なメカニズムは解明されていないが、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に対する触媒活性が向上するという効果が得られる傾向にある。 If more Ru oxides are present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction of the present invention as compared with Ru (zero valence), the detailed mechanism has not been elucidated, but one or more aminos in the aromatic ring. There is a tendency to obtain the effect of improving the catalytic activity of the aromatic compound to which the group is bonded to the nuclear hydrogenation reaction.

また逆に、本発明の核水添反応用触媒粒子の表面近傍においてRu酸化物がRu(0価)に比べてより少なく存在すると、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に対する触媒活性が低下するという効果が得られる傾向にある。 On the contrary, when the amount of Ru oxide is less than that of Ru (zero valence) near the surface of the catalyst particles for nuclear hydrogenation reaction of the present invention, the aromatic compound in which one or more amino groups are bonded to the aromatic ring There is a tendency to obtain the effect of reducing the catalytic activity for the nuclear hydrogenation reaction.

本発明では、上記式(1)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で0.90以下となる構成にすることにより、これらの作用効果をバランス良く実現するものである。In the present invention, these actions and effects are realized in a well-balanced manner by setting the value of R RuOx / (R RuOx + R Ru ) represented by the above formula (1) to be 0.60 or more and 0.90 or less. It is something to do.

なお、本発明において、触媒粒子に含まれるRu酸化物はその一部に水酸基が結合した状態であってもよい。 In the present invention, the Ru oxide contained in the catalyst particles may be in a state where a hydroxyl group is bonded to a part thereof.

なお、本発明において、X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
In the present invention, the X-ray photoelectron spectroscopy (XPS) shall be carried out under the following analytical conditions (A1) to (A5).
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C
(A3) Charge correction: C1s peak energy is corrected as 284.8 eV (A4) Analysis area: 200 μm,
(A5) Chamber pressure during analysis: Approximately 1 × 10 -6 Pa

ここで、(A2)の光電子取出確度θは、図1に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。 Here, in the photoelectron extraction probability θ of (A2), as shown in FIG. 1, X-rays emitted from the X-ray source 32 are irradiated to the sample set on the sample stage 34 and emitted from the sample. It is an angle θ when the photoelectron is received by the spectroscope 36. That is, the photoelectron extraction accuracy θ corresponds to the angle between the light receiving axis of the spectroscope 36 and the surface of the sample layer of the sample stage 34.

<核水添反応用触媒の製造方法>
本発明の核水添反応用触媒の製造方法は、担体に上記触媒粒子を担持させることができる方法であれば、特に制限されるものではない。
<Manufacturing method of catalyst for nuclear hydrogenation reaction>
The method for producing a catalyst for a nuclear hydrogenation reaction of the present invention is not particularly limited as long as it can support the catalyst particles on a carrier.

例えば、担体にRu化合物を含有する溶液を接触させ、担体に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、電気化学的析出法、化学還元法、吸着水素による還元析出法等を採用した製造方法を例示することができる。 For example, an impregnation method in which a solution containing a Ru compound is brought into contact with a carrier to impregnate the carrier with a catalyst component, a liquid phase reduction method in which a reducing agent is added to a solution containing the catalyst component, an electrochemical precipitation method, and chemistry. A production method using a reduction method, a reduction precipitation method using adsorbed hydrogen, or the like can be exemplified.

ただし、核水添反応用触媒の製造における製造条件は、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、先に述べた式(1)の条件を満たすように製造工程における合成反応条件を調節することが必要である。However, the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio of Ru (0 valence) R Ru (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS). It is necessary to adjust the synthetic reaction conditions in the manufacturing process so that the ratio of Ru oxide R RuOx (atom%) satisfies the condition of the above-mentioned formula (1).

なお、本発明の核水添反応用触媒を、上述した式(1)で示した必須の条件を満たすように製造する方法としては、例えば、各製造工程において得られる触媒前駆体、最終的に得られる核水添反応用触媒の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を各製造工程にフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件(温度、ガス成分の圧力、溶媒)などを調製・変更する方法等が挙げられる。 As a method for producing the catalyst for nuclear hydrogenation reaction of the present invention so as to satisfy the essential conditions represented by the above-mentioned formula (1), for example, a catalyst precursor obtained in each production step, finally. The chemical composition and structure of the obtained nuclear hydrogenation reaction catalyst are analyzed using various known analysis methods, and the obtained analysis results are fed back to each manufacturing process to select the raw materials to be selected, the blending ratio of the raw materials, and the selection. Examples thereof include a method of preparing and changing a synthesis reaction and reaction conditions (temperature, pressure of gas components, catalyst) of the synthesis reaction.

より具体的には、例えば、本発明の核水添反応用触媒は、水溶性のRu塩を水に溶解してRu水酸化物を生成させ当該Ru水酸化物が担体(好ましくはアルミナ)に担持された触媒前駆体を合成する第1工程と、この第1工程で得られる触媒前駆体を空気中で加熱・乾燥処理する第2工程と、を経て合成することができる。 More specifically, for example, in the catalyst for nuclear hydrogenation reaction of the present invention, a water-soluble Ru salt is dissolved in water to generate Ru hydroxide, and the Ru hydroxide is used as a carrier (preferably alumina). It can be synthesized through a first step of synthesizing the carried catalyst precursor and a second step of heating and drying the catalyst precursor obtained in this first step in the air.

そして、第1工程におけるRu塩の種類、水に投入するRu塩の量(濃度)、Ru塩が溶解した水溶液のpH、水溶液の温度、第2工程における加熱・乾燥処理の温度、処理時間を調節して、先に述べた式(1)の条件を満たすように核水添反応用触媒を合成することができる。 Then, the type of Ru salt in the first step, the amount (concentration) of Ru salt to be added to water, the pH of the aqueous solution in which the Ru salt is dissolved, the temperature of the aqueous solution, the temperature of the heating / drying treatment in the second step, and the treatment time are determined. By adjusting, the catalyst for nuclear hydrogenation reaction can be synthesized so as to satisfy the condition of the above-mentioned formula (1).

更に、第2工程を得て得られる核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を必要に応じて実施してもよい。これにより、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを、先に述べた式(1)の条件をより確実に満たすように調整することができる。還元剤の種類、還元剤の濃度、第3工程における還元処理の温度、その処理時間を調製することができる。第3工程を実施する場合、水素ガス(還元剤)を窒素ガスで希釈した気相還元を好ましく採用してもよい。Further, a third step of reducing the catalyst obtained by obtaining the second step using a catalyst for nuclear hydrogenation reaction as a precursor and further using a reducing agent may be carried out as necessary. As a result, the ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuOx (atom%) of Ru oxide are adjusted so as to more reliably satisfy the condition of the above-mentioned formula (1). can do. The type of reducing agent, the concentration of the reducing agent, the temperature of the reducing treatment in the third step, and the treatment time thereof can be adjusted. When carrying out the third step, vapor phase reduction in which hydrogen gas (reducing agent) is diluted with nitrogen gas may be preferably adopted.

また、第2工程において、2回以上の加熱・乾燥処理を逐次的に行い、合間にX線光電子分光分析法(XPS)による測定を実施してRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを確認してもよい。Further, in the second step, the heating and drying treatments are sequentially performed two or more times, and the measurement by the X-ray photoelectron spectroscopy (XPS) is carried out in the interval, and the ratio of Ru (0 valence) is R Ru (atom%). ) And the ratio of Ru oxide R RuOx (atom%) may be confirmed.

更に、第3工程を実施する場合、第2工程で得られた前駆体をX線光電子分光分析法(XPS)により測定し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを確認してから、第3工程での還元条件を適宜調整してもよい。これにより先に述べた式(1)の条件を満たす核水添反応用触媒をより確実に合成することができる。Further, when the third step is carried out, the precursor obtained in the second step is measured by X-ray photoelectron spectroscopy (XPS), and the ratio of Ru (0 valence) is R Ru (atom%) and Ru oxidation. After confirming the ratio of the substance R RuOx (atom%), the reduction conditions in the third step may be appropriately adjusted. This makes it possible to more reliably synthesize a catalyst for nuclear hydrogenation reaction that satisfies the condition of the above-mentioned formula (1).

以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

≪実施例1≫
Ru(0価)とRu酸化物とを含む触媒粒子が担体であるアルミナ(Al)粒子に5質量%の担持率で担持された本発明の核水添反応用触媒(以下、「核水添反応用触媒1」という)として、商品名「NECC-RA1」(N.E.CHEMCAT社製)を製造した。
核水添反応用触媒の{RRuOx/(RRuOx+RRu)}値を表1に示した。
この核水添反応用触媒1は、アルミナと水溶性のRu塩とを水に溶解してRu水酸化物が担体(アルミナ)に担持された触媒前駆体を合成する第1工程と、この第1工程で得られる触媒前駆体を空気中で加熱・乾燥処理(処理温度:80℃)する第2工程と、を経て合成した。
<< Example 1 >>
The catalyst for nuclear hydrogenation reaction of the present invention (hereinafter , "" The trade name "NECC-RA1" (manufactured by NE CHEMCAT) was manufactured as a catalyst for nuclear hydrogenation reaction 1).
Table 1 shows the {R RuOx / (R RuOx + R Ru )} values of the catalyst for nuclear hydrogenation reaction.
The nuclear hydrogenation reaction catalyst 1 includes a first step of dissolving alumina and a water-soluble Ru salt in water to synthesize a catalyst precursor in which Ru hydroxide is supported on a carrier (alumina), and the first step thereof. The catalyst precursor obtained in one step was synthesized through a second step of heating and drying in air (treatment temperature: 80 ° C.).

≪実施例2≫
実施例1の核水添反応用触媒に対して、触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更したこと以外は、実施例1と同様にして、本発明の核水添反応用触媒(以下、「核水添反応用触媒2」という)として(商品名「NECC-RA2」(N.E.CHEMCAT社製))を製造した。
この核水添反応用触媒2は、実施例1の核水添反応用触媒1と同一条件の第1工程と第2工程を実施し、その後、第2工程を得て得られた核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を実施した。第3工程では窒素90%、水素10%のガス雰囲気中、100℃で還元処理を実施した。
<< Example 2 >>
The same as in Example 1 except that the value of {R RuOx / (R RuOx + R Ru )} in the catalyst particles was changed to that shown in Table 1 for the nuclear hydrogenation reaction catalyst of Example 1. As a catalyst for the nuclear hydrogenation reaction of the present invention (hereinafter referred to as “catalyst 2 for nuclear hydrogenation reaction”) (trade name “NECC-RA2” (manufactured by NE CHEMCAT)) was produced.
The nuclear hydrogenation catalyst 2 is obtained by carrying out the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and then obtaining the second step. A third step was carried out in which the reaction catalyst was used as a precursor and further reduced with a reducing agent. In the third step, the reduction treatment was carried out at 100 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.

≪実施例3≫
実施例1の核水添反応用触媒に対して、触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更した以外は、実施例1と同様にして、本発明の核水添反応用触媒(以下、「核水添反応用触媒3」という)として商品名「NECC-RA3」(N.E.CHEMCAT社製))を製造した。
この核水添反応用触媒3は、実施例1の核水添反応用触媒1と同一条件の第1工程と第2工程を実施し、その後、第2工程を得て得られた核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程を実施した。第3工程では窒素90%、水素10%のガス雰囲気中、150℃で還元処理を実施した。
<< Example 3 >>
The same as in Example 1 except that the value of {R RuOx / (R RuOx + R Ru )} in the catalyst particles was changed to that shown in Table 1 for the nuclear hydrogenation reaction catalyst of Example 1. , The trade name "NECC-RA3" (manufactured by NE CHEMCAT) was produced as the catalyst for nuclear hydrogenation reaction of the present invention (hereinafter referred to as "catalyst 3 for hydrogenation reaction").
The nuclear hydrogenation catalyst 3 is obtained by carrying out the first step and the second step under the same conditions as the nuclear hydrogenation reaction catalyst 1 of Example 1, and then obtaining the second step. A third step was carried out in which the reaction catalyst was used as a precursor and further reduced with a reducing agent. In the third step, the reduction treatment was carried out at 150 ° C. in a gas atmosphere of 90% nitrogen and 10% hydrogen.

≪比較例1≫
触媒粒子における{RRuOx/(RRuOx+RRu)}の値を表1に示すものに変更した以外は、実施例1と同様にして、本発明の比較核水添反応用触媒1(商品名「NECC-5E、N.E.CHEMCAT社製)を製造した。
<< Comparative Example 1 >>
The catalyst 1 for comparative nuclear hydrogenation reaction of the present invention (Commodity) is the same as in Example 1 except that the value of {R RuOx / (R RuOx + R Ru )} in the catalyst particles is changed to that shown in Table 1. The name "NECC-5E, manufactured by NECHEMCAT" was manufactured.

[評価試験]
上記の実施例1~3及び比較例1で得た核水添反応用触媒を用い、下記の反応式(1)にしたがって、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物1]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物2]」に転化する核水添反応を行った。
反応は以下の反応条件で実施した。溶媒:イソプロピルアルコール、反応物1の濃度:1.6mol%、水素ガス:0.6MPa、反応温度:60℃、反応時間:6時間。

Figure 0007089527000002
[Evaluation test]
Using the nuclear hydrogenation reaction catalysts obtained in Examples 1 to 3 and Comparative Example 1 above, the aromatic compound "4-terrary butylaniline [4-tert-" was used according to the following reaction formula (1). Butylaniline, hydrogenate the π bond of the aromatic ring of the following reaction formula (1) [(4-tert-Butylcyclohexylamine, the following reaction formula (1)). A nuclear hydrogenation reaction was carried out to convert to product 2] ”.
The reaction was carried out under the following reaction conditions. Solvent: isopropyl alcohol, concentration of reaction product 1: 1.6 mol%, hydrogen gas: 0.6 MPa, reaction temperature: 60 ° C., reaction time: 6 hours.
Figure 0007089527000002

(1)X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による核水添反応用触媒の表面分析
実施例1~3及び比較例1の核水添反応用触媒についてXPSによる表面分析を実施し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを測定し、{RRuOx/(RRuOx+RRu)}の値を算出した。
具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図1参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
分析結果を表1に示した。なお、Ru(0価)の割合RRu(atom%)とRu酸化物の割合RRuOx(atom%)については、これらの2成分で100%となるように算出した。
(1) Surface analysis of catalyst for nuclear hydrogenation reaction by X-ray photoelectron spectroscopy (XPS) Surface analysis by XPS was performed on the catalysts for nuclear hydrogenation reaction of Examples 1 to 3 and Comparative Example 1. Then, the ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuOx (atom%) of Ru oxide were measured, and the value of {R RuOx / (R RuOx + R Ru )} was calculated. ..
Specifically, "Quantara SXM" (manufactured by ULVAC-PHI) was used as an XPS device, and the analysis was carried out under the following analysis conditions.
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C (see Fig. 1)
(A3) Charge correction: C1s peak energy is corrected as 284.8 eV (A4) Analysis area: 200 μm
(A5) Chamber pressure during analysis: Approximately 1 × 10 -6 Pa
(A6) Measurement depth (escape depth): Approximately 5 nm or less The analysis results are shown in Table 1. The ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuOx (atom%) of Ru oxide were calculated to be 100% with these two components.

(2)Ruの担持率の測定(ICP分析)
実施例1~2及び比較例1の核水添反応用触媒について、Ru(0価)とRu酸化物とを含む触媒粒子の担持率(wt%)を以下の方法で測定した。即ち、核水添反応用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のアルミナを除去した。次に、アルミナを除いた王水をICP分析した。
実施例1~3と比較例1の核水添反応用触媒について、Ruの担持率{Ru(0価)とRu酸化物とを合わせたRu成分に由来するRuの担持率})は5wt%であった。
(2) Measurement of the loading rate of Ru (ICP analysis)
For the catalysts for nuclear hydrogenation reaction of Examples 1 and 2 and Comparative Example 1, the loading ratio (wt%) of the catalyst particles containing Ru (0 valence) and Ru oxide was measured by the following method. That is, the catalyst for nuclear hydrogenation reaction was immersed in aqua regia to dissolve the metal. Next, the insoluble component alumina was removed from aqua regia. Next, the aqua regia excluding alumina was subjected to ICP analysis.
For the nuclear hydrogenation reaction catalysts of Examples 1 to 3 and Comparative Example 1, the carrying ratio of Ru {the carrying ratio of Ru derived from the Ru component obtained by combining Ru (0 valence) and Ru oxide}) is 5 wt%. Met.

(3)転化率、収率の算出
反応後に得られた混合組成物における反応物1、生成物2の含有量、含有比を測定することによって、反応物1の転化率(%)、生成物2の収率を算出し、結果を表1に示した。

Figure 0007089527000003
(3) Calculation of conversion rate and yield By measuring the content and content ratio of the reactant 1 and the product 2 in the mixed composition obtained after the reaction, the conversion rate (%) and the product of the reaction product 1 are measured. The yield of 2 was calculated, and the results are shown in Table 1.
Figure 0007089527000003

表1に示す結果から、{RRuOx/(RRuOx+RRu)}の値が先に述べた式(1)の条件を満たす本発明に係る実施例1~3の触媒は、比較例1の触媒(従来のルテニウム触媒)に比べて、反応物1の転化率、生成物2の収率が高いことが明らかとなった。すなわち、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有することが明らかとなった。From the results shown in Table 1, the catalysts of Examples 1 to 3 according to the present invention in which the value of {R RuOx / (R RuOx + R Ru )} satisfies the condition of the above-mentioned formula (1) are Comparative Example 1. It was clarified that the conversion rate of the reaction product 1 and the yield of the product 2 were higher than those of the catalyst (conventional ruthenium catalyst). That is, it is clear that the catalyst for nuclear hydrogenation reaction of the present invention has better catalytic activity than the conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring. became.

本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において優れた触媒活性を有し、優れた生成物の収率を得ることができる。従って、本発明は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等の合成に適用することができる核水添反応用触媒であり、各種産業の発達に寄与する。

The catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity in the nuclear hydrogenation reaction of an aromatic compound in which one or more amino groups are bonded to an aromatic ring, and an excellent yield of a product can be obtained. can. Therefore, the present invention is a catalyst for nuclear hydrogenation reaction that can be applied to the synthesis of polyamide-imide resin and the like, which are raw materials for high-performance plastic products, and contributes to the development of various industries.

Claims (1)

芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子には、Ru(0価)とRu酸化物とが含まれており、
X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒。
0.60≦{RRuOx/(RRuOx+RRu)}≦0.90・・・式(1)


A catalyst for a nuclear hydrogenation reaction used in a nuclear hydrogenation reaction for hydrogenating at least one of the π bonds of the aromatic ring of an aromatic compound having one or more amino groups bonded to the aromatic ring.
It contains a carrier and catalyst particles supported on the carrier.
The catalyst particles contain Ru (zero valence) and Ru oxide.
The ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfying the condition of equation (1),
Catalyst for nuclear hydrogenation reaction.
0.60 ≤ {R RuOx / (R RuOx + R Ru )} ≤ 0.90 ... Equation (1)


JP2019539389A 2017-09-01 2018-08-21 Catalyst for nuclear hydrogenation reaction Active JP7089527B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017168767 2017-09-01
JP2017168767 2017-09-01
PCT/JP2018/030780 WO2019044584A1 (en) 2017-09-01 2018-08-21 Nucleus hydrogenation reaction catalyst

Publications (2)

Publication Number Publication Date
JPWO2019044584A1 JPWO2019044584A1 (en) 2020-10-15
JP7089527B2 true JP7089527B2 (en) 2022-06-22

Family

ID=65525354

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019539389A Active JP7089527B2 (en) 2017-09-01 2018-08-21 Catalyst for nuclear hydrogenation reaction
JP2019539390A Active JP7059289B2 (en) 2017-09-01 2018-08-21 Catalyst for nuclear hydrogenation reaction

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019539390A Active JP7059289B2 (en) 2017-09-01 2018-08-21 Catalyst for nuclear hydrogenation reaction

Country Status (4)

Country Link
JP (2) JP7089527B2 (en)
CN (1) CN111032214B (en)
TW (2) TWI805608B (en)
WO (2) WO2019044584A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
JP2017505289A (en) 2013-12-11 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrogenating aromatic compounds

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606925A (en) * 1949-12-15 1952-08-12 Du Pont Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds
US5026914A (en) * 1989-04-11 1991-06-25 Air Products And Chemicals, Inc. Hydrogenation of aromatic amines using rhodium on titania or zirconia support
JPH06279368A (en) * 1991-10-23 1994-10-04 Mitsubishi Gas Chem Co Inc Production of bisaminomethylcyclohexane
JP3608354B2 (en) * 1997-10-24 2005-01-12 宇部興産株式会社 Dicyclohexyl-2,3,3 ', 4'-tetracarboxylic acid compound
EP1366812B1 (en) * 2002-05-31 2009-02-18 Evonik Degussa GmbH Supported Ruthenium catalyst and process for hydrogenation of aromatic amines in presence of this catalyst
EP1896174A1 (en) * 2005-06-22 2008-03-12 Basf Se Heterogeneous ruthenium catalyst and method for hydrogenating a carboxylic aromatic group, in particular for producing core hydrogenated bisglycidyl ether bisphenols a and f
DE102005060176A1 (en) * 2005-12-14 2007-06-21 Degussa Gmbh Process for the preparation of ethylcyclohexane by selective hydrogenation of 4-vinylcyclohexene
DE102009034773A1 (en) * 2009-07-25 2011-01-27 Bayer Materialscience Ag Process for producing chlorine by gas-phase oxidation on nanostructured ruthenium-supported catalysts
CN102627569B (en) 2012-03-01 2014-04-02 江苏清泉化学有限公司 Method for synthesizing 3,3'-dimethyl-4,4'-diamino dicyclohexyl methane
EP2905273B1 (en) * 2014-02-05 2018-06-06 Covestro Deutschland AG Process for hydrogenating aromatic di- and polyamines
CN106552618A (en) * 2015-09-25 2017-04-05 上海华谊能源化工有限公司 A kind of catalyst of aromatic carboxylic acid esters' phenyl ring selective hydrogenation and its preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
JP2017505289A (en) 2013-12-11 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for hydrogenating aromatic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. MAZZIERI et al.,XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts,Applied Surface Science,2003年04月15日,Vol.210, No.3/4,p.222-230

Also Published As

Publication number Publication date
JPWO2019044584A1 (en) 2020-10-15
CN111032214B (en) 2024-02-06
TWI782080B (en) 2022-11-01
TW201919762A (en) 2019-06-01
JP7059289B2 (en) 2022-04-25
CN111032214A (en) 2020-04-17
TW201919761A (en) 2019-06-01
WO2019044585A1 (en) 2019-03-07
WO2019044584A1 (en) 2019-03-07
JPWO2019044585A1 (en) 2020-10-15
TWI805608B (en) 2023-06-21

Similar Documents

Publication Publication Date Title
Chen et al. Solvent-driven selectivity control to either anilines or dicyclohexylamines in hydrogenation of nitroarenes over a bifunctional Pd/MIL-101 catalyst
JP6096780B2 (en) Catalyst for H2O2 synthesis and process for preparing the catalyst
EP3517499A1 (en) Porous carbon material, method for producing same, and synthesis reaction catalyst
Tian et al. Cu–Mg–Zr/SiO 2 catalyst for the selective hydrogenation of ethylene carbonate to methanol and ethylene glycol
Liu et al. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation
WO2014034752A1 (en) Catalyst for hydrogenolysis of polyhydric alcohol and method for producing 1,3-propane diol using catalyst for hydrogenolysis of polyhydric alcohol
Benyounes et al. Green alcohol oxidation on palladium catalysts supported on amphiphilic hybrid carbon nanotubes
CN108654635B (en) Supported trimetal catalyst, preparation method thereof and method for catalyzing hydrogenolysis reaction of glycerol
Cattaneo et al. Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation
JP5957592B2 (en) Catalyst preparation method
JP7089527B2 (en) Catalyst for nuclear hydrogenation reaction
EP3593900A1 (en) Copper-iron-based catalytic composition for the conversion of syngas to higher alcohols and process using such catalyst composition
RU2496574C1 (en) Catalyst for hydrofining diesel fractions
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
Králik et al. Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins
JP7008686B2 (en) Catalyst for nuclear hydrogenation reaction
Cho et al. Effects of varying amounts of Na on Pd/TiO2 for the direct synthesis of H2O2: Identification of the Pd dispersion and catalytic activity enhancement by changing the surface electronic states
CN114849694A (en) Catalyst based on metal-loaded tungsten oxide hydrogenated nitroarene and preparation method and application thereof
CN111013600B (en) Shallow surface layer metal monatomic catalyst and preparation method and application thereof
CN111036204B (en) Glycerol hydrogenolysis method
JP2001246251A (en) Method for preparing catalyst used in synthesis of ammonia and method for synthesizing ammonia
CN115400752B (en) Pd-In intermetallic compound catalyst and preparation method and application thereof
CN111036205B (en) Glycerol hydrogenolysis method
WO2023100626A1 (en) Hydrogen production catalyst and hydrogen production method
JP2017007950A (en) Manufacturing method of c5+ compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7089527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150