JP7008686B2 - Catalyst for nuclear hydrogenation reaction - Google Patents

Catalyst for nuclear hydrogenation reaction Download PDF

Info

Publication number
JP7008686B2
JP7008686B2 JP2019502925A JP2019502925A JP7008686B2 JP 7008686 B2 JP7008686 B2 JP 7008686B2 JP 2019502925 A JP2019502925 A JP 2019502925A JP 2019502925 A JP2019502925 A JP 2019502925A JP 7008686 B2 JP7008686 B2 JP 7008686B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation reaction
nuclear hydrogenation
carrier
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502925A
Other languages
Japanese (ja)
Other versions
JPWO2018159436A1 (en
Inventor
智照 水崎
晋司 上野
晃 小松
弘康 鈴鹿
佳之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Publication of JPWO2018159436A1 publication Critical patent/JPWO2018159436A1/en
Application granted granted Critical
Publication of JP7008686B2 publication Critical patent/JP7008686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/18Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings

Description

本発明は、芳香族化合物の核水添反応に使用される触媒に関する。 The present invention relates to catalysts used in nuclear hydrogenation reactions of aromatic compounds.

従来から、芳香族化合物の核水添反応は、高機能プラスチック製品の原料となるエポキシ樹脂やポリアミドイミド樹脂等を合成するために利用されている。そして、芳香族化合物の核水添反応に使用される触媒としてはルテニウム触媒が知られている。 Traditionally, nuclear hydrogenation reactions of aromatic compounds have been used to synthesize epoxy resins, polyamide-imide resins and the like, which are raw materials for high-performance plastic products. A ruthenium catalyst is known as a catalyst used for a nuclear hydrogenation reaction of an aromatic compound.

例えば、特許文献1(特開2009-286747号公報)には、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤として有用なN,N-ジメチルシクロヘキシルアミン類を効率的に経済性良く製造する方法を提供することを目的とし、芳香族化合物をルテニウム触媒等及び水素の存在下で核水添反応させ、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させるN,N-ジメチルシクロへキシルアミン類の製造法が開示されている(特許文献1、[要約])。 For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2009-286747), N, N-dimethylcyclohexylamines useful as catalysts for producing polyurethane foam, epoxy curing agents, resist stripping agents, and corrosion inhibitors for steel are efficiently used. The cyclohexyl compound obtained by subjecting an aromatic compound to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen is used for the noble metal catalyst, the formaldehyde derivative and hydrogen. A method for producing N, N-dimethylcyclohexylamines to be subjected to a reduction methylation reaction in the presence is disclosed (Patent Document 1, [Summary]).

より具体的には、アルミナ(担体)にルテニウムが5%担持されたルテニウム触媒が開示されている(特許文献1、[0032]実施例1及び[0034]実施例2等)。 More specifically, a ruthenium catalyst in which 5% of ruthenium is supported on an alumina (carrier) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2 and the like).

特開2009-286747号公報Japanese Unexamined Patent Publication No. 2009-286747

しかしながら、上記のような従来のルテニウム触媒では、芳香族化合物の核水添反応において反応物の転化率をより向上させるという観点からは、未だ改善の余地があることを本発明者らは見出した。 However, the present inventors have found that there is still room for improvement in the conventional ruthenium catalyst as described above from the viewpoint of further improving the conversion rate of the reactant in the nuclear hydrogenation reaction of the aromatic compound. ..

そこで、本発明は、かかる技術的事情に鑑みてなされたものであって、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を有する核水添反応用触媒を提供することを目的とする。 Therefore, the present invention has been made in view of such technical circumstances, and is excellent in that a reaction product conversion rate superior to that of a conventional ruthenium catalyst can be obtained in a nuclear hydrogenation reaction of an aromatic compound. It is an object of the present invention to provide a catalyst for nuclear hydrogenation reaction having catalytic activity.

本件発明者らは、核水添反応に用いられるルテニウム触媒において、担体上に担持される触媒粒子に含まれるルテニウムの状態に着目し、触媒活性の更なる向上を実現する構成について鋭意検討を行った。 The present inventors focused on the state of ruthenium contained in the catalyst particles supported on the carrier in the ruthenium catalyst used for the nuclear hydrogenation reaction, and diligently studied the configuration for further improving the catalytic activity. rice field.

その結果、X線光電子分光分析法(XPS)により測定されるルテニウム触媒の表面近傍の分析領域におけるRu酸化物の割合RRuOxに対するRu(0価)の割合が下記の条件を満たしていることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。As a result, the ratio of Ru oxide to the ratio R RuOx in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) satisfies the following conditions. We have found that it is effective in improving catalytic activity, and have completed the present invention.

より具体的には、本発明は、以下の技術的事項により構成される。
即ち、本発明は、
芳香族化合物の芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、
X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒を提供する。
0.50≦(RRu/RRuOx)≦4.00・・・式(1)
More specifically, the present invention comprises the following technical matters.
That is, the present invention
A catalyst for a nuclear hydrogenation reaction used in a nuclear hydrogenation reaction that hydrogenates at least one of the π bonds of an aromatic ring of an aromatic compound.
It contains a carrier and catalyst particles supported on the carrier.
The catalyst particles contain Ru (zero valence) and Ru oxide as constituents.
The ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfying the condition of equation (1),
A catalyst for a nuclear hydrogenation reaction is provided.
0.50 ≤ (R Ru / R RuOx ) ≤ 4.00 ... Equation (1)

ここで、本発明においては、XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。Here, in the present invention, the ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom) in the analysis region near the surface of the nuclear hydrogenation reaction catalyst observed by XPS. %) Is a numerical value calculated under the condition that the total of these two components is 100%.

本発明において、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を発揮することができる。In the present invention, the catalyst for nuclear hydrogenation reaction of the present invention has a configuration in which the value of (R Ru / R RuOx ) represented by the above formula (1) is 0.50 or more and 4.00 or less. In the nuclear hydrogenation reaction of aromatic compounds, it is possible to exhibit excellent catalytic activity capable of obtaining a conversion rate of a reactant superior to that of a conventional ruthenium catalyst.

本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。即ち、式(1)を満たす構造の核水添反応用触媒は、Ru酸化物に対するRu(0価)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。 Although the detailed reason why the catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity has not been fully elucidated, the present inventors consider as follows. That is, the catalyst for nuclear hydrogenation reaction having a structure satisfying the formula (1) has a higher ratio of Ru (0 valence) to Ru oxide than the conventional catalyst for nuclear hydrogenation reaction, so that the nuclear hydrogenation of an aromatic compound is carried out. It is speculated that the activity for the reaction is improved.

ここで、本発明において、XPSによる測定条件は以下の(A1)~(A5)であるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(後述する図1を参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
Here, in the present invention, it is assumed that the measurement conditions by XPS are the following (A1) to (A5).
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C (see FIG. 1 to be described later).
(A3) Charge correction: C1s peak energy is corrected as 284.8 eV (A4) Analysis area: 200 μm
(A5) Chamber pressure during analysis: Approximately 1 × 10 -6 Pa

また、本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒においては、前記担体がアルミナ担体であることが好ましい。
更に、本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒においては、前記アルミナ担体について、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであることが好ましい。
Further, from the viewpoint of more reliably obtaining the effect of the present invention, it is preferable that the carrier is an alumina carrier in the catalyst for nuclear hydrogenation reaction of the present invention.
Further, from the viewpoint of more reliably obtaining the effect of the present invention, in the catalyst for nuclear hydrogenation reaction of the present invention, the pore diameter PS determined by the BJH method for the alumina carrier is 8.00 nm to 12.00 nm. The pore volume PV determined by the BJH method is preferably 0.250 cm 3 / g to 0.400 cm 3 / g.

ここで、本発明においては、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。
また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter)である。
Here, in the present invention, the pore diameter PS is derived from the desorption isotherm, which is the relationship between the relative pressure and the adsorption amount when the adsorbent (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. It is the required value (BJH Desorption average pore diameter).
Further, in the present invention, the pore volume PV is also a value obtained by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).

本発明によれば、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を有する核水添反応用触媒が提供される。 According to the present invention, there is provided a catalyst for nuclear hydrogenation reaction having excellent catalytic activity capable of obtaining a conversion rate of a reactant superior to that of a conventional ruthenium catalyst in a nuclear hydrogenation reaction of an aromatic compound. ..

本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the XPS apparatus for explaining the analysis condition of the X-ray photoelectron spectroscopy (XPS) in this invention.

<核水添反応用触媒>
以下、本発明の核水添反応用触媒の好適な実施形態について詳細に説明する。本発明の水添反応用触媒は核水添反応に使用されるものである。例えば、下記の化学反応式(1)で示される、芳香族化合物であるジフェニルメタン(反応式(1)中の化合物1)の芳香環のπ結合を水素化して、α-シクロヘキシルトルエン(反応式(1)中の化合物2)及びジシクロヘキシルメタン(反応式(1)中の化合物3)に転化する核水添反応に使用することができる。

Figure 0007008686000001
<Catalyst for nuclear hydrogenation reaction>
Hereinafter, preferred embodiments of the catalyst for nuclear hydrogenation reaction of the present invention will be described in detail. The catalyst for hydrogenation reaction of the present invention is used for a nuclear hydrogenation reaction. For example, the π bond of the aromatic ring of the aromatic compound diphenylmethane (compound 1 in the reaction formula (1)) represented by the following chemical reaction formula (1) is hydrogenated to form α-cyclohexyltoluene (reaction formula (reaction formula (1)). It can be used for a nuclear hydrogenation reaction that converts to compound 2) in 1) and dicyclohexylmethane (compound 3) in reaction formula (1).
Figure 0007008686000001

本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでおり、前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
0.50≦(RRu/RRuOx)≦4.00・・・式(1)
The catalyst for nuclear hydrogenation reaction of the present invention contains a carrier and catalyst particles supported on the carrier, and the catalyst particles contain Ru (zero valence) and Ru oxide as constituents. The ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS). However, the condition of the following formula (1) is satisfied.
0.50 ≤ (R Ru / R RuOx ) ≤ 4.00 ... Equation (1)

本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでいればよく、触媒粒子の担持の形態については特に制限はなく、種々の構造を採り得る。 The catalyst for nuclear hydrogenation reaction of the present invention may contain a carrier and catalyst particles supported on the carrier, and the form of supporting the catalyst particles is not particularly limited, and various structures are adopted. obtain.

(担体)
担体としては、触媒粒子を担持することができ、かつ表面積が比較的大きいものであれば特に制限されないが、触媒粒子を含んだ溶液中で良好な分散性を有し、不活性であることが好ましい。
(Carrier)
The carrier is not particularly limited as long as it can support the catalyst particles and has a relatively large surface area, but it may have good dispersibility in a solution containing the catalyst particles and may be inert. preferable.

不活性担体としては、例えば、炭素系材料(カーボン)、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましく、アルミナ(アルミナ担体)が特に好ましい。炭素系材料としては、例えば、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。 As the inert carrier, for example, a carbon-based material (carbon), silica, alumina, Syrian carmina, magnesia and the like are preferable, and alumina (alumina carrier) is particularly preferable. Examples of the carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized product of activated carbon, carbon nanofibers, carbon nanotubes and the like.

なお、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。 As the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Further, as the conductive carbon black, trade names such as "Ketjen Black EC300J", "Ketchen Black EC600", "Carbon EPC" and the like (manufactured by Lion Chemical Corporation) can be exemplified.

また、上記アルミナ担体については、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであることが好ましい。Further, for the above alumina carrier, the pore diameter PS determined by the BJH method is 8.00 nm to 12.00 nm, and the pore volume PV determined by the BJH method is 0.250 cm 3 / g to 0.400 cm 3 / g. Is preferable.

ここで、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter)である。 Here, the pore diameter PS is a value (BJH) obtained from the desorption isotherm, which is the relationship between the relative pressure and the adsorption amount when the adsorbent (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. Desorption average pore diameter). Further, in the present invention, the pore volume PV is also a value obtained by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).

(触媒粒子)
次に、本発明において上記担体に担持される触媒粒子は、Ru(0価)とRu酸化物とを構成成分として含んでおり、上記のとおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
0.50≦(RRu/RRuOx)≦4.00・・・式(1)
(Catalyst particles)
Next, in the present invention, the catalyst particles supported on the carrier contain Ru (zero valence) and Ru oxide as constituents, and are measured by X-ray photoelectron spectroscopy (XPS) as described above. The ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuOx (atom%) of Ru oxide in the analysis region near the surface satisfy the condition of the following formula (1).
0.50 ≤ (R Ru / R RuOx ) ≤ 4.00 ... Equation (1)

上記担体への上記触媒粒子の担持量は、本発明の効果を損なわない範囲であれば特に限定されるものではなく、本発明の核水添反応用触媒が採用される反応系、反応条件、製造コストなどにより適宜設定される。通常0.5~10質量%程度であればよい。なお、ここでいう担持量とは、式:{触媒粒子の質量/(触媒粒子の質量+担体の質量)}×100で得られる値(率)のことをいう。 The amount of the catalyst particles supported on the carrier is not particularly limited as long as the effect of the present invention is not impaired, and the reaction system, reaction conditions, and the like in which the catalyst for nuclear hydrogenation reaction of the present invention is adopted. It is set appropriately depending on the manufacturing cost and the like. Usually, it may be about 0.5 to 10% by mass. The supported amount here means a value (rate) obtained by the formula: {mass of catalyst particles / (mass of catalyst particles + mass of carrier)} × 100.

次に、本発明においては、上記のとおり、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を発揮することができる。Next, in the present invention, as described above, the value of (R Ru / R RuOx ) represented by the above formula (1) is 0.50 or more and 4.00 or less. The catalyst for nuclear hydrogenation reaction can exhibit excellent catalytic activity capable of obtaining a conversion rate of a reactant superior to that of a conventional ruthenium catalyst in a nuclear hydrogenation reaction of an aromatic compound.

この(RRu/RRuOx)の値は、X線光電子分光分析法(XPS)により測定される核水添反応用触媒粒子の表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)と、の比であり、Ru(0価)及びRu酸化物の担持割合を示すものである。この(RRu/RRuOx)の値が大きいと、核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより多く存在し、この(RRu/RRuOx)の値が小さいと、核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより少なく存在することを意味する。This (R Ru / R RuOx ) value is the ratio of Ru (0 valence) in the analysis region near the surface of the catalyst particles for nuclear hydrogenation reaction measured by X-ray photoelectron spectroscopy (XPS). Atom%) and the ratio of Ru oxide R RuOx (atom%), which indicates the carrying ratio of Ru (zero valence) and Ru oxide. When the value of this (R Ru / R RuOx ) is large, more Ru (0 valence) is present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction as compared with the Ru oxide, and this (R Ru / R RuOx ) When the value of is small, it means that Ru (zero valence) is present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction in a smaller amount than that of Ru oxide.

そして、本発明の核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより多く存在すると、詳細なメカニズムは解明されていないが、核水添反応に対する触媒活性が向上するという効果が得られる傾向にある。また逆に、本発明の核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより少なく存在すると、核水添反応に対する触媒活性が低下するという効果が得られる傾向にある。本発明では、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成にすることにより、これらの作用効果をバランス良く実現するものである。If more Ru (0 valence) is present near the surface of the catalyst particles for nuclear hydrogenation of the present invention as compared with Ru oxide, the detailed mechanism has not been elucidated, but the catalytic activity for nuclear hydrogenation reaction. There is a tendency to obtain the effect of improving. On the contrary, when Ru (0 valence) is present in the vicinity of the surface of the catalyst particles for nuclear hydrogenation reaction of the present invention in a smaller amount than that of Ru oxide, the effect that the catalytic activity for the nuclear hydrogenation reaction is lowered can be obtained. There is a tendency. In the present invention, these actions and effects are realized in a well-balanced manner by setting the value of (R Ru / R RuOx ) represented by the above formula (1) to be 0.50 or more and 4.00 or less. be.

X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
ここで、(A2)の光電子取出確度θは、図1に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。
The X-ray photoelectron spectroscopy (XPS) shall be carried out under the following analytical conditions (A1) to (A5).
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C
(A3) Charge correction: C1s peak energy is corrected as 284.8 eV (A4) Analysis area: 200 μm,
(A5) Chamber pressure during analysis: Approximately 1 × 10 -6 Pa
Here, in the photoelectron extraction probability θ of (A2), as shown in FIG. 1, X-rays emitted from the X-ray source 32 are irradiated to the sample set on the sample stage 34 and emitted from the sample. It is an angle θ when the photoelectron is received by the spectroscope 36. That is, the photoelectron extraction accuracy θ corresponds to the angle between the light receiving axis of the spectroscope 36 and the surface of the sample layer of the sample stage 34.

<核水添反応用触媒の製造方法>
本発明の核水添反応用触媒の製造方法は、担体に上記触媒粒子を担持させることができる方法であれば、特に制限されるものではない。
<Manufacturing method of catalyst for nuclear hydrogenation reaction>
The method for producing a catalyst for a nuclear hydrogenation reaction of the present invention is not particularly limited as long as it can support the catalyst particles on a carrier.

例えば、担体にRu化合物を含有する溶液を接触させ、担体に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、電気化学的析出法、化学還元法、吸着水素による還元析出法等を採用した製造方法を例示することができる。 For example, an impregnation method in which a solution containing a Ru compound is brought into contact with a carrier to impregnate the carrier with a catalyst component, a liquid phase reduction method in which a reducing agent is added to a solution containing the catalyst component, an electrochemical precipitation method, and chemistry. A production method using a reduction method, a reduction precipitation method using adsorbed hydrogen, or the like can be exemplified.

ただし、核水添反応用触媒の製造における製造条件は、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たすように調節されている。
0.50≦(RRu/RRuOx)≦4.00・・・式(1)
However, the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio of Ru (0 valence) R Ru (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS). The ratio of Ru oxide, R RuOx (atom%), is adjusted so as to satisfy the condition of the following formula (1).
0.50 ≤ (R Ru / R RuOx ) ≤ 4.00 ... Equation (1)

なお、本発明の核水添反応用触媒を、上述した式(1)で示した条件、及び粉末X線回折(XRD)により測定される結晶子サイズの平均値を好ましい条件(好ましくは3~16.0nmに調節する条件など)を満たすように製造する方法は特に限定されない。このような製造方法としては、例えば、生成物(触媒)の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を製造プロセスにフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件などを調製・変更する方法が挙げられる。 It should be noted that the catalyst for nuclear hydrogenation reaction of the present invention is preferably under the conditions represented by the above formula (1) and the average value of the crystallite size measured by powder X-ray diffraction (XRD) (preferably 3 to 3 to 3). The method of manufacturing so as to satisfy the conditions for adjusting to 16.0 nm, etc.) is not particularly limited. As such a manufacturing method, for example, a raw material to be selected by analyzing the chemical composition and structure of a product (catalyst) using various known analysis methods and feeding back the obtained analysis result to the manufacturing process. Examples thereof include a method of preparing / changing the compounding ratio of the above, the synthetic reaction to be selected, the reaction conditions of the synthetic reaction, and the like.

以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

≪実施例1≫
Ru(0価)とRu酸化物とを含む触媒粒子が担体であるアルミナ(Al)粒子に5質量%の担持率で担持された実施例1の核水添反応用触媒として、商品名「HYAc-5E A-type」、N.E.CHEMCAT社製)を製造した。
下記のようにして求めた核水添反応用触媒1の(RRu/RRuOx)値、並びに、担体のアルミナ粒子の細孔径PS及び細孔容積PVを表1に示した。
<< Example 1 >>
As a catalyst for nuclear hydrogenation reaction of Example 1, a catalyst particle containing Ru (0 valence) and Ru oxide was supported on an alumina (Al 2 O 3 ) particle as a carrier at a loading ratio of 5% by mass. The name "HYAc-5E A-type" (manufactured by NE CHEMCAT) was manufactured.
Table 1 shows the (R Ru / R RuOx ) value of the nuclear hydrogenation reaction catalyst 1 obtained as described below, and the pore diameter PS and pore volume PV of the alumina particles of the carrier.

≪実施例2及び実施例3≫
得られた核水添反応用触媒における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、実施例2の核水添反応用触媒(商品名「HYAc-5E B-type」、N.E.CHEMCAT社製)及び実施例3の核水添反応用触媒(商品名「HYAc-5E C-type」、N.E.CHEMCAT社製)を製造した。
<< Example 2 and Example 3 >>
The nuclear hydrogenation reaction catalyst of Example 2 (R Ru / R RuOx) in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the obtained nuclear hydrogenation reaction catalyst was changed to that shown in Table 1. Product name "HYAc-5E B-type", manufactured by NECHEMCAT) and catalyst for nuclear hydrogenation reaction of Example 3 (trade name "HYAc-5E C-type", manufactured by NECHEMCAT). Manufactured.

≪実施例4≫
担体として表1に示した細孔径PS及び細孔容積PVを有する担体を用いた以外は、実施例1と同様にして、実施例4の核水添反応用触媒(商品名「HYAc-5E F-type」、N.E.CHEMCAT社)を製造した。
<< Example 4 >>
The catalyst for nuclear hydrogenation reaction of Example 4 (trade name “HYAc-5EF”) was used in the same manner as in Example 1 except that the carrier having the pore diameter PS and the pore volume PV shown in Table 1 was used as the carrier. -Type ”, NE CHEMCAT) was manufactured.

≪比較例1≫
用いた触媒粒子における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、比較例1の核水添反応用触媒を製造した。
<< Comparative Example 1 >>
The catalyst for nuclear hydrogenation reaction of Comparative Example 1 was produced in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the used catalyst particles was changed to that shown in Table 1.

≪比較例2≫
用いた触媒粒子における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、比較例2の核水添反応用触媒を製造した。
<< Comparative Example 2 >>
The catalyst for nuclear hydrogenation reaction of Comparative Example 2 was produced in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the used catalyst particles was changed to that shown in Table 1.

[評価試験]
上記の実施例1~4及び比較例1~2で得た核水添反応用触媒を用い、下記の反応式(1)にしたがって、芳香族化合物であるジフェニルメタン(反応式(1)中の化合物1)の芳香環のπ結合を水素化して、α-シクロヘキシルトルエン(反応式(1)中の化合物2)及びジシクロヘキシルメタン(反応式(1)中の化合物3)に転化する核水添反応を行った。
[Evaluation test]
Using the nuclear hydrogenation reaction catalysts obtained in Examples 1 to 4 and Comparative Examples 1 and 2 above, the aromatic compound diphenylmethane (compound in the reaction formula (1)) is according to the following reaction formula (1). A nuclear hydrogenation reaction in which the π bond of the aromatic ring of 1) is hydrogenated and converted into α-cyclohexyltoluene (compound 2 in the reaction formula (1)) and dicyclohexylmethane (compound 3 in the reaction formula (1)) is carried out. went.

その際、核水添反応用触媒の使用量は、原料であるジフェニルメタン(反応式(1)中の化合物1)の0.4モル%とし、圧力が0.2MPaとなるように水素ガスを供給しながら、温度を50℃に昇温し、反応させた。

Figure 0007008686000002
At that time, the amount of the nuclear hydrogenation reaction catalyst used is 0.4 mol% of the raw material diphenylmethane (compound 1 in the reaction formula (1)), and hydrogen gas is supplied so that the pressure becomes 0.2 MPa. While doing so, the temperature was raised to 50 ° C. and the reaction was carried out.
Figure 0007008686000002

(1)X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による核水添反応用触媒の表面分析 (1) Surface analysis of catalyst for nuclear hydrogenation reaction by X-ray photoelectron spectroscopy (XPS: X-ray photoelectron spectroscopy)

実施例1~4及び比較例1~2の核水添反応用触媒についてXPSによる表面分析を実施し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを測定し、(RRu/RRuOx)の値を算出した。
具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図1参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
Surface analysis by XPS was performed on the nuclear hydrogenation reaction catalysts of Examples 1 to 4 and Comparative Examples 1 and 2, and the ratio of Ru (0 valence) was R Ru (atom%) and the ratio of Ru oxide was R RuOx ( Atom%) was measured, and the value of (R Ru / R RuOx ) was calculated.
Specifically, "Quantara SXM" (manufactured by ULVAC-PHI) was used as an XPS device, and the analysis was carried out under the following analytical conditions.
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C (see Fig. 1)
(A3) Charge correction: C1s peak energy is corrected as 284.8 eV (A4) Analysis area: 200 μm
(A5) Chamber pressure during analysis: Approximately 1 × 10 -6 Pa
(A6) Measurement depth (escape depth): Approximately 5 nm or less

分析結果を表1に示した。なお、Ru(0価)の割合RRu(atom%)とRu酸化物の割合RRuOx(atom%)については、これらの2成分で100%となるように算出した。The analysis results are shown in Table 1. The ratio R Ru (atom%) of Ru (0 valence) and the ratio R RuOx (atom%) of Ru oxide were calculated to be 100% with these two components.

(2)担持率の測定(ICP分析)
実施例1~4及び比較例1~2の核水添反応用触媒について、Ru(0価)とRu酸化物とを構成成分として含む触媒粒子の担持率(wt%)を以下の方法で測定した。即ち、核水添反応用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のアルミナを除去した。次に、アルミナを除いた王水をICP分析した。全ての核水添反応用触媒について、触媒粒子の担持率は5%であった。
(2) Measurement of carrier rate (ICP analysis)
With respect to the catalysts for nuclear hydrogenation reaction of Examples 1 to 4 and Comparative Examples 1 and 2, the loading ratio (wt%) of the catalyst particles containing Ru (0 valence) and Ru oxide as constituents was measured by the following method. did. That is, the catalyst for nuclear hydrogenation reaction was immersed in aqua regia to dissolve the metal. Next, the insoluble component alumina was removed from aqua regia. Next, the aqua regia excluding alumina was subjected to ICP analysis. The carrying ratio of the catalyst particles was 5% for all catalysts for nuclear hydrogenation reaction.

(3)転化率の算出
反応後の混合組成物におけるジフェニルメタン、α-シクロヘキシルトルエン及びジシクロヘキシルメタンの含有比(質量)を測定することによって、ジフェニルメタンの転化率(%)を算出し、結果を表1に示した。
(3) Calculation of conversion rate The conversion rate (%) of diphenylmethane was calculated by measuring the content ratio (mass) of diphenylmethane, α-cyclohexyltoluene and dicyclohexylmethane in the mixed composition after the reaction, and the results are shown in Table 1. It was shown to.

Figure 0007008686000003
Figure 0007008686000003

表1に示す結果から、(RRu/RRuOx)の値が先に述べた式(1)を満たす実施例1~4において、従来のルテニウム触媒を用いた比較例1及び比較例2に比べて、ジフェニルメタンの転化率が高く、本発明の核水添反応用触媒の触媒活性が高く、芳香族化合物の核水添反応において優れた反応物の転化率を得ることのできる優れた触媒活性を有することが明らかとなった。From the results shown in Table 1, in Examples 1 to 4 in which the value of (R Ru / R RuOx ) satisfies the above-mentioned formula (1), compared with Comparative Example 1 and Comparative Example 2 using the conventional ruthenium catalyst. Therefore, the conversion rate of diphenylmethane is high, the catalytic activity of the catalyst for nuclear hydrogenation reaction of the present invention is high, and the excellent catalytic activity capable of obtaining the conversion rate of the reactant excellent in the nuclear hydrogenation reaction of aromatic compounds is obtained. It became clear to have.

本発明の核水添反応用触媒は、優れた触媒活性を有し、芳香族化合物の核水添反応において優れた反応物の転化率を得ることができる。従って、本発明は、高機能プラスチック製品の原料となるエポキシ樹脂やポリアミドイミド樹脂等の合成に適用することができる核水添反応用触媒であり、各種産業の発達に寄与する。

The catalyst for nuclear hydrogenation reaction of the present invention has excellent catalytic activity, and can obtain an excellent conversion rate of a reactant in the nuclear hydrogenation reaction of an aromatic compound. Therefore, the present invention is a catalyst for nuclear hydrogenation reaction that can be applied to the synthesis of epoxy resins, polyamide-imide resins, etc., which are raw materials for high-performance plastic products, and contributes to the development of various industries.

Claims (3)

芳香族化合物の芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、
X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒。
1.67≦(RRu/RRuOx)≦3.61・・・式(1)
A catalyst for a nuclear hydrogenation reaction used in a nuclear hydrogenation reaction that hydrogenates at least one of the π bonds of an aromatic ring of an aromatic compound.
It contains a carrier and catalyst particles supported on the carrier.
The catalyst particles contain Ru (zero valence) and Ru oxide as constituents.
The ratio of Ru (0 valence) R Ru (atom%) and the ratio of Ru oxide R RuOx (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfying the condition of equation (1),
Catalyst for nuclear hydrogenation reaction.
1.67 ≤ (R Ru / R RuOx ) ≤ 3.61 ... Equation (1)
前記担体がアルミナ担体である、請求項1に記載の核水添反応用触媒。 The catalyst for nuclear hydrogenation reaction according to claim 1, wherein the carrier is an alumina carrier. 前記アルミナ担体について、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gである、
請求項1又は2に記載の核水添反応用触媒。
Regarding the alumina carrier, the pore diameter PS determined by the BJH method is 8.00 nm to 12.00 nm, and the pore volume PV determined by the BJH method is 0.250 cm 3 / g to 0.400 cm 3 / g.
The catalyst for nuclear hydrogenation reaction according to claim 1 or 2.
JP2019502925A 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction Active JP7008686B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017036939 2017-02-28
JP2017036939 2017-02-28
JP2017036940 2017-02-28
JP2017036940 2017-02-28
PCT/JP2018/006392 WO2018159436A1 (en) 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction

Publications (2)

Publication Number Publication Date
JPWO2018159436A1 JPWO2018159436A1 (en) 2020-03-05
JP7008686B2 true JP7008686B2 (en) 2022-02-10

Family

ID=63371173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502925A Active JP7008686B2 (en) 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction

Country Status (3)

Country Link
JP (1) JP7008686B2 (en)
CN (1) CN110366447A (en)
WO (1) WO2018159436A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542210A (en) 1999-04-15 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating unsubstituted or alkyl-substituted aromatic compounds using macropore-containing catalyst
WO2006006277A1 (en) 2004-07-09 2006-01-19 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
WO2006114942A1 (en) 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2012041335A (en) 2010-07-21 2012-03-01 Hokkaido Univ Method of producing sugar alcohol
JP2012507120A (en) 2008-10-24 2012-03-22 ナノシス・インク. Electrochemical catalyst for fuel cell
JP2015504414A (en) 2011-10-28 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cis-rose oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221139A1 (en) * 1992-06-27 1994-01-05 Huels Chemische Werke Ag Catalyst and process for the selective hydrogenation of unsaturated compounds and process for the preparation of the catalyst
ATE422962T1 (en) * 2002-05-31 2009-03-15 Evonik Degussa Gmbh SUPPORTED RUTHENIUM CATALYST AND METHOD FOR HYDROGENING AN AROMATIC AMINE IN THE PRESENCE OF THIS CATALYST
EP2177541B1 (en) * 2007-08-06 2013-12-18 Mitsubishi Gas Chemical Company, Inc. Process for production of nucleus-hydrogenated aromatic vinyl /(meth)acrylate copolymers
WO2016031251A1 (en) * 2014-08-28 2016-03-03 エヌ・イー ケムキャット株式会社 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542210A (en) 1999-04-15 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating unsubstituted or alkyl-substituted aromatic compounds using macropore-containing catalyst
WO2006006277A1 (en) 2004-07-09 2006-01-19 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
WO2006114942A1 (en) 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2012507120A (en) 2008-10-24 2012-03-22 ナノシス・インク. Electrochemical catalyst for fuel cell
JP2012041335A (en) 2010-07-21 2012-03-01 Hokkaido Univ Method of producing sugar alcohol
JP2015504414A (en) 2011-10-28 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cis-rose oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. MAZZIERI et al.,XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts,Applied Surface Science,2003年04月15日,Vol.210, No.3/4,p.222-230

Also Published As

Publication number Publication date
CN110366447A (en) 2019-10-22
JPWO2018159436A1 (en) 2020-03-05
WO2018159436A1 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
Chen et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins
Concepción et al. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder
Wang et al. Nickel embedded in N-doped porous carbon for the hydrogenation of nitrobenzene to p-aminophenol in sulphuric acid
JP6793719B2 (en) Catalyst for the production of 1,3-butadiene from ethanol
US11035053B2 (en) Ruthenium nanoparticles with essentially face-centered cubic structure and method for producing the same
Baek et al. Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution
US8398894B2 (en) Catalyst for preparing carbon nanotubes by controlling its apparent density
EP3517499A1 (en) Porous carbon material, method for producing same, and synthesis reaction catalyst
CN107597120B (en) Graphene-supported cobalt catalyst and preparation method and application thereof
Hu et al. Efficient and Selective Ni/Al 2 O 3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol
Liu et al. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation
Diercks et al. CO2 Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity
Cattaneo et al. Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation
CN108654635B (en) Supported trimetal catalyst, preparation method thereof and method for catalyzing hydrogenolysis reaction of glycerol
EP3593900A1 (en) Copper-iron-based catalytic composition for the conversion of syngas to higher alcohols and process using such catalyst composition
JP7008686B2 (en) Catalyst for nuclear hydrogenation reaction
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
JP7059289B2 (en) Catalyst for nuclear hydrogenation reaction
Kern et al. Adsorption of Nickel Ions on Oxygen‐Functionalized Carbons
WO2016140358A1 (en) Catalyst composite body
Ouyang et al. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions
Li et al. CO 2 Reforming of Methane Over Nickel Catalysts Supported on La-Doped MCF
CN111036204A (en) Glycerol hydrogenolysis method
An et al. Amination of Ethylene Glycol to Ethylenediamine Catalyzed by Co‐Cu/γ‐Al2O3

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7008686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150