WO2018159436A1 - Catalyst for nuclear hydrogenation reaction - Google Patents

Catalyst for nuclear hydrogenation reaction Download PDF

Info

Publication number
WO2018159436A1
WO2018159436A1 PCT/JP2018/006392 JP2018006392W WO2018159436A1 WO 2018159436 A1 WO2018159436 A1 WO 2018159436A1 JP 2018006392 W JP2018006392 W JP 2018006392W WO 2018159436 A1 WO2018159436 A1 WO 2018159436A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogenation reaction
nuclear hydrogenation
reaction
present
Prior art date
Application number
PCT/JP2018/006392
Other languages
French (fr)
Japanese (ja)
Inventor
智照 水崎
晋司 上野
晃 小松
弘康 鈴鹿
佳之 和田
Original Assignee
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イー ケムキャット株式会社 filed Critical エヌ・イー ケムキャット株式会社
Priority to JP2019502925A priority Critical patent/JP7008686B2/en
Priority to CN201880014213.6A priority patent/CN110366447A/en
Publication of WO2018159436A1 publication Critical patent/WO2018159436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/18Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings

Definitions

  • the present invention relates to a catalyst used for a nuclear hydrogenation reaction of an aromatic compound.
  • a ruthenium catalyst is known as a catalyst used in the nuclear hydrogenation reaction of an aromatic compound.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-286747 efficiently discloses N, N-dimethylcyclohexylamines that are useful as catalysts for polyurethane foam production, epoxy curing agents, resist stripping agents, and corrosion inhibitors for steel.
  • an aromatic compound is subjected to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen, and the resulting cyclohexyl compound is converted into the above-mentioned noble metal catalyst, formaldehyde derivative and hydrogen.
  • Patent Document 1 [Summary]
  • ruthenium catalyst in which 5% of ruthenium is supported on alumina (support) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2).
  • An object of the present invention is to provide a catalyst for nuclear hydrogenation reaction having catalytic activity.
  • the inventors of the present invention focused on the state of ruthenium contained in the catalyst particles supported on the support, and conducted intensive studies on a configuration that further improves the catalytic activity. It was.
  • the ratio of Ru (zero valence) to the ratio R RuOx in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) satisfies the following conditions:
  • the present inventors have found that it is effective for improving the catalytic activity and have completed the present invention.
  • this invention is comprised by the following technical matters. That is, the present invention A nuclear hydrogenation catalyst used in a nuclear hydrogenation reaction for hydrogenating at least one ⁇ bond of an aromatic ring of an aromatic compound, A support, and catalyst particles supported on the support, The catalyst particles contain Ru (zero valence) and Ru oxide as constituent components, The ratio R Ru (atom%) of Ru (zero valence) and the ratio R RuOx (atom%) of Ru oxide in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfies the condition of equation (1), Provided is a catalyst for nuclear hydrogenation reaction. 0.50 ⁇ (R Ru / R RuOx ) ⁇ 4.00 (1)
  • the Ru (zero valence) ratio R Ru (atom%) and the Ru oxide ratio R RuOx (atom%) in the analysis region near the surface of the nuclear hydrogenation reaction catalyst observed by XPS. %) Is a numerical value calculated under the condition that the sum of these two components is 100%.
  • the nuclear hydrogenation reaction catalyst of the present invention when the value of (R Ru / R RuOx ) represented by the above formula (1) is 0.50 or more and 4.00 or less, the nuclear hydrogenation reaction catalyst of the present invention is In the nuclear hydrogenation reaction of an aromatic compound, it is possible to exhibit an excellent catalytic activity capable of obtaining a conversion ratio of a reactant superior to that of a conventional ruthenium catalyst.
  • the catalyst for nuclear hydrogenation reaction of the present invention has an excellent catalytic activity has not been sufficiently elucidated, but the present inventors consider as follows. That is, the nuclear hydrogenation reaction catalyst having a structure satisfying the formula (1) has a higher ratio of Ru (0 valence) to Ru oxide than the conventional nuclear hydrogenation reaction catalyst. It is presumed that the activity against the reaction is improved.
  • the measurement conditions by XPS are the following (A1) to (A5).
  • (A1) X-ray source: Monochromatic AlK ⁇ (A2) Photoelectron extraction accuracy: ⁇ 75 ° C. (see FIG. 1 described later)
  • the support is preferably an alumina support.
  • the pore size PS required by the BJH method for the alumina support is 8.00 nm to 12.00 nm. it is preferred pore volume PV obtained by BJH method is 0.250cm 3 /g ⁇ 0.400cm 3 / g.
  • the pore diameter PS is determined from the desorption isotherm, which is the relationship between the relative pressure and the adsorption amount when the adsorbate (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. This is the required value (BJH Desorption average pore diameter).
  • the pore volume PV is also a value determined by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).
  • the nuclear hydrogenation reaction catalyst which has the outstanding catalytic activity which can obtain the conversion ratio of the reaction material superior to the conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound is provided. .
  • FIG. 1 It is a schematic diagram which shows schematic structure of the XPS apparatus for demonstrating the analysis conditions of the X-ray photoelectron spectroscopy (XPS) in this invention.
  • the hydrogenation reaction catalyst of the present invention is used for a nuclear hydrogenation reaction.
  • the aromatic ring ⁇ bond of diphenylmethane (compound 1 in reaction formula (1)) represented by the following chemical reaction formula (1) is hydrogenated to form ⁇ -cyclohexyltoluene (reaction formula (1) It can be used for the nuclear hydrogenation reaction to convert compound 2) in 1) and dicyclohexylmethane (compound 3 in reaction formula (1)).
  • the nuclear hydrogenation reaction catalyst of the present invention includes a support and catalyst particles supported on the support, and the catalyst particles include Ru (zero-valent) and Ru oxide as constituent components.
  • Ru zero-valent
  • Ru oxide as constituent components.
  • XPS X-ray photoelectron spectroscopy
  • Ru (zero valence) ratio R Ru (atom%) and Ru oxide ratio R RuO x (atom%) Satisfies the condition of the following formula (1). 0.50 ⁇ (R Ru / R RuOx ) ⁇ 4.00 (1)
  • the catalyst for nuclear hydrogenation reaction of the present invention only needs to contain a support and catalyst particles supported on the support, and there is no particular limitation on the form of support of the catalyst particles, and various structures are adopted. obtain.
  • the support is not particularly limited as long as it can support catalyst particles and has a relatively large surface area, but it has good dispersibility in a solution containing catalyst particles and is inert. preferable.
  • the inert carrier for example, carbon-based material (carbon), silica, alumina, AMD carmina, magnesia and the like are preferable, and alumina (alumina carrier) is particularly preferable.
  • carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized activated carbon, carbon nanofiber, and carbon nanotube.
  • conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable.
  • conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
  • alumina support with a pore size PS obtained by BJH method is 8.00nm ⁇ 12.00nm
  • a pore volume PV obtained by BJH method 0.250cm 3 /g ⁇ 0.400cm 3 / g It is preferable that
  • the pore diameter PS is a value obtained from a desorption isotherm (BJH) which is a relationship between a relative pressure and an adsorption amount when an adsorbate (gas molecule) desorbs from a solid surface by the BJH (Barrett, Joyner, Hallender) method. Desorption average pore diameter).
  • the pore volume PV is also a value determined by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).
  • the catalyst particles supported on the carrier in the present invention contain Ru (zero valence) and Ru oxide as constituent components, and are measured by X-ray photoelectron spectroscopy (XPS) as described above.
  • XPS X-ray photoelectron spectroscopy
  • the Ru (zero valence) ratio R Ru (atom%) and the Ru oxide ratio R RuOx (atom%) satisfy the condition of the following formula (1). 0.50 ⁇ (R Ru / R RuOx ) ⁇ 4.00 (1)
  • the amount of the catalyst particles supported on the carrier is not particularly limited as long as the effects of the present invention are not impaired, and the reaction system, reaction conditions, and the like in which the catalyst for nuclear hydrogenation reaction of the present invention is employed. It is appropriately set depending on the manufacturing cost. Usually, it may be about 0.5 to 10% by mass.
  • the supported amount refers to a value (rate) obtained by the formula: ⁇ mass of catalyst particles / (mass of catalyst particles + mass of support) ⁇ ⁇ 100.
  • the catalyst for nuclear hydrogenation reaction can exhibit an excellent catalytic activity capable of obtaining a conversion rate of a reactant superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound.
  • the value of (R Ru / R RuOx ) is the ratio R Ru (0 valence) of Ru (zero valence) in the analysis region in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction measured by X-ray photoelectron spectroscopy (XPS). atom%) and the Ru oxide ratio R RuOx (atom%), which indicates the supported ratio of Ru (zero valence) and Ru oxide.
  • X-ray photoelectron spectroscopy is carried out under the following analysis conditions (A1) to (A5).
  • A1 X-ray source: Monochromatic AlK ⁇
  • A3) Charging correction: C1s peak energy is corrected to 284.8 eV
  • A4) Analysis area: 200 ⁇ m
  • A5) Analysis chamber pressure: about 1 ⁇ 10 ⁇ 6 Pa
  • the photoelectron extraction accuracy ⁇ of (A2) is, as shown in FIG. 1, the X-ray emitted from the X-ray source 32 is irradiated to the sample set on the sample stage 34 and is emitted from the sample.
  • the angle ⁇ when the photoelectron is received by the spectroscope 36 corresponds to the angle between the light receiving axis of the spectrometer 36 and the surface of the sample layer of the sample stage 34.
  • the method for producing the catalyst for nuclear hydrogenation reaction of the present invention is not particularly limited as long as the catalyst particles can be supported on a carrier.
  • an impregnation method in which a solution containing a Ru compound is brought into contact with a support and a catalyst component is impregnated in the support
  • a liquid phase reduction method in which a reducing agent is added to a solution containing the catalyst component
  • an electrochemical deposition method a chemical
  • the production method include a reduction method, a reduction precipitation method using adsorbed hydrogen, and the like.
  • the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio R Ru (atom%) of Ru (zero valence) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS),
  • the Ru oxide ratio R RuOx (atom%) is adjusted so as to satisfy the condition of the following formula (1). 0.50 ⁇ (R Ru / R RuOx ) ⁇ 4.00 (1)
  • the catalyst for nuclear hydrogenation reaction of the present invention has the conditions indicated by the above-mentioned formula (1) and the average value of crystallite size measured by powder X-ray diffraction (XRD) (preferably 3 to There are no particular restrictions on the method for producing the film so as to satisfy the conditions for adjusting to 16.0 nm.
  • XRD powder X-ray diffraction
  • the chemical composition and structure of a product (catalyst) are analyzed using various known analysis techniques, and the obtained analysis results are fed back to the production process, and the raw material to be selected and the raw material are selected. And a method of preparing / changing the compounding ratio, the synthesis reaction to be selected, the reaction conditions of the synthesis reaction, and the like.
  • Example 1 As a catalyst for nuclear hydrogenation reaction of Example 1 in which catalyst particles containing Ru (0 valence) and Ru oxide are supported on alumina (Al 2 O 3 ) particles as a support at a support ratio of 5 mass%, The name “HYAc-5E A-type” (manufactured by NE CHEMCAT) was produced. Table 1 shows the (R Ru / R RuOx ) value of the nuclear hydrogenation reaction catalyst 1 determined as described below, and the pore diameter PS and pore volume PV of the alumina particles of the support.
  • Example 2 and Example 3 The catalyst for nuclear hydrogenation reaction of Example 2 (Example 2) was changed in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the obtained catalyst for nuclear hydrogenation reaction was changed to that shown in Table 1.
  • Product name “HYAc-5E B-type” (manufactured by NE CHEMCAT) and catalyst for nuclear hydrogenation reaction of Example 3 (trade name “HYAc-5E C-type”, manufactured by NE CHEMCAT) Manufactured.
  • Example 4 The catalyst for nuclear hydrogenation reaction of Example 4 (trade name “HYAc-5E F” was used in the same manner as in Example 1 except that the carrier having the pore diameter PS and pore volume PV shown in Table 1 was used as the carrier. -Type ", manufactured by NE CHEMCAT).
  • the amount of the nuclear hydrogenation reaction catalyst used is 0.4 mol% of the raw material diphenylmethane (compound 1 in the reaction formula (1)), and hydrogen gas is supplied so that the pressure becomes 0.2 MPa. While raising the temperature to 50 ° C., the reaction was carried out under the conditions of the temperature rise holding time shown in Table 1.
  • the conversion rate (%) of diphenylmethane was calculated by measuring the content ratio (mass) of diphenylmethane, ⁇ -cyclohexyltoluene and dicyclohexylmethane in the mixed composition after the reaction. It was shown to.
  • the catalyst for nuclear hydrogenation reaction of the present invention has an excellent catalytic activity, and can obtain an excellent conversion rate of a reactant in the nuclear hydrogenation reaction of an aromatic compound. Accordingly, the present invention is a nuclear hydrogenation reaction catalyst that can be applied to the synthesis of epoxy resins, polyamideimide resins, and the like, which are raw materials for high-performance plastic products, and contributes to the development of various industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a catalyst for a nuclear hydrogenation reaction having superior catalytic activity that can give a conversion rate for reaction products superior to conventional ruthenium catalysts in a nuclear hydrogenation reaction for an aromatic compound. Provided is a catalyst for a nuclear hydrogenation reaction used in a nuclear hydrogenation reaction for hydrogenation of at least one π bond of an aromatic ring in an aromatic compound, wherein the catalyst includes a carrier and catalyst particles supported on that carrier. The catalyst particles include Ru (0 valence) and Ru oxide as constituent components. In analyzed areas in the vicinity of the surface measured by x-ray photoelectron spectroscopy (XPS) the proportion RRu (atom%) of Ru (0 valence) and the proportion RRuOx (atom%) of Ru oxide satisfy the conditions in Equation (1). 0.50 ≤ (RRu/RRuOx) ≤ 4.00 ... Equation (1)

Description

核水添反応用触媒Catalyst for nuclear hydrogenation reaction
 本発明は、芳香族化合物の核水添反応に使用される触媒に関する。 The present invention relates to a catalyst used for a nuclear hydrogenation reaction of an aromatic compound.
 従来から、芳香族化合物の核水添反応は、高機能プラスチック製品の原料となるエポキシ樹脂やポリアミドイミド樹脂等を合成するために利用されている。そして、芳香族化合物の核水添反応に使用される触媒としてはルテニウム触媒が知られている。 Conventionally, the nuclear hydrogenation reaction of aromatic compounds has been used to synthesize epoxy resins, polyamideimide resins, and the like, which are raw materials for high-performance plastic products. A ruthenium catalyst is known as a catalyst used in the nuclear hydrogenation reaction of an aromatic compound.
 例えば、特許文献1(特開2009-286747号公報)には、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤として有用なN,N-ジメチルシクロヘキシルアミン類を効率的に経済性良く製造する方法を提供することを目的とし、芳香族化合物をルテニウム触媒等及び水素の存在下で核水添反応させ、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させるN,N-ジメチルシクロへキシルアミン類の製造法が開示されている(特許文献1、[要約])。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-286747) efficiently discloses N, N-dimethylcyclohexylamines that are useful as catalysts for polyurethane foam production, epoxy curing agents, resist stripping agents, and corrosion inhibitors for steel. For the purpose of providing a process for producing a product economically, an aromatic compound is subjected to a nuclear hydrogenation reaction in the presence of a ruthenium catalyst or the like and hydrogen, and the resulting cyclohexyl compound is converted into the above-mentioned noble metal catalyst, formaldehyde derivative and hydrogen. A method for producing N, N-dimethylcyclohexylamines by reductive methylation reaction in the presence is disclosed (Patent Document 1, [Summary]).
 より具体的には、アルミナ(担体)にルテニウムが5%担持されたルテニウム触媒が開示されている(特許文献1、[0032]実施例1及び[0034]実施例2等)。 More specifically, a ruthenium catalyst in which 5% of ruthenium is supported on alumina (support) is disclosed (Patent Document 1, [0032] Example 1 and [0034] Example 2).
特開2009-286747号公報JP 2009-286747 A
 しかしながら、上記のような従来のルテニウム触媒では、芳香族化合物の核水添反応において反応物の転化率をより向上させるという観点からは、未だ改善の余地があることを本発明者らは見出した。 However, the present inventors have found that there is still room for improvement in the conventional ruthenium catalyst as described above from the viewpoint of further improving the conversion rate of the reactant in the nuclear hydrogenation reaction of the aromatic compound. .
 そこで、本発明は、かかる技術的事情に鑑みてなされたものであって、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を有する核水添反応用触媒を提供することを目的とする。 Therefore, the present invention has been made in view of such technical circumstances, and in the nuclear hydrogenation reaction of an aromatic compound, the conversion rate of the reaction product superior to that of a conventional ruthenium catalyst can be obtained. An object of the present invention is to provide a catalyst for nuclear hydrogenation reaction having catalytic activity.
 本件発明者らは、核水添反応に用いられるルテニウム触媒において、担体上に担持される触媒粒子に含まれるルテニウムの状態に着目し、触媒活性の更なる向上を実現する構成について鋭意検討を行った。 In the ruthenium catalyst used in the nuclear hydrogenation reaction, the inventors of the present invention focused on the state of ruthenium contained in the catalyst particles supported on the support, and conducted intensive studies on a configuration that further improves the catalytic activity. It was.
 その結果、X線光電子分光分析法(XPS)により測定されるルテニウム触媒の表面近傍の分析領域におけるRu酸化物の割合RRuOxに対するRu(0価)の割合が下記の条件を満たしていることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。 As a result, the ratio of Ru (zero valence) to the ratio R RuOx in the analysis region near the surface of the ruthenium catalyst measured by X-ray photoelectron spectroscopy (XPS) satisfies the following conditions: The present inventors have found that it is effective for improving the catalytic activity and have completed the present invention.
 より具体的には、本発明は、以下の技術的事項により構成される。
 即ち、本発明は、
 芳香族化合物の芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
 担体と、前記担体上に担持される触媒粒子と、を含んでおり、
 前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、
 X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
核水添反応用触媒を提供する。
 0.50≦(RRu/RRuOx)≦4.00・・・式(1)
More specifically, this invention is comprised by the following technical matters.
That is, the present invention
A nuclear hydrogenation catalyst used in a nuclear hydrogenation reaction for hydrogenating at least one π bond of an aromatic ring of an aromatic compound,
A support, and catalyst particles supported on the support,
The catalyst particles contain Ru (zero valence) and Ru oxide as constituent components,
The ratio R Ru (atom%) of Ru (zero valence) and the ratio R RuOx (atom%) of Ru oxide in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfies the condition of equation (1),
Provided is a catalyst for nuclear hydrogenation reaction.
0.50 ≦ (R Ru / R RuOx ) ≦ 4.00 (1)
 ここで、本発明においては、XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。 Here, in the present invention, the Ru (zero valence) ratio R Ru (atom%) and the Ru oxide ratio R RuOx (atom%) in the analysis region near the surface of the nuclear hydrogenation reaction catalyst observed by XPS. %) Is a numerical value calculated under the condition that the sum of these two components is 100%.
 本発明において、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を発揮することができる。 In the present invention, when the value of (R Ru / R RuOx ) represented by the above formula (1) is 0.50 or more and 4.00 or less, the nuclear hydrogenation reaction catalyst of the present invention is In the nuclear hydrogenation reaction of an aromatic compound, it is possible to exhibit an excellent catalytic activity capable of obtaining a conversion ratio of a reactant superior to that of a conventional ruthenium catalyst.
 本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。即ち、式(1)を満たす構造の核水添反応用触媒は、Ru酸化物に対するRu(0価)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。 The detailed reason why the catalyst for nuclear hydrogenation reaction of the present invention has an excellent catalytic activity has not been sufficiently elucidated, but the present inventors consider as follows. That is, the nuclear hydrogenation reaction catalyst having a structure satisfying the formula (1) has a higher ratio of Ru (0 valence) to Ru oxide than the conventional nuclear hydrogenation reaction catalyst. It is presumed that the activity against the reaction is improved.
 ここで、本発明において、XPSによる測定条件は以下の(A1)~(A5)であるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(後述する図1を参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
Here, in the present invention, the measurement conditions by XPS are the following (A1) to (A5).
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C. (see FIG. 1 described later)
(A3) Charging correction: C1s peak energy is corrected to 284.8 eV (A4) Analysis area: 200 μm
(A5) Chamber pressure during analysis: about 1 × 10 −6 Pa
 また、本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒においては、前記担体がアルミナ担体であることが好ましい。
 更に、本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒においては、前記アルミナ担体について、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであることが好ましい。
In addition, from the viewpoint of more reliably obtaining the effects of the present invention, in the nuclear hydrogenation reaction catalyst of the present invention, the support is preferably an alumina support.
Furthermore, from the viewpoint of more reliably obtaining the effects of the present invention, in the catalyst for nuclear hydrogenation reaction of the present invention, the pore size PS required by the BJH method for the alumina support is 8.00 nm to 12.00 nm. it is preferred pore volume PV obtained by BJH method is 0.250cm 3 /g~0.400cm 3 / g.
 ここで、本発明においては、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。
 また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative  volume of pores between 1.7000 nm and 300.0000 nm diameter)である。
Here, in the present invention, the pore diameter PS is determined from the desorption isotherm, which is the relationship between the relative pressure and the adsorption amount when the adsorbate (gas molecule) is desorbed from the solid surface by the BJH (Barrett, Joyner, Hallender) method. This is the required value (BJH Desorption average pore diameter).
In the present invention, the pore volume PV is also a value determined by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).
 本発明によれば、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を有する核水添反応用触媒が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the nuclear hydrogenation reaction catalyst which has the outstanding catalytic activity which can obtain the conversion ratio of the reaction material superior to the conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound is provided. .
本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the XPS apparatus for demonstrating the analysis conditions of the X-ray photoelectron spectroscopy (XPS) in this invention.
<核水添反応用触媒>
 以下、本発明の核水添反応用触媒の好適な実施形態について詳細に説明する。本発明の水添反応用触媒は核水添反応に使用されるものである。例えば、下記の化学反応式(1)で示される、芳香族化合物であるジフェニルメタン(反応式(1)中の化合物1)の芳香環のπ結合を水素化して、α-シクロヘキシルトルエン(反応式(1)中の化合物2)及びジシクロヘキシルメタン(反応式(1)中の化合物3)に転化する核水添反応に使用することができる。
Figure JPOXMLDOC01-appb-C000001
<Nuclear hydrogenation catalyst>
Hereinafter, preferred embodiments of the catalyst for nuclear hydrogenation reaction of the present invention will be described in detail. The hydrogenation reaction catalyst of the present invention is used for a nuclear hydrogenation reaction. For example, the aromatic ring π bond of diphenylmethane (compound 1 in reaction formula (1)) represented by the following chemical reaction formula (1) is hydrogenated to form α-cyclohexyltoluene (reaction formula (1) It can be used for the nuclear hydrogenation reaction to convert compound 2) in 1) and dicyclohexylmethane (compound 3 in reaction formula (1)).
Figure JPOXMLDOC01-appb-C000001
 本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでおり、前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
 0.50≦(RRu/RRuOx)≦4.00・・・式(1)
The nuclear hydrogenation reaction catalyst of the present invention includes a support and catalyst particles supported on the support, and the catalyst particles include Ru (zero-valent) and Ru oxide as constituent components. In the analysis region in the vicinity of the surface measured by X-ray photoelectron spectroscopy (XPS), Ru (zero valence) ratio R Ru (atom%) and Ru oxide ratio R RuO x (atom%) Satisfies the condition of the following formula (1).
0.50 ≦ (R Ru / R RuOx ) ≦ 4.00 (1)
 本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでいればよく、触媒粒子の担持の形態については特に制限はなく、種々の構造を採り得る。 The catalyst for nuclear hydrogenation reaction of the present invention only needs to contain a support and catalyst particles supported on the support, and there is no particular limitation on the form of support of the catalyst particles, and various structures are adopted. obtain.
(担体)
 担体としては、触媒粒子を担持することができ、かつ表面積が比較的大きいものであれば特に制限されないが、触媒粒子を含んだ溶液中で良好な分散性を有し、不活性であることが好ましい。
(Carrier)
The support is not particularly limited as long as it can support catalyst particles and has a relatively large surface area, but it has good dispersibility in a solution containing catalyst particles and is inert. preferable.
 不活性担体としては、例えば、炭素系材料(カーボン)、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましく、アルミナ(アルミナ担体)が特に好ましい。炭素系材料としては、例えば、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。 As the inert carrier, for example, carbon-based material (carbon), silica, alumina, Syria carmina, magnesia and the like are preferable, and alumina (alumina carrier) is particularly preferable. Examples of the carbon-based material include glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized activated carbon, carbon nanofiber, and carbon nanotube.
 なお、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。 In addition, as the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
 また、上記アルミナ担体については、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであることが好ましい。 As for the alumina support with a pore size PS obtained by BJH method is 8.00nm ~ 12.00nm, a pore volume PV obtained by BJH method 0.250cm 3 /g~0.400cm 3 / g It is preferable that
 ここで、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative  volume of pores between 1.7000 nm and 300.0000 nm diameter)である。 Here, the pore diameter PS is a value obtained from a desorption isotherm (BJH) which is a relationship between a relative pressure and an adsorption amount when an adsorbate (gas molecule) desorbs from a solid surface by the BJH (Barrett, Joyner, Hallender) method. Desorption average pore diameter). In the present invention, the pore volume PV is also a value determined by the BJH method (BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter).
(触媒粒子)
 次に、本発明において上記担体に担持される触媒粒子は、Ru(0価)とRu酸化物とを構成成分として含んでおり、上記のとおり、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている。
 0.50≦(RRu/RRuOx)≦4.00・・・式(1)
(Catalyst particles)
Next, the catalyst particles supported on the carrier in the present invention contain Ru (zero valence) and Ru oxide as constituent components, and are measured by X-ray photoelectron spectroscopy (XPS) as described above. In the analysis region in the vicinity of the surface, the Ru (zero valence) ratio R Ru (atom%) and the Ru oxide ratio R RuOx (atom%) satisfy the condition of the following formula (1).
0.50 ≦ (R Ru / R RuOx ) ≦ 4.00 (1)
 上記担体への上記触媒粒子の担持量は、本発明の効果を損なわない範囲であれば特に限定されるものではなく、本発明の核水添反応用触媒が採用される反応系、反応条件、製造コストなどにより適宜設定される。通常0.5~10質量%程度であればよい。なお、ここでいう担持量とは、式:{触媒粒子の質量/(触媒粒子の質量+担体の質量)}×100で得られる値(率)のことをいう。 The amount of the catalyst particles supported on the carrier is not particularly limited as long as the effects of the present invention are not impaired, and the reaction system, reaction conditions, and the like in which the catalyst for nuclear hydrogenation reaction of the present invention is employed. It is appropriately set depending on the manufacturing cost. Usually, it may be about 0.5 to 10% by mass. Here, the supported amount refers to a value (rate) obtained by the formula: {mass of catalyst particles / (mass of catalyst particles + mass of support)} × 100.
 次に、本発明においては、上記のとおり、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた反応物の転化率を得ることのできる優れた触媒活性を発揮することができる。 Next, in the present invention, as described above, by setting the value of (R Ru / R RuOx ) shown in the above formula (1) to 0.50 or more and 4.00 or less, The catalyst for nuclear hydrogenation reaction can exhibit an excellent catalytic activity capable of obtaining a conversion rate of a reactant superior to that of a conventional ruthenium catalyst in the nuclear hydrogenation reaction of an aromatic compound.
 この(RRu/RRuOx)の値は、X線光電子分光分析法(XPS)により測定される核水添反応用触媒粒子の表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)と、の比であり、Ru(0価)及びRu酸化物の担持割合を示すものである。この(RRu/RRuOx)の値が大きいと、核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより多く存在し、この(RRu/RRuOx)の値が小さいと、核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより少なく存在することを意味する。 The value of (R Ru / R RuOx ) is the ratio R Ru (0 valence) of Ru (zero valence) in the analysis region in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction measured by X-ray photoelectron spectroscopy (XPS). atom%) and the Ru oxide ratio R RuOx (atom%), which indicates the supported ratio of Ru (zero valence) and Ru oxide. When the value of (R Ru / R RuOx ) is large, more Ru (0 valence) is present in the vicinity of the surface of the nuclear hydrogenation reaction catalyst particles than Ru oxide, and this (R Ru / R RuOx ) When the value of is small, it means that there is less Ru (zero valence) in the vicinity of the surface of the nuclear hydrogenation reaction catalyst particles than in the Ru oxide.
 そして、本発明の核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより多く存在すると、詳細なメカニズムは解明されていないが、核水添反応に対する触媒活性が向上するという効果が得られる傾向にある。また逆に、本発明の核水添反応用触媒粒子の表面近傍においてRu(0価)がRu酸化物に比べてより少なく存在すると、核水添反応に対する触媒活性が低下するという効果が得られる傾向にある。本発明では、上記式(1)に示される(RRu/RRuOx)の値が0.50以上で4.00以下となる構成にすることにより、これらの作用効果をバランス良く実現するものである。 If more Ru (zero valent) is present in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction of the present invention than Ru oxide, the detailed mechanism has not been elucidated, but the catalytic activity for the nuclear hydrogenation reaction is not clear. There is a tendency that the effect of improvement is obtained. Conversely, if there is less Ru (zero valence) in the vicinity of the surface of the catalyst particle for nuclear hydrogenation reaction of the present invention than Ru oxide, the effect of reducing the catalytic activity for the nuclear hydrogenation reaction can be obtained. There is a tendency. In the present invention, by providing a configuration in which the value of (R Ru / R RuOx ) shown in the above formula (1) is 0.50 or more and 4.00 or less, these functions and effects are realized in a balanced manner. is there.
 X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
 ここで、(A2)の光電子取出確度θは、図1に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。
X-ray photoelectron spectroscopy (XPS) is carried out under the following analysis conditions (A1) to (A5).
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C.
(A3) Charging correction: C1s peak energy is corrected to 284.8 eV (A4) Analysis area: 200 μm,
(A5) Analysis chamber pressure: about 1 × 10 −6 Pa
Here, the photoelectron extraction accuracy θ of (A2) is, as shown in FIG. 1, the X-ray emitted from the X-ray source 32 is irradiated to the sample set on the sample stage 34 and is emitted from the sample. The angle θ when the photoelectron is received by the spectroscope 36. That is, the photoelectron extraction accuracy θ corresponds to the angle between the light receiving axis of the spectrometer 36 and the surface of the sample layer of the sample stage 34.
<核水添反応用触媒の製造方法>
 本発明の核水添反応用触媒の製造方法は、担体に上記触媒粒子を担持させることができる方法であれば、特に制限されるものではない。
<Method for producing catalyst for nuclear hydrogenation reaction>
The method for producing the catalyst for nuclear hydrogenation reaction of the present invention is not particularly limited as long as the catalyst particles can be supported on a carrier.
 例えば、担体にRu化合物を含有する溶液を接触させ、担体に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、電気化学的析出法、化学還元法、吸着水素による還元析出法等を採用した製造方法を例示することができる。 For example, an impregnation method in which a solution containing a Ru compound is brought into contact with a support and a catalyst component is impregnated in the support, a liquid phase reduction method in which a reducing agent is added to a solution containing the catalyst component, an electrochemical deposition method, a chemical Examples of the production method include a reduction method, a reduction precipitation method using adsorbed hydrogen, and the like.
 ただし、核水添反応用触媒の製造における製造条件は、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たすように調節されている。
 0.50≦(RRu/RRuOx)≦4.00・・・式(1)
However, the production conditions in the production of the catalyst for nuclear hydrogenation reaction are the ratio R Ru (atom%) of Ru (zero valence) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS), The Ru oxide ratio R RuOx (atom%) is adjusted so as to satisfy the condition of the following formula (1).
0.50 ≦ (R Ru / R RuOx ) ≦ 4.00 (1)
 なお、本発明の核水添反応用触媒を、上述した式(1)で示した条件、及び粉末X線回折(XRD)により測定される結晶子サイズの平均値を好ましい条件(好ましくは3~16.0nmに調節する条件など)を満たすように製造する方法は特に限定されない。このような製造方法としては、例えば、生成物(触媒)の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を製造プロセスにフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件などを調製・変更する方法が挙げられる。 Note that the catalyst for nuclear hydrogenation reaction of the present invention has the conditions indicated by the above-mentioned formula (1) and the average value of crystallite size measured by powder X-ray diffraction (XRD) (preferably 3 to There are no particular restrictions on the method for producing the film so as to satisfy the conditions for adjusting to 16.0 nm. As such a production method, for example, the chemical composition and structure of a product (catalyst) are analyzed using various known analysis techniques, and the obtained analysis results are fed back to the production process, and the raw material to be selected and the raw material are selected. And a method of preparing / changing the compounding ratio, the synthesis reaction to be selected, the reaction conditions of the synthesis reaction, and the like.
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
≪実施例1≫
 Ru(0価)とRu酸化物とを含む触媒粒子が担体であるアルミナ(Al)粒子に5質量%の担持率で担持された実施例1の核水添反応用触媒として、商品名「HYAc-5E A-type」、N.E.CHEMCAT社製)を製造した。
 下記のようにして求めた核水添反応用触媒1の(RRu/RRuOx)値、並びに、担体のアルミナ粒子の細孔径PS及び細孔容積PVを表1に示した。
Example 1
As a catalyst for nuclear hydrogenation reaction of Example 1 in which catalyst particles containing Ru (0 valence) and Ru oxide are supported on alumina (Al 2 O 3 ) particles as a support at a support ratio of 5 mass%, The name “HYAc-5E A-type” (manufactured by NE CHEMCAT) was produced.
Table 1 shows the (R Ru / R RuOx ) value of the nuclear hydrogenation reaction catalyst 1 determined as described below, and the pore diameter PS and pore volume PV of the alumina particles of the support.
≪実施例2及び実施例3≫
 得られた核水添反応用触媒における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、実施例2の核水添反応用触媒(商品名「HYAc-5E B-type」、N.E.CHEMCAT社製)及び実施例3の核水添反応用触媒(商品名「HYAc-5E C-type」、N.E.CHEMCAT社製)を製造した。
<< Example 2 and Example 3 >>
The catalyst for nuclear hydrogenation reaction of Example 2 (Example 2) was changed in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the obtained catalyst for nuclear hydrogenation reaction was changed to that shown in Table 1. Product name “HYAc-5E B-type” (manufactured by NE CHEMCAT) and catalyst for nuclear hydrogenation reaction of Example 3 (trade name “HYAc-5E C-type”, manufactured by NE CHEMCAT) Manufactured.
≪実施例4≫
 担体として表1に示した細孔径PS及び細孔容積PVを有する担体を用いた以外は、実施例1と同様にして、実施例4の核水添反応用触媒(商品名「HYAc-5E F-type」、N.E.CHEMCAT社)を製造した。
Example 4
The catalyst for nuclear hydrogenation reaction of Example 4 (trade name “HYAc-5E F” was used in the same manner as in Example 1 except that the carrier having the pore diameter PS and pore volume PV shown in Table 1 was used as the carrier. -Type ", manufactured by NE CHEMCAT).
≪比較例1≫
 用いた触媒粒子における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、比較例1の核水添反応用触媒を製造した。
≪Comparative example 1≫
A nuclear hydrogenation reaction catalyst of Comparative Example 1 was produced in the same manner as in Example 1, except that the value of (R Ru / R RuOx ) in the catalyst particles used was changed to that shown in Table 1.
≪比較例2≫
 用いた触媒粒子における(RRu/RRuOx)の値を表1に示すものに変更した以外は、実施例1と同様にして、比較例2の核水添反応用触媒を製造した。
≪Comparative example 2≫
A nuclear hydrogenation reaction catalyst of Comparative Example 2 was produced in the same manner as in Example 1 except that the value of (R Ru / R RuOx ) in the catalyst particles used was changed to that shown in Table 1.
[評価試験]
 上記の実施例1~4及び比較例1~2で得た核水添反応用触媒を用い、下記の反応式(1)にしたがって、芳香族化合物であるジフェニルメタン(反応式(1)中の化合物1)の芳香環のπ結合を水素化して、α-シクロヘキシルトルエン(反応式(1)中の化合物2)及びジシクロヘキシルメタン(反応式(1)中の化合物3)に転化する核水添反応を行った。
[Evaluation test]
Using the nuclear hydrogenation catalysts obtained in Examples 1 to 4 and Comparative Examples 1 and 2 above, diphenylmethane (a compound in reaction formula (1)) as an aromatic compound according to the following reaction formula (1) 1) Hydrogenation reaction of π bond of aromatic ring and conversion into α-cyclohexyltoluene (compound 2 in reaction formula (1)) and dicyclohexylmethane (compound 3 in reaction formula (1)). went.
 その際、核水添反応用触媒の使用量は、原料であるジフェニルメタン(反応式(1)中の化合物1)の0.4モル%とし、圧力が0.2MPaとなるように水素ガスを供給しながら、温度を50℃に昇温し、表1に示す昇温保持時間の条件で反応させた。
Figure JPOXMLDOC01-appb-C000002
At that time, the amount of the nuclear hydrogenation reaction catalyst used is 0.4 mol% of the raw material diphenylmethane (compound 1 in the reaction formula (1)), and hydrogen gas is supplied so that the pressure becomes 0.2 MPa. While raising the temperature to 50 ° C., the reaction was carried out under the conditions of the temperature rise holding time shown in Table 1.
Figure JPOXMLDOC01-appb-C000002
(1)X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による核水添反応用触媒の表面分析 (1) Surface analysis of nuclear hydrogenation catalyst by X-ray photoelectron spectroscopy (XPS: X-ray photoelectron spectroscopy)
 実施例1~4及び比較例1~2の核水添反応用触媒についてXPSによる表面分析を実施し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを測定し、(RRu/RRuOx)の値を算出した。
 具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図1参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
Surface analysis by XPS was performed on the catalysts for nuclear hydrogenation reactions of Examples 1 to 4 and Comparative Examples 1 to 2, and the Ru (zero valent) ratio R Ru (atom%) and the Ru oxide ratio R RuOx ( atom%), and the value of (R Ru / R RuOx ) was calculated.
Specifically, “Quantera SXM” (manufactured by ULVAC-PHI) was used as an XPS apparatus, and the following analysis conditions were used.
(A1) X-ray source: Monochromatic AlKα
(A2) Photoelectron extraction accuracy: θ = 75 ° C. (see FIG. 1)
(A3) Charging correction: C1s peak energy is corrected to 284.8 eV (A4) Analysis area: 200 μm
(A5) Chamber pressure during analysis: about 1 × 10 −6 Pa
(A6) Measurement depth (escape depth): about 5 nm or less
 分析結果を表1に示した。なお、Ru(0価)の割合RRu(atom%)とRu酸化物の割合RRuOx(atom%)については、これらの2成分で100%となるように算出した。 The analysis results are shown in Table 1. The ratio R Ru (atom%) of Ru (zero valence) and the ratio R RuOx (atom%) of Ru oxide were calculated so that these two components would be 100%.
(2)担持率の測定(ICP分析)
 実施例1~4及び比較例1~2の核水添反応用触媒について、Ru(0価)とRu酸化物とを構成成分として含む触媒粒子の担持率(wt%)を以下の方法で測定した。即ち、核水添反応用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のアルミナを除去した。次に、アルミナを除いた王水をICP分析した。全ての核水添反応用触媒について、触媒粒子の担持率は5%であった。
(2) Measurement of loading rate (ICP analysis)
For the catalysts for nuclear hydrogenation reaction of Examples 1 to 4 and Comparative Examples 1 to 2, the loading ratio (wt%) of catalyst particles containing Ru (zero valence) and Ru oxide as constituent components was measured by the following method. did. That is, the catalyst for nuclear hydrogenation reaction was immersed in aqua regia to dissolve the metal. Next, insoluble component alumina was removed from the aqua regia. Next, aqua regia without alumina was analyzed by ICP. For all the nuclear hydrogenation catalysts, the catalyst particle loading was 5%.
(3)転化率の算出
 反応後の混合組成物におけるジフェニルメタン、α-シクロヘキシルトルエン及びジシクロヘキシルメタンの含有比(質量)を測定することによって、ジフェニルメタンの転化率(%)を算出し、結果を表1に示した。
(3) Calculation of conversion rate The conversion rate (%) of diphenylmethane was calculated by measuring the content ratio (mass) of diphenylmethane, α-cyclohexyltoluene and dicyclohexylmethane in the mixed composition after the reaction. It was shown to.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す結果から、(RRu/RRuOx)の値が先に述べた式(1)を満たす実施例1~4において、従来のルテニウム触媒を用いた比較例1及び比較例2に比べて、ジフェニルメタンの転化率が高く、本発明の核水添反応用触媒の触媒活性が高く、芳香族化合物の核水添反応において優れた反応物の転化率を得ることのできる優れた触媒活性を有することが明らかとなった。 From the results shown in Table 1, in Examples 1 to 4 in which the value of (R Ru / R RuOx ) satisfies the formula (1) described above, compared to Comparative Example 1 and Comparative Example 2 using a conventional ruthenium catalyst, Thus, the conversion rate of diphenylmethane is high, the catalytic activity of the catalyst for nuclear hydrogenation reaction of the present invention is high, and the excellent catalytic activity that can obtain the excellent conversion rate of the reactant in the nuclear hydrogenation reaction of aromatic compounds. It became clear to have.
 本発明の核水添反応用触媒は、優れた触媒活性を有し、芳香族化合物の核水添反応において優れた反応物の転化率を得ることができる。従って、本発明は、高機能プラスチック製品の原料となるエポキシ樹脂やポリアミドイミド樹脂等の合成に適用することができる核水添反応用触媒であり、各種産業の発達に寄与する。

 
The catalyst for nuclear hydrogenation reaction of the present invention has an excellent catalytic activity, and can obtain an excellent conversion rate of a reactant in the nuclear hydrogenation reaction of an aromatic compound. Accordingly, the present invention is a nuclear hydrogenation reaction catalyst that can be applied to the synthesis of epoxy resins, polyamideimide resins, and the like, which are raw materials for high-performance plastic products, and contributes to the development of various industries.

Claims (3)

  1.  芳香族化合物の芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
     担体と、前記担体上に担持される触媒粒子と、を含んでおり、
     前記触媒粒子が、Ru(0価)とRu酸化物とを構成成分として含んでおり、
     X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(1)の条件を満たしている、
    核水添反応用触媒。
     0.50≦(RRu/RRuOx)≦4.00・・・式(1)
    A nuclear hydrogenation catalyst used in a nuclear hydrogenation reaction for hydrogenating at least one π bond of an aromatic ring of an aromatic compound,
    A support, and catalyst particles supported on the support,
    The catalyst particles contain Ru (zero valence) and Ru oxide as constituent components,
    The ratio R Ru (atom%) of Ru (zero valence) and the ratio R RuOx (atom%) of Ru oxide in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are as follows. Satisfies the condition of equation (1),
    Catalyst for nuclear hydrogenation reaction.
    0.50 ≦ (R Ru / R RuOx ) ≦ 4.00 (1)
  2.  前記担体がアルミナ担体である、請求項1に記載の核水添反応用触媒。 The catalyst for nuclear hydrogenation reaction according to claim 1, wherein the support is an alumina support.
  3.  前記アルミナ担体について、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gである、
    請求項1又は2に記載の核水添反応用触媒。

     
    For the alumina carrier, the pore size PS obtained by BJH method is 8.00nm ~ 12.00nm, a pore volume PV obtained by BJH method is 0.250cm 3 /g~0.400cm 3 / g,
    The catalyst for nuclear hydrogenation reaction of Claim 1 or 2.

PCT/JP2018/006392 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction WO2018159436A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019502925A JP7008686B2 (en) 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction
CN201880014213.6A CN110366447A (en) 2017-02-28 2018-02-22 Core hydrogenation catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017036939 2017-02-28
JP2017-036940 2017-02-28
JP2017-036939 2017-02-28
JP2017036940 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159436A1 true WO2018159436A1 (en) 2018-09-07

Family

ID=63371173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006392 WO2018159436A1 (en) 2017-02-28 2018-02-22 Catalyst for nuclear hydrogenation reaction

Country Status (3)

Country Link
JP (1) JP7008686B2 (en)
CN (1) CN110366447A (en)
WO (1) WO2018159436A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655073A (en) * 1992-06-27 1994-03-01 Huels Ag Catalyst and method for selective hydrogenation of unsaturated compound and production of said catalyst
JP2002542210A (en) * 1999-04-15 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating unsubstituted or alkyl-substituted aromatic compounds using macropore-containing catalyst
WO2006006277A1 (en) * 2004-07-09 2006-01-19 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2012041335A (en) * 2010-07-21 2012-03-01 Hokkaido Univ Method of producing sugar alcohol
JP2012507120A (en) * 2008-10-24 2012-03-22 ナノシス・インク. Electrochemical catalyst for fuel cell
JP2015504414A (en) * 2011-10-28 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cis-rose oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1366812B1 (en) * 2002-05-31 2009-02-18 Evonik Degussa GmbH Supported Ruthenium catalyst and process for hydrogenation of aromatic amines in presence of this catalyst
JP5540703B2 (en) * 2007-08-06 2014-07-02 三菱瓦斯化学株式会社 Method for producing nuclear hydrogenated aromatic vinyl compound / (meth) acrylate copolymer
KR102023260B1 (en) * 2014-08-28 2019-09-19 엔.이. 켐캣 가부시키가이샤 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655073A (en) * 1992-06-27 1994-03-01 Huels Ag Catalyst and method for selective hydrogenation of unsaturated compound and production of said catalyst
JP2002542210A (en) * 1999-04-15 2002-12-10 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating unsubstituted or alkyl-substituted aromatic compounds using macropore-containing catalyst
WO2006006277A1 (en) * 2004-07-09 2006-01-19 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production
WO2006114942A1 (en) * 2005-04-21 2006-11-02 Hitachi Maxell, Ltd. Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2012507120A (en) * 2008-10-24 2012-03-22 ナノシス・インク. Electrochemical catalyst for fuel cell
JP2012041335A (en) * 2010-07-21 2012-03-01 Hokkaido Univ Method of producing sugar alcohol
JP2015504414A (en) * 2011-10-28 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cis-rose oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAZZIERI, V. ET AL.: "XP S, FTIR and TPR characterization of Ru/A1203 catalysts", APPLIED SURFACE SCIENCE, vol. 210, no. 3 / 4, 15 April 2003 (2003-04-15), pages 222 - 230, ISSN: 0169-4332 *

Also Published As

Publication number Publication date
JPWO2018159436A1 (en) 2020-03-05
JP7008686B2 (en) 2022-02-10
CN110366447A (en) 2019-10-22

Similar Documents

Publication Publication Date Title
Yang et al. Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction
Concepción et al. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder
Zhang et al. Facile synthesis of graphene nanoplate-supported porous Pt–Cu alloys with high electrocatalytic properties for methanol oxidation
Xiong et al. One‐Step Synthesis of W2C@ N, P‐C Nanocatalysts for Efficient Hydrogen Electrooxidation across the Whole pH Range
Zhong et al. Nanosized nickel (or cobalt)/graphite composites for hydrogen storage
Wang et al. Nickel embedded in N-doped porous carbon for the hydrogenation of nitrobenzene to p-aminophenol in sulphuric acid
Zhang et al. Co, N-codoped porous carbon-supported Co y ZnS with superior activity for nitroarene hydrogenation
WO2017197167A1 (en) Metal-free catalysts for converting carbon dioxide into hydrocarbons and oxygenates
Bozbag et al. Thermodynamic control of metal loading and composition of carbon aerogel supported Pt–Cu alloy nanoparticles by supercritical deposition
US11035053B2 (en) Ruthenium nanoparticles with essentially face-centered cubic structure and method for producing the same
Hu et al. Efficient and Selective Ni/Al 2 O 3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol
US8398894B2 (en) Catalyst for preparing carbon nanotubes by controlling its apparent density
Tian et al. Cu–Mg–Zr/SiO 2 catalyst for the selective hydrogenation of ethylene carbonate to methanol and ethylene glycol
Liu et al. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation
Diercks et al. CO2 Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity
Cattaneo et al. Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation
Wang et al. Efficient catalysts for cyclohexane dehydrogenation synthesized by Mo-promoted growth of 3D block carbon coupled with Mo2C
WO2018159436A1 (en) Catalyst for nuclear hydrogenation reaction
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
JP7059289B2 (en) Catalyst for nuclear hydrogenation reaction
Kern et al. Adsorption of Nickel Ions on Oxygen‐Functionalized Carbons
WO2016140358A1 (en) Catalyst composite body
Ouyang et al. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions
Jiang et al. Effect of ZnO incorporation on Cu–Ni/Al 2 O 3 catalyst for glycerol hydrogenolysis in the absence of added hydrogen
An et al. Amination of Ethylene Glycol to Ethylenediamine Catalyzed by Co‐Cu/γ‐Al2O3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019502925

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18760780

Country of ref document: EP

Kind code of ref document: A1