JP7493918B2 - Optical member with anti-reflection film and method for producing same - Google Patents

Optical member with anti-reflection film and method for producing same Download PDF

Info

Publication number
JP7493918B2
JP7493918B2 JP2019146114A JP2019146114A JP7493918B2 JP 7493918 B2 JP7493918 B2 JP 7493918B2 JP 2019146114 A JP2019146114 A JP 2019146114A JP 2019146114 A JP2019146114 A JP 2019146114A JP 7493918 B2 JP7493918 B2 JP 7493918B2
Authority
JP
Japan
Prior art keywords
refractive index
layer
low refractive
index layer
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146114A
Other languages
Japanese (ja)
Other versions
JP2021026163A (en
JP2021026163A5 (en
Inventor
凡勇 冉
幸一郎 白石
俊治 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2019146114A priority Critical patent/JP7493918B2/en
Priority to CN202080043467.8A priority patent/CN113966409A/en
Priority to PCT/JP2020/028713 priority patent/WO2021024834A1/en
Publication of JP2021026163A publication Critical patent/JP2021026163A/en
Publication of JP2021026163A5 publication Critical patent/JP2021026163A5/ja
Application granted granted Critical
Publication of JP7493918B2 publication Critical patent/JP7493918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、反射防止膜付き光学部材及びその製造方法に関する。 The present invention relates to an optical component with an anti-reflection coating and a method for manufacturing the same.

レンズ等の光学部品では、表面に反射防止膜を設けることが一般的に行われている。反射防止膜は、例えば、特許文献1に記載するように、屈折率の異なる複数の層を積層して形成される。特許文献1では、各層の屈折率を、適宜調整することで、可視光領域から近赤外線領域の屈折率を更に低くでき、反射防止帯域を更に広くすることができるとしている。 It is common for optical components such as lenses to have an anti-reflection coating on their surfaces. For example, as described in Patent Document 1, the anti-reflection coating is formed by laminating multiple layers with different refractive indices. Patent Document 1 claims that by appropriately adjusting the refractive index of each layer, it is possible to further lower the refractive index from the visible light region to the near infrared region, and further widen the anti-reflection band.

特開2004-163549号公報JP 2004-163549 A

特許文献1では、波長域380nm~980nmの反射率を1%以下にできるとしているが、近年のニーズから、反射防止機能を、波長域1000nmまで広くしたいうえ、コートの高温高湿などの信頼性も厳しく要求されている。 Patent Document 1 claims that the reflectance in the wavelength range of 380 nm to 980 nm can be reduced to 1% or less, but in recent years, there has been a demand to expand the anti-reflection function to a wavelength range of 1000 nm, and there are also strict requirements for the reliability of the coating in high temperatures and high humidity.

本発明は、以上の問題意識に基づいてなされたものであり、波長域400nm~1000nmにおいて、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材及びその製造方法を提供することを目的とする。 The present invention was made based on the above-mentioned awareness, and aims to provide an optical component with an anti-reflection coating that has excellent anti-reflection function in the wavelength range of 400 nm to 1000 nm and is highly reliable, as well as a manufacturing method thereof.

本発明は、基材の表面に、反射防止膜が形成された反射防止膜付き光学部材であって、前記基材は、ガラスレンズであり、前記反射防止膜は、低屈折率層と高屈折率層とが交互に積層されており、記低屈折率層と前記高屈折率層とを合わせた総数が、11層~15層であり、前記反射防止膜の最表面層は、前記低屈折率層としてのMgFの単層であり、前記最表面層以外の前記低屈折率層は、密度が、2.158g/cm 以上2.174g/cm 以下であり、400nm以上1000nm以下の波長域での分光反射率が、1%以下である、ことを特徴とする The present invention is an optical member with an antireflection film, in which an antireflection film is formed on a surface of a substrate, the substrate being a glass lens, the antireflection film being formed by alternately laminating low refractive index layers and high refractive index layers, the total number of the low refractive index layers and the high refractive index layers being 11 to 15 layers, the outermost layer of the antireflection film being a single layer of MgF2 as the low refractive index layer , the low refractive index layers other than the outermost layer having a density of 2.158 g/cm3 or more and 2.174 g/cm3 or less, and a spectral reflectance in a wavelength range of 400 nm or more and 1000 nm or less being 1% or less .

本発明では、前記最表面層以外の前記低屈折率層の屈折率(波長550nm)は、1.4425~1.4525であることが好ましい。 In the present invention, the refractive index (wavelength 550 nm) of the low refractive index layer other than the outermost layer is preferably 1.4425 to 1.4525 .

本発明では、前記最表面層以外の前記低屈折率層は、SiOの単層又はSiOを含む混合層で形成されることが好ましい。 In the present invention, the low refractive index layers other than the outermost surface layer are preferably formed of a single layer of SiO 2 or a mixed layer containing SiO 2 .

本発明は、基材の表面に、低屈折率層と高屈折率層とを交互に積層して反射防止膜を成膜する反射防止膜付き光学部材の製造方法であって、前記基材は、ガラスレンズであり、前記低屈折率層を、イオンアシスト蒸着法を用いずに蒸着により成膜し、前記高屈折率層を、イオンアシスト蒸着法により成膜し、記低屈折率層と前記高屈折率層とを合わせた総数を、11層~15層とし、前記反射防止膜の最表面層を、前記低屈折率層としてのMgFの単層で形成し、前記最表面層以外の前記低屈折率層の密度を、2.158g/cm 以上2.174g/cm 以下で調整し、400nm以上1000nm以下の波長域での分光反射率を、1%以下とした、ことを特徴とする。 The present invention is a method for manufacturing an optical member with an antireflection film, which comprises alternately laminating low and high refractive index layers on a surface of a substrate to form an antireflection film, the substrate being a glass lens, the low refractive index layer being formed by deposition without using an ion-assisted deposition method, the high refractive index layer being formed by an ion-assisted deposition method, the total number of the low refractive index layers and the high refractive index layers being 11 to 15, the outermost layer of the antireflection film being formed of a single layer of MgF2 as the low refractive index layer , the density of the low refractive index layer other than the outermost layer being adjusted to 2.158 g/cm3 or more and 2.174 g/cm3 or less, and the spectral reflectance in a wavelength range of 400 nm or more and 1000 nm or less being 1% or less.

本発明では、前記最表面層以外の前記低屈折率層を成膜する際の成膜時圧力を、1.5×10 -2 Pa以上3.2×10 -2 Pa以下の範囲で調整することが好ましい。 In the present invention, the pressure during deposition of the low refractive index layers other than the outermost layer is preferably adjusted within the range of 1.5×10 −2 Pa to 3.2×10 −2 Pa.

本発明では、前記最表面層以外の前記低屈折率層の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることが好ましい。 In the present invention, it is preferable to use a simple substance of SiO 2 or a mixture containing SiO 2 as an evaporation material for the low refractive index layers other than the outermost layer .

本発明によれば、波長域400nm~1000nmにおいて、分光反射率を1%以下に抑えることができる。 According to the present invention, the spectral reflectance can be suppressed to 1% or less in the wavelength range of 400 nm to 1000 nm.

本実施形態の反射防止膜付き光学部材の模式図である。1 is a schematic diagram of an anti-reflection coated optical member according to an embodiment of the present invention. 本実施形態の反射防止膜付き光学部材の部分拡大模式図である。1 is a partially enlarged schematic view of an antireflection-coated optical member according to an embodiment of the present invention. 実施例1~実施例3、及び比較例の波長と分光反射率Rとの関係を示すグラフである。1 is a graph showing the relationship between wavelength and spectral reflectance R for Examples 1 to 3 and a comparative example.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、以下では、「~」を使用する場合があるが、その下限値及び上限値は、いずれも含むものとする。 The following is a detailed description of an embodiment of the present invention (hereinafter, simply referred to as "this embodiment"). Note that in the following, "~" may be used, but this includes both the lower limit and the upper limit.

<反射防止膜付き光学部材>
本発明者らは、反射防止膜付き光学部材の反射防止機能を鋭意研究した結果、低屈折率層の密度を調節することで、波長域400nm~1000nmにおいて、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材を開発するに至った。すなわち、本実施形態の反射防止膜付き光学部材は、反射防止膜が、低屈折率層と高屈折率層との積層構造であり、低屈折率層の密度が、2.1g/cm以上2.2g/cm以下であることを特徴とする。
<Optical member with anti-reflection film>
As a result of extensive research into the antireflection function of antireflection-coated optical members, the inventors have developed an antireflection-coated optical member that has excellent antireflection function and high reliability in the wavelength range of 400 nm to 1000 nm by adjusting the density of the low refractive index layer. That is, the antireflection-coated optical member of this embodiment is characterized in that the antireflection film has a laminated structure of a low refractive index layer and a high refractive index layer, and the density of the low refractive index layer is 2.1 g/ cm3 or more and 2.2 g/ cm3 or less.

図1は、本実施形態の反射防止膜付き光学部材の模式図である。図1に示す反射防止膜付き光学部材1は、基材2と、基材2の表面2aに形成された反射防止膜3と、を有して構成される。 Figure 1 is a schematic diagram of an optical component with an anti-reflection coating according to this embodiment. The optical component with an anti-reflection coating 1 shown in Figure 1 is composed of a substrate 2 and an anti-reflection coating 3 formed on a surface 2a of the substrate 2.

基材2は、ガラスやプラスチック等であり、特に、ガラスであることが好ましい。特に限定されるものでないが、基材2は、例えば、監視カメラや車載カメラ用のガラスレンズである。また、反射防止膜3が成膜される基材2の表面は、例えば、非球面である。図1の基材2は、例えば、負のパワーを有するメニスカスレンズであるが、正のパワーを有するメニスカスレンズであってもよいし、両凸レンズあるいは両凹レンズ等でもよい。 The substrate 2 is made of glass, plastic, or the like, and is preferably made of glass. Although not particularly limited, the substrate 2 is, for example, a glass lens for a surveillance camera or an in-vehicle camera. The surface of the substrate 2 on which the anti-reflection film 3 is formed is, for example, aspheric. The substrate 2 in FIG. 1 is, for example, a meniscus lens with negative power, but it may also be a meniscus lens with positive power, or a biconvex lens or a biconcave lens, etc.

図1では、反射防止膜3は、基材2の表面2aに成膜されるが、表面2a、2bの双方に形成されてもよい。
以下、反射防止膜3について、更に詳しく説明する。
In FIG. 1, the anti-reflection coating 3 is formed on the surface 2a of the substrate 2, but it may be formed on both the surfaces 2a and 2b.
The anti-reflection film 3 will be described in more detail below.

<反射防止膜>
図2に示すように、本実施形態の反射防止膜3は、基材2の表面(光学面)から、低屈折率層4と高屈折率層5とが交互に積層され、最上層が、外気と触れる最表面層6となっている。
<Anti-reflection coating>
As shown in FIG. 2 , the antireflection coating 3 of the present embodiment is formed by alternately laminating low refractive index layers 4 and high refractive index layers 5 from the surface (optical surface) of the substrate 2, with the uppermost layer being an outermost layer 6 that comes into contact with the outside air.

各低屈折率層4は、各高屈折率層5よりも屈折率が低い。一方、高屈折率層5は、基材2の屈折率より高くてもよい。また、反射防止膜3は、基材2単体の場合よりも反射率が低くなるように調整される。 Each low-refractive index layer 4 has a lower refractive index than each high-refractive index layer 5. On the other hand, the high-refractive index layer 5 may have a higher refractive index than the substrate 2. In addition, the anti-reflection film 3 is adjusted so that it has a lower reflectance than the substrate 2 alone.

低屈折率層4の密度は、2.1g/cm以上2.2g/cm以下である。密度範囲の上限を上回ると所望の低屈折率が得られず(屈折率が高くなりすぎる)、下限を下回ると空隙が多くなる。空隙が多くなりすぎると空隙に水分が入って膜の特性に影響を及ぼしたり、空隙のために膜の密着性が低下する。また、低屈折率層4の密度は、2.132g/cm以上2.199g/cm以下であることが好ましく、2.132g/cm以上2.191g/cm以下であることがより好ましく、2.158g/cm以上2.174g/cm以下であることが更に好ましい。 The density of the low refractive index layer 4 is 2.1 g/cm 3 or more and 2.2 g/cm 3 or less. If the density exceeds the upper limit of the density range, the desired low refractive index cannot be obtained (the refractive index becomes too high), and if the density is below the lower limit, the number of voids increases. If the number of voids increases too much, moisture enters the voids, affecting the properties of the film, or the adhesion of the film decreases due to the voids. In addition, the density of the low refractive index layer 4 is preferably 2.132 g/cm 3 or more and 2.199 g/cm 3 or less, more preferably 2.132 g/cm 3 or more and 2.191 g/cm 3 or less, and even more preferably 2.158 g/cm 3 or more and 2.174 g/cm 3 or less.

本実施の形態では、後述するように、低屈折率層4を蒸着法にて成膜する際、イオンアシスト蒸着(Ion Assisted Deposition:IAD)法を用いない。一方、高屈折率層5を蒸着法にて成膜する際、イオンアシスト蒸着法を用いる。これにより、低屈折率層4の密度を、上記範囲内に低くすることが可能である。なお、高屈折率層5の密度は、イオンアシスト蒸着法を用いることで、イオンアシスト蒸着法を用いない場合と比べて、高くなる。 In this embodiment, as described below, when forming the low refractive index layer 4 by a vapor deposition method, the ion assisted deposition (IAD) method is not used. On the other hand, when forming the high refractive index layer 5 by a vapor deposition method, the ion assisted deposition method is used. This makes it possible to reduce the density of the low refractive index layer 4 to within the above range. Note that the density of the high refractive index layer 5 is higher when the ion assisted deposition method is used than when the ion assisted deposition method is not used.

本実施の形態では、低屈折率層4を比較的低い密度に調整することができ、これにより、低屈折率層4の屈折率を、小さくすることができる。具体的には、低屈折率層4の屈折率(波長550nm)は、1.41以上1.47以下であり、好ましくは、1.4245以上1.469以下であり、より好ましくは、1.4245以上1.464以下であり、更に好ましくは、1.4425以上1.4525以下である。 In this embodiment, the low refractive index layer 4 can be adjusted to a relatively low density, thereby making it possible to reduce the refractive index of the low refractive index layer 4. Specifically, the refractive index of the low refractive index layer 4 (wavelength 550 nm) is 1.41 or more and 1.47 or less, preferably 1.4245 or more and 1.469 or less, more preferably 1.4245 or more and 1.464 or less, and even more preferably 1.4425 or more and 1.4525 or less.

このように、低屈折率層4の密度及び屈折率を、上記範囲内に低く抑えることで、400nm以上1000nm以下の波長域での分光反射率を、1%以下に抑えることできる。本実施の形態では、波長410nm~430nmの分光反射率を、0.8%以下とすることができる。また、本実施の形態では、好ましくは、波長480nm~600nmの分光反射率を、0.5以下にでき、更に、波長650nm~1000nmの分光反射率を、0.8以下にすることが可能である。 In this way, by keeping the density and refractive index of the low refractive index layer 4 low within the above range, the spectral reflectance in the wavelength range of 400 nm to 1000 nm can be kept to 1% or less. In this embodiment, the spectral reflectance in the wavelength range of 410 nm to 430 nm can be kept to 0.8% or less. In this embodiment, the spectral reflectance in the wavelength range of 480 nm to 600 nm can preferably be kept to 0.5 or less, and further, the spectral reflectance in the wavelength range of 650 nm to 1000 nm can be kept to 0.8 or less.

本実施の形態では、低屈折率層4と高屈折率層5とを合わせた総数を限定するものでないが、好ましくは、9層~19層程度であり、より好ましくは、11層~15層である。層数を増やすことで、分光反射率が、1%以下となる波長域を広げることができるが、低屈折率層4を、イオンアシスト蒸着法を用いて成膜すると、1%以下の分光反射率となる波長域を、波長1000nmまで広げられないことが後述の実験によりわかっている。そこで、本発明者らは、低屈折率層4を、イオンアシスト蒸着法を用いずに成膜し、低屈折率層4の密度を従来より低減させることで、1%以下の分光反射率となる波長域を、波長1000nmまで広げることに成功している。 In this embodiment, the total number of low-refractive index layers 4 and high-refractive index layers 5 is not limited, but is preferably about 9 to 19 layers, and more preferably 11 to 15 layers. By increasing the number of layers, the wavelength range in which the spectral reflectance is 1% or less can be expanded. However, it has been found from the experiment described below that if the low-refractive index layer 4 is formed using the ion-assisted deposition method, the wavelength range in which the spectral reflectance is 1% or less cannot be expanded to a wavelength of 1000 nm. Therefore, the inventors have succeeded in expanding the wavelength range in which the spectral reflectance is 1% or less to a wavelength of 1000 nm by forming the low-refractive index layer 4 without using the ion-assisted deposition method and reducing the density of the low-refractive index layer 4 compared to conventional methods.

また、図1では、基材2の表面と接する最下層に低屈折率層4を用いたが、基材2との密着性の観点から、最下層を適宜選択することができる。すなわち、最下層として、低屈折率層4を用いるか否かは任意である。 In addition, in FIG. 1, a low refractive index layer 4 is used as the bottom layer that contacts the surface of the substrate 2, but the bottom layer can be appropriately selected from the viewpoint of adhesion to the substrate 2. In other words, it is optional whether or not to use a low refractive index layer 4 as the bottom layer.

次に、低屈折率層4及び高屈折率層5の好ましい材質について説明する。
本実施形態では、低屈折率層4は、SiOの単層又はSiOを含む混合層で形成されることが好ましい。反射防止膜3に積層される複数の低屈折率層4の材質は、同一であっても異なっていてもよい。
Next, preferred materials for the low refractive index layer 4 and the high refractive index layer 5 will be described.
In this embodiment, the low refractive index layer 4 is preferably formed of a single layer of SiO 2 or a mixed layer containing SiO 2. The materials of the multiple low refractive index layers 4 laminated on the antireflection film 3 may be the same or different.

また、本実施形態では、高屈折率層5は、ZrO(xは、1.5~2)、TiO(xは、1~2)、TaO(xは、2~2.5)、及び、NbO(xは、2~2.5)から選択される単層又は2種以上を含む混合層で形成されることが好ましい。ZrOには、ZrO、TiOには、Ti、Ti、TaOには、Ta、NbOには、Nbを用いることが好ましい。上記した金属酸化物は、化学量論組成でなくても、酸素の組成比率が上記xの範囲であればよい。 In this embodiment, the high refractive index layer 5 is preferably formed of a single layer or a mixed layer containing two or more selected from ZrO x (x is 1.5 to 2), TiO x (x is 1 to 2), TaO x (x is 2 to 2.5), and NbO x (x is 2 to 2.5). It is preferable to use ZrO 2 for ZrO x , Ti 3 O 5 or Ti 2 O 5 for TiO x , Ta 2 O 5 for TaO x , and Nb 2 O 5 for NbO x . The above metal oxides do not need to have a stoichiometric composition, as long as the composition ratio of oxygen is within the above range of x.

反射防止膜3内に積層される複数の高屈折率層5の材質は、同一であっても異なっていてもよい。 The materials of the multiple high refractive index layers 5 stacked within the anti-reflection film 3 may be the same or different.

また、本実施の形態では、反射防止膜3の最表面層6は、MgFの単層、SiOの単層、又は、MgF及びSiOの少なくとも一方を含む混合層であることが好ましい。最表面層6は、低屈折率層4と高屈折率層5とが積層された反射防止膜3の反射率を所定値内に抑えるための調整層である。すなわち、低屈折率層4と高屈折率層5の最上層として最表面層6を設けて、反射率を適正化することができる。例えば、低屈折率層4としてSiOを用い、高屈折率層5としてTaを用いた構成では、最表面層6にMgFを用いることが、反射率の調整の観点から好適である。以下の表1に示すように、MgFの屈折率は、SiOより低くすることができる。 In addition, in this embodiment, the outermost layer 6 of the anti-reflection film 3 is preferably a single layer of MgF 2 , a single layer of SiO 2 , or a mixed layer containing at least one of MgF 2 and SiO 2. The outermost layer 6 is an adjustment layer for suppressing the reflectance of the anti-reflection film 3 in which the low refractive index layer 4 and the high refractive index layer 5 are laminated to within a predetermined value. That is, the outermost layer 6 is provided as the uppermost layer of the low refractive index layer 4 and the high refractive index layer 5, so that the reflectance can be optimized. For example, in a configuration in which SiO 2 is used as the low refractive index layer 4 and Ta 2 O 5 is used as the high refractive index layer 5, it is preferable to use MgF 2 for the outermost layer 6 from the viewpoint of adjusting the reflectance. As shown in Table 1 below, the refractive index of MgF 2 can be lower than that of SiO 2 .

Figure 0007493918000001
Figure 0007493918000001

なお、膜密度は、蒸発材の屈折率と密度とを使用し、下記の式(1)を用いて計算した。
膜密度=(膜の屈折率/蒸発材の屈折率)×蒸発材の理論密度 (1)
The film density was calculated using the refractive index and density of the evaporation material according to the following formula (1).
Film density = (refractive index of film / refractive index of evaporating material) x theoretical density of evaporating material (1)

表1に示すように、屈折率は、MgF<SiOであるが、本実施の形態では、信頼性や各層間の密着性の観点から、低屈折率層4には、MgFよりSiOを用いることが好ましく、反射防止膜3の反射率の調整層として、最表面層6にMgFを用いることが好適である。 As shown in Table 1, the refractive index is MgF2 < SiO2 . In this embodiment, however, from the viewpoints of reliability and adhesion between each layer, it is preferable to use SiO2 rather than MgF2 for the low refractive index layer 4, and it is preferable to use MgF2 for the outermost surface layer 6 as an adjustment layer for the reflectance of the antireflection film 3.

<反射防止膜付き光学部材の製造方法>
図2に示す本実施形態の反射防止膜付き光学部材の製造方法について説明する。
本実施形態では、基材2の表面に、低屈折率層4と高屈折率層5とを交互に積層し、反射防止膜3を形成する。
<Method of manufacturing an optical member with an anti-reflection film>
A method for producing the anti-reflection coated optical member of this embodiment shown in FIG. 2 will be described.
In this embodiment, the anti-reflection film 3 is formed by alternately laminating low refractive index layers 4 and high refractive index layers 5 on the surface of the substrate 2 .

このとき、低屈折率層4を、イオンアシスト蒸着法を用いずに蒸着により成膜し、高屈折率層5を、イオンアシスト蒸着法により成膜する。 At this time, the low refractive index layer 4 is formed by deposition without using the ion-assisted deposition method, and the high refractive index layer 5 is formed by the ion-assisted deposition method.

これにより、低屈折率層4を、低い密度で成膜でき、高屈折率層5を、高い密度で成膜することができる。ここで、「高い密度」、「低い密度」とは、各層において、イオンアシスト蒸着法の適用有無により比較された密度を意味する。 This allows the low refractive index layer 4 to be formed at a low density, and the high refractive index layer 5 to be formed at a high density. Here, "high density" and "low density" refer to the density of each layer compared with the application of the ion-assisted deposition method.

低屈折率層4を蒸着する際の雰囲気を制限するものではないが、例えば、酸素、アルゴン、或いは、窒素単体、又は、これらの混合雰囲気であることが好ましい。 There is no limitation on the atmosphere in which the low refractive index layer 4 is deposited, but it is preferable to use, for example, an atmosphere of oxygen, argon, or nitrogen alone, or a mixture of these.

また、本実施の形態では、低屈折率層4を成膜する際の成膜時圧力を、3×10-3Pa~8×10-2Paの範囲で調整することが好ましい。成膜時圧力を、3×10-3Pa~5.8×10-2Paとすることがより好ましく、7.8×10-3Pa~5.8×10-2Paとすることが更に好ましく、1.5×10-2Pa~3.2×10-2Paとすることが更により好ましい。 In this embodiment, the deposition pressure when depositing the low refractive index layer 4 is preferably adjusted in the range of 3×10 −3 Pa to 8×10 −2 Pa. The deposition pressure is more preferably set to 3×10 −3 Pa to 5.8×10 −2 Pa, even more preferably set to 7.8×10 −3 Pa to 5.8×10 −2 Pa, and even more preferably set to 1.5×10 −2 Pa to 3.2×10 −2 Pa.

これにより、成膜された低屈折率層4の密度を、2.1g/cm以上2.2g/cm以下、好ましくは、2.132g/cm~2.199g/cm、より好ましくは、2.132g/cm~2.191g/cm、更に好ましくは、2.158g/cm~2.174g/cmとすることができる。 This allows the density of the formed low refractive index layer 4 to be 2.1 g/cm 3 or more and 2.2 g/cm 3 or less, preferably 2.132 g/cm 3 to 2.199 g/cm 3 , more preferably 2.132 g/cm 3 to 2.191 g/cm 3 , and even more preferably 2.158 g/cm 3 to 2.174 g/cm 3 .

本実施形態では、低屈折率層4の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることが好ましい。 In this embodiment, it is preferable to use, as the evaporation material of the low refractive index layer 4, a simple substance of SiO 2 or a mixture containing SiO 2 .

また、本実施形態では、高屈折率層5の蒸発材料として、ZrO、Ti、Ta、及び、Nbから選択される単体又は2種以上を含む混合材を用いることが好ましい。 In this embodiment, it is preferable to use, as the evaporation material of the high refractive index layer 5, a single material selected from ZrO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 or a mixture containing two or more of them.

また、本実施の形態では、最表面層6の蒸発材料として、MgF、及び、SiOから選択される単体又は2種以上を含む混合材を用いることが好ましい。最表面層6の蒸発材料として、MgFを選択することが好ましい。 In the present embodiment, it is preferable to use a single material selected from MgF2 and SiO2 or a mixture containing two or more of them as the evaporation material of the outermost surface layer 6. It is preferable to select MgF2 as the evaporation material of the outermost surface layer 6.

以上、詳述した本実施の形態の反射防止膜付き光学部材1によれば、低屈折率層4の密度を下げることができ、屈折率を低下させることができる。そして、本実施の形態では、波長域400nm~1000nmにおいて、分光反射率を1%以下に抑えることができる。また、本実施の形態の反射防止膜付き光学部材1によれば、各層の密着性に優れるとともに、高温多湿の環境下においても、剥離やクラックが生じにくく、高い信頼性を得ることができる。 As described above, the optical member 1 with anti-reflection coating of this embodiment can reduce the density of the low refractive index layer 4, thereby lowering the refractive index. In this embodiment, the spectral reflectance can be suppressed to 1% or less in the wavelength range of 400 nm to 1000 nm. Furthermore, the optical member 1 with anti-reflection coating of this embodiment has excellent adhesion between the layers, and is less susceptible to peeling or cracking even in high temperature and high humidity environments, providing high reliability.

また、本実施の形態の反射防止膜付き光学部材1の製造方法によれば、低屈折率層4及び高屈折率層5を成膜するに際し、イオンアシスト蒸着法の適用の有無を制御することで、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材1を簡単に製造できる。 In addition, according to the manufacturing method of the optical component 1 with an anti-reflection film of this embodiment, by controlling whether or not to apply the ion-assisted deposition method when forming the low refractive index layer 4 and the high refractive index layer 5, it is possible to easily manufacture an optical component 1 with an anti-reflection film that has excellent anti-reflection function and high reliability.

また、本実施の形態では低屈折率層を、イオンアシスト蒸着せずに成膜するため、反射防止膜3を成膜するに際し、イオンガンの使用時間を減少することができ、したがって、成膜中の温度変化を小さくすることができる。これにより、成膜された反射防止膜3の光反射特性のばらつきを小さくすることが可能である。 In addition, in this embodiment, the low refractive index layer is formed without ion-assisted deposition, so the time the ion gun is used to form the anti-reflective coating 3 can be reduced, and the temperature change during film formation can be reduced. This makes it possible to reduce the variation in the light reflection characteristics of the formed anti-reflective coating 3.

以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。実験では、以下に示す実施例1から実施例3及び比較例を製造した。 Hereinafter, this embodiment will be described in more detail using examples and comparative examples. In the experiment, examples 1 to 3 and a comparative example shown below were produced.

[実施例1~実施例3]
実施例1~実施例3では、以下の表2に示す材料を用い、比較例では、以下の表3に示す材料を用い、表2、表3に示すSiOを低屈折率層、Taを高屈折率層、MgFを最表面層として成膜し、反射防止膜を得た。なお、基材は、BACD14ガラス(HOYA(株)製)を用いて成形したレンズである。
[Examples 1 to 3]
In Examples 1 to 3, the materials shown in Table 2 below were used, and in the Comparative Example, the materials shown in Table 3 below were used, and antireflection coatings were obtained by depositing SiO2 as a low refractive index layer, Ta2O5 as a high refractive index layer, and MgF2 as an outermost surface layer, as shown in Tables 2 and 3. The substrate was a lens molded using BACD14 glass (manufactured by HOYA Corporation).

Figure 0007493918000002
Figure 0007493918000002

Figure 0007493918000003
Figure 0007493918000003

表2に示す実施例1から実施例3では、低屈折率層を成膜する際、真空蒸着法にて、イオンアシスト蒸着なしで成膜した。表2に示すように、実施例1では、SiOの密度を、2.191g/cm、実施例2では、SiOの密度を、2.158g/cm、実施例3では、SiOの密度を、2.132g/cmとした。これらの密度を得るための真空蒸着における成膜時圧力は、以下の表4に示されている。表4に示すように、成膜時圧力を変えることで、密度を変化させることができる。 In Examples 1 to 3 shown in Table 2, the low refractive index layer was formed by vacuum deposition without ion-assisted deposition. As shown in Table 2, the density of SiO2 was 2.191 g/ cm3 in Example 1, 2.158 g/ cm3 in Example 2 , and 2.132 g/ cm3 in Example 3. The deposition pressure in vacuum deposition to obtain these densities is shown in Table 4 below. As shown in Table 4, the density can be changed by changing the deposition pressure.

Figure 0007493918000004
Figure 0007493918000004

一方、比較例では、SiOを、イオンアシスト蒸着法にて成膜した。表4に示す「IADあり」のデータは、比較例に適用される。 On the other hand, in the comparative example, SiO2 was deposited by ion-assisted deposition. The data for "with IAD" shown in Table 4 applies to the comparative example.

実施例1から実施例3及び比較例を用いて、波長と反射率との関係を調べた。反射率は、オリンパス(株)製の顕微鏡型分光測定機(USPM―RUIII)により測定した。実験では、入射角を0°とした入射光線の分光反射率を測定した。 The relationship between wavelength and reflectance was investigated using Examples 1 to 3 and the Comparative Example. The reflectance was measured using a microscope-type spectrometer (USPM-RUIII) manufactured by Olympus Corporation. In the experiment, the spectral reflectance of the incident light was measured with an incident angle of 0°.

図3は、実施例1~実施例3及び比較例における波長と反射率との関係を示すグラフである。 Figure 3 is a graph showing the relationship between wavelength and reflectance in Examples 1 to 3 and the Comparative Example.

図3に示すように、実施例1~実施例3は、比較例に比べて、1%以下となる分光反射率Rの波長域を広げることができるとわかった。具体的には、実施例では、400nm~1000nmの波長域にて、分光反射率を1%以下にできるとわかった。また実施例では、波長480nm~600nmの分光反射率を、0.5以下にでき、更に、波長650nm~1000nmの分光反射率を、0.8以下にできることがわかった。 As shown in Figure 3, it was found that in Examples 1 to 3, the wavelength range of the spectral reflectance R of 1% or less can be expanded compared to the comparative example. Specifically, it was found that in the examples, the spectral reflectance can be made 1% or less in the wavelength range of 400 nm to 1000 nm. It was also found that in the examples, the spectral reflectance can be made 0.5 or less in the wavelength range of 480 nm to 600 nm, and further, the spectral reflectance can be made 0.8 or less in the wavelength range of 650 nm to 1000 nm.

表4の実験結果に基づいて、好ましい成膜時圧力、密度及び屈折率を求めた。すなわち、表4に示すように、SiOを、イオンアシスト蒸着なしで成膜したとき、成膜時圧力を8.2×10-2Paとすると、密度は、2.098とかなり小さくなり、低屈折率層に空孔が生じやすいことがわかった。このため、表4の実験結果により、成膜時圧力を、3×10-3Pa~8×10-2Pa、好ましくは、3×10-3Pa~5.8×10-2Pa、より好ましくは、7.8×10-3Pa~5.8×10-2Pa、更に好ましくは、1.5×10-2Pa~3.2×10-2Paとした。 Based on the experimental results in Table 4, the preferred film formation pressure, density, and refractive index were determined. That is, as shown in Table 4, when SiO 2 is formed without ion-assisted deposition, if the film formation pressure is 8.2×10 −2 Pa, the density becomes quite small at 2.098, and it was found that voids are likely to occur in the low refractive index layer. Therefore, based on the experimental results in Table 4, the film formation pressure is set to 3×10 −3 Pa to 8×10 −2 Pa, preferably 3×10 −3 Pa to 5.8×10 −2 Pa, more preferably 7.8×10 −3 Pa to 5.8×10 −2 Pa, and even more preferably 1.5×10 −2 Pa to 3.2×10 −2 Pa.

また、低屈折率層の密度は、2.1g/cm~2.2g/cmとし、好ましくは、2.132g/cm~2.199g/cmとし、より好ましくは、2.132g/cm~2.191g/cmとし、更に好ましくは、2.158g/cm~2.174g/cmとした。 The density of the low refractive index layer is 2.1 g/cm 3 to 2.2 g/cm 3 , preferably 2.132 g/cm 3 to 2.199 g/cm 3 , more preferably 2.132 g/cm 3 to 2.191 g/cm 3 , and even more preferably 2.158 g/cm 3 to 2.174 g/cm 3 .

また、低屈折率層の屈折率(波長550nm)は、1.41~1.47とし、好ましくは、1.4245~1.469とし、より好ましくは、1.4245~1.4640とし、更に好ましくは、1.4425~1.4525とした。 The refractive index of the low refractive index layer (wavelength 550 nm) is 1.41 to 1.47, preferably 1.4245 to 1.469, more preferably 1.4245 to 1.4640, and even more preferably 1.4425 to 1.4525.

また、比較例のように、SiO(低屈折率層)を、イオンアシスト蒸着法により成膜する場合、イオンガンの輻射熱により、成膜中の基材は加熱されて、成膜中の温度変化が大きくなることがわかった。一方、本実施例のように、SiO(低屈折率層)を、イオンアシスト蒸着せずに成膜する場合、イオンガンの使用時間を減少することができ、したがって、成膜中の温度変化を小さくすることができるとわかった。本実施例のように、成膜中の温度変化を小さくできることで、成膜された反射防止膜の特性ばらつきを小さくすることができるとわかった。 In addition, it was found that, when SiO 2 (low refractive index layer) is formed by ion-assisted deposition as in the comparative example, the substrate is heated by the radiant heat of the ion gun during film formation, and the temperature change during film formation becomes large. On the other hand, it was found that, when SiO 2 (low refractive index layer) is formed without ion-assisted deposition as in this embodiment, the use time of the ion gun can be reduced, and therefore the temperature change during film formation can be reduced. It was found that, by reducing the temperature change during film formation as in this embodiment, the characteristic variation of the formed anti-reflection film can be reduced.

次に、実施例2を用いて、高温多湿試験を行った。実験条件は、温度60°、湿度90%、実験時間240時間とした。試験後、剥離やクラック等の外観異常は見られなかった。これにより、高信頼性の反射防止膜付き光学部材を得ることができた。 Next, a high temperature and humidity test was conducted using Example 2. The experimental conditions were a temperature of 60°, humidity of 90%, and an experimental time of 240 hours. After the test, no abnormalities in appearance such as peeling or cracks were observed. As a result, a highly reliable optical component with an anti-reflection film was obtained.

本発明の反射防止膜付き光学部材を、車載カメラ用等のガラスレンズに好ましく適用することができる。 The optical member with anti-reflection coating of the present invention can be preferably applied to glass lenses for vehicle-mounted cameras, etc.

1:反射防止膜付き光学部材
2:基材
3:反射防止膜
4:低屈折率層
5:高屈折率層
6:最表面層
1: Optical member with anti-reflection film 2: Substrate 3: Anti-reflection film 4: Low refractive index layer 5: High refractive index layer 6: Outermost layer

Claims (6)

基材の表面に、反射防止膜が形成された反射防止膜付き光学部材であって、
前記基材は、ガラスレンズであり、
前記反射防止膜は、低屈折率層と高屈折率層とが交互に積層されており、
記低屈折率層と前記高屈折率層とを合わせた総数が、11層~15層であり、
前記反射防止膜の最表面層は、前記低屈折率層としてのMgFの単層であり、前記最表面層以外の前記低屈折率層は、密度が、2.158g/cm 以上2.174g/cm 以下であり、
400nm以上1000nm以下の波長域での分光反射率が、1%以下である、ことを特徴とする反射防止膜付き光学部材。
An anti-reflection-coated optical member having an anti-reflection film formed on a surface of a substrate,
The substrate is a glass lens,
The antireflection film is formed by alternately laminating low refractive index layers and high refractive index layers,
the total number of the low refractive index layers and the high refractive index layers is 11 to 15;
The outermost surface layer of the antireflection film is a single layer of MgF2 as the low refractive index layer , and the low refractive index layer other than the outermost surface layer has a density of 2.158 g/cm3 or more and 2.174 g/cm3 or less;
An optical member with an anti-reflection film, characterized in that the spectral reflectance in the wavelength region of 400 nm or more and 1000 nm or less is 1% or less.
前記最表面層以外の前記低屈折率層の屈折率(波長550nm)は、1.4425~1.4525であることを特徴とする請求項1に記載の反射防止膜付き光学部材。 2. The optical member with an anti-reflection film according to claim 1, wherein the refractive index (wavelength 550 nm) of the low refractive index layer other than the outermost layer is 1.4425 to 1.4525 . 前記最表面層以外の前記低屈折率層は、SiOの単層又はSiOを含む混合層で形成されることを特徴とする請求項1又は請求項2に記載の反射防止膜付き光学部材。 3. The optical member with an antireflection film according to claim 1, wherein the low refractive index layer other than the outermost layer is formed of a single layer of SiO2 or a mixed layer containing SiO2 . 基材の表面に、低屈折率層と高屈折率層とを交互に積層して反射防止膜を成膜する反射防止膜付き光学部材の製造方法であって、
前記基材は、ガラスレンズであり、
前記低屈折率層を、イオンアシスト蒸着法を用いずに蒸着により成膜し、前記高屈折率層を、イオンアシスト蒸着法により成膜し、
記低屈折率層と前記高屈折率層とを合わせた総数を、11層~15層とし、
前記反射防止膜の最表面層を、前記低屈折率層としてのMgFの単層で形成し、
前記最表面層以外の前記低屈折率層の密度を、2.158g/cm 以上2.174g/cm 以下で調整し、
400nm以上1000nm以下の波長域での分光反射率を、1%以下とした、
ことを特徴とする反射防止膜付き光学部材の製造方法。
A method for producing an optical member with an antireflection film, comprising alternately laminating low refractive index layers and high refractive index layers on a surface of a substrate to form an antireflection film, the method comprising the steps of:
The substrate is a glass lens,
The low refractive index layer is formed by deposition without using an ion-assisted deposition method, and the high refractive index layer is formed by an ion-assisted deposition method;
The total number of the low refractive index layers and the high refractive index layers is 11 to 15,
The outermost surface layer of the antireflection film is formed of a single layer of MgF2 as the low refractive index layer ,
The density of the low refractive index layer other than the outermost layer is adjusted to 2.158 g/ cm3 or more and 2.174 g/cm3 or less,
The spectral reflectance in the wavelength range of 400 nm to 1000 nm is 1% or less.
The present invention relates to a method for producing an optical member with an anti-reflection film.
前記最表面層以外の前記低屈折率層を成膜する際の成膜時圧力を、1.5×10 -2 Pa以上3.2×10 -2 Pa以下の範囲で調整することを特徴とする請求項4に記載の反射防止膜付き光学部材の製造方法。 5. The method for producing an anti-reflection coated optical member according to claim 4, wherein a deposition pressure during deposition of the low refractive index layers other than the outermost layer is adjusted in a range of 1.5×10 −2 Pa to 3.2×10 −2 Pa. 前記最表面層以外の前記低屈折率層の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることを特徴とする請求項4又は請求項5に記載の反射防止膜付き光学部材の製造方法。 6. The method for producing an anti-reflection coated optical member according to claim 4, wherein a single material of SiO2 or a mixture containing SiO2 is used as an evaporation material for the low refractive index layer other than the outermost layer .
JP2019146114A 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same Active JP7493918B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019146114A JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same
CN202080043467.8A CN113966409A (en) 2019-08-08 2020-07-27 Optical member with antireflection film and method for producing same
PCT/JP2020/028713 WO2021024834A1 (en) 2019-08-08 2020-07-27 Antireflection film-equipped optical member and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146114A JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same

Publications (3)

Publication Number Publication Date
JP2021026163A JP2021026163A (en) 2021-02-22
JP2021026163A5 JP2021026163A5 (en) 2022-05-18
JP7493918B2 true JP7493918B2 (en) 2024-06-03

Family

ID=74503600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146114A Active JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same

Country Status (3)

Country Link
JP (1) JP7493918B2 (en)
CN (1) CN113966409A (en)
WO (1) WO2021024834A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593408B (en) * 2021-07-07 2022-09-09 武汉华星光电半导体显示技术有限公司 Display module, manufacturing method thereof and mobile terminal
CN113900165B (en) * 2021-11-16 2023-09-22 天津津航技术物理研究所 Barium fluoride substrate composite antireflection film and structural design method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163549A (en) 2002-11-11 2004-06-10 Pentax Corp Anti-reflection film
JP2005338366A (en) 2004-05-26 2005-12-08 Olympus Corp Antireflection film and optical component
JP2010140008A (en) 2008-11-13 2010-06-24 Seiko Epson Corp Optical article and method for manufacturing the same
WO2012169393A1 (en) 2011-06-10 2012-12-13 オリンパス株式会社 Antireflection film, optical system and optical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061879A (en) * 2002-07-29 2004-02-26 Ito Kogaku Kogyo Kk Optical element having surface protective film
JP5211289B2 (en) * 2005-11-01 2013-06-12 東海光学株式会社 Visible plastic lens
JP4207083B2 (en) * 2006-04-04 2009-01-14 セイコーエプソン株式会社 Optical multilayer filter, optical multilayer filter manufacturing method, and electronic apparatus
FR2913116B1 (en) * 2007-02-23 2009-08-28 Essilor Int METHOD FOR MANUFACTURING OPTICAL ARTICLE COATED WITH AN ANTI-REFLECTIVE OR REFLECTIVE COATING HAVING IMPROVED ADHESION AND ABRASION RESISTANCE PROPERTIES
JP5262066B2 (en) * 2007-10-31 2013-08-14 凸版印刷株式会社 Manufacturing method of antireflection film and manufacturing method of polarizing plate including the same
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JP2010102157A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Optical article and method for manufacturing the same
JP2012118536A (en) * 2009-10-09 2012-06-21 Seiko Epson Corp Optical article, manufacturing method for optical article, and electronic apparatus
JP5777278B2 (en) * 2009-12-01 2015-09-09 キヤノン株式会社 Optical element manufacturing method
JP2012027412A (en) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc Optical element and manufacturing method thereof
JP6234857B2 (en) * 2014-03-24 2017-11-22 富士フイルム株式会社 Manufacturing method of lens with antireflection function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163549A (en) 2002-11-11 2004-06-10 Pentax Corp Anti-reflection film
JP2005338366A (en) 2004-05-26 2005-12-08 Olympus Corp Antireflection film and optical component
JP2010140008A (en) 2008-11-13 2010-06-24 Seiko Epson Corp Optical article and method for manufacturing the same
WO2012169393A1 (en) 2011-06-10 2012-12-13 オリンパス株式会社 Antireflection film, optical system and optical device

Also Published As

Publication number Publication date
JP2021026163A (en) 2021-02-22
CN113966409A (en) 2022-01-21
WO2021024834A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US5993898A (en) Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating
JP4822786B2 (en) Antireflection film and optical component having the same
JP3708429B2 (en) Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
US20190346590A1 (en) Curved surface films and methods of manufacturing the same
JP6411517B2 (en) Antireflection film and optical member provided with antireflection film
JP7493918B2 (en) Optical member with anti-reflection film and method for producing same
JP3624082B2 (en) Antireflection film and method for manufacturing the same
JP5072395B2 (en) Antireflection film and optical component having the same
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
CN116819661A (en) Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film
JP2006119525A (en) Antireflection film
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH0875902A (en) Multilayer reflection preventing film
US11204446B2 (en) Anti-reflection film and an optical component containing the anti-reflection film
JP7098129B2 (en) Antireflection film and optical element having it
US12105252B2 (en) Thin film forming method and porous thin film
JP2000171607A (en) Highly dense multilayered thin film and its film forming method
JPH0585778A (en) Optical parts with antireflection film
JPH10123303A (en) Antireflection optical parts
JP2020190710A (en) Antireflection film and optical element having the same
JP6124624B2 (en) Optical element and optical system having the same
JP7117081B2 (en) Dust-proof lens and manufacturing method thereof
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
JP3107898B2 (en) Optical components

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230630

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522

R150 Certificate of patent or registration of utility model

Ref document number: 7493918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150