JP2021026163A - Optical member with antireflection film and method for manufacturing the same - Google Patents

Optical member with antireflection film and method for manufacturing the same Download PDF

Info

Publication number
JP2021026163A
JP2021026163A JP2019146114A JP2019146114A JP2021026163A JP 2021026163 A JP2021026163 A JP 2021026163A JP 2019146114 A JP2019146114 A JP 2019146114A JP 2019146114 A JP2019146114 A JP 2019146114A JP 2021026163 A JP2021026163 A JP 2021026163A
Authority
JP
Japan
Prior art keywords
refractive index
antireflection film
low refractive
layer
index layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019146114A
Other languages
Japanese (ja)
Other versions
JP7493918B2 (en
JP2021026163A5 (en
Inventor
凡勇 冉
Fan Yong Ran
凡勇 冉
白石 幸一郎
Koichiro Shiraishi
幸一郎 白石
俊治 速水
Toshiharu Hayamizu
俊治 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2019146114A priority Critical patent/JP7493918B2/en
Priority to CN202080043467.8A priority patent/CN113966409A/en
Priority to PCT/JP2020/028713 priority patent/WO2021024834A1/en
Publication of JP2021026163A publication Critical patent/JP2021026163A/en
Publication of JP2021026163A5 publication Critical patent/JP2021026163A5/ja
Application granted granted Critical
Publication of JP7493918B2 publication Critical patent/JP7493918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide an optical member with an antireflection film having excellent antireflection function in a wavelength region of 400 nm to 1000 nm as well as high reliability, and a method for manufacturing the optical member with an antireflection film.SOLUTION: An optical member with an antireflection film has an antireflection film (3) formed on a surface of a substrate (2) and is characterized in that: the antireflection film comprises low refractive index layers (4) and high refractive index layers (5) alternately laminated; and the low refractive index layer has a density of 2.1 g/cm3 or more and 2.2 g/cm3 or less. The refractive index (at a wavelength of 550 nm) of the low refractive index layer is preferably 1.41 to 1.47.SELECTED DRAWING: Figure 2

Description

本発明は、反射防止膜付き光学部材及びその製造方法に関する。 The present invention relates to an optical member with an antireflection film and a method for manufacturing the same.

レンズ等の光学部品では、表面に反射防止膜を設けることが一般的に行われている。反射防止膜は、例えば、特許文献1に記載するように、屈折率の異なる複数の層を積層して形成される。特許文献1では、各層の屈折率を、適宜調整することで、可視光領域から近赤外線領域の屈折率を更に低くでき、反射防止帯域を更に広くすることができるとしている。 It is common practice to provide an antireflection film on the surface of optical components such as lenses. The antireflection film is formed by laminating a plurality of layers having different refractive indexes, for example, as described in Patent Document 1. Patent Document 1 states that by appropriately adjusting the refractive index of each layer, the refractive index in the visible light region to the near infrared region can be further lowered, and the antireflection band can be further widened.

特開2004−163549号公報Japanese Unexamined Patent Publication No. 2004-163549

特許文献1では、波長域380nm〜980nmの反射率を1%以下にできるとしているが、近年のニーズから、反射防止機能を、波長域1000nmまで広くしたいうえ、コートの高温高湿などの信頼性も厳しく要求されている。 Patent Document 1 states that the reflectance in the wavelength range of 380 nm to 980 nm can be reduced to 1% or less. However, due to recent needs, it is desired to widen the antireflection function to the wavelength range of 1000 nm, and the reliability of the coating such as high temperature and high humidity Is also strictly required.

本発明は、以上の問題意識に基づいてなされたものであり、波長域400nm〜1000nmにおいて、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材及びその製造方法を提供することを目的とする。 The present invention has been made based on the above awareness of the problems, and is an optical member with an antireflection film having an excellent antireflection function and high reliability in a wavelength range of 400 nm to 1000 nm, and a method for manufacturing the same. The purpose is to provide.

本発明は、基材の表面に、反射防止膜が形成された反射防止膜付き光学部材であって、前記反射防止膜は、低屈折率層と高屈折率層とが交互に積層されており、前記低屈折率層の密度は、2.1g/cm以上2.2g/cm以下であることを特徴とする。 The present invention is an optical member with an antireflection film in which an antireflection film is formed on the surface of a base material, and the antireflection film is obtained by alternately laminating low refractive index layers and high refractive index layers. The density of the low refractive index layer is 2.1 g / cm 3 or more and 2.2 g / cm 3 or less.

本発明では、前記低屈折率層の屈折率(波長550nm)は、1.41〜1.47であることが好ましい。 In the present invention, the refractive index (wavelength 550 nm) of the low refractive index layer is preferably 1.41 to 1.47.

本発明では、前記低屈折率層は、SiOの単層又はSiOを含む混合層で形成されることが好ましい。 In the present invention, the low refractive index layer is preferably formed of a mixed layer comprising a single layer or SiO 2 in SiO 2.

本発明では、前記反射防止膜の最表面層は、MgFの単層、SiOの単層、又は、MgF及びSiOの少なくとも一方を含む混合層であることが好ましい。 In the present invention, the outermost surface layer of the antireflection film is preferably a single layer of MgF 2, a single layer of SiO 2 , or a mixed layer containing at least one of MgF 2 and SiO 2.

本発明では、400nm以上1000nm以下の波長域での分光反射率が、1%以下であることが好ましい。 In the present invention, the spectral reflectance in the wavelength range of 400 nm or more and 1000 nm or less is preferably 1% or less.

本発明は、基材の表面に、低屈折率層と高屈折率層とを交互に積層して反射防止膜を成膜する反射防止膜付き光学部材の製造方法であって、前記低屈折率層を、イオンアシスト蒸着法を用いずに蒸着により成膜し、前記高屈折率層を、イオンアシスト蒸着法により成膜することが好ましい。 The present invention is a method for manufacturing an optical member with an antireflection film, in which low refractive index layers and high refractive index layers are alternately laminated on the surface of a base material to form an antireflection film. It is preferable that the layer is formed by vapor deposition without using the ion-assisted vapor deposition method, and the high refractive index layer is formed by the ion-assisted vapor deposition method.

本発明では、前記低屈折率層を成膜する際の成膜時圧力を、3×10−3Pa以上8×10−2Pa以下の範囲で調整することが好ましい。 In the present invention, it is preferable to adjust the film forming pressure when forming the low refractive index layer in the range of 3 × 10 -3 Pa or more and 8 × 10 -2 Pa or less.

本発明では、前記低屈折率層の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることが好ましい。 In the present invention, as the evaporation material of the low refractive index layer, it is preferable to use a mixed material containing a simple substance or SiO 2 in SiO 2.

本発明によれば、波長域400nm〜1000nmにおいて、分光反射率を1%以下に抑えることができる。 According to the present invention, the spectral reflectance can be suppressed to 1% or less in the wavelength range of 400 nm to 1000 nm.

本実施形態の反射防止膜付き光学部材の模式図である。It is a schematic diagram of the optical member with an antireflection film of this embodiment. 本実施形態の反射防止膜付き光学部材の部分拡大模式図である。It is a partially enlarged schematic diagram of the optical member with an antireflection film of this embodiment. 実施例1〜実施例3、及び比較例の波長と分光反射率Rとの関係を示すグラフである。3 is a graph showing the relationship between the wavelengths of Examples 1 to 3 and Comparative Examples and the spectral reflectance R.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、以下では、「〜」を使用する場合があるが、その下限値及び上限値は、いずれも含むものとする。 Hereinafter, embodiments for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. In the following, "~" may be used, but both the lower limit value and the upper limit value shall be included.

<反射防止膜付き光学部材>
本発明者らは、反射防止膜付き光学部材の反射防止機能を鋭意研究した結果、低屈折率層の密度を調節することで、波長域400nm〜1000nmにおいて、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材を開発するに至った。すなわち、本実施形態の反射防止膜付き光学部材は、反射防止膜が、低屈折率層と高屈折率層との積層構造であり、低屈折率層の密度が、2.1g/cm以上2.2g/cm以下であることを特徴とする。
<Optical member with antireflection film>
As a result of diligent research on the antireflection function of the optical member with an antireflection film, the present inventors have an excellent antireflection function in the wavelength range of 400 nm to 1000 nm by adjusting the density of the low refractive index layer. At the same time, we have developed an optical member with an antireflection film with high reliability. That is, the optical member with an antireflection film of the present embodiment has an antireflection film having a laminated structure of a low refractive index layer and a high refractive index layer, and the density of the low refractive index layer is 2.1 g / cm 3 or more. It is characterized by being 2.2 g / cm 3 or less.

図1は、本実施形態の反射防止膜付き光学部材の模式図である。図1に示す反射防止膜付き光学部材1は、基材2と、基材2の表面2aに形成された反射防止膜3と、を有して構成される。 FIG. 1 is a schematic view of an optical member with an antireflection film of the present embodiment. The optical member 1 with an antireflection film shown in FIG. 1 includes a base material 2 and an antireflection film 3 formed on the surface 2a of the base material 2.

基材2は、ガラスやプラスチック等であり、特に、ガラスであることが好ましい。特に限定されるものでないが、基材2は、例えば、監視カメラや車載カメラ用のガラスレンズである。また、反射防止膜3が成膜される基材2の表面は、例えば、非球面である。図1の基材2は、例えば、負のパワーを有するメニスカスレンズであるが、正のパワーを有するメニスカスレンズであってもよいし、両凸レンズあるいは両凹レンズ等でもよい。 The base material 2 is glass, plastic, or the like, and is particularly preferably glass. Although not particularly limited, the base material 2 is, for example, a glass lens for a surveillance camera or an in-vehicle camera. Further, the surface of the base material 2 on which the antireflection film 3 is formed is, for example, an aspherical surface. The base material 2 in FIG. 1 is, for example, a meniscus lens having a negative power, but may be a meniscus lens having a positive power, a biconvex lens, a biconcave lens, or the like.

図1では、反射防止膜3は、基材2の表面2aに成膜されるが、表面2a、2bの双方に形成されてもよい。
以下、反射防止膜3について、更に詳しく説明する。
In FIG. 1, the antireflection film 3 is formed on the surface 2a of the base material 2, but may be formed on both the surfaces 2a and 2b.
Hereinafter, the antireflection film 3 will be described in more detail.

<反射防止膜>
図2に示すように、本実施形態の反射防止膜3は、基材2の表面(光学面)から、低屈折率層4と高屈折率層5とが交互に積層され、最上層が、外気と触れる最表面層6となっている。
<Anti-reflective coating>
As shown in FIG. 2, in the antireflection film 3 of the present embodiment, the low refractive index layer 4 and the high refractive index layer 5 are alternately laminated from the surface (optical surface) of the base material 2, and the uppermost layer is formed. It is the outermost surface layer 6 that comes into contact with the outside air.

各低屈折率層4は、各高屈折率層5よりも屈折率が低い。一方、高屈折率層5は、基材2の屈折率より高くてもよい。また、反射防止膜3は、基材2単体の場合よりも反射率が低くなるように調整される。 Each low refractive index layer 4 has a lower refractive index than each high refractive index layer 5. On the other hand, the high refractive index layer 5 may be higher than the refractive index of the base material 2. Further, the antireflection film 3 is adjusted so that the reflectance is lower than that of the base material 2 alone.

低屈折率層4の密度は、2.1g/cm以上2.2g/cm以下である。密度範囲の上限を上回ると所望の低屈折率が得られず(屈折率が高くなりすぎる)、下限を下回ると空隙が多くなる。空隙が多くなりすぎると空隙に水分が入って膜の特性に影響を及ぼしたり、空隙のために膜の密着性が低下する。また、低屈折率層4の密度は、2.132g/cm以上2.199g/cm以下であることが好ましく、2.132g/cm以上2.191g/cm以下であることがより好ましく、2.158g/cm以上2.174g/cm以下であることが更に好ましい。 The density of the low refractive index layer 4 is 2.1 g / cm 3 or more and 2.2 g / cm 3 or less. If the upper limit of the density range is exceeded, the desired low refractive index cannot be obtained (the refractive index becomes too high), and if it is lower than the lower limit, the number of voids increases. If there are too many voids, water will enter the voids and affect the characteristics of the film, or the voids will reduce the adhesion of the film. The density of the low refractive index layer 4 is more it is preferably at most 2.132g / cm 3 or more 2.199g / cm 3, is 2.132g / cm 3 or more 2.191g / cm 3 or less It is preferable that it is 2.158 g / cm 3 or more and 2.174 g / cm 3 or less.

本実施の形態では、後述するように、低屈折率層4を蒸着法にて成膜する際、イオンアシスト蒸着(Ion Assisted Deposition:IAD)法を用いない。一方、高屈折率層5を蒸着法にて成膜する際、イオンアシスト蒸着法を用いる。これにより、低屈折率層4の密度を、上記範囲内に低くすることが可能である。なお、高屈折率層5の密度は、イオンアシスト蒸着法を用いることで、イオンアシスト蒸着法を用いない場合と比べて、高くなる。 In the present embodiment, as will be described later, when the low refractive index layer 4 is formed by the thin film deposition method, the ion assisted deposition (IAD) method is not used. On the other hand, when the high refractive index layer 5 is formed by the vapor deposition method, the ion-assisted vapor deposition method is used. Thereby, the density of the low refractive index layer 4 can be lowered within the above range. The density of the high refractive index layer 5 is higher by using the ion-assisted vapor deposition method than in the case where the ion-assisted vapor deposition method is not used.

本実施の形態では、低屈折率層4を比較的低い密度に調整することができ、これにより、低屈折率層4の屈折率を、小さくすることができる。具体的には、低屈折率層4の屈折率(波長550nm)は、1.41以上1.47以下であり、好ましくは、1.4245以上1.469以下であり、より好ましくは、1.4245以上1.464以下であり、更に好ましくは、1.4425以上1.4525以下である。 In the present embodiment, the low refractive index layer 4 can be adjusted to a relatively low density, whereby the refractive index of the low refractive index layer 4 can be reduced. Specifically, the refractive index (wavelength 550 nm) of the low refractive index layer 4 is 1.41 or more and 1.47 or less, preferably 1.4245 or more and 1.469 or less, and more preferably 1. It is 4245 or more and 1.464 or less, and more preferably 1.4425 or more and 1.4525 or less.

このように、低屈折率層4の密度及び屈折率を、上記範囲内に低く抑えることで、400nm以上1000nm以下の波長域での分光反射率を、1%以下に抑えることできる。本実施の形態では、波長410nm〜430nmの分光反射率を、0.8%以下とすることができる。また、本実施の形態では、好ましくは、波長480nm〜600nmの分光反射率を、0.5以下にでき、更に、波長650nm〜1000nmの分光反射率を、0.8以下にすることが可能である。 By keeping the density and refractive index of the low refractive index layer 4 low within the above range, the spectral reflectance in the wavelength range of 400 nm or more and 1000 nm or less can be suppressed to 1% or less. In the present embodiment, the spectral reflectance at a wavelength of 410 nm to 430 nm can be set to 0.8% or less. Further, in the present embodiment, preferably, the spectral reflectance at a wavelength of 480 nm to 600 nm can be set to 0.5 or less, and the spectral reflectance at a wavelength of 650 nm to 1000 nm can be set to 0.8 or less. is there.

本実施の形態では、低屈折率層4と高屈折率層5とを合わせた総数を限定するものでないが、好ましくは、9層〜19層程度であり、より好ましくは、11層〜15層である。層数を増やすことで、分光反射率が、1%以下となる波長域を広げることができるが、低屈折率層4を、イオンアシスト蒸着法を用いて成膜すると、1%以下の分光反射率となる波長域を、波長1000nmまで広げられないことが後述の実験によりわかっている。そこで、本発明者らは、低屈折率層4を、イオンアシスト蒸着法を用いずに成膜し、低屈折率層4の密度を従来より低減させることで、1%以下の分光反射率となる波長域を、波長1000nmまで広げることに成功している。 In the present embodiment, the total number of the low refractive index layer 4 and the high refractive index layer 5 is not limited, but it is preferably about 9 to 19 layers, and more preferably 11 to 15 layers. Is. By increasing the number of layers, the wavelength range in which the spectral reflectance is 1% or less can be widened, but when the low refractive index layer 4 is formed by the ion-assisted vapor deposition method, the spectral reflectance is 1% or less. It is known from the experiments described later that the wavelength range of the reflectance cannot be expanded to a wavelength of 1000 nm. Therefore, the present inventors have formed a film of the low refractive index layer 4 without using the ion-assisted vapor deposition method to reduce the density of the low refractive index layer 4 as compared with the conventional case, thereby achieving a spectral reflectance of 1% or less. We have succeeded in expanding the wavelength range to 1000 nm.

また、図1では、基材2の表面と接する最下層に低屈折率層4を用いたが、基材2との密着性の観点から、最下層を適宜選択することができる。すなわち、最下層として、低屈折率層4を用いるか否かは任意である。 Further, in FIG. 1, the low refractive index layer 4 is used as the lowermost layer in contact with the surface of the base material 2, but the lowermost layer can be appropriately selected from the viewpoint of adhesion to the base material 2. That is, it is arbitrary whether or not the low refractive index layer 4 is used as the lowermost layer.

次に、低屈折率層4及び高屈折率層5の好ましい材質について説明する。
本実施形態では、低屈折率層4は、SiOの単層又はSiOを含む混合層で形成されることが好ましい。反射防止膜3に積層される複数の低屈折率層4の材質は、同一であっても異なっていてもよい。
Next, preferable materials of the low refractive index layer 4 and the high refractive index layer 5 will be described.
In the present embodiment, the low refractive index layer 4 is preferably formed by mixing layer comprising a single layer or SiO 2 in SiO 2. The materials of the plurality of low refractive index layers 4 laminated on the antireflection film 3 may be the same or different.

また、本実施形態では、高屈折率層5は、ZrO(xは、1.5〜2)、TiO(xは、1〜2)、TaO(xは、2〜2.5)、及び、NbO(xは、2〜2.5)から選択される単層又は2種以上を含む混合層で形成されることが好ましい。ZrOには、ZrO、TiOには、Ti、Ti、TaOには、Ta、NbOには、Nbを用いることが好ましい。上記した金属酸化物は、化学量論組成でなくても、酸素の組成比率が上記xの範囲であればよい。 Further, in the present embodiment, the high refractive index layer 5 includes ZrO x (x is 1.5 to 2), TiO x (x is 1 to 2), and TaO x (x is 2 to 2.5). , And NbO x (x is 2 to 2.5), preferably a single layer or a mixed layer containing two or more kinds. It is preferable to use ZrO 2 for ZrO x , Ti 3 O 5 and Ti 2 O 5 for TiO x , Ta 2 O 5 for TaO x , and Nb 2 O 5 for NbO x. The above-mentioned metal oxide does not have to have a stoichiometric composition as long as the oxygen composition ratio is in the above-mentioned range of x.

反射防止膜3内に積層される複数の高屈折率層5の材質は、同一であっても異なっていてもよい。 The materials of the plurality of high refractive index layers 5 laminated in the antireflection film 3 may be the same or different.

また、本実施の形態では、反射防止膜3の最表面層6は、MgFの単層、SiOの単層、又は、MgF及びSiOの少なくとも一方を含む混合層であることが好ましい。最表面層6は、低屈折率層4と高屈折率層5とが積層された反射防止膜3の反射率を所定値内に抑えるための調整層である。すなわち、低屈折率層4と高屈折率層5の最上層として最表面層6を設けて、反射率を適正化することができる。例えば、低屈折率層4としてSiOを用い、高屈折率層5としてTaを用いた構成では、最表面層6にMgFを用いることが、反射率の調整の観点から好適である。以下の表1に示すように、MgFの屈折率は、SiOより低くすることができる。 Further, in the present embodiment, the outermost surface layer 6 of the antireflection film 3 is preferably a single layer of MgF 2, a single layer of SiO 2 , or a mixed layer containing at least one of MgF 2 and SiO 2. .. The outermost surface layer 6 is an adjusting layer for suppressing the reflectance of the antireflection film 3 in which the low refractive index layer 4 and the high refractive index layer 5 are laminated within a predetermined value. That is, the outermost surface layer 6 can be provided as the uppermost layer of the low refractive index layer 4 and the high refractive index layer 5, and the reflectance can be optimized. For example, in a configuration in which SiO 2 is used as the low refractive index layer 4 and Ta 2 O 5 is used as the high refractive index layer 5, it is preferable to use MgF 2 for the outermost surface layer 6 from the viewpoint of adjusting the reflectance. is there. As shown in Table 1 below, the refractive index of MgF 2 can be lower than that of SiO 2.

Figure 2021026163
Figure 2021026163

なお、膜密度は、蒸発材の屈折率と密度とを使用し、下記の式(1)を用いて計算した。
膜密度=(膜の屈折率/蒸発材の屈折率)×蒸発材の理論密度 (1)
The film density was calculated using the following formula (1) using the refractive index and density of the evaporator.
Membrane density = (refractive index of film / refractive index of evaporator) x theoretical density of evaporator (1)

表1に示すように、屈折率は、MgF<SiOであるが、本実施の形態では、信頼性や各層間の密着性の観点から、低屈折率層4には、MgFよりSiOを用いることが好ましく、反射防止膜3の反射率の調整層として、最表面層6にMgFを用いることが好適である。 As shown in Table 1, the refractive index is MgF 2 <SiO 2 , but in the present embodiment, from the viewpoint of reliability and adhesion between layers, the low refractive index layer 4 has more SiO than MgF 2. 2 is preferably used, and MgF 2 is preferably used for the outermost surface layer 6 as the refractive index adjusting layer of the antireflection film 3.

<反射防止膜付き光学部材の製造方法>
図2に示す本実施形態の反射防止膜付き光学部材の製造方法について説明する。
本実施形態では、基材2の表面に、低屈折率層4と高屈折率層5とを交互に積層し、反射防止膜3を形成する。
<Manufacturing method of optical member with antireflection film>
A method of manufacturing the optical member with an antireflection film of the present embodiment shown in FIG. 2 will be described.
In the present embodiment, the low refractive index layer 4 and the high refractive index layer 5 are alternately laminated on the surface of the base material 2 to form the antireflection film 3.

このとき、低屈折率層4を、イオンアシスト蒸着法を用いずに蒸着により成膜し、高屈折率層5を、イオンアシスト蒸着法により成膜する。 At this time, the low refractive index layer 4 is formed by vapor deposition without using the ion assisted vapor deposition method, and the high refractive index layer 5 is formed by the ion assisted vapor deposition method.

これにより、低屈折率層4を、低い密度で成膜でき、高屈折率層5を、高い密度で成膜することができる。ここで、「高い密度」、「低い密度」とは、各層において、イオンアシスト蒸着法の適用有無により比較された密度を意味する。 As a result, the low refractive index layer 4 can be formed with a low density, and the high refractive index layer 5 can be formed with a high density. Here, the "high density" and the "low density" mean the densities compared in each layer depending on whether or not the ion-assisted vapor deposition method is applied.

低屈折率層4を蒸着する際の雰囲気を制限するものではないが、例えば、酸素、アルゴン、或いは、窒素単体、又は、これらの混合雰囲気であることが好ましい。 Although the atmosphere when the low refractive index layer 4 is vapor-deposited is not limited, for example, oxygen, argon, nitrogen alone, or a mixed atmosphere thereof is preferable.

また、本実施の形態では、低屈折率層4を成膜する際の成膜時圧力を、3×10−3Pa〜8×10−2Paの範囲で調整することが好ましい。成膜時圧力を、3×10−3Pa〜5.8×10−2Paとすることがより好ましく、7.8×10−3Pa〜5.8×10−2Paとすることが更に好ましく、1.5×10−2Pa〜3.2×10−2Paとすることが更により好ましい。 Further, in the present embodiment, it is preferable to adjust the film forming pressure when forming the low refractive index layer 4 in the range of 3 × 10 -3 Pa to 8 × 10 -2 Pa. The film forming pressure is more preferably 3 × 10 -3 Pa to 5.8 × 10 -2 Pa, and further preferably 7.8 × 10 -3 Pa to 5.8 × 10 -2 Pa. It is preferably 1.5 × 10 -2 Pa to 3.2 × 10 -2 Pa, even more preferably.

これにより、成膜された低屈折率層4の密度を、2.1g/cm以上2.2g/cm以下、好ましくは、2.132g/cm〜2.199g/cm、より好ましくは、2.132g/cm〜2.191g/cm、更に好ましくは、2.158g/cm〜2.174g/cmとすることができる。 As a result, the density of the formed low refractive index layer 4 is adjusted to 2.1 g / cm 3 or more and 2.2 g / cm 3 or less, preferably 2.132 g / cm 3 to 2.199 g / cm 3 , more preferably. Can be 2.132 g / cm 3 to 2.191 g / cm 3 , and more preferably 2.158 g / cm 3 to 2.174 g / cm 3 .

本実施形態では、低屈折率層4の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることが好ましい。 In the present embodiment, as the evaporation material of the low refractive index layer 4, it is preferable to use a mixed material containing a simple substance or SiO 2 in SiO 2.

また、本実施形態では、高屈折率層5の蒸発材料として、ZrO、Ti、Ta、及び、Nbから選択される単体又は2種以上を含む混合材を用いることが好ましい。 Further, in the present embodiment, as the evaporation material of the high refractive index layer 5, a simple substance or a mixed material containing two or more kinds selected from ZrO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 is used. It is preferable to use it.

また、本実施の形態では、最表面層6の蒸発材料として、MgF、及び、SiOから選択される単体又は2種以上を含む混合材を用いることが好ましい。最表面層6の蒸発材料として、MgFを選択することが好ましい。 Further, in the present embodiment, as the evaporation material of the outermost surface layer 6, it is preferable to use a simple substance selected from MgF 2 and SiO 2 or a mixed material containing two or more kinds. It is preferable to select MgF 2 as the evaporation material of the outermost surface layer 6.

以上、詳述した本実施の形態の反射防止膜付き光学部材1によれば、低屈折率層4の密度を下げることができ、屈折率を低下させることができる。そして、本実施の形態では、波長域400nm〜1000nmにおいて、分光反射率を1%以下に抑えることができる。また、本実施の形態の反射防止膜付き光学部材1によれば、各層の密着性に優れるとともに、高温多湿の環境下においても、剥離やクラックが生じにくく、高い信頼性を得ることができる。 According to the optical member 1 with an antireflection film of the present embodiment described in detail above, the density of the low refractive index layer 4 can be lowered, and the refractive index can be lowered. Then, in the present embodiment, the spectral reflectance can be suppressed to 1% or less in the wavelength range of 400 nm to 1000 nm. Further, according to the optical member 1 with an antireflection film of the present embodiment, the adhesion of each layer is excellent, peeling and cracking are unlikely to occur even in a high temperature and high humidity environment, and high reliability can be obtained.

また、本実施の形態の反射防止膜付き光学部材1の製造方法によれば、低屈折率層4及び高屈折率層5を成膜するに際し、イオンアシスト蒸着法の適用の有無を制御することで、優れた反射防止機能を有し、且つ、高信頼性を持つ反射防止膜付き光学部材1を簡単に製造できる。 Further, according to the method for manufacturing the optical member 1 with an antireflection film of the present embodiment, it is possible to control whether or not the ion-assisted vapor deposition method is applied when the low refractive index layer 4 and the high refractive index layer 5 are formed. Therefore, it is possible to easily manufacture the optical member 1 with an antireflection film which has an excellent antireflection function and has high reliability.

また、本実施の形態では低屈折率層を、イオンアシスト蒸着せずに成膜するため、反射防止膜3を成膜するに際し、イオンガンの使用時間を減少することができ、したがって、成膜中の温度変化を小さくすることができる。これにより、成膜された反射防止膜3の光反射特性のばらつきを小さくすることが可能である。 Further, in the present embodiment, since the low refractive index layer is formed without ion-assisted vapor deposition, the use time of the ion gun can be reduced when forming the antireflection film 3, and therefore, during the film formation. The temperature change can be reduced. This makes it possible to reduce the variation in the light reflection characteristics of the film-formed antireflection film 3.

以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。実験では、以下に示す実施例1から実施例3及び比較例を製造した。 Hereinafter, the present embodiment will be described in more detail with reference to Examples and Comparative Examples. In the experiment, Examples 1 to 3 and Comparative Examples shown below were produced.

[実施例1〜実施例3]
実施例1〜実施例3では、以下の表2に示す材料を用い、比較例では、以下の表3に示す材料を用い、表2、表3に示すSiOを低屈折率層、Taを高屈折率層、MgFを最表面層として成膜し、反射防止膜を得た。なお、基材は、BACD14ガラス(HOYA(株)製)を用いて成形したレンズである。
[Examples 1 to 3]
In Examples 1 to 3, the materials shown in Table 2 below are used, and in Comparative Examples, the materials shown in Table 3 below are used, and SiO 2 shown in Tables 2 and 3 is used as a low refractive index layer, Ta 2 O 5 was formed as a high refractive index layer and MgF 2 was formed as the outermost surface layer to obtain an antireflection film. The base material is a lens molded using BACD14 glass (manufactured by HOYA Corporation).

Figure 2021026163
Figure 2021026163

Figure 2021026163
Figure 2021026163

表2に示す実施例1から実施例3では、低屈折率層を成膜する際、真空蒸着法にて、イオンアシスト蒸着なしで成膜した。表2に示すように、実施例1では、SiOの密度を、2.191g/cm、実施例2では、SiOの密度を、2.158g/cm、実施例3では、SiOの密度を、2.132g/cmとした。これらの密度を得るための真空蒸着における成膜時圧力は、以下の表4に示されている。表4に示すように、成膜時圧力を変えることで、密度を変化させることができる。 In Examples 1 to 3 shown in Table 2, when the low refractive index layer was formed, it was formed by a vacuum vapor deposition method without ion-assisted vapor deposition. As shown in Table 2, in Example 1, the density of SiO 2 was 2.191 g / cm 3 , in Example 2, the density of SiO 2 was 2.158 g / cm 3 , and in Example 3, SiO 2 was used. The density of was 2.132 g / cm 3 . The pressures during film formation in vacuum vapor deposition to obtain these densities are shown in Table 4 below. As shown in Table 4, the density can be changed by changing the film forming pressure.

Figure 2021026163
Figure 2021026163

一方、比較例では、SiOを、イオンアシスト蒸着法にて成膜した。表4に示す「IADあり」のデータは、比較例に適用される。 On the other hand, in the comparative example, SiO 2 was formed by an ion-assisted thin-film deposition method. The data “with IAD” shown in Table 4 is applied to the comparative example.

実施例1から実施例3及び比較例を用いて、波長と反射率との関係を調べた。反射率は、オリンパス(株)製の顕微鏡型分光測定機(USPM―RUIII)により測定した。実験では、入射角を0°とした入射光線の分光反射率を測定した。 The relationship between the wavelength and the reflectance was investigated using Examples 1 to 3 and Comparative Examples. The reflectance was measured by a microscope-type spectrophotometer (USPM-RUIII) manufactured by Olympus Corporation. In the experiment, the specular reflectance of the incident light beam with the incident angle set to 0 ° was measured.

図3は、実施例1〜実施例3及び比較例における波長と反射率との関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the wavelength and the reflectance in Examples 1 to 3 and Comparative Example.

図3に示すように、実施例1〜実施例3は、比較例に比べて、1%以下となる分光反射率Rの波長域を広げることができるとわかった。具体的には、実施例では、400nm〜1000nmの波長域にて、分光反射率を1%以下にできるとわかった。また実施例では、波長480nm〜600nmの分光反射率を、0.5以下にでき、更に、波長650nm〜1000nmの分光反射率を、0.8以下にできることがわかった。 As shown in FIG. 3, it was found that in Examples 1 to 3, the wavelength range of the spectral reflectance R of 1% or less can be widened as compared with Comparative Examples. Specifically, in the examples, it was found that the spectral reflectance can be reduced to 1% or less in the wavelength range of 400 nm to 1000 nm. Further, in the examples, it was found that the spectral reflectance at a wavelength of 480 nm to 600 nm can be set to 0.5 or less, and the spectral reflectance at a wavelength of 650 nm to 1000 nm can be set to 0.8 or less.

表4の実験結果に基づいて、好ましい成膜時圧力、密度及び屈折率を求めた。すなわち、表4に示すように、SiOを、イオンアシスト蒸着なしで成膜したとき、成膜時圧力を8.2×10−2Paとすると、密度は、2.098とかなり小さくなり、低屈折率層に空孔が生じやすいことがわかった。このため、表4の実験結果により、成膜時圧力を、3×10−3Pa〜8×10−2Pa、好ましくは、3×10−3Pa〜5.8×10−2Pa、より好ましくは、7.8×10−3Pa〜5.8×10−2Pa、更に好ましくは、1.5×10−2Pa〜3.2×10−2Paとした。 Based on the experimental results in Table 4, preferable film formation pressure, density and refractive index were determined. That is, as shown in Table 4, when SiO 2 is deposited without ion-assisted vapor deposition, the density becomes as small as 2.098 when the film forming pressure is 8.2 × 10 -2 Pa. It was found that pores are likely to occur in the low refractive index layer. Therefore, according to the experimental results in Table 4, the film forming pressure was set to 3 × 10 -3 Pa to 8 × 10 -2 Pa, preferably 3 × 10 -3 Pa to 5.8 × 10 -2 Pa. preferably, 7.8 × 10 -3 Pa~5.8 × 10 -2 Pa, and more preferably, set to 1.5 × 10 -2 Pa~3.2 × 10 -2 Pa.

また、低屈折率層の密度は、2.1g/cm〜2.2g/cmとし、好ましくは、2.132g/cm〜2.199g/cmとし、より好ましくは、2.132g/cm〜2.191g/cmとし、更に好ましくは、2.158g/cm〜2.174g/cmとした。 The density of the low refractive index layer is set to 2.1g / cm 3 ~2.2g / cm 3 , preferably, a 2.132g / cm 3 ~2.199g / cm 3 , more preferably, 2.132G It was set to / cm 3 to 2.191 g / cm 3, and more preferably 2.158 g / cm 3 to 2.174 g / cm 3 .

また、低屈折率層の屈折率(波長550nm)は、1.41〜1.47とし、好ましくは、1.4245〜1.469とし、より好ましくは、1.4245〜1.4640とし、更に好ましくは、1.4425〜1.4525とした。 The refractive index (wavelength 550 nm) of the low refractive index layer is 1.41 to 1.47, preferably 1.4245 to 1.469, more preferably 1.4245 to 1.4640, and further. Preferably, it was 1.4425 to 1.4525.

また、比較例のように、SiO(低屈折率層)を、イオンアシスト蒸着法により成膜する場合、イオンガンの輻射熱により、成膜中の基材は加熱されて、成膜中の温度変化が大きくなることがわかった。一方、本実施例のように、SiO(低屈折率層)を、イオンアシスト蒸着せずに成膜する場合、イオンガンの使用時間を減少することができ、したがって、成膜中の温度変化を小さくすることができるとわかった。本実施例のように、成膜中の温度変化を小さくできることで、成膜された反射防止膜の特性ばらつきを小さくすることができるとわかった。 Further, when the SiO 2 (low refractive index layer) is formed by the ion-assisted vapor deposition method as in the comparative example, the base material during the film formation is heated by the radiant heat of the ion gun, and the temperature changes during the film formation. Was found to increase. On the other hand, when the SiO 2 (low refractive index layer) is formed without ion-assisted vapor deposition as in this embodiment, the usage time of the ion gun can be reduced, and therefore the temperature change during the film formation can be reduced. I found that I could make it smaller. It was found that the variation in the characteristics of the film-formed antireflection film can be reduced by reducing the temperature change during film formation as in this example.

次に、実施例2を用いて、高温多湿試験を行った。実験条件は、温度60°、湿度90%、実験時間240時間とした。試験後、剥離やクラック等の外観異常は見られなかった。これにより、高信頼性の反射防止膜付き光学部材を得ることができた。 Next, a high temperature and high humidity test was performed using Example 2. The experimental conditions were a temperature of 60 °, a humidity of 90%, and an experimental time of 240 hours. After the test, no abnormal appearance such as peeling or cracks was observed. As a result, a highly reliable optical member with an antireflection film could be obtained.

本発明の反射防止膜付き光学部材を、車載カメラ用等のガラスレンズに好ましく適用することができる。 The optical member with an antireflection film of the present invention can be preferably applied to a glass lens for an in-vehicle camera or the like.

1:反射防止膜付き光学部材
2:基材
3:反射防止膜
4:低屈折率層
5:高屈折率層
6:最表面層
1: Optical member with antireflection film 2: Base material 3: Antireflection film 4: Low refractive index layer 5: High refractive index layer 6: Outermost surface layer

Claims (8)

基材の表面に、反射防止膜が形成された反射防止膜付き光学部材であって、
前記反射防止膜は、低屈折率層と高屈折率層とが交互に積層されており、
前記低屈折率層の密度は、2.1g/cm以上2.2g/cm以下であることを特徴とする反射防止膜付き光学部材。
An optical member with an antireflection film having an antireflection film formed on the surface of the base material.
In the antireflection film, low refractive index layers and high refractive index layers are alternately laminated.
An optical member with an antireflection film, wherein the density of the low refractive index layer is 2.1 g / cm 3 or more and 2.2 g / cm 3 or less.
前記低屈折率層の屈折率(波長550nm)は、1.41〜1.47であることを特徴とする請求項1に記載の反射防止膜付き光学部材。 The optical member with an antireflection film according to claim 1, wherein the refractive index (wavelength 550 nm) of the low refractive index layer is 1.41 to 1.47. 前記低屈折率層は、SiOの単層又はSiOを含む混合層で形成されることを特徴とする請求項1又は請求項2に記載の反射防止膜付き光学部材。 The low refractive index layer, an antireflection film-coated optical member according to claim 1 or claim 2, characterized in that it is formed by the mixed layer containing a single-layer or SiO 2 in SiO 2. 前記反射防止膜の最表面層は、MgFの単層、SiOの単層、又は、MgF及びSiOの少なくとも一方を含む混合層であることを特徴とする請求項1から請求項3のいずれかに記載の反射防止膜付き光学部材。 Claims 1 to 3 are characterized in that the outermost surface layer of the antireflection film is a single layer of MgF 2, a single layer of SiO 2 , or a mixed layer containing at least one of MgF 2 and SiO 2. The optical member with an antireflection film according to any one of. 400nm以上1000nm以下の波長域での分光反射率が、1%以下であることを特徴とする請求項1から請求項4のいずれかに記載の反射防止膜付き光学部材。 The optical member with an antireflection film according to any one of claims 1 to 4, wherein the spectral reflectance in the wavelength range of 400 nm or more and 1000 nm or less is 1% or less. 基材の表面に、低屈折率層と高屈折率層とを交互に積層して反射防止膜を成膜する反射防止膜付き光学部材の製造方法であって、
前記低屈折率層を、イオンアシスト蒸着法を用いずに蒸着により成膜し、前記高屈折率層を、イオンアシスト蒸着法により成膜することを特徴とする反射防止膜付き光学部材の製造方法。
A method for manufacturing an optical member with an antireflection film, in which low refractive index layers and high refractive index layers are alternately laminated on the surface of a base material to form an antireflection film.
A method for manufacturing an optical member with an antireflection film, which comprises forming the low refractive index layer by vapor deposition without using the ion-assisted vapor deposition method and forming the high refractive index layer by the ion-assisted vapor deposition method. ..
前記低屈折率層を成膜する際の成膜時圧力を、3×10−3Pa以上8×10−2Pa以下の範囲で調整することを特徴とする反射防止膜付き光学部材の製造方法。 A method for manufacturing an optical member with an antireflection film, which comprises adjusting the film forming pressure at the time of forming the low refractive index layer in the range of 3 × 10 -3 Pa or more and 8 × 10 -2 Pa or less. .. 前記低屈折率層の蒸発材料として、SiOの単体又はSiOを含む混合材を用いることを特徴とする請求項6又は請求項7に記載の反射防止膜付き光学部材の製造方法。 Examples evaporation material of the low refractive index layer, the manufacturing method of the antireflection film-coated optical element of claim 6 or claim 7, characterized by using a mixed material containing a simple substance or SiO 2 in SiO 2.
JP2019146114A 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same Active JP7493918B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019146114A JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same
CN202080043467.8A CN113966409A (en) 2019-08-08 2020-07-27 Optical member with antireflection film and method for producing same
PCT/JP2020/028713 WO2021024834A1 (en) 2019-08-08 2020-07-27 Antireflection film-equipped optical member and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146114A JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same

Publications (3)

Publication Number Publication Date
JP2021026163A true JP2021026163A (en) 2021-02-22
JP2021026163A5 JP2021026163A5 (en) 2022-05-18
JP7493918B2 JP7493918B2 (en) 2024-06-03

Family

ID=74503600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146114A Active JP7493918B2 (en) 2019-08-08 2019-08-08 Optical member with anti-reflection film and method for producing same

Country Status (3)

Country Link
JP (1) JP7493918B2 (en)
CN (1) CN113966409A (en)
WO (1) WO2021024834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593408A (en) * 2021-07-07 2021-11-02 武汉华星光电半导体显示技术有限公司 Display module, manufacturing method thereof and mobile terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900165B (en) * 2021-11-16 2023-09-22 天津津航技术物理研究所 Barium fluoride substrate composite antireflection film and structural design method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061879A (en) * 2002-07-29 2004-02-26 Ito Kogaku Kogyo Kk Optical element having surface protective film
JP2004163549A (en) * 2002-11-11 2004-06-10 Pentax Corp Anti-reflection film
JP2005338366A (en) * 2004-05-26 2005-12-08 Olympus Corp Antireflection film and optical component
JP2007127681A (en) * 2005-11-01 2007-05-24 Tokai Kogaku Kk Plastic lens
JP2009109850A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor
JP2010102157A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Optical article and method for manufacturing the same
JP2010140008A (en) * 2008-11-13 2010-06-24 Seiko Epson Corp Optical article and method for manufacturing the same
JP2011118043A (en) * 2009-12-01 2011-06-16 Canon Inc Method for manufacturing optical element
JP2012027412A (en) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc Optical element and manufacturing method thereof
JP2012118536A (en) * 2009-10-09 2012-06-21 Seiko Epson Corp Optical article, manufacturing method for optical article, and electronic apparatus
WO2012169393A1 (en) * 2011-06-10 2012-12-13 オリンパス株式会社 Antireflection film, optical system and optical device
JP2015184403A (en) * 2014-03-24 2015-10-22 富士フイルム株式会社 Process for producing lens with antireflection function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207083B2 (en) * 2006-04-04 2009-01-14 セイコーエプソン株式会社 Optical multilayer filter, optical multilayer filter manufacturing method, and electronic apparatus
FR2913116B1 (en) * 2007-02-23 2009-08-28 Essilor Int METHOD FOR MANUFACTURING OPTICAL ARTICLE COATED WITH AN ANTI-REFLECTIVE OR REFLECTIVE COATING HAVING IMPROVED ADHESION AND ABRASION RESISTANCE PROPERTIES
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061879A (en) * 2002-07-29 2004-02-26 Ito Kogaku Kogyo Kk Optical element having surface protective film
JP2004163549A (en) * 2002-11-11 2004-06-10 Pentax Corp Anti-reflection film
JP2005338366A (en) * 2004-05-26 2005-12-08 Olympus Corp Antireflection film and optical component
JP2007127681A (en) * 2005-11-01 2007-05-24 Tokai Kogaku Kk Plastic lens
JP2009109850A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor
JP2010102157A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Optical article and method for manufacturing the same
JP2010140008A (en) * 2008-11-13 2010-06-24 Seiko Epson Corp Optical article and method for manufacturing the same
JP2012118536A (en) * 2009-10-09 2012-06-21 Seiko Epson Corp Optical article, manufacturing method for optical article, and electronic apparatus
JP2011118043A (en) * 2009-12-01 2011-06-16 Canon Inc Method for manufacturing optical element
JP2012027412A (en) * 2010-07-28 2012-02-09 Konica Minolta Opto Inc Optical element and manufacturing method thereof
WO2012169393A1 (en) * 2011-06-10 2012-12-13 オリンパス株式会社 Antireflection film, optical system and optical device
JP2015184403A (en) * 2014-03-24 2015-10-22 富士フイルム株式会社 Process for producing lens with antireflection function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593408A (en) * 2021-07-07 2021-11-02 武汉华星光电半导体显示技术有限公司 Display module, manufacturing method thereof and mobile terminal
CN113593408B (en) * 2021-07-07 2022-09-09 武汉华星光电半导体显示技术有限公司 Display module, manufacturing method thereof and mobile terminal

Also Published As

Publication number Publication date
WO2021024834A1 (en) 2021-02-11
JP7493918B2 (en) 2024-06-03
CN113966409A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US11977205B2 (en) Curved surface films and methods of manufacturing the same
JP4854552B2 (en) Antireflection film and optical component having the same
JP4822786B2 (en) Antireflection film and optical component having the same
JP6411517B2 (en) Antireflection film and optical member provided with antireflection film
WO2021024834A1 (en) Antireflection film-equipped optical member and production method therefor
JP6681683B2 (en) Optical film and manufacturing method thereof
US20060245056A1 (en) Thin-film structure with counteracting layer
JP5072395B2 (en) Antireflection film and optical component having the same
JP2006119525A (en) Antireflection film
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP2004334012A (en) Antireflection film and optical filter
JP5549342B2 (en) Antireflection film and optical member having the same
JP5292318B2 (en) Antireflection film and optical member having the same
JP6989289B2 (en) Lens with hydrophilic antireflection film and its manufacturing method
JP2006215081A (en) Optical article and manufacturing method
US20200041694A1 (en) Thin film forming method and porous thin film
JP2000171607A (en) Highly dense multilayered thin film and its film forming method
JP2020190710A (en) Antireflection film and optical element having the same
CN116819661A (en) Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film
US7760432B2 (en) Photochromic resistant materials for optical devices in plasma environments
JP2018101132A (en) Antireflective film and optical element having the same
JP7117081B2 (en) Dust-proof lens and manufacturing method thereof
JP2023037490A (en) Optical member with anti-reflective coating, and method for producing the same
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
Liou et al. Fabrication of wide-angle and wideband visible antireflection coating on flexible poly (ether sulfone) substrate using ion-assisted deposition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230630

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522

R150 Certificate of patent or registration of utility model

Ref document number: 7493918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150