JP7472776B2 - 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム - Google Patents

波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム Download PDF

Info

Publication number
JP7472776B2
JP7472776B2 JP2020212170A JP2020212170A JP7472776B2 JP 7472776 B2 JP7472776 B2 JP 7472776B2 JP 2020212170 A JP2020212170 A JP 2020212170A JP 2020212170 A JP2020212170 A JP 2020212170A JP 7472776 B2 JP7472776 B2 JP 7472776B2
Authority
JP
Japan
Prior art keywords
actuator
reflective films
feedback
distance
target distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020212170A
Other languages
English (en)
Other versions
JP2022098653A (ja
Inventor
秀明 笠原
望 廣久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2020212170A priority Critical patent/JP7472776B2/ja
Priority to CN202111551239.4A priority patent/CN114660798B/zh
Priority to US17/557,337 priority patent/US20220197011A1/en
Publication of JP2022098653A publication Critical patent/JP2022098653A/ja
Application granted granted Critical
Publication of JP7472776B2 publication Critical patent/JP7472776B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

本開示は、波長可変フィルター、波長可変フィルターの制御方法、およびそのプログラムに関する。
ファブリー・ペローのエタロンは、向かい合う二つの反射面を備える光学素子である。ファブリー・ペローのエタロンは、光を入射されると、あらかじめ定められた波長の光を高い透過率で透過させる。以下、ファブリー・ペローのエタロンを「エタロン」と表記する。
特許文献1の波長可変エタロンは、二つの反射膜の間の距離を調整することにより、透過光の波長を変えることができる。特許文献1の波長可変エタロンは、第1静電アクチュエーターと、第2静電アクチュエーターと、反射膜を備え第1静電アクチュエーターおよび第2静電アクチュエーターによって変位される可動部と、を備える。第1静電アクチュエーターは、様々な値に設定される透過光の目標波長に応じて駆動され、可動部を変位させる。第2静電アクチュエーターは、二つの反射膜の間の距離に基づいてフィードバック制御されて、可動部を変位させる。その結果、可動部に保持された反射膜と固定されている反射膜との間の距離が精密に調整される。そして、エタロンは、目標波長に正確に一致した波長の光を透過させる。
特開2013-238755号公報
しかし、特許文献1の波長可変エタロンにおいては、可動部が二つのアクチュエーターによって変位され、かつ、一方のアクチュエーターが二つの反射膜の間の距離に基づいてフィードバック制御されることから、以下の問題が生じる。
透過光の目標波長が変更されると、第1静電アクチュエーターに与えられる電圧が、目標波長に応じた値に変化する。同時に、二つの反射膜の間の目標距離を第2静電アクチュエーターに与えるための目標信号が、変化する。しかし、第1静電アクチュエーターは、第1静電アクチュエーターに与えられる電圧が新たな目標波長に応じた値に変化した直後に、可動部の変位を完了させられるわけではない。すなわち、透過光の目標波長が変更された直後は、二つの反射膜の間の距離は、変更前の目標距離に近い値である。このため、第2静電アクチュエーターの制御部には、二つの反射膜の間の新たな目標距離に応じた目標信号と、二つの反射膜の間のそれまでの目標距離に近い実際の距離に応じた検出信号と、の偏差が、入力される。
その結果、第2静電アクチュエーターの制御部は、目標距離が変更されたために突然、増大した偏差を解消するように、急激に可動部を変位させる。一方、第1静電アクチュエーターも、与えられる電圧に応じて、新たな目標距離に応じた位置に向う向きに可動部を変位させる。このため、可動部は、それまでの位置から、新たな目標距離に応じた位置に向う向きに、過剰に変位され、オーバーシュートする。このオーバーシュートが解消され、可動部の位置の変動が十分小さくなるまでに、多くの時間が費やされる。このように、特許文献1の波長可変エタロンにおいては、透過光の波長を変更するために要する時間が長くなる場合がある。
本開示の一形態によれば、対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、を備えた波長可変フィルターの制御方法が提供される。前記アクチュエーター部は、前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備える。前記制御方法は、(a)前記二つの反射膜の間の新たな目標距離を受け取る工程と、(b)前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変える工程と、(c)前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程と、を備える。あらかじめ定められた条件が満たされる場合には、前記工程(b)の開始後、あらかじめ定められた閾値時間が経過した後に、前記工程(c)を開始する。
第一実施形態の分光測定装置1の概略構成を示すブロック図である。 光学モジュール10の概略構成を示すブロック図である。 光学モジュール10の波長可変干渉フィルター5の概略構成を示す平面図である。 固定基板51を可動基板52側から見た平面図である。 可動基板52を固定基板51側から見た平面図である。 波長可変干渉フィルターの駆動方法を示すフローチャートである。 静電アクチュエーター部56の等価回路モデルである。 フィードバック電圧を印加する第二静電アクチュエーター562の感度の特性を表す図である。 第一静電アクチュエーター561に印加されるバイアス電圧を表す図である。 図6のステップS4で実行されるフィードバック制御の内容を示すブロック図である。 波長可変干渉フィルター5の制御方法の処理を示すフローチャートである。 ステップS436の処理の開始直後からステップS450の処理を開始する比較態様における、反射膜間ギャップG1の距離の検出値G1dを表すグラフである。 本実施形態における、反射膜間ギャップG1の距離の検出値G1dを表すグラフである。 第2実施形態において、図10のステップS440で実行される制御の内容を示すブロック図である。 第3実施形態において、図10のステップS440で実行される制御の内容を示すブロック図である。 目標距離G1tの変更に伴うバイアス電圧Vbと偏差Veの変化を示すグラフである。 他の光学モジュールの概略構成を示すブロック図である。 波長可変干渉フィルターを備えた測色装置400の一例を示すブロック図である。
A.第1実施形態:
A1.分光測定装置の構成:
図1は、第一実施形態の分光測定装置1の概略構成を示すブロック図である。分光測定装置1は、測定対象Xによって反射された測定対象光に含まれる所定波長の光の強度を分析し、分光スペクトルを測定する電子機器である。分光測定装置1は、光学モジュール10と、検出部11と、I-V変換器12と、アンプ13と、A/D変換器14と、制御部20と、を備える。
光学モジュール10は、様々な波長の成分を有する光を入射されて、目的とする波長の光を透過させる。光学モジュール10は、波長可変干渉フィルター5と、電圧制御部15とを備える。波長可変干渉フィルター5は、様々な波長の成分を有する光を入射されて、特定の波長の光を透過させる光学素子である。すなわち、波長可変干渉フィルター5は、エタロンである。電圧制御部15は、波長可変干渉フィルター5を制御して、波長可変干渉フィルター5が透過させる光の波長を変えることができる。
検出部11は、光学モジュール10の波長可変干渉フィルター5を透過した光を受光し、受光した光の光強度に応じた検出信号を出力する。検出部11の検出信号は、電流である。I-V変換器12は、検出部11から入力された検出信号を電圧に変換し、アンプ13に出力する。アンプ13は、I-V変換器12から入力された電圧を増幅する。アンプ13が出力する電圧を、「検出電圧」とも呼ぶ。A/D変換器14は、アンプ13から入力されたアナログ信号としての検出電圧をデジタル信号に変換し、制御部20に出力する。制御部20は、分光測定装置1の各部を制御する。
A2.光学モジュールの構成:
図2は、光学モジュール10の概略構成を示すブロック図である。図2において、電圧制御部15に相当する構成を破線で囲んで示す。波長可変干渉フィルター5を、電圧制御部15の左下に示す。
図3は、光学モジュール10の波長可変干渉フィルター5の概略構成を示す平面図である。波長可変干渉フィルター5は、略直方体の光学部材である。図3において長方形で表される波長可変干渉フィルター5の4個の頂点を、C1,C2,C7,C8で示す。波長可変干渉フィルター5は、固定基板51と、可動基板52と、接合膜53と、固定反射膜54と、可動反射膜55と、静電アクチュエーター部56と、を備える。
固定基板51は、固定反射膜54を支持している(図2の下段左部参照)。固定基板51は、略直方体の光学部材である。固定基板51は、各種ガラスや水晶等などの光を透過する素材により構成されている。固定基板51の厚さは、可動基板52の厚さよりも大きい。その結果、静電アクチュエーター部56による静電引力や、固定基板51上に形成される膜部材の内部応力を受けても、固定基板51は実質的に撓まない。なお、固定基板51の厚さは、固定反射膜54に垂直な方向に沿って測定される。固定基板51の詳細な構成については、後に説明する。
可動基板52は、可動反射膜55を支持している(図2の下段左部参照)。可動基板52は、略直方体の光学部材である。可動基板52は、各種ガラスや水晶等などの光を透過する素材により構成されている。可動基板52の詳細な構成については、後に説明する。
接合膜53は、固定基板51と可動基板52とを接合する。接合膜53は、具体的には、シロキサンを主成分とするプラズマ重合膜などにより構成されている。接合膜53によって、固定基板51と可動基板52とは、相互にずれた位置で接合される。図3において、固定基板51は、頂点C1,C2,C3,C4で囲まれた領域を占める。可動基板52は、頂点C5,C6,C7,C8で囲まれた領域を占める。
固定反射膜54は、固定基板51から光を入射され、可動反射膜55との間でその光を反射させる。固定反射膜54は、反射機能および透過機能を有する略円形の膜である。固定反射膜54は、具体的には、Ag等の金属膜や、Ag合金等、導電性の合金膜である。
可動反射膜55は、固定反射膜54と対向するように配されている。可動反射膜55は、可動反射膜55との間で光を反射させ、特定の波長の光を、可動基板52に透過させる。可動反射膜55は、反射機能および透過機能を有する略円形の膜である。可動反射膜55は、具体的には、Ag等の金属膜や、Ag合金等、導電性の合金膜である。
固定基板51と可動基板52と接合膜53とにより、固定反射膜54と可動反射膜55とは、平行に配される。図2において、固定反射膜54と可動反射膜55との間の間隙を、反射膜間ギャップG1として示す。
本明細書において、固定反射膜54に垂直な方向から見た平面視を、「フィルター平面視」と称する。フィルター平面視において、固定反射膜54の中心点および可動反射膜55の中心点は、一致する。フィルター平面視における固定反射膜54および可動反射膜55の中心点を、「フィルター中心点O」と呼ぶ(図3の中央参照)。フィルター中心点Oを通り、固定反射膜54に垂直な直線を「中心軸」と呼ぶ。
静電アクチュエーター部56は、固定反射膜54と可動反射膜55の相対位置を変えることができる。より具体的には、静電アクチュエーター部56は、固定反射膜54と可動反射膜55との間の、中心軸方向に沿った反射膜間ギャップG1の大きさを変えることができる。静電アクチュエーター部56の構成については、後に説明する。
A3.固定基板の構成:
図4は、固定基板51を可動基板52側から見た平面図である。前述のように、固定基板51は、略直方体の光学部材である。固定基板51は、電極配置溝511と、電極引出溝511Bと、反射膜設置部512と、第一接合部513と、固定側端子取出し部514と、を備える(図4参照)。
電極配置溝511は、固定基板51において、可動基板52と向かい合う側の面に設けられた溝である(図2の下段左部参照)。より具体的には、電極配置溝511は、フィルター平面視において、フィルター中心点Oを中心とした環状に形成されている溝である(図4中央部参照)。電極配置溝511は、例えばエッチング等により形成される。電極配置溝511の溝底面を電極設置面511Aと呼ぶ。電極設置面511Aには、静電アクチュエーター部56の電極が配置される。
電極引出溝511Bは、固定基板51において、可動基板52と向かい合う側の面に設けられた溝である。より具体的には、電極引出溝511Bは、電極配置溝511から、固定基板51の外周縁に向かって伸びる溝である。電極引出溝511Bは、電極配置溝511から辺C3-C4に向かって伸び3つに分岐する溝部と、電極配置溝511から辺C1-C2に向かって伸び3つに分岐する溝部と、から構成される。電極配置溝511から辺C1-C2に向かって伸び3つに分岐する溝部は、固定側端子取出し部514に繋がっている。
反射膜設置部512は、固定基板51において、可動基板52と向かい合う側の面に設けられた凸部である(図2の下段左部参照)。より具体的には、反射膜設置部512は、電極配置溝511に囲まれており、可動基板52に向かって突出している略円柱状の構造である。反射膜設置部512の円柱の先端面を、反射膜設置面512Aと呼ぶ。反射膜設置面512Aには、固定反射膜54が配置される。
第一接合部513は、接合膜53により、可動基板52に接合される。第一接合部513は、略直方体の固定基板51の可動基板52に対向する面のうち、電極配置溝511と、反射膜設置部512と、電極引出溝511Bとが形成されていない面である。
固定側端子取出し部514は、波長可変干渉フィルター5が構成された状態において、フィルター平面視において、可動基板52と重ならない部分である。可動基板52は、図3において頂点C5,C6,C7,C8で囲まれる長方形で表される領域を占める。固定側端子取出し部514は、図3において頂点C1,C2,C6,C5で囲まれる長方形で表される部分である。
A4.可動基板の構成:
図5は、可動基板52を固定基板51側から見た平面図である。前述のように、可動基板52は、略直方体の光学部材である。可動基板52は、可動部521と、保持部522と、第二接合部523と、可動側端子取出し部524と、基板外周部525と、を備えている(図3および図5参照)。
可動部521は、可動基板52において、固定基板51とは逆の側の面に設けられた凸部である(図2の下段左部参照)。より具体的には、可動部521は、保持部522に囲まれており、保持部522に対して、固定基板51とは逆の側に向かって突出している略円柱状の構造である。フィルター平面視において、可動部521が占める領域は、反射膜設置部512および反射膜設置部512の反射膜設置面512Aが占める領域を包含する(図2の下段左部参照)。可動部521の固定基板51側の底面には、可動反射膜55が配置される。可動反射膜55に対して固定反射膜54とは逆の側には、一定の範囲の波長の光のみを透過するバンドパスフィルターが配されている。
保持部522は、可動基板52において、固定基板51とは逆の側の面に設けられた溝である(図2の下段左部参照)。保持部522は、可動部521を囲む位置に構成される。より具体的には、保持部522は、フィルター平面視において、フィルター中心点Oを中心とした環状に形成されている凹部である(図5の中央部参照)。保持部522の厚みは、可動部521の厚みよりも小さい。保持部522は、弾性変形することにより、可動部521を、中心軸方向に沿って変位させる。その結果、可動部521は、中心軸方向に沿って固定基板51に対して変位する。すなわち、保持部522は、可動部521を変位させるためのダイヤフラムである。可動部521の中心軸方向に沿った変位において、固定反射膜54と可動反射膜55とは、平行な状態を維持される。
第二接合部523は、接合膜53により、固定基板51に接合される。第二接合部523は、略直方体の可動基板52の固定基板51に対向する面のうち、固定基板51の第一接合部513と向かい合う領域である。
可動側端子取出し部524は、波長可変干渉フィルター5が構成された状態において、フィルター平面視において、固定基板51と重ならない部分である。固定基板51は、図3において頂点C1,C2,C3,C4で囲まれる長方形で表される領域を占める。可動側端子取出し部524は、図3において頂点C4,C3,C7,C8で囲まれる長方形で表される部分である。
基板外周部525は、略直方体の可動基板52の固定基板51に対向する面のうち、フィルター平面視において、保持部522を囲む領域である。基板外周部525は、第二接合部523を含む。
A5.静電アクチュエーター部の構成:
静電アクチュエーター部56は、第一静電アクチュエーター561と、第二静電アクチュエーター562と、第一引出電極563Aと、第二引出電極563Bと、第三引出電極564Aと、第四引出電極564Bと、第五引出電極565Aと、第六引出電極565Bと、を備える(図3参照)。
第一静電アクチュエーター561は、固定反射膜54と可動反射膜55との間の反射膜間ギャップG1の大きさを、大まかに制御する機能を奏する。第一静電アクチュエーター561は、固定反射膜54と可動反射膜55の間の反射膜間ギャップG1の目標距離G1tに応じて、固定値であるバイアス電圧で駆動される。第一静電アクチュエーター561は、第一電極561Aと、第二電極561Bと、を備える。
第一電極561Aは、固定基板51の電極配置溝511内において、反射膜設置部512を囲む位置に配される(図2の下段左部参照)。より具体的には、第一電極561Aは、電極配置溝511の電極設置面511A上において、反射膜設置部512を囲む位置に円弧状に配される(図4の中央部参照)。第一電極561Aは、波長可変干渉フィルター5が構成された状態において、可動部521の底面と向かい合う位置に配される(図2の下段左部参照)。
第二電極561Bは、可動基板52の固定基板51と向かい合う面において、可動反射膜55を囲む位置に配される(図2の下段左部参照)。より具体的には、第二電極561Bは、可動部521の底面において、可動反射膜55を囲む位置に円弧状に配される(図5の中央部参照)。第一電極561Aと第二電極561Bは、波長可変干渉フィルター5が構成された状態において、向かい合う(図2の下段左部参照)。図2において、第一電極561Aと第二電極561Bとの間の間隙を、電極間ギャップG2として示す。
第二静電アクチュエーター562は、固定反射膜54と可動反射膜55との間の反射膜間ギャップG1の大きさを、精密に制御する機能を奏する。第二静電アクチュエーター562は、反射膜間ギャップG1の目標距離G1tと、反射膜間ギャップG1の距離の検出値G1dと、に応じてフィードバック制御される。第二静電アクチュエーター562は、第三電極562Aと、第四電極562Bと、を備える。
第三電極562Aは、固定基板51の電極配置溝511内において、第一電極561Aを囲む位置に配される(図2の下段左部参照)。より具体的には、第三電極562Aは、電極配置溝511の電極設置面511A上において、第一電極561Aを囲む位置に円弧状に配される(図4の中央部参照)。第三電極562Aは、波長可変干渉フィルター5が構成された状態において、可動部521の底面と向かい合う位置に配される(図2の下段左部参照)。
第四電極562Bは、可動基板52の固定基板51と向かい合う面において、第二電極561Bを囲む位置に配される(図2の下段左部参照)。より具体的には、第四電極562Bは、可動部521の底面において、第二電極561Bを囲む位置に円弧状に配される(図5の中央部参照)。第三電極562Aと第四電極562Bは、波長可変干渉フィルター5が構成された状態において、向かい合う(図2の下段左部参照)。図2において、第三電極562Aと第四電極562Bとの間の間隙の大きさは、第一電極561Aと第二電極561Bとの間の間隙の大きさと同じである(図2の下段左部のG2参照参照)。
第一引出電極563Aと、第三引出電極564Aと、第五引出電極565Aとは、固定基板51において、可動基板52と向かい合う側の面に設けられた電極である(図4参照)。第一引出電極563Aは、第一電極561Aの一端から頂点C2の近傍に至る。第三引出電極564Aは、第三電極562Aの一端から頂点C1の近傍に至る。第五引出電極565Aは、固定反射膜54から辺C1-C2の中点の近傍に至る。第一引出電極563Aと、第三引出電極564Aと、第五引出電極565Aとは、電極引出溝511Bのうち、電極配置溝511から辺C1-C2に向かって伸び3つに分岐する溝部内に配されている。
それぞれ固定基板51の外縁近傍に配される、第一引出電極563Aの先端部と、第三引出電極564Aの先端部と、第五引出電極565Aの先端部とは、固定側端子取出し部514内に位置する(図3の左部参照)。第一引出電極563Aの先端部と、第三引出電極564Aの先端部と、第五引出電極565Aの先端部とは、例えばFPC(Flexible printed circuits)やリード線等により電圧制御部15に接続される。
図3においては、固定基板51に設けられる固定反射膜54と、第一電極561Aと、第三電極562Aと、第一引出電極563Aと、第三引出電極564Aと、第五引出電極565Aと、を実線で示している。
第二引出電極563Bと、第四引出電極564Bと、第六引出電極565Bとは、可動基板52において、固定基板51と向かい合う側の面に設けられた電極である(図5参照)。第二引出電極563Bは、第二電極561Bの一端から頂点C8の近傍に至る。第四引出電極564Bは、第四電極562Bの一端から頂点C7の近傍に至る。第六引出電極565Bは、可動反射膜55から辺C7-C8の中点の近傍に至る。第二引出電極563Bと、第四引出電極564Bと、第六引出電極565Bとは、波長可変干渉フィルター5が構成された状態において、固定基板51の電極引出溝511Bのうち、電極配置溝511から辺C3-C4に向かって伸び3つに分岐する溝部と重なる位置に配されている。
それぞれ可動基板52の外縁近傍に配される、第二引出電極563Bの先端部と、第四引出電極564Bの先端部と、第六引出電極565Bの先端部とは、可動側端子取出し部524内に位置する(図3の右部参照)。第二引出電極563Bの先端部と、第四引出電極564Bの先端部と、第六引出電極565Bの先端部とは、例えばFPC(Flexible printed circuits)やリード線等により電圧制御部15に接続される。
図3においては、可動基板52に設けられる可動反射膜55と、第二電極561Bと、第四電極562Bと、第二引出電極563Bと、第四引出電極564Bと、第六引出電極565Bと、を破線で示している。
A6.電圧制御部の構成:
電圧制御部15は、バイアス駆動部151と、ギャップ検出器152と、フィードバック制御部153と、マイクロコントローラー154とを備える(図2参照)。なお、図面において、マイクロコントローラー154を「マイコン」と表記する。
バイアス駆動部151は、マイクロコントローラー154から入力されたバイアス信号に基づいて、波長可変干渉フィルター5の第一静電アクチュエーター561を駆動する。バイアス駆動部151は、第一引出電極563Aを介して、第一静電アクチュエーター561の第一電極561Aに接続されている(図3の上段左部および中央部参照)。バイアス駆動部151は、第二引出電極563Bを介して、第一静電アクチュエーター561の第二電極561Bに接続されている(図3の下段右部および中央部参照)。バイアス駆動部151は、第一静電アクチュエーター561の第一電極561Aおよび第二電極561Bにバイアス電圧を印加する。
具体的には、バイアス駆動部151は、所定bit数を有するD/A変換器により構成される。バイアス駆動部151は、マイクロコントローラー154から入力されたバイアス信号に応じた電圧を、第一静電アクチュエーター561に印加する。
ギャップ検出器152は、第五引出電極565Aを介して、固定反射膜54に接続されている(図3の中段左部および中央部参照)。ギャップ検出器152は、第六引出電極565Bを介して、可動反射膜55に接続されている(図3の中段右部および中央部参照)。ギャップ検出器152は、固定反射膜54と可動反射膜55との間の反射膜間ギャップG1の距離の検出値G1dに応じた検出信号を取得し、検出信号Vxをフィードバック制御部153に出力する。
フィードバック制御部153は、第二静電アクチュエーター562のフィードバック制御を行う。より具体的には、フィードバック制御部153は、機能部として、フィードバック駆動部156を備える。フィードバック駆動部156は、ギャップ検出器152から入力される検出信号Vxと、マイクロコントローラー154から入力される目標検出信号Vrとが同値となるように、第二静電アクチュエーター562をフィードバック制御する。フィードバック制御部153は、第二静電アクチュエーター562のフィードバック制御を行う制御器として機能するほか、制御部20に制御されて、後述する様々な機能を奏するデジタルプロセッサーである。
フィードバック制御部153は、第三引出電極564Aを介して、第二静電アクチュエーター562の第三電極562Aに接続されている(図3の下段左部および中央部参照)。フィードバック制御部153は、第四引出電極564Bを介して、第二静電アクチュエーター562の第四電極562Bに接続されている(図3の上段右部および中央部参照)。フィードバック制御部153は、第二静電アクチュエーター562の第三電極562Aおよび第四電極562Bにフィードバック電圧Vuを印加する。
フィードバック制御部153は、制御部20からの指示に応じて、例えばPI制御器、PD制御器、PID制御器などの制御器として機能する。フィードバック制御部153は、電圧可変範囲が所定幅に設定されている。フィードバック制御部153は、ギャップ検出器152から入力される検出信号Vxと、マイクロコントローラー154から入力される目標検出信号Vrとが同値となるように、フィードバック電圧Vuを第二静電アクチュエーター562に印加する。
マイクロコントローラー154は、制御部20、バイアス駆動部151、ギャップ検出器152、およびフィードバック制御部153に接続されている。マイクロコントローラー154は、制御部20から入力される制御信号に基づいて、バイアス駆動部151、ギャップ検出器152、およびフィードバック制御部153を制御し、波長可変干渉フィルター5から目的波長の光を透過させる。
マイクロコントローラー154は、記憶手段を備えている。記憶手段には、例えば反射膜間ギャップG1のギャップ量と、ギャップ検出器152で検出される検出信号Vxとが対応づけられたギャップ相関データが記憶されている。マイクロコントローラー154は、制御部20から入力される制御信号に基づいて、ギャップ相関データを参照し、バイアス駆動部151、ギャップ検出器152、およびフィードバック制御部153を制御し、波長可変干渉フィルター5から目的波長の光を透過させる。
A7.制御部の構成:
制御部20は、プロセッサーと、揮発性メモリーと、不揮発性メモリーと、I/Oインターフェースとを有しているコンピューターである。これらの各部は、バスを介して接続されている。プロセッサーは、例えばマイクロプロセッサーまたはプロセッサー回路である。プロセッサーは、不揮発性メモリーにあらかじめ格納されている各種のプログラム命令を実行することにより、分光測定装置1の様々な機能を実現する。制御部20は、機能部として、波長設定部21と、光量取得部22と、分光測定部23と、フィルター制御部24と、を備えている(図1参照)。制御部20が備える揮発性メモリーと不揮発性メモリーとをまとめて「記憶部30」として図1に示す。
波長設定部21は、波長可変干渉フィルター5により取り出す光の目的波長を設定する。フィルター制御部24は、設定した目的波長の光を波長可変干渉フィルター5に透過させるための制御信号を電圧制御部15に出力する。光量取得部22は、検出部11により取得された光量に基づいて、波長可変干渉フィルター5を透過した目的波長の光の光量を取得する。分光測定部23は、光量取得部22により取得された光量に基づいて、測定対象光のスペクトル特性を取得する。
A8.波長可変干渉フィルターの駆動方法:
図6は、分光測定装置1の分光測定処理における波長可変干渉フィルターの駆動方法を示すフローチャートである。図6の処理により、測定対象Xからの測定対象光に含まれる特定の波長の光の強度が取得される(図1参照)。
図6のステップS1において、制御部20の波長設定部21は、波長可変干渉フィルター5を透過させる光の目的波長を設定する(図1の上段右部参照)。制御部20のフィルター制御部24は、設定した目的波長の光を透過させる旨の制御信号を電圧制御部15に出力する(図1の上段中央部参照)。
ステップS2において、電圧制御部15のマイクロコントローラー154は、制御部20から入力された制御信号に応じて、目的波長に対応したバイアス電圧Vbを算出する(図2の上段右部参照)。バイアス電圧Vbとして、目的波長に対して一つの電圧が定められる。図2において、制御部20からの制御信号が表す目的波長の情報を「波長設定指令」として示す。
マイクロコントローラー154は、フィードバック制御部153によるフィードバック制御において、第二静電アクチュエーター562への電圧印加時の感度が一定となるように、バイアス電圧Vbを設定する。第二静電アクチュエーター562への電圧印加時の感度Rc[m/V]は、式(1)により表される。
Figure 0007472776000001
Vbは、第一静電アクチュエーター561に印加するバイアス電圧である。
kは、可動基板52の保持部522のバネ係数である。
εは、固定基板51と可動基板52との間の電極間ギャップG2の誘電率である。
Sbは、第一電極561Aおよび第二電極561Bにおいて、フィルター平面視で互いに重なり合う領域、すなわち、第一静電アクチュエーター561として機能する領域の面積である。
Scは、第三電極562Aおよび第四電極562Bにおいて、フィルター平面視で互いに重なり合う領域、すなわち、第二静電アクチュエーター562として機能する領域の面積である。
dmaxは電極間ギャップG2の初期ギャップ量、すなわち、電圧を印加していない状態でのギャップ量である。
dは、目的波長の光を透過させるための可動部521の変位量、すなわち、電極間ギャップG2のギャップ変位量である。
図7は、静電アクチュエーター部56の等価回路モデルである。図7において、kは、弾性係数を示している。bは、ダンピング係数を示している。mは、質量係数を示している。Vbは、第一電極561Aと第二電極561Bの間の電圧である。Vuは、第三電極562Aと第四電極562Bの間の電圧である。
図6のステップS2では、フィードバック制御において、第二静電アクチュエーター562への電圧印加時の感度が一定になるように、バイアス電圧Vbが印加される。すなわち、上記式(1)において、Rcは一定値である。Rcとして、フィードバック制御部153の制御器におけるゲインに応じた予め設定された値が、用いられる。制御部20から、目的波長を指定する制御信号が入力されると、マイクロコントローラー154は、波長可変干渉フィルター5に目的波長の光を透過させるための反射膜間ギャップG1の目標ギャップ量を算出する。目標ギャップ量から、可動部521を変位させるべき目標変位量dを算出することができる。
上記式(1)を、Vbについて解くと、式(2)が得られる。
Figure 0007472776000002
図6のステップS2においては、マイクロコントローラー154は、式(2)に基づいて、第一静電アクチュエーター561への印加電圧、すなわちバイアス電圧Vbを算出する。
ステップS3において、マイクロコントローラー154は、ステップS2において算出されたバイアス電圧Vbに基づいたバイアス信号をバイアス駆動部151に出力する(図2の上段参照)。バイアス駆動部151は、バイアス信号に応じたバイアス電圧Vbを、第一静電アクチュエーター561に印加する。その結果、第一静電アクチュエーター561の第一電極561Aおよび第二電極561B間に、バイアス電圧Vbに基づいた静電引力が作用し、可動部521が固定基板51側に変位する。
図8Aは、フィードバック電圧Vuを印加する第二静電アクチュエーター562の感度の特性を表す図である。図8Aにおいて、横軸は、可動部521の変位量である。図8Aにおいて、破線で表されたグラフは、第一静電アクチュエーター561にバイアス電圧Vbを印加しない状態における第二静電アクチュエーター562の感度を表す。
第二静電アクチュエーター562の感度は、第一静電アクチュエーター561にバイアス電圧を印加しない状態では、変位量に対して大きく変化する。より具体的には、変位量が大きくなるに従って、感度が高くなる。フィードバック電圧Vuを印加する静電アクチュエーターの感度が変化する場合、ある特定の感度にあわせてフィードバック制御部153の制御器のゲインを設定しても、可動部521の変位量が異なるところでは感度が大きく異なるため、制御器が適切に機能しない。つまり、バイアス電圧を印加しない状態では、ゲインを設定したギャップの近傍でしか制御器は適切に機能しない。
図8Bは、式(2)に基づいて第一静電アクチュエーター561に印加されるバイアス電圧Vbを表す図である。図8Bにおいて、横軸は、可動部521の変位量である。図8Bの横軸が示す範囲と、図8Aの横軸が示す範囲とは、同一である。本実施形態においては、第一静電アクチュエーター561に、式(2)に基づいたバイアス電圧Vbが印加される(図8B参照)。その結果、第二静電アクチュエーター562の感度は、図8Aにおいて太い実線で表されたグラフで表される特性を示す。すなわち、第二静電アクチュエーター562の感度は、ほとんどの領域で一定値Rc1となる。
図6のステップS4においては、フィードバック制御部153によりフィードバック制御が実施される。マイクロコントローラー154は、ギャップ検出器152を制御して、静電容量検出用の高周波電圧を、固定反射膜54および可動反射膜55に印加させる(図2の中央部参照)。ギャップ検出器152は、固定反射膜54および可動反射膜55の静電容量に応じた検出信号を取得する。ギャップ検出器152は、取得した検出信号Vxを、フィードバック制御部153に出力する。
マイクロコントローラー154は、制御部20からの制御信号に基づいて、目的波長に対応する目標ギャップ量を算出する(図2の上段右部参照)。マイクロコントローラー154は、記憶手段に記憶されたギャップ相関データから、目標ギャップ量に対応した目標検出信号Vrを取得し、フィードバック制御部153に出力する。
フィードバック制御部153は、マイクロコントローラー154から入力された目標検出信号Vrと、ギャップ検出器152から入力された検出信号Vxとの差を算出し、その差が「0」となるように、第二静電アクチュエーター562に対してフィードバック電圧Vuを印加する(図2の下段右部参照)。
図6のステップS5においては、検出部11が、波長可変干渉フィルター5を透過した光を検出し、検出信号を出力する(図1の下段左部参照)。光の強度を表す情報は、I-V変換器12と、アンプ13と、A/D変換器14とを経て、制御部20に入力される。制御部20の光量取得部22は、受け取った光量の情報に基づいて、波長可変干渉フィルター5を透過した目的波長の光の光量を取得する。
以上では、図6のフローチャートを使用して、波長可変干渉フィルター5にある1つ波長の光を透過させ、その光量を検出する処理について、説明した。図6のステップS1において設定する波長を順次変更し、図6の処理を繰り返すことにより、測定対象Xからの測定対象光に含まれる所定波長域内の各波長に対する光量から、測定対象光の分光スペクトルを測定することができる。
図9は、図6のステップS4で実行されるフィードバック制御の内容を示すブロック図である。電圧制御部15のバイアス駆動部151は、第二静電アクチュエーター562の感度が一定にするバイアス電圧Vbを第一静電アクチュエーター561に印加する(図9の上段および図8B参照)。このため、電圧制御部15のフィードバック制御部153は、可動部521の変位量、すなわち、電極間ギャップG2の変化量によらず、低い感度で第二静電アクチュエーター562を駆動させることができる(図8A参照)。
フィードバック制御部153は、機能部として、フィードバック駆動部156を備える。フィードバック駆動部156は、マイクロコントローラー154から入力された目標検出信号Vrとギャップ検出器152から出力される検出信号Vxの偏差Veに基づいて、偏差Veが0となるように第二静電アクチュエーター562に印加するフィードバック電圧Vuを設定する(図9の下段左部参照)。
図10は、波長可変干渉フィルター5の制御方法の処理を示すフローチャートである。ステップS410において、制御部20のフィルター制御部24は、制御部20の波長設定部21から、反射膜間ギャップG1の目標値、すなわち、固定反射膜54と可動反射膜55との間の新たな目標距離G1tを受け取る(図1の上段右部参照)。フィルター制御部24は、前述のように、目的波長の制御信号を電圧制御部15に出力する。その結果、電圧制御部15は、反射膜間ギャップG1の目標値、すなわち、固定反射膜54と可動反射膜55との間の新たな目標距離G1tを受け取る。
ステップS430において、電圧制御部15は、固定反射膜54と可動反射膜55との間の新たな目標距離G1tと、固定反射膜54と可動反射膜55との間のそれまでの目標距離と、の差が、あらかじめ定められた閾値距離より大きいか否かを判定する。具体的な判定は、目標距離に応じて設定されるバイアス電圧Vbを使用して行われる。新たな目標距離G1tと変更直前の目標距離との差があらかじめ定められた閾値距離より大きい場合には、処理はステップS434に進む。目標距離の差があらかじめ定められた閾値距離以下である場合には、処理はステップS432に進む。
ステップS432において、電圧制御部15のバイアス駆動部151は、前述のように、新たな目標距離G1tに応じて第一静電アクチュエーター561を駆動して、可動反射膜55を変位させる(図9の上段参照)。その結果、固定反射膜54と可動反射膜55の相対位置が変わる。その後、処理は、ステップS450に進む。
一方、ステップS434においては、第1移行処理が行われる。本実施形態においては、フィードバック制御部153は、ステップS434の処理の開始後、あらかじめ定められた閾値時間Tsの間、フィードバック駆動部156によるフィードバック制御を待機させる。第1移行処理においては、フィードバック制御部153は、フィードバック駆動部156によるフィードバック制御の待機を開始する。また、フィードバック制御部153は、フィードバック駆動部156が待機直前に第二静電アクチュエーター562に出力していた駆動電圧Vuを取得する(図9の中段中央部参照)。
ステップS436において、電圧制御部15のバイアス駆動部151は、新たな目標距離G1tに応じて第一静電アクチュエーター561を駆動して、可動反射膜55を変位させる(図9の上段参照)。ステップS436の処理は、ステップS432の処理と同じである。
ステップS440においては、第2移行処理が行われる。本実施形態においては、ステップS436の処理の開始後、あらかじめ定められた閾値時間Tsが経過するまで、フィードバック制御部153は、フィードバック制御を待機する。ステップS436の処理の開始後、あらかじめ定められた閾値時間Tsが経過した後、ステップS450の処理が開始される。
閾値時間Tsは、波長可変干渉フィルター5において、第一静電アクチュエーター561によって変位される可動部521を含む構成の固有振動の周期の1/4の時間である。
ステップS436の処理の開始後、上記構成の固有振動の周期の1/4の時間が経過したタイミングにおいては、第一静電アクチュエーター561によって変えられる固定反射膜54と可動反射膜55の相対距離は、固有振動の最初の1周期中では、最も目標距離G1tに近いと推定できる。このため、閾値時間Tsを固有振動の周期の1/4の時間とすることにより、固定反射膜54と可動反射膜55の相対距離が目標距離G1tに近い状態から、可動部521のフィードバック制御を再開することができる。よって、閾値時間Tsが他の時間である態様に比べて、固定反射膜54と可動反射膜55が新たな目標距離G1tだけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
ステップS436の処理の開始後、ステップS450の開始前において、フィードバック制御部153のフィードバック駆動部156はフィードバック制御の演算を行わない。第二静電アクチュエーター562は、ステップS410の処理の開始後、ステップS434においてフィードバック駆動部156の待機の開始直前にフィードバック駆動部156から与えられていた駆動電圧Vuと同じ大きさの駆動電圧Vuを、フィードバック駆動部156から与えられる。
このような処理を行うことにより、ステップS436の処理の開始後、ステップS450の処理の開始前において、固定反射膜54と可動反射膜55の相対位置の制御を安定させることができる。
ステップS450において、電圧制御部15のフィードバック制御部153は、新たな目標距離G1tと、反射膜間ギャップG1の距離の検出値G1dと、に応じて第二静電アクチュエーター562をフィードバック制御する。より具体的には、フィードバック制御部153のフィードバック駆動部156は、固定反射膜54と可動反射膜55の間の目標距離G1tと、固定反射膜54と可動反射膜55の距離の検出値G1dと、の偏差Veを入力されて、第二静電アクチュエーター562をフィードバック制御する。フィードバック制御として、PID(Proportional-Integral-Differential)制御が行われる。その結果、固定反射膜54と可動反射膜55の相対位置が変わる。ただし、第二静電アクチュエーター562の静電引力によって可動反射膜55が変位する量は、第一静電アクチュエーター561の静電引力による可動反射膜55の変位量よりも、小さい。第二静電アクチュエーター562は、可動反射膜55の位置に関して、数nmの動作精度を有する。
図10のステップS440の処理を行うことにより、固定反射膜54と可動反射膜55の距離の検出値G1dが新たな目標距離G1tと大きく異なるステップS436の処理の開始直後から、ステップS450の処理を開始する態様に比べて、固定反射膜54と可動反射膜55が新たな目標距離G1tだけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
また、図10のステップS430の閾値距離を適切に定めることにより、常に、ステップS436の処理の開始後、閾値時間Tsが経過した後にステップS450の処理を開始する態様に比べて、以下のような利点が得られる。すなわち、新たな目標距離G1tとそれまでの目標距離との差が閾値距離より小さい場合は、目標距離が変更された後、反射膜間ギャップG1の距離が、新たな目標距離G1tに収束するまでの時間も短い。このため、ステップS430の処理を行うことにより、新たな目標距離G1tとそれまでの目標距離との差が閾値距離より小さい場合に、固定反射膜54と可動反射膜55が新たな目標距離G1tだけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
図11は、図10のステップS434,S440の処理を行わず、ステップS436の処理の開始直後からステップS450の処理を開始する比較態様における、反射膜間ギャップG1の距離の検出値G1dを表すグラフである。図11の横軸は時間tである。図11の横軸に示した複数のタイミングTcにおいて、反射膜間ギャップG1の目標距離G1tが変更された。反射膜間ギャップG1の目標距離G1tは、ステップ状に徐々に減少され、その後、ステップ状に大きく増加された。反射膜間ギャップG1の目標距離G1tがステップ状に大きく増加された後、反射膜間ギャップG1の距離G1dが大きく振動し、目標距離G1t近傍で安定するまでに時間がかかっていることが分かる。これは、以下のような理由による。
反射膜間ギャップG1の目標距離G1tが変更された直後は、固定反射膜54と可動反射膜55の間の距離は、変更前の目標距離に近い値である。このため、フィードバック駆動部156には、固定反射膜54と可動反射膜55の間の新たな目標距離G1tに応じた目標検出信号Vrと、固定反射膜54と可動反射膜55の間のそれまでの目標距離に近い実際の距離G1dに応じた検出信号Vxと、の偏差Veが、入力される(図9の下段左部参照)。
その結果、第二静電アクチュエーター562は、目標距離G1tが変更されたために突然、増大した偏差Veを解消するように、急激に可動部521を変位させる。一方、第一静電アクチュエーター561も、与えられるバイアス電圧Vbに応じて、新たな目標距離G1tに応じた位置に向う向きに可動部521を変位させる(図9の上段右部参照)。このため、可動部521は、それまでの位置から、新たな目標距離G1tに応じた位置に向う向きに、過剰に変位され、大きくオーバーシュートする。このオーバーシュートが解消され、可動部の位置の変動が十分小さくなるまでに、多くの時間が費やされる。
図12は、本実施形態における、反射膜間ギャップG1の距離の検出値G1dを表すグラフである。図12の横軸は時間である。図12の横軸が示す範囲と、図11の横軸が示す範囲とは、同一である。図12に示す本実施形態においても、反射膜間ギャップG1の目標距離G1tは、図11の比較態様と同じように変更された。本実施形態においても、反射膜間ギャップG1の目標距離G1tがステップ状に大きく増加された後、反射膜間ギャップG1の距離G1dが振動している。しかし、振動の振幅は、図11の比較態様よりも小さく、目標距離G1t近傍で安定するまでの時間も短いことが分かる。
本実施形態における波長可変干渉フィルター5を、「波長可変フィルター」とも呼ぶ。また、波長可変干渉フィルター5を含む光学モジュール10と、制御部20とを含む分光測定装置1を、広義の「波長可変フィルター」とも呼ぶ。固定反射膜54と、可動反射膜55とを、まとめて「反射膜」とも呼ぶ。静電アクチュエーター部56を、「アクチュエーター部」とも呼ぶ。第一静電アクチュエーター561を、「第一アクチュエーター」とも呼ぶ。第二静電アクチュエーター562を、「第二アクチュエーター」とも呼ぶ。
電圧制御部15がステップS410の処理を行う機能を、「第1機能」とも呼ぶ。電圧制御部15がステップS436の処理を行う機能を、「第2機能」とも呼ぶ。電圧制御部15がステップS450の処理を行う機能を、「第3機能」とも呼ぶ。
B.第2実施形態:
第2実施形態の分光測定装置においては、第1実施形態の分光測定装置とは、図10のステップS434の第1移行処理およびステップS440の第2移行処理の内容が異なる。第2実施形態の分光測定装置の他の点は、第1実施形態の分光測定装置と同じである。
図13は、第2実施形態において、図10のステップS440で実行される制御の内容を示すブロック図である。第2実施形態においては、図10のステップS434の第1移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、フィードバック制御部153は、偏差Veとして0をフィードバック駆動部156に入力する(図13の中段左部参照)。
ステップS440の第2移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の第2移行処理においては、閾値時間Tsの間、フィードバック制御部153のフィードバック駆動部156は、偏差Veとして0を入力される(図13の中段左部参照)。ステップS436の処理の開始後、あらかじめ定められた閾値時間Tsが経過した後、ステップS450の処理が開始される。
このような処理を行うことにより、フィードバック制御部153のフィードバック駆動部156は、偏差Veを解消する制御を行わなくなる。このため、ステップS436の処理の開始後、ステップS450の通常のフィードバック制御の開始前において、目標距離が変更されたために突然、増大した偏差を解消するように、第二静電アクチュエーター562のフィードバック制御が行われ、可動部521が過剰に変位される、という事態が生じない。その結果、固定反射膜54と可動反射膜55の相対位置の制御を安定させることができる。
C.第3実施形態:
第3実施形態の分光測定装置においては、第1実施形態の分光測定装置とは、図10のステップS434の第1移行処理およびステップS440の第2移行処理の内容が異なる。第3実施形態の分光測定装置の他の点は、第1実施形態の分光測定装置と同じである。
図14は、第3実施形態において、図10のステップS440で実行される制御の内容を示すブロック図である。第3実施形態においては、図10のステップS434の第1移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、フィードバック制御部153の機能部である偏差低減部157は、そのときの偏差Veの値Ve0を取得する(図14の中段左部参照)。
ステップS440の第2移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の第2移行処理においては、閾値時間Tsの間、フィードバック制御部153のフィードバック駆動部156は、実際の偏差Veに代えて、ステップS434における偏差Veの値Ve0から、0に単調減少する値を、偏差Veとして入力される。ステップS434における偏差Ve0の値から0に単調減少する偏差Veは、偏差低減部157から入力される(図14の中段左部参照)。ステップS436の処理の開始後、閾値時間Tsが経過した後は、フィードバック駆動部156に入力される偏差は、実際の偏差Veに戻され、処理はステップS450に進む。
図15は、目標距離G1tの変更に伴うバイアス電圧Vbと偏差Veの変化を示すグラフである。図15の上段は、目標距離G1tの変更に伴うバイアス電圧Vbの変化を示すグラフである。図15の下段は、目標距離G1tの変更に伴う偏差Veの変化を示すグラフである。図15の上段および下段のグラフにおいて、横軸は時間である。図15の上段の横軸が示す範囲と、図15の下段の横軸が示す範囲とは、同一である。
時刻t0において、バイアス電圧Vbが変更されている(図15の上段参照)。図10のステップS430,S440の処理を行わない比較態様における、固定反射膜54と可動反射膜55の間の目標距離G1tと検出値G1dとの偏差は、図15の下段において破線で示される。一方、本実施形態における0に向かって単調減少する偏差は、図15の下段において閾値時間Tsの間の実線で示される。
ステップS440において上述の処理を行うことによって、偏差Veが急激に大きく変化する事態を避けることができる。その結果、図10のステップS440の処理を行わない比較態様に比べて、固定反射膜54と可動反射膜55の相対位置の制御を安定させることができる。また、第2実施形態と比べても、偏差Veの変化が緩やかであるため、第2実施形態よりもさらに、固定反射膜54と可動反射膜55の相対位置の制御を安定させることができる。
D.第4実施形態:
第4実施形態の分光測定装置においては、第1実施形態の分光測定装置とは、図10のステップS434の第1移行処理およびステップS440の第2移行処理の内容が異なる。第4実施形態の分光測定装置の他の点は、第1実施形態の分光測定装置と同じである。
(1)第1態様:
第4実施形態の第1態様においては、図10のステップS434の第1移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、フィードバック制御部153は、フィードバック駆動部156が実行するフィードバック制御をPD(Proportional-Differential)制御に設定する(図9の中段左部参照)。
ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の第2移行処理においては、閾値時間Tsの間、フィードバック駆動部156は、フィードバック制御として、PD制御を行う。すなわち、ステップS440の移行処理で行われるフィードバック制御においては、積分要素のゲインは0である。ステップS436の処理の開始後、閾値時間Tsが経過した後は、フィードバック駆動部156が実行するフィードバック制御は、PID制御に戻され、処理はステップS450に進む。
反射膜間ギャップG1の目標距離G1tが変更された直後は、固定反射膜54と可動反射膜55の間の距離は、変更前の目標距離に近い値である。このため、反射膜間ギャップG1の目標距離G1tが変更された直後は、偏差Veが大きい。反射膜間ギャップG1の目標距離G1tが変更された直後から積分要素を含むPID制御を行うと、反射膜間ギャップG1の目標距離G1tが変更された直後からしばらくの間の大きな偏差Veが、後の制御に大きな影響を与える。
しかし、本実施形態の第1態様によれば、ステップS436の処理の開始直後の偏差Veが大きい状態が、積分要素によって固定反射膜54と可動反射膜55の相対位置の制御に大きく影響を与える事態を、防止することができる。固定反射膜54と可動反射膜55の相対位置を、早期に、新たな目標距離G1tに応じた相対位置にすることができる。
(2)第2態様:
第4実施形態の第2態様においては、図10のステップS434の第1移行処理において、フィードバック制御部153は、以下の制御を行う。すなわち、フィードバック制御部153は、フィードバック駆動部156が実行するPID制御における積分ゲインを0に設定する(図9の中段左部参照)。
ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の第2移行処理においては、閾値時間Tsの間、フィードバック駆動部156は、フィードバック制御として、PID(Proportional-Integral-Differential)制御を行う。ただし、フィードバック駆動部156は、積分要素のゲインが、0からステップS450のPID制御における積分要素のゲインの値まで、単調増加するPID制御を行う。ここでは、積分要素のゲインは、経過時間に対して線形に増加するものとする。ステップS436の処理の開始後、閾値時間Tsが経過した時点で、フィードバック駆動部156が実行するフィードバック制御の積分要素のゲインの値は、ステップS450のPID制御における積分要素のゲインの値と一致している。その後、処理はステップS450に進む。
本実施形態の第2態様によれば、第1態様と同様に、ステップS436の処理の開始直後の偏差Veが大きい状態が、積分要素によって、固定反射膜54と可動反射膜55の相対位置の制御に大きく影響を与える事態を、防止することができる。また、ステップS440のフィードバック制御からステップS450のフィードバック制御に移行する際に、制御が不安定になる事態を防止することができる。
E.他の実施形態:
E1.他の実施形態1:
(1)上記実施形態においては、固定基板51と可動基板52とが、接合膜53によって接合されている波長可変干渉フィルター5について、説明した(図2の下段左部参照)。しかし、波長可変干渉フィルターは、他の態様とすることもできる。波長可変干渉フィルターは、たとえば、以下のように構成することもできる。
図16は、他の光学モジュールの概略構成を示すブロック図である。波長可変干渉フィルター5Cは、第1固定基板51Cと、可動基板52Cと、第1接合膜53Cと、固定反射膜54Cと、可動反射膜55Cと、静電アクチュエーター部56Cと、第2固定基板57と、第2接合膜58と、を備える。図16において、第1実施形態と同じ構成または機能を有する要素については、図2における対応する要素と同じ符号を付して示す。図16において、第1実施形態の要素と対応する要素については、第1実施形態の要素の末尾にCを付した符号で示す。
第1固定基板51Cは、固定反射膜54を支持している。可動基板52Cは、保持部522に囲まれた領域内に、可動反射膜55を支持している。第1接合膜53Cは、第1固定基板51Cと可動基板52Cとを接合する。
可動基板52Cは、静電アクチュエーター部56Cを構成する電極566を、第2固定基板57と向かい合う面に備えている。第2固定基板57は、静電アクチュエーター部56Cを構成する電極561C,562Cを、可動基板52Cと向かい合う面に備えている。第2接合膜58は、第2固定基板57と可動基板52とを接合する。
電極561Cと電極566とが、第一静電アクチュエーター561を構成する。本実施形態の第一静電アクチュエーター561の機能は、第1実施形態の第一静電アクチュエーター561と同じである。電極562Cと電極566とが、第二静電アクチュエーター562を構成する。本実施形態の第二静電アクチュエーター562の機能は、第二静電アクチュエーター562と同じである。
(2)上記各実施形態においては、本開示の電子機器として、分光測定装置1を例示した。しかし、様々な分野により本開示の波長可変干渉フィルターの駆動方法、光学モジュール、および電子機器を適用することができる。たとえば、本開示の電子機器を、色を測定するための測色装置に適用することもできる。
図17は、波長可変干渉フィルターを備えた測色装置400の一例を示すブロック図である。測色装置400は、検査対象Aに光を射出する光源装置410と、光学モジュールとしての測色センサー420と、測色装置400の全体動作を制御する制御装置430を備える。測色装置400は、光源装置410から射出される光を検査対象Aにて反射させ、検査対象Aからの検査対象光を測色センサー420にて受光し、測色センサー420から出力される検出信号に基づいて、検査対象光の色度、すなわち検査対象Aの色を分析して測定する。
光源装置410は、光源411、複数のレンズ412を備え、検査対象Aに対して基準光、例えば、白色光を射出する。なお、図17においては、技術の理解を容易にするために、レンズ412を一つだけ示している。複数のレンズ412には、コリメーターレンズが含まれてもよい。この場合、光源装置410は、光源411から射出された基準光をコリメーターレンズにより平行光とし、図示しない投射レンズから検査対象Aに向かって射出する。なお、本実施形態では、光源装置410を備える測色装置400を例示するが、例えば検査対象Aが液晶パネルなどの発光部材である場合、光源装置410が設けられない構成としてもよい。
測色センサー420は、波長可変干渉フィルター5と、波長可変干渉フィルター5を透過する光を受光する検出部11と、波長可変干渉フィルター5で透過させる光の波長を可変する電圧制御部15とを備える。また、測色センサー420は、波長可変干渉フィルター5に対向する位置に、検査対象Aで反射された検査対象光を内部に導光する入射光学レンズを備えている。なお、図17においては、技術の理解を容易にするために、入射光学レンズは示していない。測色センサー420は、波長可変干渉フィルター5により、入射光学レンズから入射した検査対象光のうち、所定波長の光を分光し、分光した光を検出部11にて受光する。
制御装置430は、測色装置400の全体動作を制御する。制御装置430としては、例えば汎用パーソナルコンピューターや、携帯情報端末、その他、測色専用コンピューターなどを用いることができる。そして、制御装置430は、光源制御部431、測色センサー制御部432、および測色処理部433などを備えて構成されている。
光源制御部431は、光源装置410に接続され、例えば利用者の設定入力に基づいて、光源装置410に所定の制御信号を出力して、所定の明るさの白色光を射出させる。測色センサー制御部432は、測色センサー420に接続されている。測色センサー制御部432は、例えば利用者の設定入力に基づいて、測色センサー420にて受光させる光の波長を設定し、この波長の光の受光量を検出する旨の制御信号を測色センサー420に出力する。これにより、測色センサー420の電圧制御部15は、制御信号に基づいて、静電アクチュエーター部56に電圧を印加し、波長可変干渉フィルター5を駆動させる。測色処理部433は、検出部11により検出された受光量から、検査対象Aの色度を分析する。
このように、本開示の波長可変干渉フィルター、光学モジュール、および電子機器は、入射光から所定の光を分光するいかなる装置にも適用することができる。そして、本開示の波長可変干渉フィルターは、上述のように、1デバイスで複数の波長を分光させることができるため、複数の波長のスペクトルの測定、複数の成分に対する検出を精度よく実施することができる。したがって、複数デバイスにより所望の波長を取り出す従来の装置に比べて、光学モジュールや電子機器の小型化を促進でき、例えば、携帯用や車載用の光学デバイスとして好適に用いることができる。
(3)上記実施形態においては、固定反射膜54と可動反射膜55は、具体的には、Ag等の金属膜や、Ag合金等、導電性の合金膜である。しかし、固定反射膜54と可動反射膜55は、高屈折層をTiO2、低屈折層をSiO2とした誘電体多層膜であってもよい。この場合、誘電体多層膜の最下層又は表層に導電性の金属合金膜が形成されていることが好ましい。また、固定反射膜54と可動反射膜55は、互いに異なる構成を有していてもよく、同じ構成を有していてもよい。
(4)上記実施形態においては、静電アクチュエーター部56は、第一静電アクチュエーター561と、第二静電アクチュエーター562と、を備える。しかし、アクチュエーター部は、静電力ではない他の原理で駆動するアクチュエーターとすることもできる。
(5)上記実施形態においては、感度Rcが一定となるようなバイアス電圧Vbを印加する例について示した。しかし、バイアス電圧Vbの値は式(2)に基づいた値に限らず、所望の感度特性となるようにバイアス電圧Vbを印加しても良い。
(6)上記実施形態においては、図10のステップS430において、バイアス電圧Vbを使用して判定が行われる。しかし、距離の検出信号Vxの目標値に基づいてステップS430の判定処理が行われてもよい。
(7)図10のステップS430の処理は、フィルター制御部24が、目的波長の制御信号を電圧制御部15に出力する前に行われてもよい。
(8)上記実施形態においては、図10のステップS440は、閾値時間Ts内に行われる。しかし、移行処理は、波長可変干渉フィルター5の動作状態に関するあらかじめ定められた条件が満たされるまで行われてもよい。
(9)上記実施形態においては、測定対象X、検査対象Aで反射した測定対象光を測定する例を示した。しかし、測定対象として、例えば液晶パネル等の発光体を用いる場合、発光体から発光された光を測定対象光としてもよい。
E2.他の実施形態2:
上記第1実施形態においては、ステップS436の処理の開始後、ステップS450の開始前に、第二静電アクチュエーター562は、ステップS436の処理の開始前にフィードバック制御部153から与えられていた駆動電圧Vuと同じ大きさの駆動電圧Vuを、フィードバック制御部153から与えられる。しかし、第二静電アクチュエーター562は、たとえば、ステップS436の処理の開始前にフィードバック制御部153から与えられていた駆動電圧Vuに一定の係数を掛けた電圧など、他の電圧を与えられてもよい。
E3.他の実施形態3:
上記第2実施形態においては、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の移行処理において、閾値時間Tsの間、フィードバック制御部153は、偏差Veとして0を入力される。しかし、ステップS440の移行処理においては、0以外の一定値を入力されてもよい。
E4.他の実施形態4:
上記第2実施形態においては、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の移行処理において、閾値時間Tsの間、フィードバック制御部153は、ステップS436の処理の開始直前の偏差Veの値Ve0から、0に単調減少する値を、偏差Veとして入力される。なお、本明細書において、「単調減少」には、所定の時間区間において一定値を有する変化も含まれる。
しかし、Ve0は、他の値とすることもできる。ただし、Ve0は、ステップS410の後かつステップS436の処理の開始前の偏差Veの値とすることが好ましい。また、フィードバック制御部153は、単調減少ではなく、一部の時間区間において増加する値を、偏差Veとして入力されてもよい。
E5.他の実施形態5:
第4実施形態の第1態様においては、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の移行処理においては、閾値時間Tsの間、フィードバック制御部153は、フィードバック制御として、PD(Proportional-Differential)制御を行う。しかし、たとえば、第4実施形態の第2態様に示したように、他の制御が行われてもよい。また、ステップS440の処理は、ステップS436の処理の開始後、ステップS450の処理の開始前の時間区間内の少なくとも一部で実行されればよい。
E6.他の実施形態6:
第4実施形態の第2態様においては、ステップS436の処理の開始後、ステップS450の処理の開始前に行われるステップS440の移行処理においては、フィードバック制御部153は、積分要素のゲインが、0からステップS450のPID制御における積分要素のゲインの値まで、単調増加するPID制御を行う。なお、本明細書において、「単調増加」には、所定の時間区間において一定値を有する変化も含まれる。しかし、積分要素のゲインに限らず、積分要素のゲイン、位置要素ゲイン、および微分要素のゲインのうちの1以上について、変化させたフィードバック制御を行うことができる。
E7.他の実施形態7:
第1実施形態においては、図10のステップS430において、フィルター制御部24は、固定反射膜54と可動反射膜55との間の新たな目標距離G1tと、固定反射膜54と可動反射膜55との間のそれまでの目標距離と、の差が、あらかじめ定められた閾値距離より大きいか否かを判定する。しかし、判定条件は、波長可変干渉フィルター5の動作状態に関する他の条件であってもよい。また、このような判定を行わず、常にステップS440の処理を実行する態様とすることもできる。
E8.他の実施形態8:
第1実施形態においては、閾値時間Tsは、波長可変干渉フィルター5において、第一静電アクチュエーター561によって変位される可動部521を含む構成の固有振動の周期の1/4の時間である。しかし、ステップS440の処理を行う閾値時間Tsは、固有振動の周期の1/2の時間、固有振動の周期と同一の時間、固有振動の周期の[1/4+N(Nは正の整数)]倍の時間など、他の値とすることもできる。ただし、閾値時間は、波長可変フィルターにおいて、第一アクチュエーターによって変位される構成であって、二つの反射膜の少なくとも一方を含む構成の固有振動の周期の1/4の95%~105%の時間、またはその時間に固有振動の周期のN(Nは正の整数)倍の時間を加えた時間であることが好ましい。
F.さらに他の形態:
本開示は、上述した実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の形態で実現することができる。例えば、本開示は、以下の形態によっても実現可能である。以下に記載した各形態中の技術的特徴に対応する上記実施形態中の技術的特徴は、本開示の課題の一部又は全部を解決するために、あるいは、本開示の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
(1)本開示の一形態によれば、対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、を備えた波長可変フィルターの制御方法が提供される。前記アクチュエーター部は、前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備える。前記制御方法は、(a)前記二つの反射膜の間の新たな目標距離を受け取る工程と、(b)前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変える工程と、(c)前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程と、を備える。あらかじめ定められた条件が満たされる場合には、前記工程(b)の開始後、あらかじめ定められた閾値時間が経過した後に、前記工程(c)を開始する。
このような態様とすれば、二つの反射膜の距離の検出値が新たな目標距離と大きく異なる工程(b)の開始直後から工程(c)を開始する態様に比べて、二つの反射膜が新たな目標距離だけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
(2)上記形態の制御方法において、前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック制御部は前記フィードバック制御の演算を行わず、前記第二アクチュエーターは、前記工程(b)の開始前に前記フィードバック制御部から与えられていた駆動電圧と同じ大きさの駆動電圧を与えられる、態様とすることができる。
このような態様とすれば、前記工程(b)の開始後、前記工程(c)の開始前において、二つの反射膜の相対位置の制御を安定させることができる。
(3)上記形態の制御方法において、前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、前記フィードバック制御部は、前記二つの反射膜の間の目標距離と、前記二つの反射膜の距離の検出値と、の偏差を入力されて、前記第二アクチュエーターをフィードバック制御するフィードバック駆動部を備え、前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック駆動部は、前記偏差として0を入力されて前記フィードバック制御を行う、態様とすることができる。
このような態様とすれば、前記工程(b)の開始後、前記工程(c)の開始前において、二つの反射膜の相対位置の制御を安定させることができる。
(4)上記形態の制御方法において、前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、前記フィードバック制御部は、前記二つの反射膜の間の目標距離と、前記二つの反射膜の距離の検出値と、の偏差を入力されて、前記第二アクチュエーターをフィードバック制御するフィードバック駆動部を備え、前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック駆動部は、前記工程(b)の開始前の偏差の値から0に単調減少する値を、前記偏差として入力されて前記フィードバック制御を行う、態様とすることができる。
このような態様とすれば、工程(b)の開始後、工程(c)の開始前において、偏差が急激に大きく変化する事態を避けることができる。前記工程(b)の開始直後の二つの反射膜の相対位置の制御を安定させることができる。
(5)上記形態の制御方法において、さらに、(d)前記工程(b)の開始後、前記閾値時間が経過する前に実行される工程であって、前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程を備え、前記工程(c)は、前記フィードバック制御として、PID制御を行う工程であり、前記工程(d)は、前記フィードバック制御として、PD制御を行う工程である、態様とすることができる。
このような態様とすれば、工程(b)の開始直後の二つの反射膜の間の目標距離と、二つの反射膜の距離の検出値と、の偏差が大きい状態が、積分要素によって、二つの反射膜の相対位置の制御に大きく影響を与える事態を、防止することができる。
(6)上記形態の制御方法において、さらに、(d)前記工程(b)の開始後、前記閾値時間が経過する前に実行される工程であって、前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程を備え、前記工程(c)は、前記フィードバック制御として、PID制御を行う工程であり、前記工程(d)は、前記フィードバック制御として、PID制御を行う工程であり、積分要素のゲインが、0から前記工程(c)における積分要素のゲインの値まで、単調増加する制御を行う工程である、態様とすることができる。
このような態様とすれば、工程(b)の開始直後の二つの反射膜の間の目標距離と、二つの反射膜の距離の検出値と、の偏差が大きい状態が、積分要素によって、二つの反射膜の相対位置の制御に大きく影響を与える事態を、防止することができる。また、工程(c)の開始時に制御が不安定になる事態を防止することができる。
(7)上記形態の制御方法において、前記あらかじめ定められた条件は、前記新たな目標距離と、前記二つの反射膜のそれまでの目標距離と、の差が、あらかじめ定められた閾値距離より大きいことである、態様とすることができる。
このような態様とすれば、閾値距離を適切に定めることにより、常に、工程(b)の開始後、閾値時間が経過した後に工程(c)を開始する態様に比べて、以下のような利点がある。すなわち、新たな目標距離とそれまでの目標距離との差が閾値より小さい場合に、二つの反射膜が新たな目標距離だけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
(8)上記形態の制御方法において、前記閾値時間は、前記波長可変フィルターにおいて、前記第一アクチュエーターによって変位される構成であって、前記二つの反射膜の少なくとも一方を含む構成の固有振動の周期の1/4の90%~110%の時間である、態様とすることができる。
工程(b)の開始後、上記構成の固有振動の周期の1/4の時間が経過したタイミングにおいては、第一アクチュエーターによって変えられる二つの反射膜の相対距離は、最も目標距離に近いと推定できる。このため、上記の態様とすれば、閾値時間が上記構成の固有振動の周期の1/4の90%未満または110%より大きい時間である態様に比べて、二つの反射膜が新たな目標距離だけ離れて対向する相対位置に移行して安定するまでの時間を、短くすることができる。
(9)本開示の他の形態によれば、波長可変フィルターが提供される。この波長可変フィルターは、対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、前記アクチュエーター部を制御する制御部と、を備える。前記アクチュエーター部は、前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備える。前記制御部は、前記二つの反射膜の間の新たな目標距離を受け取り、前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変え、前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変え、あらかじめ定められた条件が満たされる場合には、前記第一アクチュエーターによって前記二つの反射膜の相対位置を変える処理の開始後、あらかじめ定められた閾値時間が経過した後に、前記第二アクチュエーターによって前記二つの反射膜の相対位置を変える処理を開始する。
(10)本開示のさらに他の形態によれば、対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、を備えた波長可変フィルターを、コンピューターに制御させるコンピュータープログラムが提供される。前記アクチュエーター部は、前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備える。前記コンピュータープログラムは、(a)前記二つの反射膜の間の新たな目標距離を受け取る第1機能と、(b)前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変える第2機能と、(c)前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える第3機能と、を前記コンピューターに実現させることができ、あらかじめ定められた条件が満たされる場合には、前記コンピューターに、前記第2機能による処理の開始後、あらかじめ定められた閾値時間が経過した後に、前記第3機能による処理を開始させる。
本開示は、波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム以外の種々の形態で実現することも可能である。例えば、波長可変フィルターを備える機器、波長可変フィルターの製造方法、波長可変フィルターの使用方法等の形態で実現することができる。
1…分光測定装置、5…波長可変干渉フィルター、10…光学モジュール、11…検出部、12…I-V変換器、13…アンプ、14…A/D変換器、15…電圧制御部、20…制御部、21…波長設定部、22…光量取得部、23…分光測定部、24…フィルター制御部、30…記憶部、51…固定基板、51C…第1固定基板、52…可動基板、52C…可動基板、53…接合膜、53C…第1接合膜、54…固定反射膜、54C…固定反射膜、55…可動反射膜、55C…可動反射膜、56…静電アクチュエーター部、56C…静電アクチュエーター部、57…第2固定基板、58…第2接合膜、151…バイアス駆動部、152…ギャップ検出器、153…フィードバック制御部、154…マイクロコントローラー、156…フィードバック駆動部、157…偏差低減部、400…測色装置、410…光源装置、411…光源、412…レンズ、420…測色センサー、430…制御装置、431…光源制御部、432…測色センサー制御部、433…測色処理部、511…電極配置溝、511A…電極設置面、511B…電極引出溝、512…反射膜設置部、512A…反射膜設置面、513…第一接合部、514…固定側端子取出し部、521…可動部、522…保持部、523…第二接合部、524…可動側端子取出し部、525…基板外周部、561…第一静電アクチュエーター、561A…第一電極、561B…第二電極、561C…電極、562…第二静電アクチュエーター、562A…第三電極、562B…第四電極、562C…電極、563A…第一引出電極、563B…第二引出電極、564A…第三引出電極、564B…第四引出電極、565A…第五引出電極、565B…第六引出電極、566…電極、A…検査対象、C1…頂点、C2…頂点、C3…頂点、C4…頂点、C5…頂点、C6…頂点、C7…頂点、C8…頂点、G1…反射膜間ギャップ、G1d…反射膜間ギャップの大きさの検出値、G2…電極間ギャップ、O…フィルター中心点、Rc…感度、Rc1…一定値、Sb…第一電極561Aと第二電極561Bの重複領域の面積、Sc…第三電極562Aと第四電極562Bの重複領域の面積、Tc…タイミング、Ts…閾値時間、Vb…バイアス電圧、Ve…偏差、Ve0…ステップS436の開始直前の偏差、Vr…目標検出信号、Vu…駆動電圧、Vx…検出信号、X…測定対象、b…ダンピング係数、d…目標変位量、dmax…電極間ギャップG2の初期ギャップ量、k…保持部522の弾性係数、m…質量係数、t…時間、t0…時刻、ε…電極間ギャップG2の誘電率

Claims (10)

  1. 対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、を備えた波長可変フィルターの制御方法であって、
    前記アクチュエーター部は、
    前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、
    前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備え、
    前記制御方法は、
    (a)前記二つの反射膜の間の新たな目標距離を受け取る工程と、
    (b)前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変える工程と、
    (c)前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程と、を備え、
    あらかじめ定められた条件が満たされる場合には、前記工程(b)の開始後、あらかじめ定められた閾値時間が経過した後に、前記工程(c)を開始する、制御方法。
  2. 請求項1記載の制御方法であって、
    前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、
    前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック制御部は前記フィードバック制御の演算を行わず、前記第二アクチュエーターは、前記工程(b)の開始前に前記フィードバック制御部から与えられていた駆動電圧と同じ大きさの駆動電圧を与えられる、制御方法。
  3. 請求項1記載の制御方法であって、
    前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、
    前記フィードバック制御部は、前記二つの反射膜の間の目標距離と、前記二つの反射膜の距離の検出値と、の偏差を入力されて、前記第二アクチュエーターをフィードバック制御するフィードバック駆動部を備え、
    前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック駆動部は、前記偏差として0を入力されて前記フィードバック制御を行う、制御方法。
  4. 請求項1記載の制御方法であって、
    前記波長可変フィルターは、前記第二アクチュエーターの前記フィードバック制御を行うフィードバック制御部を備え、
    前記フィードバック制御部は、前記二つの反射膜の間の目標距離と、前記二つの反射膜の距離の検出値と、の偏差を入力されて、前記第二アクチュエーターをフィードバック制御するフィードバック駆動部を備え、
    前記工程(b)の開始後、前記工程(c)の開始前において、前記フィードバック駆動部は、前記工程(b)の開始前の偏差の値から0に単調減少する値を、前記偏差として入力されて前記フィードバック制御を行う、制御方法。
  5. 請求項1、3および4のいずれか1項に記載の制御方法であって、さらに、
    (d)前記工程(b)の開始後、前記閾値時間が経過する前に実行される工程であって、前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程を備え、
    前記工程(c)は、前記フィードバック制御として、PID制御を行う工程であり、
    前記工程(d)は、前記フィードバック制御として、PD制御を行う工程である、
    制御方法。
  6. 請求項1、3および4のいずれか1項に記載の制御方法であって、さらに、
    (d)前記工程(b)の開始後、前記閾値時間が経過する前に実行される工程であって、前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える工程を備え、
    前記工程(c)は、前記フィードバック制御として、PID制御を行う工程であり、
    前記工程(d)は、
    前記フィードバック制御として、PID制御を行う工程であり、
    積分要素のゲインが、0から前記工程(c)における積分要素のゲインの値まで、単調増加する制御を行う工程である、制御方法。
  7. 請求項1から6のいずれか1項に記載の制御方法であって、
    前記あらかじめ定められた条件は、前記新たな目標距離と、前記二つの反射膜のそれまでの目標距離と、の差が、あらかじめ定められた閾値距離より大きいことである、制御方法。
  8. 請求項1から7のいずれか1項に記載の制御方法であって、
    前記閾値時間は、前記波長可変フィルターにおいて、前記第一アクチュエーターによって変位される構成であって、前記二つの反射膜の少なくとも一方を含む構成の固有振動の周期の1/4の90%~110%の時間である、制御方法。
  9. 波長可変フィルターであって、
    対向する二つの反射膜と、
    前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、
    前記アクチュエーター部を制御する制御部と、を備え、
    前記アクチュエーター部は、
    前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、
    前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備え、
    前記制御部は、
    前記二つの反射膜の間の新たな目標距離を受け取り、
    前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変え、
    前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変え、
    あらかじめ定められた条件が満たされる場合には、前記第一アクチュエーターによって前記二つの反射膜の相対位置を変える処理の開始後、あらかじめ定められた閾値時間が経過した後に、
    前記第二アクチュエーターによって前記二つの反射膜の相対位置を変える処理を開始する、波長可変フィルター。
  10. 対向する二つの反射膜と、前記二つの反射膜の相対位置を変えることができるアクチュエーター部と、を備えた波長可変フィルターを、コンピューターに制御させるコンピュータープログラムであって、
    前記アクチュエーター部は、
    前記二つの反射膜の間の目標距離に応じて駆動される第一アクチュエーターと、
    前記目標距離と、前記二つの反射膜の距離の検出値と、に応じてフィードバック制御される第二アクチュエーターと、を備え、
    前記コンピュータープログラムは、
    (a)前記二つの反射膜の間の新たな目標距離を受け取る第1機能と、
    (b)前記新たな目標距離に応じて前記第一アクチュエーターを駆動して、前記二つの反射膜の相対位置を変える第2機能と、
    (c)前記新たな目標距離と、前記二つの反射膜の距離の検出値と、に応じて前記第二アクチュエーターをフィードバック制御して、前記二つの反射膜の相対位置を変える第3機能と、を前記コンピューターに実現させることができ、
    あらかじめ定められた条件が満たされる場合には、前記コンピューターに、前記第2機能による処理の開始後、あらかじめ定められた閾値時間が経過した後に、前記第3機能による処理を開始させる、コンピュータープログラム。
JP2020212170A 2020-12-22 2020-12-22 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム Active JP7472776B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020212170A JP7472776B2 (ja) 2020-12-22 2020-12-22 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム
CN202111551239.4A CN114660798B (zh) 2020-12-22 2021-12-17 波长可变滤光器、波长可变滤光器的控制方法及记录介质
US17/557,337 US20220197011A1 (en) 2020-12-22 2021-12-21 Variable wavelength filter, variable wavelength filter control method, and non-transitory computer-readable storage medium storing computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212170A JP7472776B2 (ja) 2020-12-22 2020-12-22 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム

Publications (2)

Publication Number Publication Date
JP2022098653A JP2022098653A (ja) 2022-07-04
JP7472776B2 true JP7472776B2 (ja) 2024-04-23

Family

ID=82022979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212170A Active JP7472776B2 (ja) 2020-12-22 2020-12-22 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム

Country Status (3)

Country Link
US (1) US20220197011A1 (ja)
JP (1) JP7472776B2 (ja)
CN (1) CN114660798B (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206813A1 (en) 2009-10-25 2012-08-16 Elbit System Electro-Optics Elop Ltd. Tunable spectral filter comprising fabry-perot interferometer
JP2015141209A (ja) 2014-01-27 2015-08-03 セイコーエプソン株式会社 アクチュエーター制御装置、光学モジュール、及び電子機器
JP2018189775A (ja) 2017-05-01 2018-11-29 浜松ホトニクス株式会社 光計測制御プログラム、光計測システム及び光計測方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155087B2 (en) * 2002-10-11 2006-12-26 The Board Of Trustees Of The Leland Stanford Junior University Photonic crystal reflectors/filters and displacement sensing applications
CN100538432C (zh) * 2006-01-19 2009-09-09 精工爱普生株式会社 波长可变滤波器、波长可变滤波器模块及光谱分析器
JP5085101B2 (ja) * 2006-11-17 2012-11-28 オリンパス株式会社 可変分光素子
US20130100145A1 (en) * 2011-10-21 2013-04-25 Qualcomm Mems Technologies, Inc. Electromechanical systems device
JP6015090B2 (ja) * 2012-04-18 2016-10-26 セイコーエプソン株式会社 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
JP2013238755A (ja) * 2012-05-16 2013-11-28 Seiko Epson Corp 光学モジュール、電子機器、食物分析装置、分光カメラ、及び波長可変干渉フィルターの駆動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206813A1 (en) 2009-10-25 2012-08-16 Elbit System Electro-Optics Elop Ltd. Tunable spectral filter comprising fabry-perot interferometer
JP2015141209A (ja) 2014-01-27 2015-08-03 セイコーエプソン株式会社 アクチュエーター制御装置、光学モジュール、及び電子機器
JP2018189775A (ja) 2017-05-01 2018-11-29 浜松ホトニクス株式会社 光計測制御プログラム、光計測システム及び光計測方法

Also Published As

Publication number Publication date
CN114660798A (zh) 2022-06-24
CN114660798B (zh) 2023-12-12
US20220197011A1 (en) 2022-06-23
JP2022098653A (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
JP5569002B2 (ja) 分析機器および特性測定方法
CN105022160B (zh) 波长可变干涉滤波器、光模块以及光分析设备
CN109100861B (zh) 致动器控制装置、光学模块、电子设备及致动器控制方法
JP5641220B2 (ja) 波長可変干渉フィルター、光モジュール、及び光分析装置
US9234795B2 (en) Spectroscopic measurement apparatus capable of quickly measuring a spectral characteristic
US8848196B2 (en) Spectrophotometer having prompt spectrophotometric measurement
US9170157B2 (en) Tunable interference filter, optical module, photometric analyzer, and manufacturing method of tunable interference filter
JP6036341B2 (ja) 光学モジュール、及び電子機器
JP5895414B2 (ja) 分光測定装置、及び分光測定方法
JP2013076779A (ja) 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
JP6311307B2 (ja) 光学モジュール、電子機器、及び光学モジュールの駆動方法
JP7472776B2 (ja) 波長可変フィルター、波長可変フィルターの制御方法、およびコンピュータープログラム
US9372337B2 (en) Wavelength variable interference filter, manufacturing method of wavelength variable interference filter, optical filter device, optical module, and electronic apparatus
JP6135365B2 (ja) 干渉フィルター、光学フィルターデバイス、光学モジュール、電子機器、干渉フィルターの製造方法、及びmems素子
JP7000019B2 (ja) 波長選択装置及び分光測定装置
JP6958131B2 (ja) 光学モジュール、電子機器、及び光学モジュールの制御方法
JP6566061B2 (ja) 波長可変干渉フィルターの駆動方法
JP2016050804A (ja) 分光測定装置、及び分光測定方法
JP5874776B2 (ja) 分光装置
JP6844355B2 (ja) 光学モジュール、及び光学モジュールの駆動方法
JP6194776B2 (ja) 分光測定装置及び分光測定方法
JP2015225148A (ja) 光学モジュール、電子機器、及び波長可変干渉フィルターの制御方法
JP7484139B2 (ja) 分光装置、及び分光装置の駆動方法
JP6296128B2 (ja) 光学モジュール、電子機器、食物分析装置、分光カメラ、及び波長可変干渉フィルターの駆動方法
JP2023021702A (ja) 光学フィルター、分光カメラおよび光学フィルター制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150