JP7459787B2 - 耐摩耗性部品 - Google Patents
耐摩耗性部品 Download PDFInfo
- Publication number
- JP7459787B2 JP7459787B2 JP2020509296A JP2020509296A JP7459787B2 JP 7459787 B2 JP7459787 B2 JP 7459787B2 JP 2020509296 A JP2020509296 A JP 2020509296A JP 2020509296 A JP2020509296 A JP 2020509296A JP 7459787 B2 JP7459787 B2 JP 7459787B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- wear
- alloy
- less
- carbides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011247 coating layer Substances 0.000 claims description 137
- 239000000463 material Substances 0.000 claims description 119
- 150000001247 metal acetylides Chemical class 0.000 claims description 87
- 239000000203 mixture Substances 0.000 claims description 77
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 56
- 239000002344 surface layer Substances 0.000 claims description 44
- 239000011159 matrix material Substances 0.000 claims description 21
- 230000000007 visual effect Effects 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 15
- 229910001566 austenite Inorganic materials 0.000 claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 8
- 238000012360 testing method Methods 0.000 description 102
- 238000005260 corrosion Methods 0.000 description 96
- 230000007797 corrosion Effects 0.000 description 96
- 229910045601 alloy Inorganic materials 0.000 description 69
- 239000000956 alloy Substances 0.000 description 69
- 230000000694 effects Effects 0.000 description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 33
- 239000000843 powder Substances 0.000 description 32
- 230000007423 decrease Effects 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 27
- 238000005299 abrasion Methods 0.000 description 25
- 239000002184 metal Substances 0.000 description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 239000004576 sand Substances 0.000 description 21
- 238000010790 dilution Methods 0.000 description 19
- 239000012895 dilution Substances 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 17
- 238000004445 quantitative analysis Methods 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- 238000005253 cladding Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 238000003466 welding Methods 0.000 description 14
- 238000000635 electron micrograph Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 239000010779 crude oil Substances 0.000 description 12
- 229910052758 niobium Inorganic materials 0.000 description 12
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000010998 test method Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000004453 electron probe microanalysis Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 229910001315 Tool steel Inorganic materials 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000001376 precipitating effect Effects 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910001504 inorganic chloride Inorganic materials 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910001047 Hard ferrite Inorganic materials 0.000 description 1
- -1 MnS) are formed Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/32—Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/06—Alloys based on chromium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Description
前記被覆層において、特に過酷な条件で用いられる部品には、例えば、特開2005-314721号公報では、高温腐食、高温摩耗および結露腐食に曝される水冷式鉄鋼製管構造体の鉄鋼基材表面にNiを60質量%以上含有する接合皮膜と、Crを22~60質量%、Niを35質量%以上それぞれ含有する合金を被覆させた耐食・耐摩耗皮膜を有する水冷式鉄鋼製管構造体の発明がある。
<1> 母材表面にCr-Ni系合金の被覆層を有する耐摩耗性部品であって、
前記被覆層の最表面から深さ0.2mmの表層領域の組成が質量%で、
40.0%超65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
次の(1)~(3)の何れかと、を含み、
(1)1.1%超4.0%以下のC
(2)0.7%以上3.0%以下のB
(3)0.5%以上2.5%以下のC、0%超20%以下のNb
残部がNiおよび不可避的不純物からなり、前記Niは15%以上であり、
前記表層領域に、塊状Cr炭化物、塊状Cr硼化物、Nb系炭化物の少なくとも何れか一種を有する耐摩耗性部品。
46.0%超65.0%以下のCrと、
0%以上30.0%以下のFeと、
0%以上2.0%未満のMnと、
1.1%超4.0%以下のCと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載の耐摩耗性部品。
45.0%以上65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
0.7%以上3.0%以下のBと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載の耐摩耗性部品。
40.0%超65.0%以下のCrと、
0%以上30.0%以下のFeと、
0.5%以上2.5%以下のCと
0%超20%以下のNbと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載の耐摩耗性部品。
0%以上1.0%以下のSi、
0%以上0.05%以下のAl、
0%以上0.3%以下のSn、
0%以上5.0%以下のCu、
の少なくとも一種類以上を含む<1>乃至<4>の何れかに記載の耐摩耗性部品。
<7> 前記被覆層の厚さ方向の断面を見たとき、前記表層領域中に見られる前記塊状Cr炭化物の視野面積率が、0.25mm2中に5~45%である<1>、<2>、<5>、<6>の何れかに記載の耐摩耗性部品。
<9> 前記被覆層の厚さ方向の断面を見たとき、前記表層領域中に見られる前記塊状Cr硼化物の視野面積率が、0.25mm2中に5~35%である<1>、<3>、<5>、<8>の何れかに記載の耐摩耗性部品。
<11> 前記被覆層の厚さ方向の断面を見たとき、前記表層領域中にNb系炭化物を有し、前記Nb系炭化物は、塊状、棒状、点状、羽毛状および樹枝状の少なくとも一種の形態を有し、前記Nb系炭化物の視野面積率が、0.25mm2中に5~30%である<1>、<4>、<5>、<10>の何れかに記載の耐摩耗性部品。
本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
40.0%超65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
次の(1)~(3)の何れかと、を含み、
(1)1.1%超4.0%以下のC
(2)0.7%以上3.0%以下のB
(3)0.5%以上2.5%以下のCと、0%超20%以下のNb
残部がNiおよび不可避的不純物からなり、前記Niは15%以上であり、
前記表層領域に、塊状Cr炭化物、塊状Cr硼化物、Nb系炭化物の少なくとも何れか一種を有する耐摩耗性部品である。
この塊状Cr炭化物、塊状Cr硼化物、Nb系炭化物の少なくとも何れか一種を有する金属組織とすることにより、耐摩耗性と耐食性とを兼ね備えた耐摩耗性部品とすることができる。
本開示でいう「被覆層」とは、金属粉末材料等の肉盛等により、母材表面に形成された金属層を言う。なお、本開示の場合、前記金属層中には金属粉末の溶融・凝固によって晶出した炭化物または硼化物を少なくとも含むものである。また、被覆層の表層領域とは、被覆層の最表面から深さ0.2mmの領域である。
本開示の表層領域の組成は、質量%で、
40.0%超65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
次の(1)~(3)の何れかと、を含み、
(1)1.1%超4.0%のC
(2)0.7%以上3.0%以下のB
(3)0.5%以上2.5%以下のCと、0%超20%以下のNb
残部がNiおよび不可避的不純物からなり、前記Niは15%以上のものである。
Crは、耐食性及び耐摩耗性の向上に関わる炭化物の形成に寄与する。Crの含有率は40.0%超であり、耐食性と材料コストとの観点から、各成分のうちでCr成分が最大含有率であることが好ましい。これは、本開示の合金がNiよりも安価なCrを最大成分とすることで、例えば高価なNiを最大成分とするNi基合金よりも材料コストを低減できる利点がある。Crが40.0%以下になると、母相中への塊状Cr炭化物の出現量が減少し、耐摩耗性が不十分になる。一方、Crが65.0%超になると合金の融点が高くなり、肉盛用原料製造時において、溶解によるインゴット製造やアトマイズによる粉体化に要するエネルギーが増加して製造性が悪化し、製造コストが増大する。また、肉盛材料が高融点になり、肉盛施工に要する入熱量を多くする必要が生じ、母材による肉盛材の希釈や、母材の熱変形といった悪影響が大きくなってしまう。そのため、Crは65.0%以下とする。
Feは、Crなどと共に炭化物の形成に寄与する。炭化物の中にFeが固溶することで炭化物中のCr固溶量が減少し、炭化物周囲の母相中のCr濃度の低下が抑えられる。母相中のCr濃度低下は耐食性の低下を招くため、Fe添加することで耐食性が改善される。一方、Feが多過ぎると初晶でフェライトが晶出し、母相中における腐食電位差が大きくなることで局部腐食が発生し易くなる。よって本開示の合金に含まれるFeの含有量は35.0%以下とする。なお、Feを添加して上記の効果を得る場合は、少なくとも0.1%は添加すると良い。
Mnは、特に原料を混合、溶解する工程における脱硫・脱酸素の役割を担って機械的特性の向上および耐炭酸ガス腐食性の向上に寄与する成分である。ただし、Mnに代わる脱酸元素を添加する場合は、Mnは無添加(0%)で良い。Mnを含有する場合、Mnの含有率は、2.0%未満とする。Mn含有率が2.0%以上になると、硫化物(例えばMnS)の粗大粒子を形成して耐食性や機械的特性の低下要因になる。Mnの作用効果をより確実に発揮させるには、Mnの下限を0.05%とすることが好ましい。
Cは、母相中に固溶したり炭化物として晶出または析出したりすることによって被覆層を硬化させる効果がある。高い耐摩耗性を得るには、Cを1.1%超として耐摩耗性を確保する大きさを持った塊状Cr炭化物を形成させる。Cが1.1%以下となると、肉盛したときに優れた耐摩耗性を実現する大きさの塊状Cr炭化物が得られない。一方、Cが4.0%を越えると、Cr炭化物も増加して耐摩耗性が向上する傾向にはあるが、母相中のCrが消費されて耐食性を低下させる場合があるため、耐摩耗性と耐食性とのバランスを考慮してCの上限は4.0%以下とする。前述のCの作用効果をより確実に発揮させるには、Cを1.5%以上とすることが好ましく、また3.5%以下とすることが好ましい。
Bは、母相中に固溶したり硼化物として晶出または析出したりすることによって被覆層を硬化させる効果がある。高い耐摩耗性を得るには、Bを0.7%以上として耐摩耗性を確保する大きさを持った塊状Cr硼化物を形成させる。Bが0.7%未満となると、肉盛したときに優れた耐摩耗性を実現する大きさの塊状Cr硼化物が得られない。一方、Bが3.0%以上になると、Cr硼化物も増加して耐摩耗性が向上する傾向にはあるが、母相中のCrが消費されて耐食性を低下させる場合があるため、耐摩耗性と耐食性とのバランスを考慮してBの上限は3.0%以下とする。前述のBの作用効果をより確実に発揮させるには、Bを1.0%以上とすることがより好ましく、また2.5%以下とすることがより好ましい。
ここで、Cは、本開示のCr-Ni系合金において、炭化物として晶出または析出したり、炭化物以外の母相中に固溶したりすることによって、合金を硬化させる作用効果がある。耐摩耗性の改善効果を得るにはCの含有率を0.5%以上として、Nbを主成分とするNb系炭化物を形成することが好ましい。また、C含有率が大きくなると硬質なNb系炭化物粒子が増加して耐摩耗性が向上する傾向にはあるが、前述の比率以上にC量が増えると母相中のCrが消費されて硬さは増加するが、耐食性を悪化させる要因となる。耐摩耗性と耐食性とのバランスを考慮してCは2.5%以下とした。前述のCの作用効果をより確実に発揮させるには、Cの下限を0.8%とすることが好ましく、上限を1.5%とすることが好ましい。
また、Nbは、本開示のCr-Ni系合金において、Nb系炭化物として晶出または析出したり、炭化物以外の母相中に固溶したりすることによって、オーステナイト相を生成する作用効果がある。耐摩耗性の改善効果を得るにはNbの含有率を0%超として、Nbを主成分とするNb系炭化物を形成することが好ましい。また、Nb含有率が大きくなると硬質なNb系炭化物粒子が増加して耐摩耗性が向上する傾向にはあるが、Nb量が増えるとオーステナイト相を形成するNiと結合し、靭性を向上させるが、NbはNiに比べて高価であり、コストパフォーマンスを悪化させることがある。また、Nbを増加させることで、母相を形成するCrやNiおよびFeを減少させるため、硬さや耐摩耗性は増加するが、機械的特性や耐食性を悪化させる要因となる。耐摩耗性と耐食性、機械的特性とのバランスを考慮してNbは20%以下としたが、好ましいNbの上限は16%である。また、耐摩耗特性を発揮するには下限を4%とすることが好ましい。また、前述のNb系炭化物の作用効果をより確実に発揮させるには、Nbの下限を6.4%とすることがさらに好ましく、上限を12%とすることが好ましい。また、NbとCの比率は質量%でNb:Cが概ね8:1となるように添加することが望ましい。
以上、説明した元素以外はNiと不可避的不純物である。このうち、Niは被覆層の主要元素の1つであり、その多くは炭化物以外の母相中に固溶し、炭化物にはほとんど固溶しない。母相中にNiが固溶することで、母相を構成するオーステナイト相を安定化するとともに、初晶でのフェライト生成を抑制し、耐食性を向上させる効果がある。この作用効果を十分に発揮させるには、Niの含有率が前述のFeの含有率を超える範囲が好ましい。また、Niの含有率は15%以上が好ましい。更に好ましくは20%以上であり、25%以上がより好ましく、更に好ましくは30%以上である。一方、過度にNiが多くなると前述のCrの作用効果が損なわれるおそれがあることから、Niの含有率の上限はCrの含有率未満とすることが好ましい。
なお、残部には前述のNiの他、製造上不可避的に含有される不純物も含まれる。これらの不純物のうち、特に制限すべき不純物は以下の通りである。
不純物であるP、Sは粒界に偏析しやすく、耐食性を招くことから、Pは0.02%以下、Sは0.005%未満に限定する。Sについては、0.003%以下が好ましく、0.002%以下がさらに好ましい。これ以外にも、O、Nなども、Crと結合して酸化物系、窒化物系の介在物を形成して清浄度を低下させ、耐食性や疲労強度を劣化させることから、できるだけ低く抑えることが好ましい。このため、好ましいOは0.002%以下、Nは0.04%以下がよい。また、Nbに少量のTaが不純物として混入する場合があるが、Taは0.2%以下の範囲であれば影響は少なく、特別に低く制限する必要はなく、混入しても差し支えない。
Siは、本開示のCr-Ni系合金の随意成分の1つであり、脱酸素の役割を担って機械的特性の向上に寄与する成分である。Siを含有する場合には、Siの含有率は、0.1%以上1.0%以下が好ましい。Si含有率が0.1%未満であると、Siに基づく作用効果が不十分になりやすい。また、Siが1%超になると、酸化物(例えばSiO2)の粗大粒子を形成して機械的特性の低下要因になる。
Al:0%以上0.05%以下
Alも、本開示のCr-Ni系合金の随意成分の1つであり、MnおよびSiと組み合わせることで脱酸素作用の向上に寄与する成分である。Alを含有する場合には、Alの含有率は、0.005%以上0.05%以下が好ましい。Al含有率が0.005%未満になると、Alによる作用効果が十分に得られない場合がある。また、Al含有率が0.05%超になると、酸化物や窒化物(例えば、Al2O3やAlN)の粗大粒子を形成して機械的特性の低下要因になる。
Snは、本開示のCr-Ni系合金において不動態皮膜強化の役割を担い、耐食性・耐摩耗性の向上に寄与する随意成分である。具体的には、塩化物イオンや酸性の腐食環境に対する耐性の向上が期待できる。Snを含有する場合には、Snの含有率は、0.02%以上0.3%以下が好ましい。Sn含有率が0.02%未満になると、Snに基づく作用効果が十分に得られない。また、Sn含有率が0.3%超になると、Sn成分の粒界偏析を生じさせて合金の延性・靱性の低下要因になる。
Cu:0%以上5.0%以下
Cuは、本開示のCr-Ni系合金において耐食性の向上に寄与する随意成分である。Cuを含有する場合、その含有率は、0.1%以上5.0%以下が好ましい。Cu含有率が0.1%未満になると、Cuに基づく作用効果が十分に得られない。また、Cu含有率が5.0%超になると、Cu析出物を生成し易くなり、合金の延性・靭性の低下要因になる。
本開示の重要な特徴の一つは、母材表面に形成したCr-Ni系合金の被覆層の表層領域を、塊状Cr炭化物を有する金属組織としたことにある。以下に本開示について図面を用いて説明する。
本開示の被覆層の金属組織について説明する。図1~12は本開示の実施形態である耐摩耗性部品の被覆層断面を500倍(左図)及び2000倍(右図)で観察したときの電子顕微鏡写真(反射電子像)である。白色に見える場所はCr-Ni系合金の母相(基地(マトリックス)とも呼ばれる)であり、灰色や黒色に見える場所はCr炭化物である。写真は何れも肉盛溶接を行ったCr-Ni系合金の断面であり、金属組織は凝固組織であって、Cr炭化物は晶出したものである。
2000倍の顕微鏡写真には、塊状、網状、葉脈状のCr炭化物を見ることができる。このうち、炭化物中に直径が5μmの丸を付した、外形が略多角形の形状を有するものが典型的な塊状Cr炭化物である。なお、炭化物の組成は、例えば、エネルギー分散型エックス線分析装置で定量分析することにより確認できる。Cr炭化物とは、前記定量分析結果において質量%でCrが最も多く含まれたものを言う。
また、例えば、図3に矢印で示す部分は、その周囲と色調が異なり、黒色に見える部分である。これは、黒色の部分とその周囲(灰色)の部分とが炭化物形態が異なっていることを示している。矢印で示す部分はM7C3型のCr炭化物、その周囲はM23C6型のCr炭化物であると考えている。
また、前記塊状Cr炭化物は、被覆層の最表面から深さ0.2mm以内の領域(表層領域)に分散していることが必要である。これは、表層領域が最も耐摩耗性が要求されるためである。
母材とCr-Ni系合金が異種合金である場合、肉盛時の入熱に伴ってCr-Ni系合金と母材が溶融して混じり合い、Cr-Ni系合金が母材によって希釈される。そうすると、母材の材質に応じてCr-Ni系合金の組成が母材側と表面側とで変化することになる。このとき、母材中のC成分がCr-Ni合金よりも少なければ、Cr-Ni系合金に含まれるC成分が減少するため、前述の塊状Cr炭化物の大きさや量も減少し、耐摩耗性に効果がある塊状Cr炭化物を十分に得ることができない場合がある。このような場合、肉盛を複数回重ねて繰り返し、多層(積層構造)の肉盛による被覆層とすれば、後から施工した部分であるほど、母材による希釈の影響が軽減し、表面近傍に十分な大きさや量の塊状Cr炭化物を得ることができる。換言すると、母材側の塊状Cr炭化物よりも最表面領域の塊状Cr炭化物を大きくするようにして、最表面領域の塊状Cr炭化物が耐摩耗性向上に寄与する大きさを確保するようにすれば良い。被覆層の厚さは用途に応じて変化するが、被覆層と母材との境界から被覆層の最表面までの距離がおおよそ5~15mmであれば十分である。なお、本開示で言う「Cr-Ni系合金」とは、含有する元素のうち、Crが最も多く、Niでバランスする合金を言う。
本開示の場合、例えば、EPMA(電子線マイクロアナライザ)に設けられたWDXを用いた定量分析において、組成が上記した値の分析結果が得られるようにする。前記の範囲外となると、耐摩耗性が低下したり、耐食性が低下したりする。なお、WDXを用いて分析するときは、加速電圧を15keVとし、被覆層の表面側からある程度の範囲をもって分析するのが好ましく、例えば0.25mm2程度であれば十分である。また、例えば最表層の形状が、WDX分析が可能な平坦でない場合は、0.2mm以内の範囲で最表層を平坦に加工して定量分析を行うと良い。
本開示の重要な特徴の一つは、母材表面に形成したCr-Ni系合金の被覆層の表層領域を、塊状Cr硼化物を有する金属組織としたことにある。以下に本開示について図面を用いて説明する。
本開示の被覆層の金属組織について説明する。図13~16は本開示の実施形態である耐摩耗性部品の被覆層の表層領域の断面を500倍(上段)及び2000倍(下段)で観察したときの電子顕微鏡写真(反射電子像)である。白色や灰色に見える場所はCr-Ni系合金の母相であり、暗灰色や黒色に見える場所はCr硼化物である。金属組織は凝固組織であって、Cr硼化物は晶出したものである。
2000倍の顕微鏡写真には、大きさの異なるCr硼化物を見ることができる。このうち、硼化物中に直径が3μmの丸を付した、外形が概ね直線状の細長い形状を有するものが典型的な塊状Cr硼化物である。このように、本発明における塊状Cr硼化物は、その断面観察において、内側に直径が3μm以上の円を描くことができる大きさであることが好ましい。この塊状Cr硼化物は発明者らの調査によれば、前記の顕微鏡写真における直線状の細長い形状を断面とする、板状の構造体であることを確認している。なお、硼化物の組成は、例えば、エネルギー分散型エックス線分析装置(EDX)で定量分析することにより確認できる。Cr硼化物とは、前記EDXによる定量分析結果においてBが検出され且つ、Bを除いた金属元素の中でCrが最も多く含まれたものを言う。
また、塊状Cr硼化物は、被覆層の最表面から深さ0.2mm以内の領域(表層領域)に分散していることが必要である。これは、表層領域が最も耐摩耗性が要求されるためである。
母材とCr-Ni系合金が異種合金である場合、肉盛時の入熱に伴ってCr-Ni系合金と母材が溶融して混じり合い、Cr-Ni系合金が母材によって希釈される。そうすると、母材の材質に応じてCr-Ni系合金の組成が母材側と表面側とで変化することになる。このとき、母材中のB成分がCr-Ni合金よりも少なければ、Cr-Ni系合金に含まれるB成分が減少するため、前述の塊状Cr硼化物の大きさや量も減少し、耐摩耗性に効果がある塊状Cr硼化物を十分に得ることができない場合がある。このような場合、肉盛を複数回重ねて繰り返し、多層(積層構造)の肉盛による被覆層とすれば、後から施工した部分であるほど、母材による希釈の影響が軽減し、表面近傍に十分な大きさや量の塊状Cr硼化物を得ることができる。換言すると、母材側の塊状Cr硼化物よりも最表面側の表層領域の塊状Cr硼化物を大きく、また量を多くすることで、耐摩耗性向上に寄与する塊状Cr硼化物を確保するようにすれば良い。被覆層の厚さは用途に応じて変化するが、被覆層と母材との境界から被覆層の最表面までの距離がおおよそ5~15mmであれば十分である。なお、本発明で言う「Cr-Ni系合金」とは、含有する元素のうち、Crが最も多く、Niでバランスする合金を言う。
本開示の場合、例えば、EPMA(電子線マイクロアナライザ)に設けられたWDXを用いた定量分析において、組成が上記した値の分析結果が得られるようにする。なお、残部はNiおよび不可避的不純物である。前記の範囲外となると、耐摩耗性が低下したり、耐食性が低下したりする。なお、WDXを用いて分析するときは、加速電圧を15keVとし、被覆層の表面側からある程度の範囲をもって分析するのが好ましく、例えば0.25mm2程度であれば十分である。また、例えば最表面の形状が、WDX分析が可能な平坦でない場合は、0.2mm以内の範囲で最表面を平坦に加工して定量分析を行うと良い。
本開示の重要な特徴の一つは、母材表面にCr-Ni系合金の被覆層を有する耐摩耗性部品であって、その被覆層の表層領域の組成を特定するものであり、さらに、被覆層の表層領域を、Nb系炭化物を有する金属組織とするものである。以下に本開示の実施形態について図面を用いて説明する。
本開示の被覆層の金属組織について説明する。図17~28は本発明の実施形態である耐摩耗性部品(本発明例)の被覆層の表層領域の断面を走査型電子顕微鏡(SEM)を用いて500倍(左側)及び2000倍(右側)で観察したときの画像(反射電子像)である。暗灰色および明灰色に見える場所はCr-Ni系合金の基地(マトリックス)であり、暗灰色はフェライト相および明灰色はオーステナイト相を示している。白色に見える相はNb系炭化物である。また図18、図19、図22および図26において明灰色のオーステナイト相内に見える樹木状あるいは塊状の黒い部位はCr系炭化物である。写真は何れも肉盛溶接を行ったCr-Ni系合金の断面であり、金属組織は凝固組織であって、Nb系炭化物およびCr系炭化物は晶出したものである。
各図右側2000倍の顕微鏡写真において、Nb系炭化物はマトリックス中に共晶状、例えば棒状、点状、羽毛状、樹枝状など、または塊状で見える。なお、各炭化物の組成は、例えば、エネルギー分散型エックス線分析装置で定量分析することにより確認できる。Nb系炭化物とは、前記定量分析結果においてCが検出され、且つ、Cを除いた金属元素の中で質量%でNbが最も多く含まれたものをいう。また、同様にCr系炭化物とは、前記定量分析結果でCが検出され、且つ、Cを除いた金属元素の中でCrが最も多く含まれたものをいう。
ところで、組織中に硬質粒子(Nb系炭化物)を分散させることで摩耗を抑止させる場合、硬質粒子自体の強度が低ければ摩耗の抑止効果は小さくなるため、硬質粒子はある程度大きなサイズの塊状であることが望ましいと思われる。しかし、詳細は後述するが、例えば図19に示す本発明合金No.83では、共晶状のNb系炭化物が大部分であって塊状のNb系炭化物が見られないものの、耐土砂摩耗性は他の本発明合金と比べても良好な特性が得られている。これは、本開示の合金では母相を構成する二相組織のうち硬質なフェライト相中にNb系炭化物が存在するため、フェライト相がNb系炭化物の強度を補うこととなり、図19右側の図中に破線で示した共晶状の領域が仮想的な硬質粒子として作用し、耐摩耗性の向上に寄与していると考えられる。
また、前述したが例えば図18右側の図中に矢印で示す黒色に見える部分は、M23C6型のCr系炭化物である。Cr系炭化物もマトリックスに比べて硬度が高く、Nb系炭化物と同様に、耐摩耗性に有効性に働く。
母材と被覆層(以下、「Cr-Ni系合金」とも記す)が異種合金である場合、肉盛時の入熱に伴ってCr-Ni系合金と母材が溶融して混じり合い、Cr-Ni系合金が母材によって希釈される。そうすると、母材の材質に応じて被覆層の組成が母材側と表面側とで変化することになる。このとき、母材中のC成分がCr-Ni系合金よりも少なければ、Cr-Ni系合金に含まれるC成分が減少するため、前述のNb系炭化物の大きさや量も減少し、耐摩耗性に効果があるNb系炭化物を十分に得ることができない場合がある。このような場合、肉盛を複数回重ねて繰り返し、多層(積層構造)の肉盛による被覆層とすれば、後から施工した部分であるほど、母材による希釈の影響が軽減し、表面近傍に十分な大きさや量のNb系炭化物を得ることができる。換言すると、母材側のNb系炭化物よりも表層領域のNb系炭化物の面積率を大きくするようにして、表層領域のNb系炭化物が耐摩耗性向上に寄与する面積率を確保するようにすれば良い。被覆層の厚さは用途に応じて変化するが、被覆層と母材との境界から被覆層の最表面までの距離がおおよそ5~15mmであれば十分である。なお、本発明で言う「Cr-Ni系合金」とは、含有する元素のうち、Crが最も多く、Ni、NbとCを含有し、必要に応じFeを含む合金を言う。更に、Si,Mn,Al,Sn及びCuについても本発明で規定する範囲内を含むものも「Cr-Ni系合金」の範疇である。
本開示の場合、例えば、EPMA(電子線マイクロアナライザ)に設けられたWDXを用いた定量分析において、組成が上記した値の分析結果が得られるようにする。前記の範囲外となると、耐摩耗性が低下したり、耐食性が低下したりする。なお、WDXを用いて分析するときは、加速電圧を15kVとし、被覆層の表面側からある程度の範囲をもって分析するのが好ましく、例えば0.25mm2程度であれば十分である。また、例えば最表層の形状が、WDX分析が可能な平坦でない場合は、深さ0.2mm以内の範囲で最表層を平坦に加工して定量分析を行うと良い。
次に、本開示の表層領域(被覆層)を構成する原料、肉盛合金およびその製法について述べる。各成分の作用効果は前述したとおりであるため、それぞれの作用効果についての説明は割愛する。
本開示で規定する表層領域の組成とするには、基本的に前述した元素とその範囲とすれば良い。但し、母材に含まれる成分によって各元素が希釈される場合があるため、その希釈分を勘案して原料の組成を決定すると良い。例えばある成分Xが、被覆層の肉盛に用いる合金中にx質量%、母材中にy質量%含まれており、肉盛施工後の被覆層中に母材が混入する割合(希釈率)がP%のとき、高さ方向にn層の肉盛を重ねて繰り返したときの最表層における成分Xnの量は次の式1で求めることができる。
Xn=x・{1-(P/100)n}+y・(P/100)n…(式1)
よって、被覆層を形成する母材の組成や、肉盛施工時の希釈率、肉盛の積層数など予め想定して、肉盛後の被覆層の表層領域における各成分の量を算出し、それが本開示で規定した組成の範囲内となるようにすればよい。また、式1からわかるように、肉盛の層数nを増やすことで母材による希釈の影響を急速に減少させ、被覆層の組成が肉盛に用いる合金の組成とほぼ同じになるようにすることもできる。
PTA肉盛溶接装置では通常、肉盛用の合金粉末を、溶接トーチ先端の施工部までの管路内を流動させて搬送するため、合金粉末がスムーズに移動する必要がある。この場合、ガスアトマイズで得られる合金粉末は球状であり、流動性が良好となるので好ましい。
ガスアトマイズ粉末を用いて所望の基材上に肉盛溶接工程を行うことにより、基材上に被覆層が形成された肉盛溶接材を得ることができる。なお、得られた肉盛溶接材はそのまま各種機器を構成する耐摩耗性部品として利用してよいが、他の部材への接続など考慮して被覆層の表面を平坦にするなど、寸法、形状を整形する整形工程をさらに実施して耐摩耗性部品としてもよい。整形する手段としては例えばフライス盤などによる切削加工や砥石による研磨などがある。
前述のアトマイズ工程を行うことで得られた、あるいは更に分級工程を経て得られた合金粉末は、粉末成形工程を行うことで所望の成形体を得ることができる。粉末成形方法に特段の限定は無いが、例えば金属粉末射出成形法であれば、合金粉末にバインダーとしてプラスチックやワックスを混錬して流動性、成形性を与えたものを射出成形機で型に充填して成形する粉末成形工程と、得られた成形体中に残存するバインダーを除去する脱脂工程を行うことができる。脱脂工程は例えば成形体を溶媒に浸漬したり、所定の雰囲気で加熱したりすることが行われる。
次に、成形体に対して合金の固相線温度未満の温度で焼結熱処理を施して粉末焼結体を形成する焼結工程を行う。焼結熱処理方法に特段の限定はなく、従前の方法を利用できる。なお、前述の脱脂工程を加熱によって行う場合、この焼結工程において焼結温度に到達するよりも前の時点での温度や雰囲気を調整することによって、脱脂工程と焼結工程を一括して行うこともできる。粉末焼結体の緻密化の観点から、合金の固相線温度未満かつ500気圧以上3000気圧以下の条件での熱間等方圧加圧(HIP)処理を含むことがより好ましい。
粉末成形体として棒状のものを形成すれば、これを例えばアーク溶接機の電極棒として適用し、所望の基材上への肉盛溶接に利用することができる。
図30(b)は、本発明の耐摩耗性部品の一例であり、射出成形金型の断面模式図である。射出成形金型においては、例えば、上型と下型との間に設けた空間に充填される、溶融したプラスチックや、金属粉末とバインダーの混合物などと接触する金型基材表面に耐摩耗性を向上させるための被覆層が形成される。この部分に、本発明で規定する被覆層を有する耐摩耗性部品を好適に利用できる。前記被覆層は、肉盛溶接材の形態で製造することができる。
図30(c)は、本発明の耐摩耗性部品の一例であり、岩石やコンクリート廃材などを揺動する歯板間で圧砕する、ジョークラッシャーと呼ばれる破砕機械の断面模式図である。破砕機械においては、例えば岩石などの被破砕物に接する固定歯板、可動歯板表面に耐摩耗性を向上させるための被覆層が形成される。この部分に、本発明で規定する被覆層を有する耐摩耗性部品を好適に利用できる。前記被覆層は、肉盛溶接材の形態で製造することができる。
まず、塊状Cr炭化物を有する金属組織とした実施例について説明する。
本実施例では、表1に示す組成の合金粉末を、PTA肉盛溶接装置でSUS304母材上に肉盛施工した被覆層を想定して、その耐食性、耐摩耗性を評価することとした。そこで、混合した原料を高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解した後、溶湯を鋳造して、被覆層を模擬したCr-Ni系合金の鋳造成形体を作製した。このとき、肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い円柱形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。
表2は、円柱形状の鋳造成形体の円筒面を四方から平坦に研削、研磨して、鋳造成形体と中心軸を共有する、一辺が約10mmの四角柱形状の試験片を作製し、表面の組成をEPMAに設けられたWDXを用いて分析した結果を示す。ここでNo.11、No.14およびNo.16は、それぞれNo.1~3の肉盛材料を複数回重ねて肉盛したことを想定した組成であり、いずれも元の組成と同じである。No.12およびNo.13は、どちらもNo.1の肉盛材料がSUS304母材で希釈されたときの組成であるが、No.12は肉盛後のCr-Ni系合金中にSUS304母材が約10%混入したと想定したときの組成である。また、No13はNo.12よりも肉盛施工時の入熱量が大きく、SUS304母材が約20%混入したと想定したときの組成である。またNo.15は、No.2の肉盛材料を肉盛した後のCr-Ni系合金中にSUS304母材が約10%混入したと想定したときの組成である。No.17およびNo.18はNo.16とほぼ同じ組成でCを0.5%ずつ増減したと想定した組成である。No.19~No.21はNo.16と似た組成で、かつCを1.5~2.5%の範囲で変えた組成である。No.22はCが2.4%でFeを25%に増やした組成である。
また、金属組織についても、前記の組成分析と同じ四角柱形状の試験片を用いて、試験片表面を走査型電子顕微鏡とEDXとを用いて塊状Cr炭化物の有無、大きさを観察し、0.25mm2中に見られた塊状Cr炭化物の総面積が観察した領域の面積に占める割合を視野面積率として求めた。また、塊状Cr炭化物サイズについては、観察した領域内に複数存在する塊状Cr炭化物の内側に描くことができた円の直径のうち最長の値を用いた。それぞれの結果を表3に示す。なお、No.11から22の顕微鏡写真は、図1から12に示すものである。
なお、耐摩耗性試験としては、最も過酷な試験の一つである耐土砂摩耗性評価とした。原油採掘向けの機器は、これと接触する原油中の砂礫などによる摩耗を受ける。そこで、耐摩耗性評価として土砂摩耗試験を実施した。試験方法は原則としてASTM規格G65に準拠したが、鋳造成形体から作製した試験片単体では規定幅25mmを満足しないため、前記の試験片を3個並列に並べて固定して試験を実施した。各組成の試験片は試験前重量を測定した後、回転するゴムディスクを試験片に所定の荷重で押し当てた状態で、両者の接触面間に試験用の珪砂を10分間連続供給した。その後、試験片重量を測定して試験前後の質量変化を求め、試験に伴うゴムディスクの損耗による直径の変化を加味した摩耗体積AVL(単位:mm3)を算出した。
摩耗体積の測定結果は「AVL<180」をAグレード、「180≦AVL<360」をBグレード、「360≦AVL」をCグレードとそれぞれ評価した。耐土砂摩耗性評価の結果は表5に記した。
耐食性評価用の試験片は、前記の耐摩耗性評価用試験片と同様に、円柱形状の鋳造成形体から一辺が約10mmの四角柱形状の試験片を作製して表面を研磨して評価した。
なお、耐食性試験については、本発明の適用分野として想定している原油採掘向けの機器は、原油中に含まれる硫化水素や、無機塩化物が分解して発生した塩酸などの影響によって強い酸腐食環境に曝される。そこで、耐食性評価として沸騰硫酸浸漬試験を実施した。試験方法はJIS規格G0591:ステンレス鋼の硫酸腐食試験方法に準拠し、試験溶液にはpH1の硫酸を濃度5質量%になるよう純水で希釈したものを用いた。各組成の試験片は試験前重量を測定した後、沸騰状態の試験溶液中に6時間浸漬した。その後、試験片質量を測定して試験前後の質量変化を求め、これを試験前の試験片表面積および試験時間で除した値を腐食速度m(単位:g/(m2・h))として算出した。
腐食速度の測定結果は「m<3×100」をAグレード、「3×100≦m<102」をBグレード、「102≦m」をCグレードとそれぞれ評価した。耐食性評価の結果は表5に記した。
まず本発明の耐摩耗性部品の耐摩耗性については、全ての組成でAグレードと判定され、いずれも良好な耐摩耗性であった。同じ合金粉末で、母材による希釈の度合いが異なると想定した同士で比較すると、No.11~13では希釈の影響がほとんど無いNo.11の摩耗体積が最も少なく、逆に希釈の度合いが最も大きいNo.13の摩耗体積が最も多い。No.11~13のSEM観察像を図1~3に示すが、図1のNo.11では外寸が概ね100μmを超える大きさで、暗灰色で表示された塊状のCr炭化物が分布している。次に図2のNo.12では、100μmを超える大きさのCr炭化物が見られるが、その量はNo.11と比べて少ない。さらに図3のNo.13では、Cr炭化物の大きさは概ね50μm前後とさらに小さく、また、炭化物の周縁部には不規則な樹枝状の部分が多く見られた。
同様にC成分が多いNo.14、15を比較すると、希釈の影響がほとんど無いNo.14の摩耗体積のほうが少ない。No.14,15のSEM観察像を図4,5に示すが、図4のNo.14では40μm前後の大きさで、暗灰色もしくは黒色で表示された塊状のCr炭化物が分布している。一方、図5のNo.15では同様にCr炭化物が分布しているが、その大きさは20μm前後のものが多く、No.14と比べるとCr炭化物の量が少ない。
次に、No.16~18のSEM観察像を図6~8に示すが、概ね外寸が10~30μmの大きさで大部分が黒色の塊状Cr炭化物が見られた。表3に示したように、Cが多いほど塊状Cr炭化物の視野面積率が大きくなる傾向にあり、Cが最も少ないNo.17で6.6%、Cが最も多いNo18で25.9%であったが、いずれも耐食性と耐土砂摩耗性の両方でAグレードを達成している。また、Crが60%前後でC量を変えたNo.19~21のSEM観察像を図9~11に示す。それぞれ炭化物の大きさや形態、色調が異なるが、塊状のCr炭化物が見られた。
次に、No22のSEM観察像を図12に示す。組織中には直線的に並んだ塊状の部分とそこから樹枝状に伸びたCr炭化物が見られた。
一方、比較した肉盛材料No.31~36では、耐食性と耐土砂摩耗性の両方でAグレードを達成した材料は無く、これに対して本発明の合金が耐食性と耐土砂摩耗性の両立を実現していることがわかる。
以上の結果から、本発明のNo.11~22のいずれにおいても耐摩耗性は良好な傾向にあり、十分な大きさでより多くの塊状のCr炭化物が組織中に存在するほど土砂による摩耗を抑制する効果が強く得られたと考えられる。
本実施例では、合金粉末を肉盛施工した被覆層における耐食性、耐摩耗性を評価することを想定し、所定の原料を混合して高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解した後、溶湯を鋳造して、被覆層の表層領域を模擬したCr-Ni系合金の鋳造成形体を作製した。このとき、肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い円柱形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。
また、金属組織についても、前記の組成分析と同じ四角柱形状の試験片を用いて、試験片表面を走査型電子顕微鏡とEDXとを用いて塊状Cr硼化物の有無、大きさを観察し、0.25mm2中に見られた塊状Cr硼化物の総面積が観察した領域の面積に占める割合を視野面積率として求めた。結果を表7に示す。各合金の断面組織の顕微鏡写真は、図13から16に示すものである。この実施例のNo.51~61は、断面組織に塊状Cr硼化物が観察され、そのCr硼化物は、その内側に直径が3μmの円を描くことができる大きさであった。
なお、耐摩耗性試験としては、最も過酷な試験の一つである耐土砂摩耗性評価とした。原油採掘向けの機器は、これと接触する原油中の砂礫などによる摩耗を受ける。そこで、耐摩耗性評価として土砂摩耗試験を実施した。試験方法は原則としてASTM規格G65に準拠したが、鋳造成形体から作製した試験片単体では規定幅25mmを満足しないため、前記の試験片を3個並列に並べて固定して試験を実施した。各組成の試験片は試験前重量を測定した後、回転するゴムディスクを試験片に所定の荷重で押し当てた状態で、両者の接触面間に試験用の珪砂を10分間連続供給した。その後、試験片重量を測定して試験前後の質量変化を求め、試験に伴うゴムディスクの損耗による直径の変化を加味した摩耗体積AVL(単位:mm3)を算出した。
摩耗体積の測定結果は「AVL<180」をAグレード、「180≦AVL<360」をBグレード、「360≦AVL」をCグレードとそれぞれ評価した。耐土砂摩耗性評価の結果は表8に記した。
耐食性評価用の試験片は、前記の耐摩耗性評価用試験片と同様に、円柱形状の鋳造成形体から一辺が約10mmの四角柱形状の試験片を作製して表面を研磨して評価した。
なお、耐食性試験については、本発明の適用分野として想定している原油採掘向けの機器は、原油中に含まれる硫化水素や、無機塩化物が分解して発生した塩酸などの影響によって強い酸腐食環境に曝される。そこで、耐食性評価として沸騰硫酸浸漬試験を実施した。試験方法はJIS規格G0591:ステンレス鋼の硫酸腐食試験方法に準拠し、試験溶液にはpH1の硫酸を濃度5質量%になるよう純水で希釈したものを用いた。各組成の試験片は試験前重量を測定した後、沸騰状態の試験溶液中に6時間浸漬した。その後、試験片質量を測定して試験前後の質量変化を求め、これを試験前の試験片表面積および試験時間で除した値を腐食速度m(単位:g/(m2・h))として算出した。
腐食速度の測定結果は「m<3×100」をAグレード、「3×100≦m<102」をBグレード、「102≦m」をCグレードとそれぞれ評価した。耐食性評価の結果は表8に記した。
まず本発明の耐摩耗性部品の耐摩耗性については、全ての組成でAグレードと判定され、いずれも良好な耐摩耗性であった。先に表7で示した塊状Cr硼化物視野面積率との明確な相関は見えないが、視野面積率5%以上で良好な耐摩耗性が得られた。また、本発明の耐摩耗性部品の耐食性については、塊状Cr硼化物の視野面積率が高いほど腐食速度が大きい傾向にあると考えられる。
一方、比較した肉盛材料No.31~36では、耐食性と耐土砂摩耗性の両方でAグレードを達成した材料は無く、これに対して本発明の合金が耐食性と耐摩耗性の両立を実現しており、耐摩耗部品として優れたものであるといえる。
本実施例では、表9に示す組成の合金粉末を、PTA肉盛溶接装置でSUS304基材上に肉盛施工した被覆層を想定して、その耐食性、耐摩耗性を評価することとした。そこで、混合した原料を高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解した後、溶湯を鋳造して、被覆層を模擬したCr-Ni系合金の鋳造成形体を作製した。このとき、肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い円柱形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。
表10は、円柱形状の鋳造成形体の円筒面を四方から平坦に研削、研磨して、鋳造成形体と中心軸を共有する、一辺が約10mmの四角柱形状の試験片を作製し、表面の組成をEPMAに設けられたWDXを用いて分析した結果を示す。ここでNo.81からNo.86は、表9のNo.71~76の肉盛材料を複数回重ねて肉盛した際の最表面付近の組成を想定した組成であり、いずれも元の組成と同じである。これに対してNo.87は、No.76の肉盛材料がSUS304基材で10%希釈されたときの組成である。No.88はNo.71の肉盛材料がSUS304基材で約10%希釈された時の組成である。No.89~91はCr量を50%に固定し、CやNbの量を変えたときの組成である。なお、No.92はFeが35.0%の組成である。またNo.93は、No.71の肉盛材料がSUS304基材で20%希釈されてCrが下限を下回った比較例の組成である。
金属組織についても、前記の組成分析と同じ四角柱形状の試験片を用いて、試験片表面を走査型電子顕微鏡(SEM)とEDXとを用いてNb系炭化物の有無、大きさを観察し、0.25mm2中に見られたNb系炭化物の総面積が観察した領域の面積に占める割合を視野面積率として求めた。具体的には図17~29のSEM写真を含む複数の視野で撮影した各合金のSEM写真に対して、白色に見えるNb系炭化物の部分とそれ以外の部分を画像解析ソフトにより二値化し、Nb系炭化物が視野全体に占める面積率を算出した。結果を表11に示す。
原油採掘向けの機器中において、例えば原油などの被搬送物が流れる搬送経路に用いる配管部材の表面は接触する被搬送物中に含まれる、例えば珪砂などの固形物や腐食成分による減肉もしくは摩耗を受ける。そこで、耐摩耗性評価として固形物を珪砂と想定し、土砂摩耗試験を実施した。試験方法はASTM規格G65に準拠した。被搬送物と接触する表面の合金を模擬した試験片は試験前重量を測定した後、回転するゴムディスクを試験片に所定の荷重(64.5N)で押し当てた状態で、両者の接触面間に固形物を模擬した珪砂を350g/分の条件で10分間連続供給した。その後、試験片重量を測定して試験前後の質量変化を求め、被搬送物との接触する表面の加味した試験片の摩耗体積AVL(単位:mm3)を算出した。
摩耗体積の測定結果は「AVL<180」をAグレード、「180≦AVL<360」をBグレード、「360≦AVL」をCグレードとそれぞれ評価した。耐土砂摩耗性評価の結果は表12に記した。
原油採掘向けの機器中において、例えば原油などの被搬送物が流れる搬送経路に用いる配管部材の表面は接触する被搬送物中に含まれる硫化水素や、無機塩化物が分解して発生した塩酸などの腐食成分の影響によって強い酸腐食環境に曝される。そこで、強酸性評価として腐食成分を硫酸と想定し、沸騰硫酸浸漬試験を実施した。試験方法はJIS規格G0591:ステンレス鋼の硫酸腐食試験方法に準拠し、腐食成分の模擬溶液としてはpH1の硫酸を濃度5質量%になるよう純水で希釈したものを用いた。配管部材の表面に相当する合金として、各組成の成形体を切断・研磨した試験片を用いた。本試験片の試験前重量を測定した後、沸騰状態の腐食成分模擬溶液中に6時間浸漬した。その後、配管部材の表面に相当する合金の各試験片質量を測定して試験前後の質量変化を求め、これを試験前の試験片表面積および試験時間で除した値を腐食速度m(単位:g/(m2・h))として算出した。
腐食速度の測定結果は「m<3×100」をAグレード、「3×100≦m<1×102」をBグレード、「1×102≦m」をCグレードとそれぞれ評価した。耐食性評価の結果は表12に記した。
まず表9の合金粉末と同じ組成である、本発明例のNo.81~86においては耐食性、耐摩耗性ともにAグレードと判定され、いずれも良好な特性であった。次にNo.86に対して10%の希釈を想定したNo.87は耐食性、耐摩耗性ともにほぼ同等水準であった。また、No.86とNo.87の組織は比較的似ており、Nb系炭化物の面積率も同等であった。
次にNo.81に対して10%の希釈を想定したNo.88と、20%の希釈を想定した比較材No.93とをそれぞれ比較すると、No.81とNo.88は特性が同等水準で組織も類似しているが、希釈率の大きなNo.93は耐摩耗性がBグレードと悪い結果であった。表11においてNo.93のNb系炭化物視野面積率は他の二つに比べて小さく、これが耐摩耗性の違いとなって現れたと思われる。
次にNo.89~91はCrが50%の組成でNb、Cの量を変えた組成であるが、No.89に比べてNb、Cを増やしたNo.90、91では摩耗体積が減少し、耐摩耗性が向上した。このNo.90、91では他と比べて大きな塊状No系炭化物が見られ、特にNbに対するCの比率が大きいNo.90では母相中にCr系炭化物も晶出しており、これらが耐摩耗性に寄与したと思われる。
次に、Fe量が35%のNo.92は、図28のように組織中に共晶状のNb系炭化物が存在するが、No.81~93のうちで最も耐摩耗性が悪い結果であった。ここでNb系炭化物視野面積率に着目すると、No.92の視野面積率は9.4%で、視野面積率が6.9%で最小のNo.85を上回るにも関わらず、耐摩耗性が悪い結果であった。これらのことから、本発明合金における耐摩耗性はNb系炭化物の量だけではなく、材料の凝固過程でのNb系炭化物の晶出形態や、母相自体の強さに影響するCr、Fe、Niの量を適正な範囲とすることが重要と言える。しかしながら、No.92は比較例No.31~36と比べれば、劣るものではなく、同等以上のものである。
Claims (3)
- 母材表面にCr-Ni系合金の被覆層を有する耐摩耗性部品であって、
前記被覆層の最表面から深さ0.2mmの表層領域の組成が質量%で、
40.0%超65.0%以下のCrと、
4.0%以上30.0%以下のFeと、
0.5%以上2.5%以下のCと、
6.4%以上20%以下のNbと、を含み、
残部がNiおよび不可避的不純物からなり、
前記Niは15%以上であり、
前記表層領域に、晶出もしくは析出したNb系炭化物が分散した急冷組織を有する、耐摩耗性部品。 - 前記被覆層の表層領域は、炭化物を含み、母相がフェライト相およびオーステナイト相である請求項1に記載の耐摩耗性部品。
- 前記被覆層の厚さ方向の断面を見たとき、前記表層領域中にNb系炭化物を有し、前記Nb系炭化物は、塊状、棒状、点状、羽毛状および樹枝状の少なくとも一種の形態を有し、前記Nb系炭化物の視野面積率が、0.25mm2中に5~30%である請求項1または2に記載の耐摩耗性部品。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018061098 | 2018-03-28 | ||
JP2018061098 | 2018-03-28 | ||
JP2018125314 | 2018-06-29 | ||
JP2018125314 | 2018-06-29 | ||
JP2018157413 | 2018-08-24 | ||
JP2018157413 | 2018-08-24 | ||
PCT/JP2019/013492 WO2019189532A1 (ja) | 2018-03-28 | 2019-03-28 | 耐摩耗性部品 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2019189532A1 JPWO2019189532A1 (ja) | 2021-04-08 |
JPWO2019189532A5 JPWO2019189532A5 (ja) | 2022-02-24 |
JP7459787B2 true JP7459787B2 (ja) | 2024-04-02 |
Family
ID=68062203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020509296A Active JP7459787B2 (ja) | 2018-03-28 | 2019-03-28 | 耐摩耗性部品 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7459787B2 (ja) |
WO (1) | WO2019189532A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4163409A4 (en) * | 2020-06-09 | 2024-07-31 | Hitachi Ltd | WEAR-RESISTANT ELEMENT AND MECHANICAL DEVICE |
JP7201124B2 (ja) * | 2020-09-24 | 2023-01-10 | Jfeスチール株式会社 | 高疲労強度鋼の素材となる鋳片の清浄度評価方法及び高疲労強度鋼の製造方法 |
JP7312792B2 (ja) * | 2021-08-05 | 2023-07-21 | Tpr株式会社 | オイルリング |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017098A1 (fr) | 1994-12-02 | 1996-06-06 | Toyota Jidosha Kabushiki Kaisha | Alliage chrome-nickel a haute teneur en chrome resistant bien a l'usure et a la corrosion par le plomb et soupape de moteur |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230759A (ja) * | 1987-12-29 | 1989-09-14 | Showa Denko Kk | 溶射用複合粉末 |
JP2566615B2 (ja) * | 1988-05-24 | 1996-12-25 | トーカロ株式会社 | 含塩化物環境下で優れた耐食性を示す溶接肉盛材料 |
JPH0649573A (ja) * | 1990-12-28 | 1994-02-22 | Daido Steel Co Ltd | 高硬度ロール材 |
JPH04358054A (ja) * | 1991-06-03 | 1992-12-11 | Kobe Steel Ltd | 耐エロージョン性に優れた溶射用粉末材料および表面 被覆部品 |
US5863618A (en) * | 1996-10-03 | 1999-01-26 | Praxair St Technology, Inc. | Method for producing a chromium carbide-nickel chromium atomized powder |
JP4881049B2 (ja) * | 2006-04-11 | 2012-02-22 | 新日本製鐵株式会社 | 電気メッキ用コンダクターロール |
-
2019
- 2019-03-28 JP JP2020509296A patent/JP7459787B2/ja active Active
- 2019-03-28 WO PCT/JP2019/013492 patent/WO2019189532A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017098A1 (fr) | 1994-12-02 | 1996-06-06 | Toyota Jidosha Kabushiki Kaisha | Alliage chrome-nickel a haute teneur en chrome resistant bien a l'usure et a la corrosion par le plomb et soupape de moteur |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019189532A1 (ja) | 2021-04-08 |
WO2019189532A1 (ja) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7185672B2 (ja) | 靱性及び耐摩耗性を有する多重硬質相含有鉄合金 | |
JP7380547B2 (ja) | Cr-Ni系合金、Cr-Ni系合金でなる急冷凝固成形体、合金粉末、粉末冶金成形体、鋳造成形体、Cr-Ni系合金の製造方法およびCr-Ni系合金を用いた機械設備、配管部材 | |
JP7459787B2 (ja) | 耐摩耗性部品 | |
EP2639323B1 (en) | Wear-resistant cobalt-based alloy and engine valve coated with same | |
CN101512034A (zh) | 调节钢的导热能力的方法,工具钢、特别是热作钢,和钢制品 | |
Lee et al. | The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys | |
EP3202934B1 (en) | Two-phase alloy, product using said two-phase alloy, and method for producing said product | |
JP6602463B2 (ja) | Cr基二相合金及びその製造物 | |
EP2639324B1 (en) | High-toughness cobalt-based alloy and engine valve coated with same | |
CA2871851A1 (en) | Alloys for hardbanding weld overlays | |
Veerappan et al. | Effect of copper on mechanical properties and corrosion behavior of powder metallurgy processed Ni–Co–Cr–Fe–Mn–Cu x high entropy alloy | |
Kumar et al. | Taguchi optimization of tribological properties and corrosion behavior of self-lubricating Al–Mg–Si/MoS2 composite processed by powder metallurgy | |
Azaath et al. | Experimental Investigations on the Mechanical Properties, Microstructure and Corrosion Effect of Cu-20Al-4Ni/SiC Composites Synthesized Using Powder metallurgy Route | |
Aliasker et al. | Influence of silica rich HNT/MoS2 hybrid reinforcements on mechanical, wear and corrosion characteristics of magnesium AZ31 alloy | |
JP7524547B2 (ja) | Cr-Ni系合金部材およびその製造方法 | |
Timmer et al. | Investigation of the applicability of Cu–Fe–Mn–Ni based high entropy and compositionally complex alloys as metal matrix composites for cobalt free hot-pressed diamond tools | |
Madej | Tungsten carbide as an addition to high speed steel based composites | |
SA et al. | Mechanical characterization of Al6061-tungesten carbide composites using powder metallurgy technique | |
Deng et al. | Effect of C content on microstructure and mechanical properties of Cr-based hard composites obtained by different sintering methods | |
JP7545820B2 (ja) | 耐摩耗性部材およびそれを用いた機械装置 | |
Syed Bava Bakrudeen et al. | The shape recovery behavior of compressively deformed Fe–Mn–Si–Cr–Ni alloys | |
EP4180549B1 (en) | Fe-based alloy for melt-solidification-shaping and metal powder | |
Nguyen | Mechanisms of high temperature tribology and oxidation behaviour of cost-effective high-entropy alloys | |
Ninawe et al. | Low-Temperature Sintering of WC Powder Using CoCrFeMnNi High Entropy Alloy Binder | |
JP2023112361A (ja) | 原子炉機器用の合金材料および該合金材料を用いた流路部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220215 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230314 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7459787 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |