JP7442255B2 - Resin composition for electronic materials - Google Patents

Resin composition for electronic materials Download PDF

Info

Publication number
JP7442255B2
JP7442255B2 JP2016236665A JP2016236665A JP7442255B2 JP 7442255 B2 JP7442255 B2 JP 7442255B2 JP 2016236665 A JP2016236665 A JP 2016236665A JP 2016236665 A JP2016236665 A JP 2016236665A JP 7442255 B2 JP7442255 B2 JP 7442255B2
Authority
JP
Japan
Prior art keywords
resin
group
resin composition
electronic materials
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236665A
Other languages
Japanese (ja)
Other versions
JP2018090728A (en
Inventor
展義 大西
克哉 富澤
博史 高橋
環 伊藤
英祐 志賀
将太 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2016236665A priority Critical patent/JP7442255B2/en
Publication of JP2018090728A publication Critical patent/JP2018090728A/en
Priority to JP2021200181A priority patent/JP2022046517A/en
Priority to JP2023098935A priority patent/JP2023134454A/en
Application granted granted Critical
Publication of JP7442255B2 publication Critical patent/JP7442255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電子材料用樹脂組成物に関する。 The present invention relates to a resin composition for electronic materials.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。それに伴い、半導体素子と半導体プラスチックパッケージ用プリント配線板との熱膨張率の差によって生じる半導体プラスチックパッケージの反りが問題となっており、様々な対策が講じられてきている。 In recent years, as the functionality and miniaturization of semiconductor packages widely used in electronic devices, communication equipment, personal computers, etc. have progressed, the degree of integration and high-density packaging of each component for semiconductor packages has accelerated in recent years. ing. Along with this, warpage of semiconductor plastic packages caused by the difference in thermal expansion coefficient between semiconductor elements and printed wiring boards for semiconductor plastic packages has become a problem, and various countermeasures have been taken.

その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1~3参照)。 One of the countermeasures is to reduce the thermal expansion of insulating layers used in printed wiring boards. This is a method of suppressing warpage by bringing the coefficient of thermal expansion of a printed wiring board close to that of a semiconductor element, and is currently being actively worked on (see, for example, Patent Documents 1 to 3).

特開2013-216884号公報JP2013-216884A 特許第3173332号公報Patent No. 3173332 特開2009-035728号公報JP2009-035728A

しかしながら、特許文献1~3に記載の従来の手法によるプリント配線板の低熱膨張化は既に限界が近づいており、さらなる低熱膨張化が困難となっている。 However, the reduction in thermal expansion of printed wiring boards by the conventional methods described in Patent Documents 1 to 3 has already reached its limit, and further reduction in thermal expansion is becoming difficult.

本発明は、上記問題点に鑑みてなされたものであり、熱膨張率がより低く、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a resin composition for electronic materials that provides a cured product with a lower coefficient of thermal expansion and excellent electrical properties such as dielectric constant and dielectric loss tangent, and the electronic materials. The object of the present invention is to provide prepregs, resin sheets, metal foil-clad laminates, and printed wiring boards using the resin compositions for use in the present invention.

本発明者らは、上記課題を解決するために鋭意検討した。その結果、所定のビスマレイミド化合物(A)を用いることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have made extensive studies to solve the above problems. As a result, the inventors discovered that the above problems could be solved by using a specific bismaleimide compound (A), and completed the present invention.

すなわち、本発明は以下のとおりである。
〔1〕
ビスマレイミド化合物(A)とシアン酸エステル化合物(C)とを含み、
該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリ
イミド基1個以上と、を有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連
結基を少なくとも介して、前記ポリイミド基の両端に結合して
おり、
前記ビスマレイミド化合物(A)の含有量が、樹脂固形分100質量部に対して、5~
60質量部であり、
前記シアン酸エステル化合物(C)の含有量が、樹脂固形分100質量部に対して、1
0~60質量部である、
電子材料用樹脂組成物。
〔2〕
前記ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原
子を含んでもよい環状炭化水素基1個以上をさらに有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1
の連結基を介して前記環状炭化水素基に結合し、
前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を
介して前記環状炭化水素基に結合している、
〔1〕に記載の電子材料用樹脂組成物。
〔3〕
前記環状炭化水素基が、脂環基である、
〔1〕又は〔2〕に記載の電子材料用樹脂組成物。
〔4〕
〔1〕の連結基及び/又は前記第2の連結基が、置換又は非置換の2価の炭化水素基で
ある、
〔1〕~〔3〕のいずれか一項に記載の電子材料用樹脂組成物。
〔5〕
前記ビスマレイミド化合物(A)が下記式(2)で表される繰返し単位を有する、
〔1〕~〔4〕のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表
し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含
んでもよい環状炭化水素基を表す。)
〔6〕
前記ビスマレイミド化合物(A)が下記式(3)で表される直鎖状ポリマー構造を有す
る、
〔1〕~〔5〕のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表
し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下の
ヘテロ原子を含んでもよい環状炭化水素基を表し、nは1~10の数を表す。)
〔7〕
前記ビスマレイミド化合物(A)の重量平均分子量が、1×103~1×104である、
〔1〕~〔6〕のいずれか一項に記載の電子材料用樹脂組成物。
〔8〕
前記ビスマレイミド化合物(A)以外のマレイミド化合物(B)、エポキシ樹脂(D)
、フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び
重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含む

〔1〕~〔7〕のいずれか一項に記載の電子材料用樹脂組成物。
〔9〕
前記エポキシ樹脂(D)の含有量が、樹脂固形分100質量部に対して、10~45質
量部である、
〔8〕に記載の電子材料用樹脂組成物。
〔10〕
充填材(I)をさらに含む、
〔1〕~〔9〕のいずれか一項に記載の電子材料用樹脂組成物。
〔11〕
前記充填材(I)の含有量が、樹脂固形分100質量部に対して、50~300質量部
である、
〔10〕に記載の電子材料用樹脂組成物。
〔12〕
基材と、
該基材に含浸又は塗布された、〔1〕~〔11〕のいずれか一項に記載の電子材料用樹
脂組成物と、を有する、
プリプレグ。
〔13〕
シート基材と、
該シート基材の片面または両面に積層された、〔1〕~〔11〕のいずれか一項に記載
の電子材料用樹脂組成物と、を有する、
レジンシート。
〔14〕
絶縁層と、
該絶縁層の片面又は両面に積層形成された導体層と、を有し、
前記絶縁層が、〔1〕~〔11〕のいずれか一項に記載の電子材料用樹脂組成物を含む

金属箔張積層板。
〔15〕
絶縁層と、前記絶縁層の表面に形成された導体層とを有し、
前記絶縁層が、〔1〕~〔11〕のいずれか一項に記載の電子材料用樹脂組成物を含む

プリント配線板。
That is, the present invention is as follows.
[1]
Contains a bismaleimide compound (A) and a cyanate ester compound (C),
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the following formula (1),
The two maleimide groups are each independently bonded to both ends of the polyimide group through at least a first linking group in which 8 or more atoms are connected in a linear chain,
The content of the bismaleimide compound (A) is 5 to 100 parts by mass of the resin solid content.
60 parts by mass,
The content of the cyanate ester compound (C) is 1 with respect to 100 parts by mass of resin solid content.
0 to 60 parts by mass,
Resin composition for electronic materials.
[2]
The bismaleimide compound (A) further has one or more cyclic hydrocarbon groups that may contain a heteroatom having a ring with a number of atoms of 4 or more and 10 or less,
The two maleimide groups each independently represent the first group in which 8 or more atoms are connected in a linear chain.
bonded to the cyclic hydrocarbon group via a linking group,
The polyimide groups are each independently bonded to the cyclic hydrocarbon group via a second linking group in which 8 or more atoms are connected in a linear chain.
The resin composition for electronic materials according to [1].
[3]
the cyclic hydrocarbon group is an alicyclic group,
The resin composition for electronic materials according to [1] or [2].
[4]
[1] The linking group and/or the second linking group is a substituted or unsubstituted divalent hydrocarbon group,
The resin composition for electronic materials according to any one of [1] to [3].
[5]
The bismaleimide compound (A) has a repeating unit represented by the following formula (2),
The resin composition for electronic materials according to any one of [1] to [4].
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 is a substituted or unsubstituted hydrocarbon group in which the number of atoms constituting the ring is Represents a cyclic hydrocarbon group that may contain 4 or more and 10 or less heteroatoms.)
[6]
The bismaleimide compound (A) has a linear polymer structure represented by the following formula (3),
The resin composition for electronic materials according to any one of [1] to [5].
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 each independently represents a substituted or unsubstituted ring. Represents a cyclic hydrocarbon group that may contain a heteroatom having a number of constituent atoms of 4 or more and 10 or less, where n represents a number from 1 to 10.)
[7]
The weight average molecular weight of the bismaleimide compound (A) is 1×10 3 to 1×10 4 .
The resin composition for electronic materials according to any one of [1] to [6].
[8]
Maleimide compound (B) other than the bismaleimide compound (A), epoxy resin (D)
, a phenol resin (E), an oxetane resin (F), a benzoxazine compound (G), and a compound having a polymerizable unsaturated group (H).
The resin composition for electronic materials according to any one of [1] to [7].
[9]
The content of the epoxy resin (D) is 10 to 45 parts by mass based on 100 parts by mass of the resin solid content,
The resin composition for electronic materials according to [8] .
[10]
further comprising a filler (I);
The resin composition for electronic materials according to any one of [1] to [9] .
[11]
The content of the filler (I) is 50 to 300 parts by mass based on 100 parts by mass of the resin solid content,
The resin composition for electronic materials according to [10] .
[12]
base material and
and the resin composition for electronic materials according to any one of [1] to [11] , which is impregnated or applied to the base material.
prepreg.
[13]
sheet base material,
and the resin composition for electronic materials according to any one of [1] to [11] , which is laminated on one or both sides of the sheet base material.
Resin sheet.
[14]
an insulating layer;
a conductor layer laminated on one or both sides of the insulating layer,
The insulating layer contains the resin composition for electronic materials according to any one of [1] to [11] ,
Metal foil laminate.
[15]
comprising an insulating layer and a conductor layer formed on the surface of the insulating layer,
The insulating layer contains the resin composition for electronic materials according to any one of [1] to [11] ,
printed wiring board.

本発明によれば、熱膨張率がより低く、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を提供することができる。 According to the present invention, there is provided a resin composition for electronic materials that provides a cured product with a lower coefficient of thermal expansion and excellent electrical properties such as dielectric constant and dielectric loss tangent, and a prepreg using the resin composition for electronic materials. Resin sheets, metal foil-clad laminates, and printed wiring boards can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail, but the present invention is not limited thereto, and various modifications may be made without departing from the gist thereof. is possible.

〔電子材料用樹脂組成物〕
本実施形態の電子材料用樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、ビスマレイミド化合物(A)を含み、該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリイミド基1個以上と、を有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合しているものである。
[Resin composition for electronic materials]
The resin composition for electronic materials (hereinafter also simply referred to as "resin composition") of the present embodiment contains a bismaleimide compound (A), and the bismaleimide compound (A) has two maleimide groups and the following: one or more polyimide groups represented by formula (1), and each of the two maleimide groups independently connects at least a first linking group in which 8 or more atoms are connected in a linear chain. It is bonded to both ends of the polyimide group via the polyimide group.

〔ビスマレイミド化合物(A)〕
ビスマレイミド化合物(A)は、マレイミド基2個と、上記式(1)で表されるポリイミド基1個以上と、を有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合しているものである。このような構造を有するビスマレイミド化合物(A)は、マレイミド基、ポリイミド基の分子内位置の自由度が増加し、結果として、硬化物にしたときの応力緩和能が高く、熱膨張率の低い硬化物が得られる。このような応力緩和能の高いビスマレイミド化合物(A)を用いることにより、後述するプリプレグを例にすれば、樹脂と基材(非樹脂)の応力差が小さくなり、基材の物性に追従し熱膨張量がより低減する。また、このような応力差の減少によって、反りの発生も抑制することが可能となる。さらに、マレイミド基、ポリイミド基の分子内位置の自由度の増加により、硬化物における誘電率及び誘電正接等の電気特性もより向上する傾向にある。したがって、このようなビスマレイミド化合物(A)を用いることにより、高いガラス転移温度(Tg)、耐熱性だけでなく、低熱膨張性、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を製造できるようになる。
[Bismaleimide compound (A)]
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the above formula (1), and each of the two maleimide groups independently has 8 or more polyimide groups. The polyimide group is bonded to both ends of the polyimide group at least through a first linking group in which atoms are linearly linked. The bismaleimide compound (A) having such a structure has an increased degree of freedom in the intramolecular position of maleimide groups and polyimide groups, and as a result, when made into a cured product, it has a high stress relaxation ability and a low coefficient of thermal expansion. A cured product is obtained. By using such a bismaleimide compound (A) with high stress relaxation ability, the stress difference between the resin and the base material (non-resin) becomes small, and the stress difference follows the physical properties of the base material, taking the prepreg described below as an example. The amount of thermal expansion is further reduced. Further, due to such a reduction in stress difference, it is possible to suppress the occurrence of warpage. Furthermore, due to the increased degree of freedom in the intramolecular positions of maleimide groups and polyimide groups, electrical properties such as dielectric constant and dielectric loss tangent of the cured product also tend to improve. Therefore, by using such a bismaleimide compound (A), a cured product having not only a high glass transition temperature (Tg) and heat resistance but also excellent electrical properties such as low thermal expansion, dielectric constant, and dielectric loss tangent can be obtained. It becomes possible to manufacture a resin composition for materials, as well as prepregs, resin sheets, metal foil-clad laminates, and printed wiring boards using the resin composition for electronic materials.

第1の連結基は、8以上の原子が直鎖状に連結したものであれば特に限定されないが、例えば、8以上の炭素原子を有する、置換又は非置換の2価の炭化水素基であることが好ましく、8~10の炭素原子を有する、置換又は非置換の2価の炭化水素基であることがより好ましい。置換又は非置換の2価の炭化水素基としては、特に限定されないが、例えば、置換又は非置換の直鎖状脂肪族炭化水素基、置換又は非置換の分岐状脂肪族炭化水素基、及び置換又は非置換の環状脂肪族炭化水素基が挙げられる。なかでも、置換又は非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等の非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基が特に好ましい。 The first linking group is not particularly limited as long as 8 or more atoms are connected in a linear chain, but for example, it is a substituted or unsubstituted divalent hydrocarbon group having 8 or more carbon atoms. More preferably, it is a substituted or unsubstituted divalent hydrocarbon group having 8 to 10 carbon atoms. Substituted or unsubstituted divalent hydrocarbon groups are not particularly limited, but include, for example, substituted or unsubstituted linear aliphatic hydrocarbon groups, substituted or unsubstituted branched aliphatic hydrocarbon groups, and substituted or an unsubstituted cyclic aliphatic hydrocarbon group. Among these, substituted or unsubstituted linear aliphatic hydrocarbon groups are more preferred, and unsubstituted linear aliphatic hydrocarbon groups such as octylene group, nonamethylene group, decamethylene group, dodecamethylene group, hexadecamethylene group, octadecamethylene group, etc. An aliphatic hydrocarbon group is more preferred, and an octylene group, nonamethylene group, and decamethylene group are particularly preferred.

2個のマレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、ポリイミド基の両端に結合していればよく、第1の連結基と第1の連結基以外の基を介して、2個のマレイミド基がポリイミド基の両端に結合していてもよい。なかでも、ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基1個以上をさらに有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1の連結基を介して前記環状炭化水素基に結合し、前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を介して前記環状炭化水素基に結合しているものであるのが好ましい。このように、第2の連結基を有するビスマレイミド化合物(A)は、マレイミド基、ポリイミド基の分子内位置の自由度がさらに増加する傾向にある。また、第2の連結基と環状炭化水素基とを有することにより、自由体積が増加し、結果として、分子の自由度がより一層向上する傾向にある。そのため、このようなビスマレイミド化合物(A)は、より高い応力緩和能を有する傾向にある。したがって、このようなビスマレイミド化合物(A)を用いることにより、上述したとおり、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。 The two maleimide groups may each be independently bonded to both ends of the polyimide group via at least a first linking group in which 8 or more atoms are connected in a linear chain, and the first linking group Two maleimide groups may be bonded to both ends of the polyimide group via a group other than the first linking group. In particular, the bismaleimide compound (A) further has one or more cyclic hydrocarbon groups which may contain a heteroatom having a ring of 4 or more and 10 or less, and each of the two maleimide groups The polyimide group is independently bonded to the cyclic hydrocarbon group via the first linking group in which eight or more atoms are connected in a linear chain, and the polyimide group is independently bonded to the first linking group in which eight or more atoms are connected in a linear chain. It is preferable that the cyclic hydrocarbon group is bonded to the cyclic hydrocarbon group via a second linking group connected in a shape. In this way, the bismaleimide compound (A) having the second linking group tends to further increase the degree of freedom in the intramolecular position of the maleimide group and polyimide group. Further, by having the second linking group and the cyclic hydrocarbon group, the free volume increases, and as a result, the degree of freedom of the molecule tends to be further improved. Therefore, such bismaleimide compound (A) tends to have higher stress relaxation ability. Therefore, as mentioned above, by using such a bismaleimide compound (A), the thermal expansion coefficient of the resulting cured product tends to be lower, and the electrical properties such as dielectric constant and dielectric loss tangent tend to be better. be.

ここで、ヘテロ原子を含んでもよい環状炭化水素基としては、環を構成する原子数が4以上10以下のものであれば特に限定されないが、例えば、置換又は非置換の脂環基、置換又は非置換の芳香族基、及び置換又は非置換の複素環基が挙げられる。このなかでも、置換又は非置換の脂環基、置換又は非置換の芳香族基が好ましく、置換又は非置換の脂環基がより好ましく、アルキル基置換の脂環基がさらに好ましい。なお、環を構成する原子数とは、環状に連結している原子の数であって、側鎖の置換基等の原子数は含まれない。このような環状炭化水素基を有することにより、ビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。置換又は非置換の脂環基における脂環部分の基としては、例えば、2価又は2価以上の、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基が挙げられる。また、アルキル基置換の脂環基におけるアルキル基は、特に限定されないが、炭素数1~10のアルキル基が好ましく、炭素数3~10のアルキル基がより好ましい。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、n-へプチル基、n-オクチル基、n-エチルヘキシル基、n-ノニル基、n-デシル基が挙げられる。アルキル基置換の脂環基におけるアルキル基は、1つでもよく、2以上であってもよい。 Here, the cyclic hydrocarbon group which may contain a heteroatom is not particularly limited as long as the number of atoms constituting the ring is 4 or more and 10 or less, but for example, a substituted or unsubstituted alicyclic group, a substituted or Examples include unsubstituted aromatic groups and substituted or unsubstituted heterocyclic groups. Among these, substituted or unsubstituted alicyclic groups, substituted or unsubstituted aromatic groups are preferred, substituted or unsubstituted alicyclic groups are more preferred, and alkyl group-substituted alicyclic groups are even more preferred. Note that the number of atoms constituting a ring is the number of atoms connected in a ring, and does not include the number of atoms such as substituents in side chains. By having such a cyclic hydrocarbon group, the bismaleimide compound (A) tends to have a higher stress relaxation ability, and as a result, the coefficient of thermal expansion of the obtained cured product tends to be lower, and the dielectric Electric properties such as dielectric constant and dielectric loss tangent tend to be better. Examples of the group of the alicyclic moiety in the substituted or unsubstituted alicyclic group include divalent or divalent or higher valent cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, and cyclodecyl group. Further, the alkyl group in the alicyclic group substituted with an alkyl group is not particularly limited, but an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 3 to 10 carbon atoms is more preferable. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, Examples include neopentyl group, n-hexyl group, thexyl group, n-heptyl group, n-octyl group, n-ethylhexyl group, n-nonyl group, and n-decyl group. The number of alkyl groups in the alicyclic group substituted with an alkyl group may be one or two or more.

また、第2の連結基は、8以上の原子が直鎖状に連結したものであれば特に限定されないが、例えば、8以上の炭素原子を有する、置換又は非置換の2価の炭化水素基であることが好ましく、8~10の炭素原子を有する、置換又は非置換の2価の炭化水素基であることがより好ましい。置換又は非置換の2価の炭化水素基としては、特に限定されないが、例えば、置換又は非置換の直鎖状脂肪族炭化水素基、置換又は非置換の分岐状脂肪族炭化水素基、及び置換又は非置換の環状脂肪族炭化水素基が挙げられる。なかでも、置換又は非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等の非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基が特に好ましい。 Further, the second linking group is not particularly limited as long as it has 8 or more atoms connected in a linear chain, but for example, it is a substituted or unsubstituted divalent hydrocarbon group having 8 or more carbon atoms. It is preferably a substituted or unsubstituted divalent hydrocarbon group having 8 to 10 carbon atoms. Substituted or unsubstituted divalent hydrocarbon groups are not particularly limited, but include, for example, substituted or unsubstituted linear aliphatic hydrocarbon groups, substituted or unsubstituted branched aliphatic hydrocarbon groups, and substituted or an unsubstituted cyclic aliphatic hydrocarbon group. Among these, substituted or unsubstituted linear aliphatic hydrocarbon groups are more preferred, and unsubstituted linear aliphatic hydrocarbon groups such as octylene group, nonamethylene group, decamethylene group, dodecamethylene group, hexadecamethylene group, octadecamethylene group, etc. An aliphatic hydrocarbon group is more preferred, and an octylene group, nonamethylene group, and decamethylene group are particularly preferred.

上記ビスマレイミド化合物(A)は、下記式(2)で表される繰返し単位を有する化合物が好ましい。このようなビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表す。)
The bismaleimide compound (A) is preferably a compound having a repeating unit represented by the following formula (2). Such bismaleimide compounds (A) tend to have a higher stress relaxation ability, and as a result, the thermal expansion coefficient of the obtained cured product tends to be lower, and the electrical properties such as dielectric constant and dielectric loss tangent are lowered. It tends to be better.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 is a substituted or unsubstituted hydrocarbon group in which the number of atoms constituting the ring is Represents a cyclic hydrocarbon group that may contain 4 or more and 10 or less heteroatoms.)

ここで、R2が環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、R3が、第2の連結基を表す。また、環状炭化水素基R2と結合するR1は、その他端がマレイミド基と結合する場合には第1の連結基を表し、他端がポリイミド基と結合する場合には第2の連結基を表す。一方、R1の他端が、例えば、環状炭化水素基R2と結合する場合には、R1は、2つの環状炭化水素基R2を結合するものであってもよい。なお、式(2)における、8以上の原子が直鎖状に連結した炭化水素基及び環を構成する原子数が4以上10以下の環状炭化水素基は、上記と同様のものを例示することができる。 Here, R 2 represents a cyclic hydrocarbon group that may include a heteroatom having a ring with a number of atoms of 4 or more and 10 or less, and R 3 represents a second linking group. Furthermore, R 1 that is bonded to the cyclic hydrocarbon group R 2 represents a first linking group when the other end is bonded to a maleimide group, and represents a second linking group when the other end is bonded to a polyimide group. represents. On the other hand, when the other end of R 1 is bonded to, for example, a cyclic hydrocarbon group R 2 , R 1 may bond two cyclic hydrocarbon groups R 2 . In addition, in formula (2), the hydrocarbon group in which 8 or more atoms are connected in a straight chain and the cyclic hydrocarbon group in which the number of atoms constituting the ring is 4 or more and 10 or less are the same as those mentioned above. I can do it.

より具体的には、上記ビスマレイミド化合物(A)は、下記式(3)で表される直鎖状ポリマー構造を有するものであることが好ましい。このようなビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、nは1~10の数を表す。)
More specifically, the bismaleimide compound (A) preferably has a linear polymer structure represented by the following formula (3). Such bismaleimide compounds (A) tend to have a higher stress relaxation ability, and as a result, the thermal expansion coefficient of the obtained cured product tends to be lower, and the electrical properties such as dielectric constant and dielectric loss tangent are lowered. It tends to be better.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 each independently represents a substituted or unsubstituted ring. Represents a cyclic hydrocarbon group that may contain a heteroatom having a number of constituent atoms of 4 or more and 10 or less, where n represents a number from 1 to 10.)

式(3)において、R1及びR3が、オクチレン基であり、R2が、炭素原子数6~8のアルキル基を置換基として有するシクロアルキレン基であることが好ましい。 In formula (3), R 1 and R 3 are preferably octylene groups, and R 2 is preferably a cycloalkylene group having an alkyl group having 6 to 8 carbon atoms as a substituent.

上記式(3)で表されるビスマレイミド化合物(A)としては、特に限定されないが、例えば、BMI-5000(Designer Molecules inc.製)を用いることができる。このような化合物を用いることにより、熱膨張率がより低下する傾向にある。 The bismaleimide compound (A) represented by the above formula (3) is not particularly limited, and for example, BMI-5000 (manufactured by Designer Molecules inc.) can be used. By using such a compound, the coefficient of thermal expansion tends to be further reduced.

ビスマレイミド化合物(A)の重量平均分子量は、特に限定されないが、好ましくは1×103~1×104であり、より好ましくは2×103~9×103であり、特に好ましくは3×103~8×103である。ビスマレイミド化合物(A)の重量平均分子量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下する傾向にある。なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)として求めることができる。 The weight average molecular weight of the bismaleimide compound (A) is not particularly limited, but is preferably 1 x 10 3 to 1 x 10 4 , more preferably 2 x 10 3 to 9 x 10 3 , particularly preferably 3 ×10 3 to 8×10 3 . When the weight average molecular weight of the bismaleimide compound (A) is within the above range, the coefficient of thermal expansion of the resulting cured product tends to be further reduced. Note that the weight average molecular weight can be determined as a weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) analysis.

ビスマレイミド化合物(A)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは5~60質量部であり、好ましくは10~55質量部であり、好ましくは15~50質量部である。ビスマレイミド化合物(A)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率、誘電率、誘電正接、弾性率がより低下する傾向にある。なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における溶剤及び充填材を除いた成分の合計が100質量部であることをいうものとする。 The content of the bismaleimide compound (A) is not particularly limited, but is preferably 5 to 60 parts by weight, preferably 10 to 55 parts by weight, and preferably 15 to 55 parts by weight, based on 100 parts by weight of the resin solid content. It is 50 parts by mass. When the content of the bismaleimide compound (A) is within the above range, the coefficient of thermal expansion, dielectric constant, dielectric loss tangent, and modulus of elasticity of the obtained cured product tend to be further reduced. In this embodiment, "resin solid content" refers to the components of the resin composition excluding solvents and fillers, unless otherwise specified, and "resin solid content of 100 parts by mass" refers to the resin composition. The total amount of components excluding the solvent and filler in the product is 100 parts by mass.

〔その他の成分〕
本実施形態の樹脂組成物は、上記ビスマレイミド化合物(A)に加えて、必要に応じて、上記ビスマレイミド化合物(A)以外のマレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)、フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含むことができる。このなかでも、マレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)を含むことが好ましい。以下、各成分について説明する。
[Other ingredients]
In addition to the bismaleimide compound (A), the resin composition of the present embodiment may optionally contain a maleimide compound (B) other than the bismaleimide compound (A), a cyanate ester compound (C), and an epoxy resin. (D), a phenol resin (E), an oxetane resin (F), a benzoxazine compound (G), and a compound having a polymerizable unsaturated group (H). can. Among these, it is preferable to include a maleimide compound (B), a cyanate ester compound (C), and an epoxy resin (D). Each component will be explained below.

(マレイミド化合物(B))
上記ビスマレイミド化合物(A)以外のマレイミド化合物(B)としては、特に限定されないが、マレイミド化合物としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、式(6)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。このなかでも、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び式(6)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種が好ましい。このようなマレイミド化合物を含むことにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。マレイミド化合物は、1種単独で、又は2種以上を組み合わせて使用してもよい。
(式中、R5は、各々独立して、水素原子又はメチル基を表し、n1は1以上の整数を表す。)
(Maleimide compound (B))
The maleimide compound (B) other than the bismaleimide compound (A) is not particularly limited, but the maleimide compound is not particularly limited as long as it has one or more maleimide groups in the molecule, such as N -Phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3,5-dimethyl-4-maleimidophenyl) ) methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, maleimide compounds represented by formula (6), and these maleimide compounds. A prepolymer or a prepolymer of a maleimide compound and an amine compound may be mentioned. Among these, bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, and At least one selected from the group consisting of maleimide compounds represented by formula (6) is preferred. By including such a maleimide compound, the coefficient of thermal expansion of the obtained cured product tends to be further reduced and the heat resistance is further improved. The maleimide compounds may be used alone or in combination of two or more.
(In the formula, R 5 each independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)

マレイミド化合物(B)の含有量は、樹脂固形分100質量部に対して、好ましくは5~30質量部であり、より好ましくは10~25質量部であり、さらに好ましくは15~20質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、耐熱性、硬化性がより優れる傾向にある。 The content of the maleimide compound (B) is preferably 5 to 30 parts by weight, more preferably 10 to 25 parts by weight, and even more preferably 15 to 20 parts by weight, based on 100 parts by weight of the resin solid content. be. When the content of the maleimide compound (B) is within the above range, heat resistance and curability tend to be better.

(シアン酸エステル化合物(C))
シアン酸エステル化合物(C)としては、特に限定されないが、例えば、式(7)で示されるナフトールアラルキル型シアン酸エステル、式(8)で示されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2’-ビス(4-シアナトフェニル)プロパン;これらシアン酸エステルのプレポリマー等が挙げられる。上述したシアン酸エステル化合物は、1種単独で、又は2種以上を組み合わせて使用してもよい。
(式(7)中、R6は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(7)中、n2は1以上の整数を表す。n2の上限値は、通常は10であり、好ましくは6である。)
(式(8)中、R7は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(8)中、n3は1以上の整数を表す。n3の上限値は、通常は10であり、好ましくは7である。)
(Cyanate ester compound (C))
The cyanate ester compound (C) is not particularly limited, but includes, for example, a naphthol aralkyl cyanate ester represented by formula (7), a novolac cyanate ester represented by formula (8), and a biphenylaralkyl cyanate ester. , bis(3,5-dimethyl4-cyanatophenyl)methane, bis(4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanato Benzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis(4-cyanatophenyl)ether, bis(4-cyanatophenyl)thioether, bis(4-cyanatophenyl)sulfone, and Examples include 2,2'-bis(4-cyanatophenyl)propane; prepolymers of these cyanate esters, and the like. The cyanate ester compounds mentioned above may be used alone or in combination of two or more.
(In formula (7), R 6 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. Also, in formula (7), n 2 represents an integer of 1 or more. n The upper limit of 2 is usually 10, preferably 6.)
(In formula (8), R 7 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. Also, in formula (8), n 3 represents an integer of 1 or more. n The upper limit of 3 is usually 10, preferably 7.)

このなかでも、シアン酸エステル化合物(C)が、式(7)で示されるナフトールアラルキル型シアン酸エステル、式(8)で示されるノボラック型シアン酸エステル、及びビフェニルアラルキル型シアン酸エステルからなる群より選ばれる1種以上を含むことが好ましく、式(7)で示されるナフトールアラルキル型シアン酸エステル及び式(8)で示されるノボラック型シアン酸エステルからなる群より選ばれる1種以上を含むことがより好ましい。このようなシアン酸エステル化合物(C)を用いることにより、難燃性により優れ、硬化性がより高く、かつ熱膨張係数がより低い硬化物が得られる傾向にある。 Among these, the cyanate ester compound (C) is a group consisting of a naphthol aralkyl cyanate ester represented by formula (7), a novolac type cyanate ester represented by formula (8), and a biphenylaralkyl cyanate ester. Preferably, it contains one or more selected from the group consisting of a naphthol aralkyl cyanate ester represented by formula (7) and a novolac type cyanate ester represented by formula (8). is more preferable. By using such a cyanate ester compound (C), a cured product with excellent flame retardancy, higher curability, and lower coefficient of thermal expansion tends to be obtained.

シアン酸エステル化合物(C)の含有量は、樹脂固形分100質量部に対して、好ましくは10~60質量部であり、より好ましくは10~55質量部であり、さらに好ましくは10~50質量部である。シアン酸エステル化合物(C)の含有量が上記範囲内であることにより、耐熱性、低誘電、低誘電正接等により優れる傾向にある。 The content of the cyanate ester compound (C) is preferably 10 to 60 parts by weight, more preferably 10 to 55 parts by weight, and even more preferably 10 to 50 parts by weight based on 100 parts by weight of the resin solid content. Department. When the content of the cyanate ester compound (C) is within the above range, heat resistance, low dielectricity, low dielectric loss tangent, etc. tend to be better.

(エポキシ樹脂(D))
エポキシ樹脂(D)としては、特に限定されないが、例えば、ポリオキシナフチレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、或いはこれらのハロゲン化物等が挙げられる。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。このなかでも、ポリオキシナフチレン型エポキシ樹脂が好ましい。このようなエポキシ樹脂(D)を含むことにより、得られる硬化物の難燃性及び耐熱性がより向上する傾向にある。
(Epoxy resin (D))
The epoxy resin (D) is not particularly limited, but examples include polyoxynaphthylene epoxy resin, bisphenol A epoxy resin, bisphenol E epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol A novolac. type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, xylene novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, triglycidyl isocyanurate, glycidyl ester type epoxy resin, alicyclic epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, phenol aralkyl novolak type epoxy resin, naphthol aralkyl novolak type epoxy resin, aralkyl novolac type epoxy resin, biphenylaralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, polyol Examples include compounds obtained by epoxidizing double bonds such as type epoxy resins, phosphorus-containing epoxy resins, glycidylamine and butadiene, compounds obtained by reacting hydroxyl group-containing silicone resins with epichlorohydrin, and halogenated products thereof. These epoxy resins can be used alone or in combination of two or more. Among these, polyoxynaphthylene type epoxy resins are preferred. By including such an epoxy resin (D), the flame retardance and heat resistance of the obtained cured product tend to be further improved.

エポキシ樹脂(D)の含有量は、樹脂固形分100質量部に対して、好ましくは10~45質量部であり、より好ましくは10~40質量部であり、さらに好ましくは10~35質量部である。エポキシ樹脂(D)の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。 The content of the epoxy resin (D) is preferably 10 to 45 parts by weight, more preferably 10 to 40 parts by weight, and still more preferably 10 to 35 parts by weight, based on 100 parts by weight of the resin solid content. be. When the content of the epoxy resin (D) is within the above range, adhesiveness, flexibility, etc. tend to be better.

(フェノール樹脂(E))
フェノール樹脂(E)としては、特に限定されないが、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(phenol resin (E))
The phenol resin (E) is not particularly limited, but includes, for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, Glycidyl ester type phenolic resin, aralkyl novolak type phenolic resin, biphenylaralkyl type phenolic resin, cresol novolac type phenolic resin, polyfunctional phenolic resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenolic resin, naphthalene skeleton modified novolak type phenolic resin, phenol aralkyl type phenol resin, naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, polyol type phenol resin, phosphorus-containing phenol resin, hydroxyl group-containing silicone resin, etc. Examples include, but are not particularly limited to. These phenolic resins can be used alone or in combination of two or more.

フェノール樹脂(E)の含有量は、樹脂固形分100質量部に対して、好ましくは10~45質量部であり、より好ましくは10~40質量部であり、さらに好ましくは10~35質量部である。フェノール樹脂(E)の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。 The content of the phenolic resin (E) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and even more preferably 10 to 35 parts by mass, based on 100 parts by mass of the resin solid content. be. When the content of the phenol resin (E) is within the above range, adhesiveness, flexibility, etc. tend to be better.

(オキセタン樹脂(F))
オキセタン樹脂(F)としては、特に限定されないが、例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。
(Oxetane resin (F))
The oxetane resin (F) is not particularly limited, but includes, for example, oxetane, alkyloxetane such as 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxetane, 3-methyl-3 -Methoxymethyloxetane, 3,3'-di(trifluoromethyl)perfluoroxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl-type oxetane, OXT-101 (trade name manufactured by Toagosei Co., Ltd.) ), OXT-121 (trade name manufactured by Toagosei Co., Ltd.), and the like. These oxetane resins can be used alone or in combination of two or more.

オキセタン樹脂(F)の含有量は、樹脂固形分100質量部に対して、好ましくは10~45質量部であり、より好ましくは10~40質量部であり、さらに好ましくは10~35質量部である。オキセタン樹脂(F)の含有量が上記範囲内であることにより、密着性や可撓性等により優れる傾向にある。 The content of the oxetane resin (F) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 10 to 35 parts by mass, based on 100 parts by mass of the resin solid content. be. When the content of the oxetane resin (F) is within the above range, adhesiveness, flexibility, etc. tend to be better.

(ベンゾオキサジン化合物(G))
ベンゾオキサジン化合物(G)としては、特に限定されないが、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物(G)は、1種又は2種以上混合して用いることができる。
(Benzoxazine compound (G))
The benzoxazine compound (G) is not particularly limited, but includes, for example, bisphenol A type benzoxazine BA-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), bisphenol F type benzoxazine BF-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), bisphenol S type Examples include benzoxazine BS-BXZ (trade name, manufactured by Konishi Chemical). These benzoxazine compounds (G) can be used alone or in combination of two or more.

ベンゾオキサジン化合物(G)の含有量は、樹脂固形分100質量部に対して、好ましくは10~45質量部であり、より好ましくは10~40質量部であり、さらに好ましくは10~35質量部である。ベンゾオキサジン化合物(G)の含有量が上記範囲内であることにより、耐熱性等により優れる傾向にある。 The content of the benzoxazine compound (G) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and even more preferably 10 to 35 parts by mass, based on 100 parts by mass of the resin solid content. It is. When the content of the benzoxazine compound (G) is within the above range, heat resistance etc. tend to be better.

(重合可能な不飽和基を有する化合物(H))
重合可能な不飽和基を有する化合物(H)としては、特に限定されないが、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。
(Compound (H) having a polymerizable unsaturated group)
The compound (H) having a polymerizable unsaturated group is not particularly limited, but includes, for example, vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, and divinylbiphenyl; methyl (meth)acrylate, 2-hydroxyethyl (meth) ) acrylate, 2-hydroxypropyl (meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa (meth)acrylates of monohydric or polyhydric alcohols such as (meth)acrylate; epoxy (meth)acrylates such as bisphenol A type epoxy (meth)acrylate and bisphenol F type epoxy (meth)acrylate; benzocyclobutene resin; Examples include (bis)maleimide resin. These compounds having a polymerizable unsaturated group can be used alone or in combination of two or more.

重合可能な不飽和基を有する化合物(H)の含有量は、樹脂固形分100質量部に対して、好ましくは10~45質量部であり、より好ましくは10~40質量部であり、さらに好ましくは10~35質量部である。重合可能な不飽和基を有する化合物(H)の含有量が上記範囲内であることにより、耐熱性や靱性等により優れる傾向にある。 The content of the compound (H) having a polymerizable unsaturated group is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and even more preferably is 10 to 35 parts by mass. When the content of the compound (H) having a polymerizable unsaturated group is within the above range, heat resistance, toughness, etc. tend to be better.

〔充填材(I)〕
本実施形態の樹脂組成物は、充填材(I)をさらに含有してもよい。充填材(I)としては、公知のものを適宜使用することができ、その種類は特に限定されず、積層板用途において一般に使用されている無機充填材及び/又は有機充填材を好適に用いることができる。
[Filler (I)]
The resin composition of this embodiment may further contain filler (I). As the filler (I), any known filler can be used as appropriate, and the type thereof is not particularly limited, and inorganic fillers and/or organic fillers commonly used in laminate applications are preferably used. I can do it.

無機充填材としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカなどのシリカ類;ホワイトカーボンなどのケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウムなどの金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウムなどの金属窒化物;硫酸バリウムなどの金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウムなどの金属水和物;酸化モリブデン、モリブデン酸亜鉛などのモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛などの亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラスなどのガラス微粉末類を含む。)、中空ガラス、球状ガラスなどが挙げられる。無機充填材は、1種単独で用いても、2種以上を併用してもよい。このなかでも、ベーマイト及び/又はシリカ類を含むことが好ましい。このような無機充填材を用いることにより、熱膨張率がより低下する傾向にある。 Examples of inorganic fillers include, but are not limited to, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, Aerosil, and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, magnesium oxide, Metal oxides such as zirconium oxide; metal nitrides such as boron nitride, agglomerated boron nitride, silicon nitride, and aluminum nitride; metal sulfides such as barium sulfate; aluminum hydroxide, aluminum hydroxide heat-treated products (heating aluminum hydroxide) metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc compounds such as zinc borate and zinc stannate; alumina , clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, C-glass, L-glass, D-glass, S-glass, M-glass G20 , short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, and Q glass), hollow glass, and spherical glass. The inorganic fillers may be used alone or in combination of two or more. Among these, it is preferable to include boehmite and/or silica. By using such an inorganic filler, the coefficient of thermal expansion tends to be further reduced.

また、有機充填材としては、特に限定されないが、例えば、スチレン型、ブタジエン型、アクリル型などのゴムパウダー;コアシェル型のゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダーなどが挙げられる。これらの充填材は、1種を単独で又は2種以上を適宜組み合わせて用いることができる。 Examples of the organic filler include, but are not limited to, styrene-type, butadiene-type, acrylic-type rubber powder, core-shell type rubber powder, silicone resin powder, silicone rubber powder, silicone composite powder, and the like. These fillers can be used alone or in an appropriate combination of two or more.

充填材(I)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは50~300質量部であり、より好ましくは75~250質量部であり、さらに好ましくは100~200質量部である。充填材(I)の含有量が上記範囲内であることにより、熱膨張率がより低下する傾向にある。 The content of filler (I) is not particularly limited, but is preferably 50 to 300 parts by mass, more preferably 75 to 250 parts by mass, and even more preferably 100 parts by mass, based on 100 parts by mass of the resin solid content. ~200 parts by mass. When the content of filler (I) is within the above range, the coefficient of thermal expansion tends to be further reduced.

〔シランカップリング剤及び湿潤分散剤〕
本実施形態の樹脂組成物は、シランカップリング剤や湿潤分散剤をさらに含んでもよい。シランカップリング剤や湿潤分散剤を含むことにより、上記充填材の分散性、樹脂成分、充填材、及び後述する基材の接着強度がより向上する傾向にある。
[Silane coupling agent and wetting and dispersing agent]
The resin composition of this embodiment may further contain a silane coupling agent and a wetting and dispersing agent. By including a silane coupling agent or a wetting and dispersing agent, the dispersibility of the filler and the adhesive strength between the resin component, the filler, and the substrate described below tend to be further improved.

シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されないが、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系化合物;γ-アクリロキシプロピルトリメトキシシランなどのアクリルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系化合物;フェニルシラン系化合物などが挙げられる。シランカップリング剤は、1種単独で用いても、2種以上を併用してもよい。 The silane coupling agent is not particularly limited as long as it is a silane coupling agent that is generally used for surface treatment of inorganic materials, but examples include γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ - Aminosilane compounds such as aminopropyltrimethoxysilane; Epoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane; Acrylic silane compounds such as γ-acryloxypropyltrimethoxysilane; N-β-(N- Examples include cationic silane compounds such as vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride; phenylsilane compounds. The silane coupling agents may be used alone or in combination of two or more.

湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されないが、例えば、ビッグケミー・ジャパン(株)製のDISPER-110、111、118、180、161、BYK-W996、W9010、W903等が挙げられる。 The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints, but for example, DISPER-110, 111, 118, 180, 161, BYK-W996 manufactured by Big Chemie Japan Co., Ltd. , W9010, W903, etc.

〔硬化促進剤〕
本実施形態の樹脂組成物は、硬化促進剤をさらに含んでもよい。硬化促進剤としては、特に限定されないが、例えば、トリフェニルイミダゾール等のイミダゾール類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレートなどの有機過酸化物;アゾビスニトリルなどのアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。これらのなかでも、トリフェニルイミダゾールが硬化反応を促進し、ガラス転移温度、熱膨張率が優れる傾向にあるため、特に好ましい。
[Curing accelerator]
The resin composition of this embodiment may further contain a curing accelerator. Examples of the curing accelerator include, but are not limited to, imidazoles such as triphenylimidazole; benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, etc. organic peroxides; azo compounds such as azobisnitrile; N,N-dimethylbenzylamine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine , pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, and other tertiary amines; phenols, xylenol, cresol, resorcinol, catechol, and other phenols; naphthenic acid Organic metal salts such as lead, lead stearate, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, iron acetylacetonate; Examples include those dissolved in compounds; inorganic metal salts such as tin chloride, zinc chloride, and aluminum chloride; organic tin compounds such as dioctyltin oxide, other alkyltins, and alkyltin oxides; Among these, triphenylimidazole is particularly preferred because it accelerates the curing reaction and tends to have excellent glass transition temperature and coefficient of thermal expansion.

〔溶剤〕
本実施形態の樹脂組成物は、溶剤をさらに含んでもよい。溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性がより向上するとともに後述する基材への含浸性がより向上する傾向にある。
〔solvent〕
The resin composition of this embodiment may further contain a solvent. By including a solvent, the viscosity at the time of preparation of the resin composition is lowered, handling properties are further improved, and the impregnating property into a base material, which will be described later, tends to be further improved.

溶剤としては、樹脂組成物中の樹脂成分の一部又は全部を溶解可能なものであれば、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドなどのアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートなどが挙げられる。溶剤は、1種単独で用いても、2種以上を併用してもよい。 The solvent is not particularly limited as long as it can dissolve some or all of the resin components in the resin composition, but examples include ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatics such as toluene and xylene. Amides such as dimethylformamide; propylene glycol monomethyl ether and its acetate; and the like. The solvents may be used alone or in combination of two or more.

〔樹脂組成物の製造方法〕
本実施形態の樹脂組成物の製造方法は、特に限定されないが、例えば、上述した各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。この際、各成分を均一に溶解或いは分散させるため、攪拌、混合、混練処理などの公知の処理を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する充填材の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は、公転又は自転型の混合装置などの公知の装置を用いて適宜行うことができる。
[Method for manufacturing resin composition]
The method for producing the resin composition of the present embodiment is not particularly limited, but includes, for example, a method in which each of the above-mentioned components is sequentially blended into a solvent and thoroughly stirred. At this time, in order to uniformly dissolve or disperse each component, known treatments such as stirring, mixing, and kneading treatments can be performed. Specifically, the dispersibility of the filler in the resin composition can be improved by performing the stirring and dispersion treatment using a stirring tank equipped with a stirrer having an appropriate stirring capacity. The above-mentioned stirring, mixing, and kneading treatments can be appropriately performed using, for example, a device for mixing such as a ball mill or a bead mill, or a known device such as a revolving or autorotating type mixing device.

また、樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。 Furthermore, when preparing the resin composition, an organic solvent can be used as necessary. The type of organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.

〔用途〕
上記電子材料用樹脂組成物は、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板として好適に用いることができ、プリント配線板用途により好適に用いることができる。以下、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板について説明する。
[Application]
The above resin composition for electronic materials can be suitably used as a prepreg, a resin sheet, a metal foil-clad laminate, or a printed wiring board, and can be used more suitably for printed wiring board applications. The prepreg, resin sheet, metal foil-clad laminate, or printed wiring board will be explained below.

〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された、上記樹脂組成物と、を有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態における樹脂成分を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させることで、本実施形態のプリプレグを作製することができる。
[Prepreg]
The prepreg of this embodiment includes a base material and the resin composition impregnated or applied to the base material. The prepreg manufacturing method can be carried out according to a conventional method and is not particularly limited. For example, after impregnating or coating a base material with the resin component in this embodiment, semi-curing (converting to B stage) by heating in a dryer at 100 to 200°C for 1 to 30 minutes, The prepreg of this embodiment can be produced.

樹脂組成物(充填材(I)を含む)の含有量は、プリプレグの総量に対して、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、好ましくは40~80質量%である。樹脂組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。 The content of the resin composition (including filler (I)) is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, and preferably 40 to 80% by mass, based on the total amount of prepreg. Mass%. When the content of the resin composition is within the above range, moldability tends to be further improved.

(基材)
基材としては、特に限定されず、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。基材を構成する繊維の具体例としては、特に限定されないが、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Lガラス、Tガラスなどのガラス繊維;クォーツなどのガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)などの全芳香族ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)などのポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられる。これらのなかでも低熱膨張率の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる少なくとも1種が好ましい。これら基材は、1種単独で用いても、2種以上を併用してもよい。
(Base material)
The base material is not particularly limited, and any known material used in various printed wiring board materials can be appropriately selected and used depending on the intended use and performance. Specific examples of fibers constituting the base material include, but are not particularly limited to, glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass, L glass, and T glass; Inorganic fibers other than glass; polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont Co., Ltd.), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technora (registered trademark), Teijin Techno Products Ltd.) Fully aromatic polyamides such as 2,6-hydroxynaphthoic acid/parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), polyesters such as Zexion (registered trademark, manufactured by KB Seiren); polyparaphenylene Examples include organic fibers such as benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.) and polyimide. Among these, from the viewpoint of low coefficient of thermal expansion, at least one selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers is preferable. These base materials may be used alone or in combination of two or more.

基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m2以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラスのガラス繊維からなるガラス織布がより好ましい。 The shape of the base material is not particularly limited, and examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, and surfacing mat. The method of weaving the woven fabric is not particularly limited, but for example, plain weaving, Nanako weaving, twill weaving, etc. are known, and the weaving method can be appropriately selected from these known methods depending on the intended use and performance. . Furthermore, glass woven fabrics subjected to fiber opening treatment or surface treated with a silane coupling agent or the like are preferably used. The thickness and mass of the base material are not particularly limited, but those having a thickness of about 0.01 to 0.3 mm are usually suitably used. In particular, from the viewpoint of strength and water absorption, the base material is preferably a woven glass fabric with a thickness of 200 μm or less and a mass of 250 g/m 2 or less, and a glass woven fabric made of glass fibers of E glass, S glass, and T glass is preferable. More preferred.

〔レジンシート〕
本実施形態のレジンシートは、シート基材と、該シート基材の片面または両面に積層された、上記樹脂組成物と、を有する。レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルムなどのシート基材(支持体)に、直接、プリプレグ等に用いられる熱硬化性樹脂(無機充填材を含む)を塗布及び乾燥して製造することができる。
[Resin sheet]
The resin sheet of this embodiment includes a sheet base material and the resin composition laminated on one or both sides of the sheet base material. A resin sheet is used as a means of thinning a sheet. For example, a thermosetting resin (inorganic filler) used for prepreg etc. is directly applied to a sheet base material (support) such as metal foil or film. ) can be manufactured by coating and drying.

シート基材としては、特に限定されないが、各種プリント配線板材料に用いられている公知の物もの使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミ箔、銅箔、金箔など挙げられる。その中でも電解銅箔、PETフィルムが好ましい。 The sheet base material is not particularly limited, but known materials used for various printed wiring board materials can be used. Examples include polyimide film, polyamide film, polyester film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polypropylene (PP) film, polyethylene (PE) film, aluminum foil, copper foil, gold foil, and the like. Among these, electrolytic copper foil and PET film are preferred.

塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。 Examples of the coating method include a method in which a solution prepared by dissolving the resin composition of the present embodiment in a solvent is coated onto the sheet base material using a bar coater, die coater, doctor blade, baker applicator, or the like.

レジンシートは、上記樹脂組成物をシート基材に塗布後、半硬化(Bステージ化)させたものであることが好ましい。具体的には、例えば、上記樹脂組成物を銅箔などのシート基材に塗布した後、100~200℃の乾燥機中で、1~60分加熱させる方法などにより半硬化させ、レジンシートを製造する方法などが挙げられる。シート基材に対する樹脂組成物の付着量は、樹脂シートの樹脂厚で1~300μmの範囲が好ましい。 The resin sheet is preferably one in which the resin composition is applied to a sheet base material and then semi-cured (B-staged). Specifically, for example, after applying the above resin composition to a sheet base material such as copper foil, the resin sheet is semi-cured by heating in a dryer at 100 to 200°C for 1 to 60 minutes. Examples include manufacturing methods. The amount of the resin composition adhered to the sheet base material is preferably in the range of 1 to 300 μm in terms of the resin thickness of the resin sheet.

なお、レジンシートは、シート基材から剥離して用いることもできる。 Note that the resin sheet can also be used after being peeled off from the sheet base material.

〔金属箔張積層板〕
本実施形態の金属箔張積層板は、絶縁層と、該絶縁層の片面または両面に積層形成された導体層と、を有し、絶縁層が、上記樹脂組成物を含む。より具体的には、絶縁層はプリプレグ又は上記レジンシートを用いることができる。すなわち、本実施形態の金属箔張積層板は、上記プリプレグ及び上記レジンシートからなる群より選ばれる少なくとも1種と、金属箔とを積層して硬化して得られるものである。
[Metal foil clad laminate]
The metal foil clad laminate of this embodiment has an insulating layer and a conductor layer laminated on one or both sides of the insulating layer, and the insulating layer contains the resin composition. More specifically, prepreg or the above resin sheet can be used for the insulating layer. That is, the metal foil-clad laminate of this embodiment is obtained by laminating and curing at least one member selected from the group consisting of the prepreg and the resin sheet and a metal foil.

絶縁層は、上記樹脂組成物、1層のプリプレグ、又はレジンシートからなるものであっても、上記樹脂組成物、プリプレグ、又はレジンシートを2層以上積層したものであってもよい。 The insulating layer may be made of the above resin composition, one layer of prepreg, or a resin sheet, or may be formed by laminating two or more layers of the above resin composition, prepreg, or resin sheet.

導体層は、銅やアルミニウムなどの金属箔とすることができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、導体層の厚みは、特に限定されないが、1~70μmが好ましく、より好ましくは1.5~35μmである。 The conductor layer can be a metal foil such as copper or aluminum. The metal foil used here is not particularly limited as long as it is used for printed wiring board materials, but known copper foils such as rolled copper foil and electrolytic copper foil are preferred. Further, the thickness of the conductor layer is not particularly limited, but is preferably 1 to 70 μm, more preferably 1.5 to 35 μm.

金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形において、温度は100~300℃、圧力は面圧2~100kgf/cm2、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 The method and conditions for forming the metal foil-clad laminate are not particularly limited, and methods and conditions for general printed wiring board laminates and multilayer boards can be applied. For example, when molding a metal foil-clad laminate, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used. Further, in forming a metal foil-clad laminate, the temperature is generally 100 to 300°C, the pressure is 2 to 100 kgf/cm 2 , and the heating time is generally 0.05 to 5 hours. Furthermore, if necessary, post-curing can be performed at a temperature of 150 to 300°C. Moreover, it is also possible to form a multilayer board by laminating and molding a combination of the above-mentioned prepreg and a separately prepared inner layer wiring board.

〔プリント配線板〕
本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記絶縁層が、上記樹脂組成物を含む。上記の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、上記の金属箔張積層板は、低い熱膨張率、良好な成形性及び耐薬品性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
[Printed wiring board]
The printed wiring board of this embodiment is a printed wiring board including an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer contains the resin composition. The metal foil-clad laminate described above can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The metal foil-clad laminate described above has a low coefficient of thermal expansion, good formability, and chemical resistance, and can be particularly effectively used as a printed wiring board for semiconductor packages that requires such performance. I can do it.

本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。 Specifically, the printed wiring board of this embodiment can be manufactured, for example, by the following method. First, the above-mentioned metal foil-clad laminate (copper-clad laminate, etc.) is prepared. An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to create an inner layer substrate. The surface of the inner layer circuit of this inner layer board is subjected to surface treatment to increase adhesive strength as required, and then the required number of sheets of prepreg described above are layered on the surface of the inner layer circuit, and then metal foil for the outer layer circuit is laminated on the outside. Then heat and press to form an integral mold. In this way, a multilayer laminate is produced in which an insulating layer made of a base material and a cured product of a thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling holes for through holes and via holes in this multilayer laminate, a desmear process is performed to remove smear, which is resin residue derived from the resin components contained in the cured material layer. . After that, a plating metal film is formed on the wall of this hole to conduct the inner layer circuit and the metal foil for the outer layer circuit, and then the metal foil for the outer layer circuit is etched to form the outer layer circuit, and the printed wiring board is manufactured. be done.

例えば、上述のプリプレグ(基材及びこれに添着された上述の樹脂組成物)、金属箔張積層板の樹脂組成物層(上述の樹脂組成物からなる層)が、上述の樹脂組成物を含む絶縁層を構成することになる。 For example, the above-mentioned prepreg (base material and the above-mentioned resin composition attached thereto), the resin composition layer (layer consisting of the above-mentioned resin composition) of the metal foil-clad laminate contains the above-mentioned resin composition. This will constitute an insulating layer.

また、金属箔張積層板を用いない場合には、上記プリプレグ、上記レジンシート、上記樹脂組成物に、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。 Furthermore, when a metal foil-clad laminate is not used, a printed wiring board may be produced by forming a conductive layer to form a circuit on the prepreg, the resin sheet, and the resin composition. At this time, an electroless plating method can also be used to form the conductor layer.

本実施形態のプリント配線板は、上述の絶縁層が半導体実装時のリフロー温度下においても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑制することから、半導体パッケージ用プリント配線板として、殊に有効に用いることができる。 The printed wiring board of this embodiment is suitable for use in semiconductor packages because the above-mentioned insulating layer maintains an excellent elastic modulus even under reflow temperatures during semiconductor mounting, thereby effectively suppressing warping of semiconductor plastic packages. It can be used particularly effectively as a printed wiring board.

以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail using Examples and Comparative Examples. The present invention is not limited in any way by the following examples.

〔合成例1〕
反応器内で、α-ナフトールアラルキル型フェノール樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製:ナフトールアラルキルの繰り返し単位数nは1~5のものが含まれる。)0.47mol(OH基換算)を、クロロホルム500mLに溶解させ、この溶液にトリエチルアミン0.7molを添加した。温度を-10℃に保ちながら反応器内に0.93molの塩化シアンのクロロホルム溶液300gを1.5時間かけて滴下し、滴下終了後、30分撹拌した。その後さらに、0.1molのトリエチルアミンとクロロホルム30gの混合溶液を反応器内に滴下し、30分撹拌して反応を完結させた。副生したトリエチルアミンの塩酸塩を反応液から濾別した後、得られた濾液を0.1N塩酸500mLで洗浄した後、水500mLでの洗浄を4回繰り返した。これを硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、さらに90℃で減圧脱気することにより、褐色固形のα-ナフトールアラルキル型シアン酸エステル樹脂(SNCN)を得た。得られたα-ナフトールアラルキル型シアン酸エステル樹脂を赤外吸収スペクトルにより分析したところ、2264cm-1付近のシアン酸エステル基の吸収が確認された。
[Synthesis example 1]
In the reactor, an α-naphthol aralkyl type phenol resin (SN495V, OH group equivalent: 236 g/eq., manufactured by Nippon Steel Chemical Co., Ltd.) is used.The number of repeating units n of naphthol aralkyl is 1 to 5. ) was dissolved in 500 mL of chloroform, and 0.7 mol of triethylamine was added to this solution. While maintaining the temperature at -10° C., 300 g of a chloroform solution of 0.93 mol of cyanogen chloride was added dropwise into the reactor over 1.5 hours, and after the addition was completed, the mixture was stirred for 30 minutes. Thereafter, a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was added dropwise into the reactor and stirred for 30 minutes to complete the reaction. After the by-produced triethylamine hydrochloride was filtered out from the reaction solution, the resulting filtrate was washed with 500 mL of 0.1N hydrochloric acid, and then washed with 500 mL of water, which was repeated four times. After drying this with sodium sulfate, it was evaporated at 75°C and further degassed under reduced pressure at 90°C to obtain a brown solid α-naphthol aralkyl cyanate ester resin (SNCN). When the obtained α-naphthol aralkyl cyanate ester resin was analyzed by infrared absorption spectrum, absorption of cyanate ester groups around 2264 cm −1 was confirmed.

〔実施例1〕
ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製)を17.3質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を28.7質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000、DIC(株)製)を29.4質量部、ビスマレイミド化合物(BMI-5000、Designer Molecules inc.製)を24.6質量部、シリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
[Example 1]
17.3 parts by mass of a novolak-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 28.7 parts by mass of the naphthol aralkyl-type cyanate ester resin obtained in Synthesis Example 1, and a polyoxynaphthylene-type 29.4 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 24.6 parts by mass of bismaleimide compound (BMI-5000, manufactured by Designer Molecules inc.), silica (SC-5050MOB, average particle diameter) A varnish was obtained by mixing 120 parts by mass of 1.5 μm (manufactured by Admatex Co., Ltd.) and 0.5 parts by mass of 2,4,5-triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.). This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg with a resin content of 44.5% by mass. A metal foil-clad laminate was produced using the obtained prepreg, and the thermal expansion coefficient was measured by the TMA tensile method described below. Table 1 shows the results.

なお、ビスマレイミド化合物(BMI-5000)は、式(3)において、R1及びR3が、オクチル基であり、R2が、ヘキシル基とオクチル基を置換基として有するシクロヘキシル基であり、重量平均分子量が5000である化合物である。 In the bismaleimide compound (BMI-5000), in formula (3), R 1 and R 3 are octyl groups, R 2 is a cyclohexyl group having a hexyl group and an octyl group as substituents, and the weight is This is a compound with an average molecular weight of 5,000.

〔比較例1〕
ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製)を24.6質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を36.8質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000、DIC(株)製)を38.6質量部、シリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
[Comparative example 1]
24.6 parts by mass of a novolak-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 36.8 parts by mass of the naphthol aralkyl-type cyanate ester resin obtained in Synthesis Example 1, and a polyoxynaphthylene type. 38.6 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 120 parts by mass of silica (SC-5050MOB, average particle diameter 1.5 μm, manufactured by Admatex Corporation), 2,4,5 -0.5 parts by mass of triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg with a resin content of 44.5% by mass. A metal foil-clad laminate was produced using the obtained prepreg, and the thermal expansion coefficient was measured using the TMA tensile method described below. Table 1 shows the results.

〔比較例2〕
ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製)を12.7質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を30.9質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000、DIC(株)製)を31.8質量部、下記式で表されるビスマレイミド化合物(BMI-1000P、大和化成工業(株)製)を24.6質量部、シリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
(式中、nの平均値は14である。)
[Comparative example 2]
12.7 parts by mass of a novolak-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 30.9 parts by mass of the naphthol aralkyl-type cyanate ester resin obtained in Synthesis Example 1, and a polyoxynaphthylene type. 31.8 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 24.6 parts by mass of a bismaleimide compound represented by the following formula (BMI-1000P, manufactured by Daiwa Chemical Industries, Ltd.), silica Mix 120 parts by mass of (SC-5050MOB, average particle size 1.5 μm, manufactured by Admatex Co., Ltd.) and 0.5 parts by mass of 2,4,5-triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) and got varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg with a resin content of 44.5% by mass. A metal foil-clad laminate was produced using the obtained prepreg, and the thermal expansion coefficient was measured using the TMA tensile method described below. Table 1 shows the results.
(In the formula, the average value of n is 14.)

〔金属箔張積層板の作製〕
実施例1、比較例1又は比較例2で得られたプリプレグを8枚重ねて、12μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの金属箔張積層板を得た。
[Production of metal foil clad laminate]
Eight prepregs obtained in Example 1, Comparative Example 1, or Comparative Example 2 were stacked, 12 μm thick electrolytic copper foil (3EC-III, manufactured by Mitsui Mining & Mining Co., Ltd.) was placed above and below, and a pressure of 30 kgf/ cm 2 and a temperature of 220° C. for 120 minutes to obtain a metal foil-clad laminate with an insulating layer thickness of 0.8 mm.

〔熱膨張係数(TMA引張法)〕
得られた8枚重ねの金属箔張積層板に対し、JlS C 6481に規定されるTMA法(Thermo-mechanical analysis)により積層板の絶縁層についてガラスクロスの縦方向の熱膨張係数を測定し、その値を求めた。具体的には、上記で得られた金属箔張積層板の両面の銅箔をエッチングにより除去した後に、熱機械分析装置(TAインスツルメント製)でTMA引張法にて測定を実施した。TMA引張法では、荷重2.5g、チャック間10mm、40℃から340℃まで毎分10℃で昇温し、60℃から120℃における線熱膨張係数(ppm/℃)を測定した。
[Thermal expansion coefficient (TMA tensile method)]
The longitudinal thermal expansion coefficient of the glass cloth was measured for the insulating layer of the laminate using the TMA method (thermo-mechanical analysis) specified in JlS C 6481 for the obtained 8-ply metal foil-clad laminate. I calculated that value. Specifically, after removing the copper foils on both sides of the metal foil-clad laminate obtained above by etching, measurements were performed using a thermomechanical analyzer (manufactured by TA Instruments) using the TMA tensile method. In the TMA tensile method, the load was 2.5 g, the chuck distance was 10 mm, the temperature was raised from 40°C to 340°C at a rate of 10°C per minute, and the linear thermal expansion coefficient (ppm/°C) from 60°C to 120°C was measured.

〔実施例2〕
合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を50質量部、ビスマレイミド化合物(BMI-3000J、Designer Molecules inc.製)を50質量部、シリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を100質量部、オクチル酸亜鉛(日本化学産業(株)製)を0.05質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記の方法にて物性評価した結果を表2に示した。なお、熱膨張係数はTMA圧縮法で測定した。
[Example 2]
50 parts by mass of the naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1, 50 parts by mass of a bismaleimide compound (BMI-3000J, manufactured by Designer Molecules inc.), and silica (SC-5050MOB, average particle diameter 1.5 μm). , manufactured by Admatex Co., Ltd.) and 0.05 parts by mass of zinc octylate (manufactured by Nihon Kagaku Sangyo Co., Ltd.) to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg with a resin content of 50% by mass. A metal foil-clad laminate was produced using the obtained prepreg, and the physical properties were evaluated using the method described below. The results are shown in Table 2. Note that the thermal expansion coefficient was measured by the TMA compression method.

なお、ビスマレイミド化合物(BMI-3000J)は、式(3)において、R1及びR3が、オクチル基であり、R2が、ヘキシル基とオクチル基を置換基として有するシクロヘキシル基であり、重量平均分子量が3000である化合物である。 The bismaleimide compound (BMI-3000J) has formula (3) in which R 1 and R 3 are octyl groups, R 2 is a cyclohexyl group having a hexyl group and an octyl group as substituents, and the weight is This is a compound with an average molecular weight of 3000.

〔比較例3〕
ビスマレイミド化合物(BMI-3000J)に代えて、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製)を50質量部用い、オクチル酸亜鉛の使用量を0.1質量部としたこと以外は、実施例2と同様にして、樹脂含有量50質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記の方法にて物性評価した結果を表2に示した。なお、熱膨張係数はTMA圧縮法で測定した。
[Comparative example 3]
In place of the bismaleimide compound (BMI-3000J), 50 parts by mass of a novolak-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) was used, and the amount of zinc octylate used was 0.1 part by mass. Except for this, a prepreg with a resin content of 50% by mass was obtained in the same manner as in Example 2. A metal foil-clad laminate was produced using the obtained prepreg, and the physical properties were evaluated using the method described below. The results are shown in Table 2. Note that the thermal expansion coefficient was measured by the TMA compression method.

〔金属箔張積層板の作製〕
実施例2又は比較例3で得られたプリプレグを8枚重ねて、12μm厚の電解銅箔(3EC-M3-VLP、三井金属(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの金属箔張積層板を得た。
[Production of metal foil clad laminate]
Eight sheets of the prepreg obtained in Example 2 or Comparative Example 3 were stacked, and 12 μm thick electrolytic copper foil (3EC-M3-VLP, manufactured by Mitsui Kinzoku Co., Ltd.) was placed above and below, and a pressure of 30 kgf/cm 2 was applied. Lamination molding was performed at a temperature of 220° C. for 120 minutes to obtain a metal foil-clad laminate with an insulating layer thickness of 0.8 mm.

〔ガラス転移温度〕
得られた8枚重ねの金属箔張積層板について、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法によりガラス転移温度を測定した。
〔Glass-transition temperature〕
The glass transition temperature of the obtained 8-ply metal foil-clad laminate was measured by the DMA method using a dynamic viscoelastic analyzer (manufactured by TA Instruments) in accordance with JIS C6481.

〔熱膨張係数(TMA圧縮法)〕
得られた8枚重ねの金属箔張積層板に対し、JlS C 6481に規定されるTMA法(Thermo-mechanical analysis)により積層板の絶縁層についてガラスクロスの縦方向の熱膨張係数を測定し、その値を求めた。具体的には、上記で得られた金属箔張積層板の両面の銅箔をエッチングにより除去した後に、熱機械分析装置(TAインスツルメント製)でTMA圧縮法にて測定を実施した。TMA圧縮法では、荷重5g、40℃から340℃まで毎分10℃で昇温し、60℃から120℃における線熱膨張係数(ppm/℃)を測定した。
[Thermal expansion coefficient (TMA compression method)]
The longitudinal thermal expansion coefficient of the glass cloth was measured for the insulating layer of the laminate using the TMA method (thermo-mechanical analysis) specified in JlS C 6481 for the obtained 8-ply metal foil-clad laminate. I calculated that value. Specifically, after removing the copper foils on both sides of the metal foil-clad laminate obtained above by etching, measurements were performed using a thermomechanical analyzer (manufactured by TA Instruments) using the TMA compression method. In the TMA compression method, the temperature was raised at 10°C per minute from 40°C to 340°C under a load of 5 g, and the linear thermal expansion coefficient (ppm/°C) from 60°C to 120°C was measured.

〔積層板誘電率〕
銅張り積層板の銅箔を除去した試験片(n=1)を使用し、空洞共振器摂動法(Agilent 8722ES,アジレントテクノロジー製)にて2、10GHzの誘電率の測定を3回実施し、その平均値を求めた。
[Laminated plate permittivity]
Using a test piece (n = 1) from which the copper foil of the copper-clad laminate was removed, the dielectric constant was measured three times at 2 and 10 GHz using the cavity resonator perturbation method (Agilent 8722ES, manufactured by Agilent Technologies). The average value was calculated.

〔積層板誘電正接〕
銅張り積層板の銅箔を除去した試験片(n=1)を使用し、空洞共振器摂動法(Agilent 8722ES,アジレントテクノロジー製)にて2、10GHzの誘電正接の測定を3回実施し、その平均値を求めた。
[Laminated plate dielectric loss tangent]
Using a test piece (n = 1) from which the copper foil of the copper-clad laminate was removed, the dielectric loss tangent at 2 and 10 GHz was measured three times using the cavity resonator perturbation method (Agilent 8722ES, manufactured by Agilent Technologies). The average value was calculated.

〔熱重量減少率〕
得られた絶縁層厚さ0.8mmの金属箔張積層板の銅箔をエッチングにより除去した後に、JIS K7120-1987に準拠し、示差熱熱重量同時測定装置TG/DTA6200(エス・アイ・アイ・ナノテクノロジー(株)製)により、試験片3mm×3mm×0.8mm、窒素流通下、開始温度300℃、昇温速度10℃/分で昇温した際の450℃到達時点における熱重量減少率(熱分解量(%))、また、熱重量減少率が1%となる温度について、下記式に基づき求めた。
熱重量減少率(%)=(I-J)/I×100
(Iは開始温度での重量を、Jは450℃における重量を表す。)
[Thermogravimetric reduction rate]
After removing the copper foil of the obtained metal foil-clad laminate with an insulating layer thickness of 0.8 mm by etching, a simultaneous differential thermogravimetric measurement device TG/DTA6200 (SI - Thermogravimetric reduction when the temperature reaches 450°C when the test piece is 3mm x 3mm x 0.8mm and heated at a starting temperature of 300°C and a heating rate of 10°C/min using a test piece (manufactured by Nano Technology Co., Ltd.) under nitrogen flow. The rate (thermal decomposition amount (%)) and the temperature at which the thermal weight reduction rate was 1% were determined based on the following formula.
Thermogravimetric reduction rate (%) = (I-J)/I x 100
(I represents the weight at the starting temperature, J represents the weight at 450°C.)

本発明の電子材料用樹脂組成物は、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板の材料として産業上の利用可能性を有する。 The resin composition for electronic materials of the present invention has industrial applicability as a material for prepregs, resin sheets, metal foil-clad laminates, or printed wiring boards.

Claims (13)

ビスマレイミド化合物(A)とシアン酸エステル化合物(C)とエポキシ樹脂(D)とを含み、
該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリイミド基1個以上と、を有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合しており、
前記ビスマレイミド化合物(A)の含有量が、樹脂固形分100質量部に対して、5~60質量部であり、
前記シアン酸エステル化合物(C)の含有量が、樹脂固形分100質量部に対して、10~60質量部であり、
前記エポキシ樹脂(D)の含有量が、樹脂固形分100質量部に対して、10~45質量部であり、
前記ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基2個以上をさらに有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1の連結基を介して前記環状炭化水素基に結合し、
前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を介して前記環状炭化水素基に結合している、
電子材料用樹脂組成物。
Contains a bismaleimide compound (A), a cyanate ester compound (C) and an epoxy resin (D) ,
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the following formula (1),
The two maleimide groups are each independently bonded to both ends of the polyimide group through at least a first linking group in which 8 or more atoms are connected in a linear chain,
The content of the bismaleimide compound (A) is 5 to 60 parts by mass based on 100 parts by mass of resin solid content,
The content of the cyanate ester compound (C) is 10 to 60 parts by mass based on 100 parts by mass of resin solid content,
The content of the epoxy resin (D) is 10 to 45 parts by mass based on 100 parts by mass of resin solid content,
The bismaleimide compound (A) further has two or more cyclic hydrocarbon groups that may contain a heteroatom having a ring with a number of atoms of 4 or more and 10 or less,
The two maleimide groups are each independently bonded to the cyclic hydrocarbon group via the first linking group in which 8 or more atoms are connected in a linear chain,
The polyimide groups are each independently bonded to the cyclic hydrocarbon group via a second linking group in which 8 or more atoms are connected in a linear chain.
Resin composition for electronic materials.
前記環状炭化水素基が、脂環基である、
請求項1に記載の電子材料用樹脂組成物。
the cyclic hydrocarbon group is an alicyclic group,
The resin composition for electronic materials according to claim 1.
前記第1の連結基及び/又は前記第2の連結基が、置換又は非置換の2価の炭化水素基である、
請求項1又は2に記載の電子材料用樹脂組成物。
The first connecting group and/or the second connecting group is a substituted or unsubstituted divalent hydrocarbon group,
The resin composition for electronic materials according to claim 1 or 2.
前記ビスマレイミド化合物(A)が下記式(2)で表される繰返し単位を有する、
請求項1~3のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表す。)
The bismaleimide compound (A) has a repeating unit represented by the following formula (2),
The resin composition for electronic materials according to any one of claims 1 to 3.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 is a substituted or unsubstituted hydrocarbon group in which the number of atoms constituting the ring is Represents a cyclic hydrocarbon group that may contain 4 or more and 10 or less heteroatoms.)
前記ビスマレイミド化合物(A)が下記式(3)で表される直鎖状ポリマー構造を有する、
請求項1~4のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、nは1~10の数を表す。)
The bismaleimide compound (A) has a linear polymer structure represented by the following formula (3),
The resin composition for electronic materials according to any one of claims 1 to 4.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are connected in a linear chain, and R 2 each independently represents a substituted or unsubstituted ring. Represents a cyclic hydrocarbon group that may contain a heteroatom having a number of constituent atoms of 4 or more and 10 or less, where n represents a number from 1 to 10.)
前記ビスマレイミド化合物(A)の重量平均分子量が、1×103~1×104である、
請求項1~5のいずれか一項に記載の電子材料用樹脂組成物。
The weight average molecular weight of the bismaleimide compound (A) is 1×10 3 to 1×10 4 .
The resin composition for electronic materials according to any one of claims 1 to 5.
前記ビスマレイミド化合物(A)以外のマレイミド化合物(B)フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含む、
請求項1~6のいずれか一項に記載の電子材料用樹脂組成物。
A group consisting of a maleimide compound (B) other than the bismaleimide compound (A) , a phenol resin (E), an oxetane resin (F), a benzoxazine compound (G), and a compound (H) having a polymerizable unsaturated group. further including one or more selected from
The resin composition for electronic materials according to any one of claims 1 to 6.
充填材(I)をさらに含む、
請求項1~のいずれか一項に記載の電子材料用樹脂組成物。
further comprising a filler (I);
The resin composition for electronic materials according to any one of claims 1 to 7 .
前記充填材(I)の含有量が、樹脂固形分100質量部に対して、50~300質量部である、
請求項に記載の電子材料用樹脂組成物。
The content of the filler (I) is 50 to 300 parts by mass based on 100 parts by mass of the resin solid content,
The resin composition for electronic materials according to claim 8 .
基材と、
該基材に含浸又は塗布された、請求項1~のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
プリプレグ。
base material and
and the resin composition for electronic materials according to any one of claims 1 to 9 , which is impregnated or applied to the base material.
prepreg.
シート基材と、
該シート基材の片面または両面に積層された、請求項1~のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
レジンシート。
sheet base material,
and the resin composition for electronic materials according to any one of claims 1 to 9 , which is laminated on one or both sides of the sheet base material.
Resin sheet.
絶縁層と、
該絶縁層の片面又は両面に積層形成された導体層と、を有し、
前記絶縁層が、請求項1~のいずれか一項に記載の電子材料用樹脂組成物を含む、
金属箔張積層板。
an insulating layer;
a conductor layer laminated on one or both sides of the insulating layer,
The insulating layer contains the resin composition for electronic materials according to any one of claims 1 to 9 .
Metal foil laminate.
絶縁層と、前記絶縁層の表面に形成された導体層とを有し、
前記絶縁層が、請求項1~のいずれか一項に記載の電子材料用樹脂組成物を含む、
プリント配線板。
comprising an insulating layer and a conductor layer formed on the surface of the insulating layer,
The insulating layer contains the resin composition for electronic materials according to any one of claims 1 to 9 .
printed wiring board.
JP2016236665A 2016-12-06 2016-12-06 Resin composition for electronic materials Active JP7442255B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016236665A JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials
JP2021200181A JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236665A JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021200181A Division JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material

Publications (2)

Publication Number Publication Date
JP2018090728A JP2018090728A (en) 2018-06-14
JP7442255B2 true JP7442255B2 (en) 2024-03-04

Family

ID=62564430

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016236665A Active JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials
JP2021200181A Pending JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A Pending JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021200181A Pending JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A Pending JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Country Status (1)

Country Link
JP (3) JP7442255B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992333B2 (en) * 2017-09-06 2022-01-13 味の素株式会社 Resin composition
WO2019189467A1 (en) 2018-03-28 2019-10-03 積水化学工業株式会社 Resin material, laminate structure and multilayer printed wiring board
CN112601778A (en) 2018-08-27 2021-04-02 积水化学工业株式会社 Resin material, laminated structure, and multilayer printed wiring board
JP2020094212A (en) * 2018-12-10 2020-06-18 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP7215188B2 (en) * 2019-01-23 2023-01-31 三菱瓦斯化学株式会社 Resin compositions, cured products, moldings, prepregs, resin sheets, metal foil-clad laminates, printed wiring boards, semiconductor devices, sealing materials, fiber-reinforced composite materials and adhesives
JP7474064B2 (en) * 2019-02-18 2024-04-24 積水化学工業株式会社 Resin materials and multilayer printed wiring boards
WO2021020563A1 (en) 2019-08-01 2021-02-04 積水化学工業株式会社 Resin material and multilayer printed wiring board
JPWO2021182207A1 (en) 2020-03-13 2021-09-16
JP7537146B2 (en) 2020-07-03 2024-08-21 味の素株式会社 Resin composition
JP7248000B2 (en) * 2020-11-05 2023-03-29 味の素株式会社 resin composition
CN117529509A (en) * 2021-06-15 2024-02-06 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
JP7197047B1 (en) 2022-05-27 2022-12-27 三菱瓦斯化学株式会社 Resin compositions, cured products, sealing materials, adhesives, insulating materials, paints, prepregs, multilayer bodies, and fiber-reinforced composite materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126411A1 (en) 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for manufacturing multilayer printed wiring board
WO2010050472A1 (en) 2008-10-29 2010-05-06 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate board, multilayer printed wiring board, and semiconductor device
WO2013008684A1 (en) 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
WO2016114286A1 (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
WO2016114287A1 (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
JP2016131243A (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet for high multilayer, and high multilayer printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6017750B1 (en) * 2015-03-23 2016-11-02 タツタ電線株式会社 Manufacturing method of resin impregnated material, composite material and copper clad laminate
KR20160118962A (en) * 2015-04-03 2016-10-12 스미토모 베이클리트 컴퍼니 리미티드 Prepreg, resin substrate, metal clad laminated board, printed wiring board and semiconductor device
JP6550872B2 (en) * 2015-04-03 2019-07-31 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal-clad laminate, printed wiring board, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126411A1 (en) 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for manufacturing multilayer printed wiring board
WO2010050472A1 (en) 2008-10-29 2010-05-06 住友ベークライト株式会社 Resin composition, resin sheet, prepreg, laminate board, multilayer printed wiring board, and semiconductor device
WO2013008684A1 (en) 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
WO2016114286A1 (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
WO2016114287A1 (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
JP2016131243A (en) 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet for high multilayer, and high multilayer printed wiring board

Also Published As

Publication number Publication date
JP2018090728A (en) 2018-06-14
JP2023134454A (en) 2023-09-27
JP2022046517A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP7442255B2 (en) Resin composition for electronic materials
JP7121354B2 (en) Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP7320338B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP6388147B1 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7153243B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
KR102431012B1 (en) Resin composition for printed wiring boards, prepregs, resin sheets, laminates, metal foil-clad laminates, printed wiring boards, and multilayer printed wiring boards
JP6910590B2 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, laminated resin sheet, resin sheet, and printed wiring board
JP6452083B2 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP6681052B2 (en) Prepreg, laminated board, metal foil clad laminated board, printed wiring board, and multilayer printed wiring board
JP7116927B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, and method for producing resin composition
WO2020235328A1 (en) Resin composition, prepreg, resin sheet provided with support, metal foil clad laminated plate, and printed wiring board
JP6823807B2 (en) Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board
WO2020262321A1 (en) Resin sheet, metal foil-clad laminate plate and printed wiring board
JP2020033493A (en) Mixture of cyanate compound and curable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211216

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230118

C27C Written answer of applicant after an oral proceeding

Free format text: JAPANESE INTERMEDIATE CODE: C2721

Effective date: 20230118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150