JP7121354B2 - Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board - Google Patents

Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board Download PDF

Info

Publication number
JP7121354B2
JP7121354B2 JP2021115454A JP2021115454A JP7121354B2 JP 7121354 B2 JP7121354 B2 JP 7121354B2 JP 2021115454 A JP2021115454 A JP 2021115454A JP 2021115454 A JP2021115454 A JP 2021115454A JP 7121354 B2 JP7121354 B2 JP 7121354B2
Authority
JP
Japan
Prior art keywords
group
cyanate ester
resin composition
compound
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021115454A
Other languages
Japanese (ja)
Other versions
JP2021178966A (en
Inventor
知樹 濱嶌
克哉 富澤
環 伊藤
英祐 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JP2021178966A publication Critical patent/JP2021178966A/en
Application granted granted Critical
Publication of JP7121354B2 publication Critical patent/JP7121354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Description

本発明は、樹脂組成物、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板に関する。 TECHNICAL FIELD The present invention relates to a resin composition, a prepreg, a resin sheet, a laminated resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。それに伴い、半導体素子と半導体プラスチックパッケージ用プリント配線板との熱膨張率の差によって生じる半導体プラスチックパッケージの反りが問題となっており、様々な対策が講じられてきている。 In recent years, as semiconductor packages, which are widely used in electronic devices, communication devices, personal computers, etc., have become more sophisticated and smaller, the integration and high-density mounting of each component for semiconductor packages has accelerated in recent years. ing. Along with this, warping of semiconductor plastic packages caused by a difference in coefficient of thermal expansion between a semiconductor element and a printed wiring board for semiconductor plastic packages has become a problem, and various countermeasures have been taken.

その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1~3参照)。 One of the countermeasures is to reduce the thermal expansion of insulating layers used in printed wiring boards. This is a method of suppressing warpage by bringing the coefficient of thermal expansion of a printed wiring board closer to that of a semiconductor element, and is currently being actively pursued (see Patent Documents 1 to 3, for example).

半導体プラスチックパッケージの反りを抑制する手法としては、プリント配線板の低熱膨張化以外にも、積層板の剛性を高くすること(高剛性化)や積層板のガラス転移温度を高くすること(高Tg化)が検討されている(例えば、特許文献4及び5参照)。 In addition to lowering the thermal expansion of the printed wiring board, methods for suppressing warping of semiconductor plastic packages include increasing the rigidity of the laminate (high rigidity) and increasing the glass transition temperature of the laminate (high Tg (for example, see Patent Documents 4 and 5).

特開2013-216884号公報JP 2013-216884 A 特許第3173332号公報Japanese Patent No. 3173332 特開2009-035728号公報Japanese Patent Application Laid-Open No. 2009-035728 特開2013-001807号公報JP 2013-001807 A 特開2011-178992号公報JP 2011-178992 A

しかしながら、特許文献1~3に記載の従来の手法によるプリント配線板の低熱膨張化は既に限界が近づいており、さらなる低熱膨張化が困難となっている。 However, the reduction in thermal expansion of printed wiring boards by the conventional techniques described in Patent Documents 1 to 3 is already approaching its limit, and further reduction in thermal expansion is becoming difficult.

積層板の高剛性化は積層板に使用する樹脂組成物中にフィラーを高充填させることや、アルミナなどの高弾性率の無機充填材を使用することで達成される。しかしながら、フィラーの高充填化は積層板の成形性を悪化させ、アルミナなどの無機充填材の使用は積層板の熱膨張率を悪化させてしまう問題がある。したがって、積層板の高剛性化は半導体プラスチックパッケージの反りの抑制を十分に達成できていない。 High rigidity of the laminate can be achieved by filling the resin composition used for the laminate with a high filler or by using an inorganic filler with a high elastic modulus such as alumina. However, the use of an inorganic filler such as alumina deteriorates the coefficient of thermal expansion of the laminate. Therefore, increasing the rigidity of the laminate has not sufficiently suppressed the warpage of the semiconductor plastic package.

また、積層板の高Tg化による手法はリフロー時の弾性率を向上させることから、半導体プラスチックパッケージの反り低減に効果を示す。しかしながら、高Tg化による手法は、架橋密度の上昇による吸湿耐熱性の悪化や、成形性の悪化によるボイドの発生を引き起こすことから、非常に高い信頼性が必要とされる電子材料分野では実用上問題となることが多い。したがって、これらの問題を解決する手法が望まれている。 In addition, since the method of increasing the Tg of the laminated plate improves the elastic modulus during reflow, it is effective in reducing the warpage of the semiconductor plastic package. However, the technique of increasing Tg causes deterioration of moisture absorption and heat resistance due to an increase in cross-linking density, and the generation of voids due to deterioration of moldability. often a problem. Therefore, a technique to solve these problems is desired.

またさらに、プリント配線板の絶縁層には、高い弾性率維持率、高い銅箔ピール強度及びめっきピール強度に優れることが同時に求められる。しかし、これらすべての課題を満足し得るような硬化物を与える樹脂組成物は報告されていない。 Furthermore, the insulating layer of the printed wiring board is required to have high elastic modulus retention rate, high copper foil peel strength, and excellent plating peel strength at the same time. However, there has been no report on a resin composition that gives a cured product that satisfies all these problems.

本発明は、上記問題点に鑑みてなされたものであり、銅箔ピール強度及びめっきピール強度に優れる硬化物を与える樹脂組成物、並びに、該樹脂組成物を用いた、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a resin composition that gives a cured product having excellent copper foil peel strength and plating peel strength, and a prepreg, a resin sheet, and a laminate using the resin composition. An object of the present invention is to provide a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.

本発明者らは、上記課題を解決するため、鋭意検討を行った。その結果、シアン酸エステル化合物(A)とマレイミド化合物(B)を所定量用いることにより、上記問題点を解決できることを見出し、本発明を完成するに至った。 The inventors of the present invention have made intensive studies in order to solve the above problems. As a result, the inventors have found that the above problems can be solved by using predetermined amounts of the cyanate ester compound (A) and the maleimide compound (B), and have completed the present invention.

すなわち、本発明は、以下のとおりである。
〔1〕
シアン酸エステル化合物(A)と、マレイミド化合物(B)と、を含有し、
該マレイミド化合物(B)のマレイミド基量(β)に対する前記シアン酸エステル化合物(A)のシアン酸エステル基量(α)の比(〔α/β〕)が、0.30以上である、
樹脂組成物。
〔2〕
前記シアン酸エステル化合物(A)が、下記一般式(1)及び/又は下記一般式(2)で表される化合物を含む、
〔1〕に記載の樹脂組成物。

Figure 0007121354000001
(式(1)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、R2は、各々独立して、置換基としてシアン酸エステル基、ヒドロキシル基及びアリル基からなる群より選ばれる少なくとも1つを有してもよいフェニル基、水素原子、アリル基、シアン酸エステル基、又は、エポキシ基を表し、n1は1以上の整数であり、mは1~4の整数である。)
Figure 0007121354000002
(式(2)中、R3は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、n2は1以上の整数である。)
〔3〕
シアン酸エステル化合物(A)のシアン酸エステル基当量が、100~220g/eq.である、
〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
前記シアン酸エステル化合物(A)が、下記一般式(1’’)で表される化合物を含む、
〔1〕~〔3〕のいずれかに記載の樹脂組成物。
Figure 0007121354000003
(式(1’’)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、n1は1以上の整数である。)
〔5〕
前記シアン酸エステル化合物(A)が、下記一般式(3)で表される化合物を含む、
〔1〕~〔4〕のいずれかに記載の樹脂組成物。
Figure 0007121354000004
〔6〕
前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(4)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含む、
〔1〕~〔5〕のいずれかに記載の樹脂組成物。
Figure 0007121354000005
(式中、R4は、各々独立して、水素原子又はメチル基を表し、n3は1以上の整数を表す。)
〔7〕
前記比(〔α/β〕)が、0.45~1.0である、
〔1〕~〔6〕のいずれかに記載の樹脂組成物。
〔8〕
無機充填材(C)をさらに含む、
〔1〕~〔7〕のいずれかに記載の樹脂組成物。
〔9〕
前記無機充填材(C)の含有量が、樹脂固形分100質量部に対して、25~700質量部である、
〔8〕に記載の樹脂組成物。
〔10〕
前記無機充填材(C)が、シリカ、ベーマイト、及びアルミナからなる群より選択される少なくとも1種類を含む、
〔8〕又は〔9〕に記載の樹脂組成物。
〔11〕
基材と、
該基材に含浸又は塗布された〔1〕~〔10〕のいずれか一項に記載の樹脂組成物と、を有する、
プリプレグ。
〔12〕
〔1〕~〔10〕のいずれか一項に記載の樹脂組成物をシート状に形成してなる、
樹脂シート。
〔13〕
シート基材と、該シート基材の片面又は両面に配された〔1〕~〔10〕のいずれか一項に記載の樹脂組成物と、を有する、
積層樹脂シート。
〔14〕
〔11〕に記載のプリプレグ、〔12〕に記載の樹脂シート、及び〔13〕に記載の積層樹脂シートからなる群より選択される少なくとも1種を1枚以上有する、
積層板。
〔15〕
〔11〕に記載のプリプレグ、〔12〕に記載の樹脂シート、及び〔13〕に記載の積層樹脂シートからなる群より選択される少なくとも1種と、
前記プリプレグ、前記樹脂シート、及び前記積層樹脂シートの片面又は両面に配された金属箔と、を有する、
金属箔張積層板。
〔16〕
絶縁層と、該絶縁層の片面又は両面に形成された導体層と、を有し、
前記絶縁層が、〔1〕~〔10〕のいずれか一項に記載の樹脂組成物を含む、
プリント配線板。 That is, the present invention is as follows.
[1]
containing a cyanate ester compound (A) and a maleimide compound (B),
The ratio ([α/β]) of the cyanate ester group amount (α) of the cyanate ester compound (A) to the maleimide group amount (β) of the maleimide compound (B) is 0.30 or more.
Resin composition.
[2]
The cyanate ester compound (A) contains a compound represented by the following general formula (1) and / or the following general formula (2),
The resin composition according to [1].
Figure 0007121354000001
(In formula (1), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, each R 2 independently represents a cyanate ester group, a hydroxyl group and a a phenyl group which may have at least one selected from the group consisting of allyl groups, a hydrogen atom, an allyl group, a cyanate ester group, or an epoxy group; n1 is an integer of 1 or more; m is 1; is an integer between ~4.)
Figure 0007121354000002
(In formula (2), each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n2 is an integer of 1 or more.)
[3]
The cyanate ester group equivalent of the cyanate ester compound (A) is 100 to 220 g/eq. is
The resin composition according to [1] or [2].
[4]
The cyanate ester compound (A) contains a compound represented by the following general formula (1''),
[1] The resin composition according to any one of [3].
Figure 0007121354000003
(In formula (1''), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n1 is an integer of 1 or more.)
[5]
The cyanate ester compound (A) contains a compound represented by the following general formula (3),
[1] The resin composition according to any one of [4].
Figure 0007121354000004
[6]
The maleimide compound (B) is bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-methyl-4-maleimidophenyl ) containing at least one selected from the group consisting of methane and a maleimide compound represented by the following formula (4),
[1] The resin composition according to any one of [5].
Figure 0007121354000005
(In the formula, each R 4 independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 or more.)
[7]
The ratio ([α/β]) is 0.45 to 1.0,
[1] The resin composition according to any one of [6].
[8]
further comprising an inorganic filler (C),
[1] The resin composition according to any one of [7].
[9]
The content of the inorganic filler (C) is 25 to 700 parts by mass with respect to 100 parts by mass of the resin solid content.
The resin composition according to [8].
[10]
The inorganic filler (C) contains at least one selected from the group consisting of silica, boehmite, and alumina,
The resin composition according to [8] or [9].
[11]
a substrate;
and the resin composition according to any one of [1] to [10] impregnated or applied to the substrate,
prepreg.
[12]
[1] to [10] formed by forming the resin composition according to any one of the sheet,
resin sheet.
[13]
Having a sheet substrate and the resin composition according to any one of [1] to [10] arranged on one or both sides of the sheet substrate,
Laminated resin sheet.
[14]
At least one selected from the group consisting of the prepreg described in [11], the resin sheet described in [12], and the laminated resin sheet described in [13].
laminated board.
[15]
at least one selected from the group consisting of the prepreg described in [11], the resin sheet described in [12], and the laminated resin sheet described in [13];
a metal foil disposed on one or both sides of the prepreg, the resin sheet, and the laminated resin sheet;
Metal foil clad laminate.
[16]
Having an insulating layer and a conductor layer formed on one side or both sides of the insulating layer,
The insulating layer contains the resin composition according to any one of [1] to [10],
printed wiring board.

本発明によれば、銅箔ピール強度及びめっきピール強度に優れる硬化物を与える樹脂組成物、並びに、該樹脂組成物を用いた、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板を提供することができる。 According to the present invention, a resin composition that gives a cured product having excellent copper foil peel strength and plating peel strength, and a prepreg, a resin sheet, a laminated resin sheet, a laminate, and a metal foil clad laminate using the resin composition Boards and printed wiring boards can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. is possible.

〔樹脂組成物〕
本実施形態の樹脂組成物は、シアン酸エステル化合物(A)と、マレイミド化合物(B)と、を含有し、該マレイミド化合物(B)のマレイミド基量(β)に対する前記シアン酸エステル化合物(A)のシアン酸エステル基量(α)の比(〔α/β〕)が、0.30以上である。
[Resin composition]
The resin composition of the present embodiment contains a cyanate ester compound (A) and a maleimide compound (B), and the cyanate ester compound (A ) has a ratio ([α/β]) of cyanate ester groups (α) of 0.30 or more.

〔シアン酸エステル化合物(A)〕
シアン酸エステル化合物(A)としては、シアン酸エステル基を少なくとも1つ有する化合物であれば特に限定されない。シアン酸エステル化合物(A)はシアン酸エステル基以外の反応性官能基を有していてもよく、有していなくてもよい。
[Cyanate ester compound (A)]
The cyanate ester compound (A) is not particularly limited as long as it is a compound having at least one cyanate ester group. The cyanate ester compound (A) may or may not have a reactive functional group other than the cyanate ester group.

シアン酸エステル基以外の反応性官能基としては、特に限定されないが、例えば、アリル基、ヒドロキシル基、エポキシ基、アミノ基、イソシアネート基、グリシジル基及びリン酸基が挙げられる。このなかでも、アリル基、ヒドロキシル基及びエポキシ基からなる群より選ばれる少なくとも1つが好ましく、アリル基がより好ましい。このような反応性官能基を有することにより、樹脂組成物の曲げ強度及び曲げ弾性率、ガラス転移温度、熱膨張率がより向上する傾向にある。 Examples of reactive functional groups other than cyanate ester groups include, but are not limited to, allyl groups, hydroxyl groups, epoxy groups, amino groups, isocyanate groups, glycidyl groups, and phosphoric acid groups. Among these, at least one selected from the group consisting of an allyl group, a hydroxyl group and an epoxy group is preferable, and an allyl group is more preferable. Having such a reactive functional group tends to further improve the bending strength, bending elastic modulus, glass transition temperature, and coefficient of thermal expansion of the resin composition.

シアン酸エステル化合物(A)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合、シアン酸エステル以外の反応性官能基を有しているものと有していないものを併用してもよく、2種類以上のシアン酸エステル基以外の反応性置換基を有するものを併用してもよい。その際、シアン酸エステル基以外の反応性官能基は同一であってもよく、異なっていてもよい。このなかでも、シアン酸エステル化合物(A)が、少なくともシアン酸エステル基以外の反応性官能基を有するシアン酸エステル化合物を含むことが好ましい。このようなシアン酸エステル化合物(A)を用いることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 One type of the cyanate ester compound (A) may be used alone, or two or more types may be used in combination. When two or more types are used in combination, one having a reactive functional group other than a cyanate ester and one not having it may be used in combination, and two or more types of reactive substituents other than a cyanate ester group. may be used together. At that time, the reactive functional groups other than the cyanate ester group may be the same or different. Among these, it is preferable that the cyanate ester compound (A) contains at least a cyanate ester compound having a reactive functional group other than a cyanate ester group. The use of such a cyanate ester compound (A) tends to further improve the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the resulting cured product.

上記のようなシアン酸エステル化合物(A)としては、特に限定されないが、例えば、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物(ナフトールアラルキル型シアン酸エステル)、ノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2’-ビス(4-シアナトフェニル)プロパン;これらシアン酸エステルのプレポリマーが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。なかでも、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物がより好ましい。 The cyanate ester compound (A) as described above is not particularly limited. ester), novolak-type cyanate, biphenylaralkyl-type cyanate, bis(3,5-dimethyl-4-cyanatophenyl)methane, bis(4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1 ,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2 ,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis(4-cyanatophenyl) ether, bis(4-cyanato phenyl)thioether, bis(4-cyanatophenyl)sulfone, and 2,2′-bis(4-cyanatophenyl)propane; prepolymers of these cyanate esters. These may be used individually by 1 type, and may use 2 or more types together. Among them, a compound represented by the following general formula (1) and a compound represented by the following general formula (2) are more preferable.

上記シアン酸エステル化合物(A)のなかでもシアン酸エステル基以外の反応性官能基を有する化合物としては、特に限定されないが、例えば、下記一般式(1)で表される化合物が好ましく、下記一般式(1’)で表される化合物がより好ましく、下記一般式(1’’)で表される化合物がさらに好ましい。このようなシアン酸エステル化合物(A)を含むことにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。

Figure 0007121354000006
(式(1)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、R2は、各々独立して、置換基としてシアン酸エステル基、ヒドロキシル基及びアリル基からなる群より選ばれる少なくとも1つを有してもよいフェニル基、水素原子、アリル基、シアン酸エステル基、又は、エポキシ基を表し、n1は1以上の整数であり、mは1~4の整数である。)
Figure 0007121354000007
(式(1’)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、R2は、各々独立して、置換基としてシアン酸エステル基、ヒドロキシル基及びアリル基からなる群より選ばれる少なくとも1つを有してもよいフェニル基、水素原子、アリル基、シアン酸エステル基、又は、エポキシ基を表し、n1は1以上の整数である。)
Figure 0007121354000008
(式(1’’)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、n1は1以上の整数である。) Among the cyanate ester compounds (A), the compound having a reactive functional group other than a cyanate ester group is not particularly limited. A compound represented by the formula (1′) is more preferable, and a compound represented by the following general formula (1″) is even more preferable. Including such a cyanate ester compound (A) tends to further improve the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the resulting cured product.
Figure 0007121354000006
(In formula (1), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, each R 2 independently represents a cyanate ester group, a hydroxyl group and a a phenyl group which may have at least one selected from the group consisting of allyl groups, a hydrogen atom, an allyl group, a cyanate ester group, or an epoxy group; n1 is an integer of 1 or more; m is 1; is an integer between ~4.)
Figure 0007121354000007
(In formula (1′), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and each R 2 independently represents a cyanate ester group or a hydroxyl group as a substituent. and an allyl group, a phenyl group, a hydrogen atom, an allyl group, a cyanate ester group, or an epoxy group, and n1 is an integer of 1 or more.)
Figure 0007121354000008
(In formula (1''), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n1 is an integer of 1 or more.)

式(1)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、好ましくは水素原子、メチル基を表し、より好ましくはメチル基を表す。また、R2は、各々独立して、置換基としてシアン酸エステル基、ヒドロキシル基及びアリル基からなる群より選ばれる少なくとも1つを有してもよいフェニル基、水素原子、アリル基、シアン酸エステル基、又は、エポキシ基を表し、好ましくは水素原子又はアリル基を表す。さらに、n1は1以上の整数であり、好ましくは1~10の整数であり、より好ましくは1~5の整数である。また、mは1~4の整数であり、好ましくは1~2の整数である。 In formula (1), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom or a methyl group, more preferably a methyl group. In addition, each R 2 is independently a phenyl group optionally having at least one substituent selected from the group consisting of a cyanate ester group, a hydroxyl group and an allyl group, a hydrogen atom, an allyl group, cyanic acid It represents an ester group or an epoxy group, preferably a hydrogen atom or an allyl group. Further, n1 is an integer of 1 or more, preferably an integer of 1-10, more preferably an integer of 1-5. Further, m is an integer of 1-4, preferably an integer of 1-2.

式(1’)及び(1’’)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、好ましくは水素原子、メチル基を表し、より好ましくはメチル基を表す。R1がメチル基であるビスフェノールA骨格を有する化合物を用いることにより、銅箔ピール、めっきピール強度、ガラス転移温度がより向上する傾向にある。また、アリル基をさらに有することにより、可撓性と成形性もより向上する傾向にある。さらに、式(1’)及び(1’’)中、n1は1以上の整数であり、好ましくは1~10の整数であり、より好ましくは1~5の整数であり、さらに好ましくは1である。 In formulas (1′) and (1″), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom or a methyl group, more preferably methyl represents a group. Use of a compound having a bisphenol A skeleton in which R 1 is a methyl group tends to further improve copper foil peel strength, plating peel strength, and glass transition temperature. Further, having an allyl group tends to further improve flexibility and moldability. Furthermore, in the formulas (1′) and (1″), n1 is an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 5, more preferably 1 be.

一般式(1’’)で表される化合物としては、特に限定されないが、例えば、下記式(3)で表される化合物がより好ましい。このようなシアン酸エステル化合物(A)を含むことにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率、可撓性、成形性がより向上する傾向にある。

Figure 0007121354000009
Although the compound represented by the general formula (1'') is not particularly limited, for example, a compound represented by the following formula (3) is more preferable. By containing such a cyanate ester compound (A), the copper foil peel strength, plating peel strength, glass transition temperature, elastic modulus retention rate, flexibility, and moldability of the obtained cured product tend to be further improved. It is in.
Figure 0007121354000009

一方、上記シアン酸エステル化合物(A)のなかでもシアン酸エステル基以外の反応性官能基を有しない化合物としては、特に限定されないが、例えば、下記一般式(2)で表される化合物が好ましい。このようなシアン酸エステル化合物(A)を含むことにより、得られる硬化物の銅箔ピール強度及びめっきピール強度がより向上する傾向にある。

Figure 0007121354000010

(式(2)中、R3は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、n2は1以上の整数である。) On the other hand, among the cyanate ester compound (A), the compound having no reactive functional group other than a cyanate ester group is not particularly limited, but for example, a compound represented by the following general formula (2) is preferable. . Including such a cyanate ester compound (A) tends to further improve the copper foil peel strength and the plating peel strength of the obtained cured product.
Figure 0007121354000010

(In formula (2), each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n2 is an integer of 1 or more.)

式(2)中、R3は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、好ましくは水素原子を表す。また、n2は1以上の整数であり、好ましくは1~10の整数であり、より好ましくは1~5の整数である。 In formula (2), each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom. Also, n2 is an integer of 1 or more, preferably an integer of 1 to 10, more preferably an integer of 1 to 5.

シアン酸エステル化合物(A)1分子中のシアン酸エステル基の数は、特に限定されないが、好ましくは1~50であり、より好ましくは2~12であり、さらに好ましくは2~6である。シアン酸エステル化合物(A)1分子中のシアン酸エステル基の数が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 The number of cyanate ester groups in one molecule of the cyanate ester compound (A) is not particularly limited, but is preferably 1-50, more preferably 2-12, still more preferably 2-6. When the number of cyanate ester groups in one molecule of the cyanate ester compound (A) is within the above range, the obtained cured product has copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate. tend to improve.

また、シアン酸エステル化合物(A)1分子中のシアン酸エステル基以外の反応性官能基の数は、特に限定されないが、好ましくは1~50であり、より好ましくは2~12であり、さらに好ましくは2~6である。シアン酸エステル化合物(A)1分子中のシアン酸エステル基以外の反応性官能基の数が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 In addition, the number of reactive functional groups other than the cyanate ester group in one molecule of the cyanate ester compound (A) is not particularly limited, but is preferably 1 to 50, more preferably 2 to 12, and further 2 to 6 are preferred. When the number of reactive functional groups other than the cyanate ester group in one molecule of the cyanate ester compound (A) is within the above range, the obtained cured product has copper foil peel strength, plating peel strength, glass transition temperature, And the elastic modulus retention rate tends to be further improved.

シアン酸エステル化合物(A)のシアン酸エステル基量(α)は、特に限定されないが、好ましくは0.075~0.5であり、より好ましくは0.085~0.4であり、さらに好ましくは0.095~0.3である。シアン酸エステル化合物(A)のシアン酸エステル基量(α)が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。シアン酸エステル基量(α)は、樹脂固形分100質量部に対するシアン酸エステル化合物(A)の含有量(質量部)を、シアン酸エステル化合物(A)のシアン酸エステル基当量で除して求めることができる。なお、本願明細書において、「樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤、及び無機充填材(C)を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における溶剤、及び無機充填材(C)を除いた成分の合計が100質量部であることをいうものとする。 The cyanate ester group amount (α) of the cyanate ester compound (A) is not particularly limited, but is preferably 0.075 to 0.5, more preferably 0.085 to 0.4, and still more preferably. is between 0.095 and 0.3. When the cyanate ester group amount (α) of the cyanate ester compound (A) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the resulting cured product are increased. tend to improve. The cyanate ester group amount (α) is obtained by dividing the content (parts by mass) of the cyanate ester compound (A) with respect to 100 parts by mass of the resin solid content by the cyanate ester group equivalent of the cyanate ester compound (A). can ask. In the present specification, unless otherwise specified, the term "resin solid content" refers to the components of the resin composition excluding the solvent and the inorganic filler (C), and "100 parts by mass of resin solid content". It means that the total of the components excluding the solvent and the inorganic filler (C) in the resin composition is 100 parts by mass.

シアン酸エステル化合物(A)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは10~65質量部であり、より好ましくは15~60質量部であり、さらに好ましくは15~55質量部である。シアン酸エステル化合物(A)の含有量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 Although the content of the cyanate ester compound (A) is not particularly limited, it is preferably 10 to 65 parts by mass, more preferably 15 to 60 parts by mass, and still more preferably 100 parts by mass of the resin solid content. is 15 to 55 parts by mass. When the content of the cyanate ester compound (A) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention of the obtained cured product tend to be further improved.

シアン酸エステル化合物(A)のシアン酸エステル基当量は、好ましくは100~290g/eq.であり、より好ましくは120~270g/eq.であり、更に好ましくは150~220g/eq.である。シアン酸エステル化合物(A)ののシアン酸エステル基当量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度がより向上する傾向にある。 The cyanate ester group equivalent of the cyanate ester compound (A) is preferably 100 to 290 g/eq. and more preferably 120 to 270 g/eq. and more preferably 150 to 220 g/eq. is. When the cyanate ester group equivalent of the cyanate ester compound (A) is within the above range, the copper foil peel strength and the plating peel strength of the resulting cured product tend to be further improved.

〔マレイミド化合物(B)〕
マレイミド化合物(B)としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、下記式(4)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。このなかでも、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(4)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種が好ましい。このようなマレイミド化合物(B)を含むことにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。また、上述したなかで、高ガラス転移温度(高Tg)の観点から、下記式(4)で表されるマレイミド化合物が、より好ましい。

Figure 0007121354000011
(式中、R4は、各々独立して、水素原子又はメチル基を表し、n3は1以上の整数を表す。) [Maleimide compound (B)]
The maleimide compound (B) is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Examples include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3,5-dimethyl-4-maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane , bis(3,5-diethyl-4-maleimidophenyl)methane, maleimide compounds represented by the following formula (4), prepolymers of these maleimide compounds, or prepolymers of maleimide compounds and amine compounds. Among these, bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, and At least one selected from the group consisting of maleimide compounds represented by the following formula (4) is preferred. Including such a maleimide compound (B) tends to further improve copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the resulting cured product. Among the above-mentioned compounds, maleimide compounds represented by the following formula (4) are more preferable from the viewpoint of high glass transition temperature (high Tg).
Figure 0007121354000011
(In the formula, each R 4 independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 or more.)

式(4)中、R4は、水素原子又はメチル基を表し、好ましくは水素原子を示す。また、式(4)中、n3は1以上の整数を表す。n3は、好ましくは10以下であり、より好ましくは7以下である。 In formula (4), R 4 represents a hydrogen atom or a methyl group, preferably a hydrogen atom. Moreover, in Formula (4), n3 represents an integer greater than or equal to 1. n3 is preferably 10 or less, more preferably 7 or less.

マレイミド化合物(B)のマレイミド基量(β)は、特に限定されないが、好ましくは0.175~0.6であり、より好ましくは0.185~0.5であり、更に好ましくは0.195~0.4である。マレイミド化合物(B)のマレイミド基量(β)が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。マレイミド基量(β)は、樹脂固形分100質量部に対するマレイミド化合物(B)の含有量(質量部)を、マレイミド化合物(B)のマレイミド基当量で除して求めることができる。 The maleimide group amount (β) of the maleimide compound (B) is not particularly limited, but is preferably 0.175 to 0.6, more preferably 0.185 to 0.5, and still more preferably 0.195. ~0.4. When the maleimide group amount (β) of the maleimide compound (B) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention of the obtained cured product tend to be further improved. be. The maleimide group content (β) can be obtained by dividing the content (parts by mass) of the maleimide compound (B) with respect to 100 parts by mass of the resin solid content by the maleimide group equivalent of the maleimide compound (B).

マレイミド化合物(B)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは30~80質量部であり、より好ましくは35~75質量部であり、さらに好ましくは40~72質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 The content of the maleimide compound (B) is not particularly limited, but is preferably 30 to 80 parts by mass, more preferably 35 to 75 parts by mass, and still more preferably 40 parts by mass relative to 100 parts by mass of the resin solid content. ~72 parts by mass. When the content of the maleimide compound (B) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the obtained cured product tend to be further improved.

マレイミド化合物(B)のマレイミド基当量は、好ましくは100~350g/eq.であり、より好ましくは150~300g/eq.である。マレイミド化合物(B)のマレイミド基当量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 The maleimide group equivalent of the maleimide compound (B) is preferably 100 to 350 g/eq. and more preferably 150 to 300 g/eq. is. When the maleimide group equivalent of the maleimide compound (B) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention of the obtained cured product tend to be further improved.

本実施形態の樹脂組成物において、マレイミド化合物(B)のマレイミド基量(β)に対するシアン酸エステル化合物(A)のシアン酸エステル基量(α)の比(〔α/β〕)は、0.30以上であり、好ましくは0.30~2.0であり、より好ましくは0.40~1.1であり、特に好ましくは0.45~1.0である。比(〔α/β〕)が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。 In the resin composition of the present embodiment, the ratio ([α/β]) of the cyanate ester group amount (α) of the cyanate ester compound (A) to the maleimide group amount (β) of the maleimide compound (B) is 0. 0.30 or more, preferably 0.30 to 2.0, more preferably 0.40 to 1.1, and particularly preferably 0.45 to 1.0. When the ratio ([α/β]) is within the above range, the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention of the obtained cured product tend to be further improved.

〔無機充填材(C)〕
本実施形態の樹脂組成物は、無機充填材(C)をさらに含んでもよい。無機充填材(C)としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカなどのシリカ類;ホワイトカーボンなどのケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウムなどの金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウムなどの金属窒化物;硫酸バリウムなどの金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウムなどの金属水和物;酸化モリブデン、モリブデン酸亜鉛などのモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛などの亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラスなどのガラス微粉末類を含む。)、中空ガラス、球状ガラスなどが挙げられる。無機充填材(C)は、1種を単独で用いても、2種以上を併用してもよい。
[Inorganic filler (C)]
The resin composition of the present embodiment may further contain an inorganic filler (C). Examples of the inorganic filler (C) include, but are not limited to, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, Metal oxides such as magnesium oxide and zirconium oxide; Metal nitrides such as boron nitride, agglomerated boron nitride, silicon nitride and aluminum nitride; Metal sulfates such as barium sulfate; metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc such as zinc borate and zinc stannate Compound; alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A-glass, NE-glass, C-glass, L-glass, D-glass, S-glass, M -Glass G20, glass short fibers (including fine glass powders such as E glass, T glass, D glass, S glass, Q glass, etc.), hollow glass, spherical glass, and the like. An inorganic filler (C) may be used individually by 1 type, or may use 2 or more types together.

このなかでも、シリカ、ベーマイト、及びアルミナからなる群より選択される少なくとも1種を含むことが好ましい。このような無機充填材(C)を用いることにより、曲げ強度及び曲げ弾性率、熱膨張率がより向上する傾向にある。 Among these, it is preferable to include at least one selected from the group consisting of silica, boehmite, and alumina. By using such an inorganic filler (C), the flexural strength, flexural modulus and coefficient of thermal expansion tend to be further improved.

無機充填材(C)の含有量は、樹脂固形分100質量部に対して、好ましくは25~700質量部であり、より好ましくは50~500質量部であり、さらに好ましくは75~300質量部である。無機充填材(C)の含有量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度、めっきピール強度がより向上する傾向にある。 The content of the inorganic filler (C) is preferably 25 to 700 parts by mass, more preferably 50 to 500 parts by mass, and still more preferably 75 to 300 parts by mass with respect to 100 parts by mass of the resin solid content. is. When the content of the inorganic filler (C) is within the above range, the copper foil peel strength and the plating peel strength of the obtained cured product tend to be further improved.

〔シランカップリング剤及び湿潤分散剤〕
本実施形態の樹脂組成物は、シランカップリング剤や湿潤分散剤をさらに含んでもよい。シランカップリング剤や湿潤分散剤を含むことにより、上記無機充填材(C)の分散性、樹脂成分、無機充填材(C)、及び後述する基材の接着強度がより向上する傾向にある。
[Silane coupling agent and wetting and dispersing agent]
The resin composition of this embodiment may further contain a silane coupling agent and a wetting and dispersing agent. By containing the silane coupling agent and the wetting and dispersing agent, the dispersibility of the inorganic filler (C), the resin component, the inorganic filler (C), and the adhesive strength of the substrate described below tend to be further improved.

シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されないが、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系化合物;γ-アクリロキシプロピルトリメトキシシランなどのアクリルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系化合物;フェニルシラン系化合物などが挙げられる。シランカップリング剤は、1種を単独で用いても、2種以上を併用してもよい。 The silane coupling agent is not particularly limited as long as it is a silane coupling agent that is generally used for surface treatment of inorganic substances. - aminosilane compounds such as aminopropyltrimethoxysilane; epoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane; acrylsilane compounds such as γ-acryloxypropyltrimethoxysilane; cationic silane compounds such as vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride; and phenylsilane compounds. A silane coupling agent may be used individually by 1 type, or may use 2 or more types together.

湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されないが、例えば、ビッグケミー・ジャパン(株)製のDISPER-110、111、118、180、161、BYK-W996、W9010、W903等が挙げられる。 The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints. , W9010, W903, and the like.

〔その他の樹脂等〕
本実施形態の樹脂組成物は、必要に応じて、エポキシ樹脂(D)、アルケニル置換ナジイミド化合物(E)、アミン変性シリコーン化合物(F)をさらに含有してもよい。このようなその他の樹脂等を含むことにより、銅箔ピール強度、曲げ強度、曲げ弾性率がより向上し、線熱膨脹率が低下する傾向にある。
[Other resins, etc.]
The resin composition of the present embodiment may further contain epoxy resin (D), alkenyl-substituted nadimide compound (E), and amine-modified silicone compound (F), if necessary. By containing such other resins, etc., the copper foil peel strength, bending strength, and bending elastic modulus tend to be further improved, and the coefficient of linear thermal expansion tends to decrease.

〔エポキシ樹脂(D)〕
本実施形態の樹脂組成物は、エポキシ樹脂(D)をさらに含んでもよい。エポキシ樹脂(D)をさらに含むことにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。なお、シアン酸エステル化合物(A)がエポキシ基を有する場合において、エポキシ樹脂(D)を用いる場合には、エポキシ樹脂(D)は、エポキシ基を有するシアン酸エステル化合物(A)以外の化合物を言うものとする。
[Epoxy resin (D)]
The resin composition of this embodiment may further contain an epoxy resin (D). Further containing the epoxy resin (D) tends to further improve the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention rate of the resulting cured product. In the case where the cyanate ester compound (A) has an epoxy group, when the epoxy resin (D) is used, the epoxy resin (D) is a compound other than the cyanate ester compound (A) having an epoxy group. shall say.

エポキシ樹脂(D)としては、1分子中に2つ以上のエポキシ基を有する化合物であれば特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、イソシアヌレート環含有エポキシ樹脂、或いはこれらのハロゲン化物が挙げられる。なかでも、ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群より選ばれる少なくとも1つが好ましい。 The epoxy resin (D) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, glycidyl ester type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, aralkyl novolac type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, polyol type epoxy resin, isocyanurate ring-containing epoxy resin, or these Halides are mentioned. Among them, at least one selected from the group consisting of naphthol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins and naphthalene type epoxy resins is preferable.

エポキシ樹脂(D)の含有量は、樹脂固形分100質量部に対して、好ましくは2.5~20質量部であり、より好ましくは5.0~17.5質量部であり、さらに好ましくは7.5~15質量部である。エポキシ樹脂(D)の含有量が上記範囲内であることにより、得られる硬化物の柔軟性、銅箔ピール強度、耐薬品性、及び耐デスミア性がより向上する傾向にある。 The content of the epoxy resin (D) is preferably 2.5 to 20 parts by mass, more preferably 5.0 to 17.5 parts by mass, and still more preferably 7.5 to 15 parts by mass. When the content of the epoxy resin (D) is within the above range, the flexibility, copper foil peel strength, chemical resistance, and desmear resistance of the obtained cured product tend to be further improved.

〔アルケニル置換ナジイミド化合物(E)〕
アルケニル置換ナジイミド化合物(E)は、分子中に1個以上のアルケニル置換ナジイミド基を有する化合物であれば特に限定されない。このなかでも、下記式(5)で表される化合物が好ましい。このようなアルケニル置換ナジイミド化合物(E)を用いることにより、得られる硬化物の銅箔ピール強度、めっきピール強度、ガラス転移温度、及び弾性率維持率がより向上する傾向にある。

Figure 0007121354000012
(式中、R5は、各々独立して、水素原子、又は炭素数1~6のアルキル基を示し、R6は、炭素数1~6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン基、又は下記式(6)若しくは(7)で表される基を示す。)
Figure 0007121354000013
(式中、R7は、メチレン基、イソプロピリデン基、又は、CO、O、S、若しくはSO2で表される置換基を示す。)
Figure 0007121354000014
(式中、R8は、各々独立して、炭素数1~4のアルキレン基、又は炭素数5~8のシクロアルキレン基を示す。) [Alkenyl-substituted nadimide compound (E)]
The alkenyl-substituted nadimide compound (E) is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadimide groups in the molecule. Among these, a compound represented by the following formula (5) is preferable. By using such an alkenyl-substituted nadimide compound (E), the copper foil peel strength, plating peel strength, glass transition temperature, and elastic modulus retention of the obtained cured product tend to be further improved.
Figure 0007121354000012
(In the formula, each R 5 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 6 represents an alkylene group having 1 to 6 carbon atoms, a phenylene group, a biphenylene group, a naphthylene group, or a group represented by the following formula (6) or (7).)
Figure 0007121354000013
( In the formula, R7 represents a methylene group, an isopropylidene group, or a substituent represented by CO, O, S, or SO2.)
Figure 0007121354000014
(In the formula, each R 8 independently represents an alkylene group having 1 to 4 carbon atoms or a cycloalkylene group having 5 to 8 carbon atoms.)

アルケニル置換ナジイミド化合物(E)は、下記式(9)及び/又は(10)で表される化合物が好ましい。このようなアルケニル置換ナジイミド化合物(E)を用いることにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。

Figure 0007121354000015
The alkenyl-substituted nadimide compound (E) is preferably a compound represented by the following formulas (9) and/or (10). By using such an alkenyl-substituted nadimide compound (E), the thermal expansion coefficient of the resulting cured product tends to be further lowered and the heat resistance tends to be further improved.
Figure 0007121354000015

その他、アルケニル置換ナジイミド化合物(E)は、市販のものを用いることもできる。市販されているものとしては、特に限定されないが、例えば、BANI-M(丸善石油化学(株)製、式(9)で表される化合物)、BANI-X(丸善石油化学(株)製、式(10)で表される化合物)などが挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。 In addition, a commercially available alkenyl-substituted nadimide compound (E) can also be used. Commercially available products are not particularly limited, but for example, BANI-M (Maruzen Petrochemical Co., Ltd., compound represented by formula (9)), BANI-X (Maruzen Petrochemical Co., Ltd., compounds represented by the formula (10)) and the like. These may be used singly or in combination of two or more.

アルケニル置換ナジイミド化合物(E)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは20~45質量部であり、より好ましくは25~40質量部であり、さらに好ましくは30~35質量部である。アルケニル置換ナジイミド化合物(E)の含有量が上記範囲内であることにより、得られる硬化物の銅箔ピール強度及びめっきピール強度がより向上する傾向にある。 Although the content of the alkenyl-substituted nadimide compound (E) is not particularly limited, it is preferably 20 to 45 parts by mass, more preferably 25 to 40 parts by mass, and still more preferably 100 parts by mass of the resin solid content. is 30 to 35 parts by mass. When the content of the alkenyl-substituted nadimide compound (E) is within the above range, the copper foil peel strength and plating peel strength of the obtained cured product tend to be further improved.

〔アミン変性シリコーン化合物(F)〕
アミン変性シリコーン化合物(F)は、分子中に1個以上のアミノ基を有する化合物であれば、特に限定されるものではない。その具体例としては下記一般式(11)で表される化合物が挙げられる。

Figure 0007121354000016
[Amine-modified silicone compound (F)]
Amine-modified silicone compound (F) is not particularly limited as long as it is a compound having one or more amino groups in the molecule. Specific examples thereof include compounds represented by the following general formula (11).
Figure 0007121354000016

式(11)中、R8は各々独立に水素原子、メチル基又はフェニル基を表し、中でもメチル基が好ましい。R9は各々独立に単結合、炭素数1~8のアルキレン基及び/又はアリーレン基を表す。R9としては、炭素数1~8のアルキレン基とアリーレン基が連結して2価の基を形成するものであってもよい。このなかでも、R9は炭素数2~4のアルキレン基が好ましい。式(11)中、n4は各々独立に1以上の整数を表す。 In formula (11), each R 8 independently represents a hydrogen atom, a methyl group or a phenyl group, with a methyl group being preferred. Each R 9 independently represents a single bond, an alkylene group having 1 to 8 carbon atoms and/or an arylene group. As R 9 , an alkylene group having 1 to 8 carbon atoms and an arylene group may be linked to form a divalent group. Among these, R 9 is preferably an alkylene group having 2 to 4 carbon atoms. In formula (11), each n 4 independently represents an integer of 1 or more.

アミン変性シリコーン化合物(F)のアミノ基当量として、130~6000が好ましく、400~3000がより好ましく、600~2500がさらに好ましい。このようなアミン変性シリコーン化合物(F)を用いることにより、弾性率維持率が良好で、熱膨張率がより低い樹脂組成物を得ることができる。 The amino group equivalent weight of the amine-modified silicone compound (F) is preferably 130-6000, more preferably 400-3000, even more preferably 600-2500. By using such an amine-modified silicone compound (F), it is possible to obtain a resin composition having a good elastic modulus retention rate and a lower coefficient of thermal expansion.

アミン変性シリコーン化合物(F)の含有量は、特に限定されるものではないが、樹脂固形分100質量部に対して、好ましくは1~40質量部であり、より好ましくは3~30質量部であり、さらに好ましくは5~20質量部である。アミン変性シリコーン化合物(F)の含有量が上記範囲内であることにより、得られる硬化物の弾性率維持率、熱膨張率がより向上する傾向にある。 The content of the amine-modified silicone compound (F) is not particularly limited, but is preferably 1 to 40 parts by mass, more preferably 3 to 30 parts by mass, based on 100 parts by mass of the resin solid content. Yes, more preferably 5 to 20 parts by mass. When the content of the amine-modified silicone compound (F) is within the above range, the elastic modulus retention rate and thermal expansion coefficient of the resulting cured product tend to be further improved.

〔硬化促進剤〕
本実施形態の樹脂組成物は、硬化促進剤をさらに含んでもよい。硬化促進剤としては、特に限定されないが、例えば、トリフェニルイミダゾール、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレートなどの有機過酸化物;アゾビスニトリルなどのアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。これらのなかでも、トリフェニルイミダゾールが硬化反応を促進し、ガラス転移温度、熱膨張率が優れる傾向にあるため、特に好ましい。
[Curing accelerator]
The resin composition of this embodiment may further contain a curing accelerator. The curing accelerator is not particularly limited, and examples thereof include organic peroxides such as triphenylimidazole, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, and di-tert-butyl-di-perphthalate. azo compounds such as azobisnitrile; N,N-dimethylbenzylamine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline , N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine and other tertiary amines; phenol, xylenol, cresol, resorcinol, catechol and other phenols; lead naphthenate, stearic acid Organometallic salts such as lead, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, iron acetylacetonate; inorganic metal salts such as tin chloride, zinc chloride and aluminum chloride; organic tin compounds such as dioctyltin oxide, other alkyltins and alkyltin oxides; Among these, triphenylimidazole is particularly preferred because it accelerates the curing reaction and tends to have excellent glass transition temperature and thermal expansion coefficient.

〔溶剤〕
本実施形態の樹脂組成物は、溶剤をさらに含んでもよい。溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性がより向上するとともに後述する基材への含浸性がより向上する傾向にある。
〔solvent〕
The resin composition of this embodiment may further contain a solvent. By containing a solvent, the viscosity of the resin composition during preparation tends to be lowered, and the handling property is further improved, and the impregnation property to the substrate described later tends to be further improved.

溶剤としては、樹脂組成物中の樹脂成分の一部又は全部を溶解可能なものであれば、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドなどのアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートなどが挙げられる。溶剤は、1種を単独で用いても、2種以上を併用してもよい。 The solvent is not particularly limited as long as it can dissolve some or all of the resin components in the resin composition. Examples include ketones such as acetone, methyl ethyl ketone and methyl cellosolve; group hydrocarbons; amides such as dimethylformamide; propylene glycol monomethyl ether and its acetate; A solvent may be used individually by 1 type, or may use 2 or more types together.

〔ガラス転移温度(Tg)〕
本実施形態の樹脂組成物のガラス転移温度は、好ましくは270~360℃であり、より好ましくは290~355℃であり、さらに好ましくは310~350℃である。ガラス転移温度は、実施例に記載の方法により測定することができる。
[Glass transition temperature (Tg)]
The glass transition temperature of the resin composition of the present embodiment is preferably 270 to 360°C, more preferably 290 to 355°C, still more preferably 310 to 350°C. The glass transition temperature can be measured by the method described in Examples.

〔弾性率維持率〕
本実施形態の樹脂組成物の弾性率維持率は、好ましくは75~99%であり、より好ましくは80~95%であり、さらに好ましくは85~95%である。「弾性率維持率」とは、JIS規格C6481に準じて、27℃及び260℃の曲げ弾性率を測定し、得られた27℃の曲げ弾性率(a)と260℃の熱時曲げ弾性率の弾性率(b)との差を下記式によって算出したものをいう。なお、弾性率維持率に優れるとは、例えば27℃における曲げ弾性率と260℃における曲げ弾性率(熱時弾性率)の差が小さいことをいう。
弾性率維持率=[(b)/(a)]×100
[Retention rate of elastic modulus]
The elastic modulus retention rate of the resin composition of the present embodiment is preferably 75 to 99%, more preferably 80 to 95%, still more preferably 85 to 95%. The “elastic modulus retention rate” refers to the flexural modulus at 27°C and 260°C measured according to JIS C6481, and the obtained flexural modulus (a) at 27°C and the hot flexural modulus at 260°C. is calculated by the following formula. In addition, excellent elastic modulus retention means that the difference between the bending elastic modulus at 27° C. and the bending elastic modulus at 260° C. (thermal elastic modulus) is small, for example.
Elastic modulus retention = [(b)/(a)] x 100

〔樹脂組成物の製造方法〕
本実施形態の樹脂組成物の製造方法は、特に限定されないが、例えば、各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。この際、各成分を均一に溶解或いは分散させるため、攪拌、混合、混練処理などの公知の処理を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する無機充填材(C)の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は、公転又は自転型の混合装置などの公知の装置を用いて適宜行うことができる。
[Method for producing resin composition]
The method for producing the resin composition of the present embodiment is not particularly limited, but an example thereof includes a method in which each component is sequentially blended in a solvent and thoroughly stirred. At this time, in order to uniformly dissolve or disperse each component, known treatments such as stirring, mixing and kneading treatment can be performed. Specifically, the dispersibility of the inorganic filler (C) in the resin composition can be improved by performing the stirring and dispersing treatment using a stirring tank equipped with a stirrer having an appropriate stirring capacity. The above stirring, mixing, and kneading treatments can be appropriately performed using, for example, a device for mixing purposes such as a ball mill or bead mill, or a known device such as a revolution or rotation type mixing device.

また、本実施形態の樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。 In addition, an organic solvent can be used as necessary during the preparation of the resin composition of the present embodiment. The type of organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition. A specific example thereof is as described above.

〔用途〕
本実施形態の樹脂組成物は、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、又はプリント配線板として好適に用いることができる。以下、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、又はプリント配線板について説明する。
[Use]
The resin composition of the present embodiment can be suitably used as a prepreg, a resin sheet, a laminated resin sheet, a laminate, a metal foil-clad laminate, or a printed wiring board. The prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, or printed wiring board will be described below.

〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された、上記樹脂組成物と、を有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態における樹脂成分を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させることで、本実施形態のプリプレグを作製することができる。
[Prepreg]
The prepreg of the present embodiment has a base material and the resin composition impregnated or applied to the base material. A method for producing the prepreg is not particularly limited and can be carried out according to a conventional method. For example, after impregnating or applying the resin component in the present embodiment to the base material, semi-curing (B stage) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes, etc. The prepreg of this embodiment can be produced.

樹脂組成物(無機充填材(C)を含む。)の含有量は、プリプレグの総量に対して、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、好ましくは40~80質量%である。樹脂組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。 The content of the resin composition (including the inorganic filler (C)) is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, preferably 40% by mass, relative to the total amount of the prepreg. ~80% by mass. When the content of the resin composition is within the above range, moldability tends to be further improved.

基材としては、特に限定されず、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。基材を構成する繊維の具体例としては、特に限定されないが、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Lガラス、Tガラスなどのガラス繊維;クォーツなどのガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)などの全芳香族ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)などのポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられる。これらのなかでも低熱膨張率の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる少なくとも1種が好ましい。これら基材は、1種を単独で用いても、2種以上を併用してもよい。 The substrate is not particularly limited, and known substrates used in various printed wiring board materials can be appropriately selected and used depending on the intended use and performance. Specific examples of fibers constituting the base material are not particularly limited, but glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass, L glass, and T glass; Inorganic fibers other than glass; polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), copolyparaphenylene/3,4'oxydiphenylene terephthalamide (Technora (registered trademark), Teijin Techno Products Co., Ltd.) 2,6-hydroxynaphthoic acid/parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), Zexion (registered trademark, manufactured by KB SEIREN), etc.; polyesters such as polyparaphenylene Organic fibers such as benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.) and polyimide can be mentioned. Among these, at least one selected from the group consisting of E-glass cloth, T-glass cloth, S-glass cloth, Q-glass cloth, and organic fibers is preferable from the viewpoint of low thermal expansion coefficient. One of these substrates may be used alone, or two or more thereof may be used in combination.

基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m2以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラスのガラス繊維からなるガラス織布がより好ましい。 The shape of the substrate is not particularly limited, but examples thereof include woven fabrics, nonwoven fabrics, rovings, chopped strand mats, and surfacing mats. The weaving method of the woven fabric is not particularly limited, but for example, plain weave, Nanako weave, twill weave, etc. are known, and it is possible to appropriately select and use from these known ones depending on the intended use and performance. . In addition, glass woven fabrics surface-treated with a silane coupling agent or the like are preferably used. The thickness and mass of the base material are not particularly limited, but usually about 0.01 to 0.3 mm is suitably used. In particular, from the viewpoint of strength and water absorption, the substrate is preferably a glass woven fabric having a thickness of 200 μm or less and a mass of 250 g/m 2 or less. more preferred.

〔樹脂シート〕
本実施形態の樹脂シートは、上記樹脂組成物をシート状に成形してなるものである。樹脂シートの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、下記積層樹脂シートの製法において、本実施形態の樹脂組成物を溶剤に溶解させた溶液をシート基材上に塗布して乾燥させた後に、積層樹脂シートからシート基材を剥離又はエッチングする方法が挙げられる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、シート基材を用いることなく単層樹脂シート(樹脂シート)を得ることもできる。
[Resin sheet]
The resin sheet of the present embodiment is obtained by molding the above resin composition into a sheet. The method for producing the resin sheet is not particularly limited and can be carried out according to a conventional method. For example, in the method for producing a laminated resin sheet described below, a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied onto the sheet substrate and dried, and then the sheet substrate is peeled or etched from the laminated resin sheet. method. In addition, a sheet base material is used by molding a solution obtained by dissolving the resin composition of the present embodiment in a solvent into a sheet by supplying it into a mold having a sheet-like cavity and drying it. A single-layer resin sheet (resin sheet) can also be obtained without

〔積層樹脂シート〕
本実施形態の積層樹脂シートは、シート基材と、該シート基材の片面または両面に積層された、上記樹脂組成物と、を有する。積層樹脂シートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルムなどの支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(無機充填材(C)を含む)を塗布及び乾燥して製造することができる。
[Laminated resin sheet]
The laminated resin sheet of the present embodiment has a sheet substrate and the resin composition laminated on one side or both sides of the sheet substrate. A laminated resin sheet is used as one means of thinning the sheet. ) can be applied and dried.

シート基材としては、特に限定されないが、各種プリント配線板材料に用いられている公知の物もの使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミニウム箔、銅箔、金箔など挙げられる。その中でも電解銅箔、PETフィルムが好ましい。 The sheet base material is not particularly limited, but known ones used for various printed wiring board materials can be used. Examples include polyimide film, polyamide film, polyester film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polypropylene (PP) film, polyethylene (PE) film, aluminum foil, copper foil, and gold foil. Among them, electrolytic copper foil and PET film are preferable.

塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。 Examples of the coating method include a method in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is coated on the sheet substrate using a bar coater, die coater, doctor blade, baker applicator, or the like.

積層樹脂シートは、上記樹脂組成物をシート基材に塗布後、半硬化(Bステージ化)させたものであることが好ましい。具体的には、例えば、上記樹脂組成物を銅箔などのシート基材に塗布した後、100~200℃の乾燥機中で、1~60分加熱させる方法などにより半硬化させ、積層樹脂シートを製造する方法などが挙げられる。シート基材に対する樹脂組成物の付着量は、積層樹脂シートの樹脂厚で1~300μmの範囲が好ましい。 The laminated resin sheet is preferably obtained by applying the above resin composition to a sheet base material and then semi-curing (to B-stage) the resin composition. Specifically, for example, after the resin composition is applied to a sheet substrate such as a copper foil, it is semi-cured by a method such as heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, and the laminated resin sheet. and the like. The amount of the resin composition attached to the sheet substrate is preferably in the range of 1 to 300 μm in terms of resin thickness of the laminated resin sheet.

〔積層板〕
本実施形態の積層板は、上記プリプレグ、上記樹脂シート、及び上記積層樹脂シートからなる群より選択される少なくとも1種を1枚以上有する。
[Laminate]
The laminated plate of the present embodiment has one or more sheets of at least one selected from the group consisting of the prepreg, the resin sheet, and the laminated resin sheet.

〔金属箔張積層板〕
本実施形態の金属箔張積層板は、上記プリプレグ、上記樹脂シート、及び上記積層樹脂シートからなる群より選択される少なくとも1種と、上記プリプレグ、上記樹脂シート、及び上記積層樹脂シートの片面又は両面に配された金属箔と、を有する。すなわち、本実施形態の金属箔張積層板は、上記プリプレグ、上記樹脂シート、及び上記積層樹脂シートからなる群より選択される少なくとも1種と、金属箔とを積層して硬化して得られるものである。
[Metal foil clad laminate]
The metal foil-clad laminate of the present embodiment includes at least one selected from the group consisting of the prepreg, the resin sheet, and the laminated resin sheet, and one side or one side of the prepreg, the resin sheet, and the laminated resin sheet and a metal foil disposed on both sides. That is, the metal foil-clad laminate of the present embodiment is obtained by laminating and curing at least one selected from the group consisting of the prepreg, the resin sheet, and the laminated resin sheet, and a metal foil. is.

絶縁層は、上記樹脂組成物、1層のプリプレグ、樹脂シート、又は積層樹脂シートであっても、上記樹脂組成物、プリプレグ、樹脂シート、又は積層樹脂シートを2層以上積層したものであってもよい。 The insulating layer may be the resin composition, one-layer prepreg, resin sheet, or laminated resin sheet, or may be formed by laminating two or more layers of the resin composition, prepreg, resin sheet, or laminated resin sheet. good too.

導体層は、銅やアルミニウムなどの金属箔とすることができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、導体層の厚みは、特に限定されないが、1~70μmが好ましく、より好ましくは1.5~35μmである。 The conductor layer can be a metal foil such as copper or aluminum. The metal foil used here is not particularly limited as long as it is used for printed wiring board materials, but known copper foils such as rolled copper foil and electrolytic copper foil are preferred. The thickness of the conductor layer is not particularly limited, but preferably 1 to 70 μm, more preferably 1.5 to 35 μm.

金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形において、温度は100~300℃、圧力は面圧2~100kgf/cm2、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 The molding method and molding conditions for the metal foil-clad laminate are not particularly limited, and general techniques and conditions for printed wiring board laminates and multilayer boards can be applied. For example, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like can be used when molding a metal foil-clad laminate. In molding metal foil-clad laminates, the temperature is generally 100 to 300° C., the pressure is 2 to 100 kgf/cm 2 , and the heating time is generally 0.05 to 5 hours. Furthermore, if desired, post-curing can be performed at a temperature of 150-300°C. Moreover, it is also possible to form a multi-layer board by combining the above-mentioned prepreg and a wiring board for an inner layer separately prepared and performing lamination molding.

〔プリント配線板〕
本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記絶縁層が、上記樹脂組成物を含む。上記の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、上記の金属箔張積層板は、低い熱膨張率、良好な成形性及び耐薬品性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
[Printed wiring board]
A printed wiring board of the present embodiment is a printed wiring board including an insulating layer and a conductor layer formed on the surface of the insulating layer, wherein the insulating layer includes the resin composition. The metal foil-clad laminate described above can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The above metal foil-clad laminate has a low coefficient of thermal expansion, good moldability and chemical resistance, and is particularly effectively used as a printed wiring board for semiconductor packages that require such performance. can be done.

本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(金属箔張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。 Specifically, the printed wiring board of this embodiment can be produced, for example, by the following method. First, the aforementioned metal foil-clad laminate (metal foil-clad laminate, etc.) is prepared. An inner layer circuit is formed by subjecting the surface of the metal foil-clad laminate to an etching treatment to prepare an inner layer substrate. The surface of the inner layer circuit of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, and then the required number of prepregs are laminated on the surface of the inner layer circuit, and a metal foil for the outer layer circuit is laminated on the outer side. Then, heat and pressurize to integrally mold. In this manner, a multilayer laminate is produced in which an insulating layer composed of the base material and the cured product of the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling holes for through holes and via holes in this multilayer laminate, desmear treatment is performed to remove smear, which is a resin residue derived from the resin component contained in the cured product layer. . After that, a plated metal film is formed on the wall surface of this hole to connect the metal foil for the inner layer circuit and the outer layer circuit, and the metal foil for the outer layer circuit is etched to form the outer layer circuit, and the printed wiring board is manufactured. be done.

例えば、上述のプリプレグ(基材及びこれに添着された上述の樹脂組成物)、金属箔張積層板の樹脂組成物層(上述の樹脂組成物からなる層)が、上述の樹脂組成物を含む絶縁層を構成することになる。 For example, the above-mentioned prepreg (base material and the above-mentioned resin composition attached thereto) and the resin composition layer (layer made of the above-mentioned resin composition) of the metal foil-clad laminate contain the above-mentioned resin composition. It constitutes an insulating layer.

また、金属箔張積層板を用いない場合には、上記プリプレグ、上記積層樹脂シート、又は上記樹脂組成物からなるものに、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。 In the case where a metal foil-clad laminate is not used, a printed wiring board may be produced by forming a conductor layer to form a circuit on the prepreg, the laminated resin sheet, or the resin composition. At this time, an electroless plating technique can be used to form the conductor layer.

本実施形態のプリント配線板は、上述の絶縁層が半導体実装時のリフロー温度下においても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑制することから、半導体パッケージ用プリント配線板として、殊に有効に用いることができる。 In the printed wiring board of the present embodiment, the above-described insulating layer maintains an excellent elastic modulus even under the reflow temperature during semiconductor mounting, thereby effectively suppressing warping of the semiconductor plastic package. It can be used particularly effectively as a printed wiring board.

以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically using examples and comparative examples. The present invention is by no means limited by the following examples.

〔合成例1:ジアリルビスフェノールA型シアン酸エステル化合物の合成〕
ジアリルビスフェノールA700g(ヒドロキシル基当量154.2g/eq.)(OH基換算4.54mol)(DABPA、大和化成工業(株)製)及びトリエチルアミン459.4g(4.54mol)(ヒドロキシル基1モルに対して1.0モル)をジクロロメタン2100gに溶解させ、これを溶液1とした。
[Synthesis Example 1: Synthesis of diallyl bisphenol A-type cyanate ester compound]
Diallyl bisphenol A 700 g (hydroxyl group equivalent 154.2 g / eq.) (OH group conversion 4.54 mol) (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd.) and triethylamine 459.4 g (4.54 mol) (per 1 mol of hydroxyl group 1.0 mol) was dissolved in 2100 g of dichloromethane to obtain Solution 1.

塩化シアン474.4g(7.72mol)(ヒドロキシル基1モルに対して1.7モル)、ジクロロメタン1106.9g、36%塩酸735.6g(7.26mol)(ヒドロキシル基1モルに対して1.6モル)、水4560.7gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を90分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン459.4g(4.54mol)(ヒドロキシル基1モルに対して1.0モル)をジクロロメタン459.4gに溶解させた溶液(溶液2)を25分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。 474.4 g (7.72 mol) of cyanogen chloride (1.7 mol per 1 mol of hydroxyl group), 1106.9 g of dichloromethane and 735.6 g (7.26 mol) of 36% hydrochloric acid (1.7 mol per 1 mol of hydroxyl group). 6 mol) and 4560.7 g of water were poured into Solution 1 over 90 minutes while maintaining the liquid temperature at -2 to -0.5°C under stirring. After pouring solution 1, the mixture was stirred at the same temperature for 30 minutes, and then a solution of 459.4 g (4.54 mol) of triethylamine (1.0 mol per 1 mol of hydroxyl group) dissolved in 459.4 g of dichloromethane ( Solution 2) was poured over 25 minutes. After pouring solution 2, the mixture was stirred at the same temperature for 30 minutes to complete the reaction.

その後反応液を静置して有機相と水相を分離した。得られた有機相を、0.1N塩酸 2Lにより洗浄した後、水2000gで6回洗浄した。水洗6回目の廃水の電気伝導度は20μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除けられたことを確認した。 After that, the reaction solution was allowed to stand to separate the organic phase and the aqueous phase. The obtained organic phase was washed with 2 L of 0.1N hydrochloric acid and then washed with 2000 g of water six times. The electric conductivity of the wastewater after the sixth washing was 20 μS/cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.

水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて、目的とするジアリルビスフェノールA型シアン酸エステル化合物(DABPA-CN、シアン酸エステル基当量:179g/eq.)を薄黄色液状物として805g得た。得られたDABPA-CNのIRスペクトルは2264cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシル基の吸収は示さなかった。 The organic phase after washing with water is concentrated under reduced pressure, and finally concentrated to dryness at 90° C. for 1 hour to give the desired diallyl bisphenol A-type cyanate compound (DABPA-CN, cyanate ester group equivalent: 179 g/ eq.) was obtained as a pale yellow liquid. The IR spectrum of the obtained DABPA-CN showed an absorption at 2264 cm -1 (cyanate ester group) and no hydroxyl group absorption.

〔合成例2:α-ナフトールアラルキル型シアン酸エステル化合物の合成〕
反応器内で、α-ナフトールアラルキル樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製:ナフトールアラルキルの繰り返し単位数nは1~5のものが含まれる。)0.47mol(OH基換算)を、クロロホルム500mLに溶解させ、この溶液にトリエチルアミン0.7molを添加した。温度を-10℃に保ちながら反応器内に0.93molの塩化シアンのクロロホルム溶液300gを1.5時間かけて滴下し、滴下終了後、30分撹拌した。その後さらに、0.1molのトリエチルアミンとクロロホルム30gの混合溶液を反応器内に滴下し、30分撹拌して反応を完結させた。副生したトリエチルアミンの塩酸塩を反応液から濾別した後、得られた濾液を0.1N塩酸500mLで洗浄した後、水500mLでの洗浄を4回繰り返した。これを硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、さらに90℃で減圧脱気することにより、褐色固形のα-ナフトールアラルキル型シアン酸エステル樹脂(SNCN)を得た。得られたα-ナフトールアラルキル型シアン酸エステル樹脂(SN495-V-CN、シアン酸エステル基当量:261g/eq.)を赤外吸収スペクトルにより分析したところ、2264cm-1付近のシアン酸エステル基の吸収が確認された。
[Synthesis Example 2: Synthesis of α-naphthol aralkyl-type cyanate ester compound]
In the reactor, α-naphthol aralkyl resin (SN495V, OH group equivalent: 236 g/eq., manufactured by Nippon Steel Chemical Co., Ltd.: Naphthol aralkyl repeating unit number n is 1 to 5.) 0 .47 mol (as OH group) was dissolved in 500 mL of chloroform, and 0.7 mol of triethylamine was added to this solution. While maintaining the temperature at −10° C., 300 g of a chloroform solution of 0.93 mol of cyanogen chloride was dropped into the reactor over 1.5 hours, and after the dropping was completed, the mixture was stirred for 30 minutes. After that, a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was added dropwise into the reactor and stirred for 30 minutes to complete the reaction. After the by-produced triethylamine hydrochloride was filtered off from the reaction solution, the resulting filtrate was washed with 500 mL of 0.1N hydrochloric acid, and then washed with 500 mL of water four times. This was dried with sodium sulfate, evaporated at 75° C., and degassed under reduced pressure at 90° C. to obtain a brown solid α-naphthol aralkyl cyanate resin (SNCN). Analysis of the obtained α-naphthol aralkyl-type cyanate ester resin (SN495-V-CN, cyanate ester group equivalent: 261 g/eq.) by infrared absorption spectrum revealed that cyanate ester groups near 2264 cm -1 Absorption was confirmed.

〔実施例1〕
合成例1で得られたDABPA-CNを48.3質量部、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製、マレイミド基当量:186g/eq.)を27質量部、ビスマレイミド化合物(BMI-80、大和化成工業(株)製、マレイミド基当量:285g/eq.)を14.7質量部、アミン変性シリコーン化合物(X-22-161B、信越化学工業(株)製、官能基当量:1500g/eq.)を10質量部、スラリーシリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を100質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株)製)を1質量部、レベリング剤(ビックケミー・ジャパン(株)製、「BYK-310」)を0.05質量部、硬化促進剤(2,4,5-トリフェニルイミダゾール、東京化成工業(株)製)を0.5質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44質量%のプリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.270であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.197であり、比(〔α/β〕)は1.37であった。
[Example 1]
48.3 parts by mass of DABPA-CN obtained in Synthesis Example 1, 27 parts by mass of a novolac-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd., maleimide group equivalent: 186 g/eq.), and bismaleimide 14.7 parts by mass of a compound (BMI-80, manufactured by Daiwa Kasei Kogyo Co., Ltd., maleimide group equivalent: 285 g / eq.), an amine-modified silicone compound (X-22-161B, manufactured by Shin-Etsu Chemical Co., Ltd., functional Base equivalent: 1500 g / eq.) 10 parts by mass, slurry silica (SC-5050MOB, average particle size 1.5 μm, Admatechs Co., Ltd.) 100 parts by mass, wetting and dispersing agent (DISPERBYK-161, BYK Chemie Japan Co., Ltd.), 0.05 parts by mass of leveling agent (BYK-Chemie Japan Co., Ltd., "BYK-310"), curing accelerator (2,4,5-triphenylimidazole, Tokyo Kasei Kogyo Co., Ltd.) was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and applied to a 0.1 mm thick T-glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg having a resin content of 44% by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.270, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.270. /maleimide group equivalent) was 0.197 and the ratio ([α/β]) was 1.37.

〔実施例2〕
DABPA-CNの使用量を40.3質量部とし、BMI-2300の使用量を35質量部としたこと以外は、実施例1と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.225であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.240であり、比(〔α/β〕)は0.94であった。
[Example 2]
A prepreg was obtained in the same manner as in Example 1, except that the amount of DABPA-CN used was 40.3 parts by mass and the amount of BMI-2300 used was 35 parts by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.225, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.225. /maleimide group equivalent) was 0.240, and the ratio ([α/β]) was 0.94.

〔実施例3〕
DABPA-CNの使用量を27.3質量部とし、BMI-2300の使用量を48質量部としたこと以外は、実施例1と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.153であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.310であり、比(〔α/β〕)は0.49であった。
[Example 3]
A prepreg was obtained in the same manner as in Example 1, except that the amount of DABPA-CN used was 27.3 parts by mass and the amount of BMI-2300 used was 48 parts by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.153, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.153. /maleimide group equivalent) was 0.310, and the ratio ([α/β]) was 0.49.

〔実施例4〕
DABPA-CNの使用量を19.3質量部とし、BMI-2300の使用量を56質量部としたこと以外は、実施例1と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.108であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.353であり、比(〔α/β〕)は0.31であった。
[Example 4]
A prepreg was obtained in the same manner as in Example 1, except that the amount of DABPA-CN used was 19.3 parts by mass and the amount of BMI-2300 used was 56 parts by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.108, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.108. /maleimide group equivalent) was 0.353, and the ratio ([α/β]) was 0.31.

〔比較例1〕
DABPA-CNの使用量を14.3質量部とし、BMI-2300の使用量を61質量部としたこと以外は、実施例1と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.080であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.380であり、比(〔α/β〕)は0.21であった。
[Comparative Example 1]
A prepreg was obtained in the same manner as in Example 1, except that the amount of DABPA-CN used was 14.3 parts by mass and the amount of BMI-2300 used was 61 parts by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.080, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.080. /maleimide group equivalent) was 0.380, and the ratio ([α/β]) was 0.21.

〔実施例5〕
合成例2で得られたSN495-V-CNを52.7質量部、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製、マレイミド基当量:186g/eq.)を37.3質量部、ビフェニルアラルキル型エポキシ化合物(NC-3000H、日本化薬(株)製、官能基当量:290g/eq.)を10質量部、スラリーシリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を100質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株)製)を1質量部、レベリング剤(ビックケミー・ジャパン(株)製、「BYK-310」)を0.05質量部、硬化促進剤(2,4,5-トリフェニルイミダゾール、東京化成工業(株)製)を0.5質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量48質量%のプリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.202であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.201であり、比(〔α/β〕)は1.01であった。
[Example 5]
52.7 parts by mass of SN495-V-CN obtained in Synthesis Example 2, and 37.3 parts by mass of a novolac-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd., maleimide group equivalent: 186 g/eq.). Part, biphenyl aralkyl type epoxy compound (NC-3000H, manufactured by Nippon Kayaku Co., Ltd., functional group equivalent: 290 g / eq.) 10 parts by mass, slurry silica (SC-5050MOB, average particle size 1.5 μm, Admatex Co., Ltd.) is 100 parts by mass, a wetting and dispersing agent (DISPERBYK-161, BYK-Chemie Japan Co., Ltd.) is 1 part by mass, and a leveling agent (BYK-Chemie Japan Co., Ltd., "BYK-310") is 0. 0.05 part by mass and 0.5 part by mass of a curing accelerator (2,4,5-triphenylimidazole, manufactured by Tokyo Kasei Kogyo Co., Ltd.) were mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick T-glass fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg having a resin content of 48% by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.202, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.202. /maleimide group equivalent) was 0.201, and the ratio ([α/β]) was 1.01.

〔比較例2〕
SN495-V-CNの使用量を25.3質量部とし、BMI-2300の使用量を64.7質量部としたこと以外は、実施例5と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.097であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.348であり、比(〔α/β〕)は0.28であった。
[Comparative Example 2]
A prepreg was obtained in the same manner as in Example 5, except that the amount of SN495-V-CN used was 25.3 parts by mass and the amount of BMI-2300 used was 64.7 parts by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.097, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.097. /maleimide group equivalent) was 0.348, and the ratio ([α/β]) was 0.28.

〔実施例6〕
合成例2で得られたSN495-V-CNを24.9質量部、ノボラック型マレイミド化合物(BMI-2300、大和化成工業(株)製、マレイミド基当量:186g/eq.)を43.3質量部、ビスアリルナジイミド(丸善石油化学社製、「BANI-M」)を31.8質量部、スラリーシリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を200質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株)製)を1質量部、レベリング剤(ビックケミー・ジャパン(株)製、「BYK-310」)を0.05質量部、硬化促進剤(2,4,5-トリフェニルイミダゾール、東京化成工業(株)製)を0.5質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量48質量%のプリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.095であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.233であり、比(〔α/β〕)は0.41であった。
[Example 6]
24.9 parts by mass of SN495-V-CN obtained in Synthesis Example 2, and 43.3 parts by mass of a novolak-type maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd., maleimide group equivalent: 186 g/eq.). part, 31.8 parts by mass of bisallyl nadimide (manufactured by Maruzen Petrochemical Co., Ltd., "BANI-M"), slurry silica (SC-5050MOB, average particle size 1.5 μm, Admatechs Co., Ltd.) 200 mass parts Part, wetting and dispersing agent (DISPERBYK-161, BYK-Chemie Japan Co., Ltd.) 1 part by mass, leveling agent (BYK-Chemie Japan Co., Ltd., "BYK-310") 0.05 parts by mass, curing accelerator 0.5 part by mass of (2,4,5-triphenylimidazole, manufactured by Tokyo Chemical Industry Co., Ltd.) was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm-thick T-glass fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg having a resin content of 48% by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.095, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.095. /maleimide group equivalent) was 0.233, and the ratio ([α/β]) was 0.41.

〔比較例3〕
SN495-V-CNの使用量を5質量部とし、BMI-2300の使用量を49質量部とし、BANI-Mの使用量を36質量部とし、ビフェニルアラルキル型エポキシ化合物(NC-3000H、日本化薬(株)製、官能基当量:290g/eq.)を10質量部用いたこと以外は、実施例6と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.019であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.263であり、比(〔α/β〕)は0.07であった。
[Comparative Example 3]
The amount of SN495-V-CN used was 5 parts by mass, the amount of BMI-2300 used was 49 parts by mass, the amount of BANI-M used was 36 parts by mass, and a biphenylaralkyl type epoxy compound (NC-3000H, Nippon Kayaku A prepreg was obtained in the same manner as in Example 6, except that 10 parts by mass of Yaku Co., Ltd., functional group equivalent: 290 g/eq.) was used. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.019, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.019. /maleimide group equivalent) was 0.263, and the ratio ([α/β]) was 0.07.

〔実施例7〕
ビスフェノールA型シアン酸エステル化合物(CA210、三菱ガス化学(株)製、シアネート当量:139g/eq.)40.5質量部、マレイミド化合物(BMI-70、マレイミド基当量221g/eq、ケイ・アイ化成(株)製)29.8質量部、ビフェニルアラルキル型エポキシ化合物(NC-3000H、日本化薬(株)製、官能基当量:290g/eq.)15質量部、ビスマレイミド化合物(BMI-80、大和化成工業(株)製、マレイミド基当量:285g/eq.)14.7質量部、スラリーシリカ(SC-5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を100質量部、湿潤分散剤(DISPERBYK-161、ビックケミー・ジャパン(株)製)を1質量部、レベリング剤(ビックケミー・ジャパン(株)製、「BYK-310」)を0.05質量部、硬化促進剤(2,4,5-トリフェニルイミダゾール、東京化成工業(株)製)を0.5質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44質量%のプリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.291であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.186であり、比(〔α/β〕)は1.56であった。
[Example 7]
Bisphenol A type cyanate ester compound (CA210, Mitsubishi Gas Chemical Co., Ltd., cyanate equivalent: 139 g / eq.) 40.5 parts by mass, maleimide compound (BMI-70, maleimide group equivalent 221 g / eq, K-I Kasei Co., Ltd.) 29.8 parts by mass, biphenyl aralkyl type epoxy compound (NC-3000H, Nippon Kayaku Co., Ltd., functional group equivalent: 290 g / eq.) 15 parts by mass, bismaleimide compound (BMI-80, Daiwa Kasei Kogyo Co., Ltd., maleimide group equivalent: 285 g / eq.) 14.7 parts by mass, slurry silica (SC-5050MOB, average particle size 1.5 μm, Admatechs Co., Ltd.) 100 parts by mass, wet 1 part by mass of a dispersant (DISPERBYK-161, manufactured by BYK-Chemie Japan Co., Ltd.), 0.05 parts by mass of a leveling agent (manufactured by BYK-Chemie Japan Co., Ltd., "BYK-310"), and a curing accelerator (2, 0.5 part by mass of 4,5-triphenylimidazole, manufactured by Tokyo Kasei Kogyo Co., Ltd. was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and applied to a 0.1 mm thick T-glass woven fabric, and dried by heating at 140° C. for 3 minutes to obtain a prepreg having a resin content of 44% by mass. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.291, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is 0.291. /maleimide group equivalent) was 0.186 and the ratio ([α/β]) was 1.56.

〔比較例4〕
ビスフェノールA型シアン酸エステル化合物(CA210、三菱ガス化学(株)製、シアネート当量:139g/eq.)の使用量を12質量部とし、マレイミド化合物(BMI-70、マレイミド基当量221g/eq、ケイ・アイ化成(株)製)の使用量を58.3質量部としたこと以外は、実施例7と同様の方法により、プリプレグを得た。なお、シアン酸エステル化合物(A)のシアン酸エステル基量(α)(質量部/シアン酸エステル基当量)は0.086であり、マレイミド化合物(B)のマレイミド基量(β)(質量部/マレイミド基当量)は0.315であり、比(〔α/β〕)は0.27であった。
[Comparative Example 4]
The amount of bisphenol A cyanate ester compound (CA210, manufactured by Mitsubishi Gas Chemical Co., Ltd., cyanate equivalent: 139 g/eq.) was set to 12 parts by mass, and the maleimide compound (BMI-70, maleimide group equivalent: 221 g/eq, silica · A prepreg was obtained in the same manner as in Example 7, except that the amount of 58.3 parts by mass of Ai Kasei Co., Ltd. was used. The cyanate ester group amount (α) (parts by mass/cyanate ester group equivalent) of the cyanate ester compound (A) is 0.086, and the maleimide group amount (β) (parts by mass) of the maleimide compound (B) is /maleimide group equivalent) was 0.315, and the ratio ([α/β]) was 0.27.

〔金属箔張積層板の作製〕
得られたプリプレグを、それぞれ4枚または8枚重ねて12μm厚の電解銅箔(3EC-VLP、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.4mm及び0.8mmの金属箔張積層板を得た。得られた金属箔張積層板を用いて、下記ガラス転移温度(Tg)線熱膨張係数、銅箔ピール強度の測定を実施した。
[Preparation of metal foil-clad laminate]
Four or eight sheets of the obtained prepreg were stacked and 12 μm thick electrolytic copper foils (3EC - VLP, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were placed on top and bottom. Lamination molding was performed for minutes to obtain metal foil-clad laminates having insulating layer thicknesses of 0.4 mm and 0.8 mm. Using the obtained metal foil-clad laminate, the glass transition temperature (Tg), linear thermal expansion coefficient, and copper foil peel strength were measured as described below.

〔銅箔ピール強度〕
得られた金属箔張積層板(絶縁層厚さ0.8mm)を用い、JIS C6481に準じて、銅箔ピール強度(kg/cm)を測定した。
[Copper foil peel strength]
The copper foil peel strength (kg/cm) was measured according to JIS C6481 using the obtained metal foil-clad laminate (insulating layer thickness: 0.8 mm).

〔めっきピール強度〕
得られた金属箔張積層板(絶縁層厚さ0.4mm)の表層銅箔をエッチングにより除去し、上村工業製の無電解銅めっきプロセス(使用薬液名:MCD-PL、MDP-2、MAT-SP、MAB-4-C、MEL-3-APEA ver.2)にて、約0.5μmの無電解銅めっきを施し、130℃で1時間の乾燥を行った。続いて、電解銅めっきをめっき銅の厚みが18μmになるように施し、180℃で1時間の乾燥を行った。こうして、厚さ0.4mmの絶縁層上に厚さ18μmの導体層(めっき銅)が形成されたプリント配線板サンプルを作製した。上記手順により作製された絶縁層厚さ0.4mmのプリント配線板サンプルを用い、めっき銅の接着力をJIS C6481に準じて3回測定し、その平均値(kg/cm)を求めた。
[Plating peel strength]
The surface layer copper foil of the obtained metal foil clad laminate (insulation layer thickness 0.4 mm) was removed by etching, and electroless copper plating process manufactured by Uemura Kogyo Co., Ltd. (chemical names used: MCD-PL, MDP-2, MAT -SP, MAB-4-C, MEL-3-APEA ver.2), electroless copper plating of about 0.5 μm was applied, and drying was performed at 130° C. for 1 hour. Subsequently, electrolytic copper plating was applied so that the thickness of the plated copper was 18 μm, and drying was performed at 180° C. for 1 hour. Thus, a printed wiring board sample was produced in which a conductor layer (plated copper) with a thickness of 18 μm was formed on an insulating layer with a thickness of 0.4 mm. Using a printed wiring board sample having an insulating layer thickness of 0.4 mm produced by the above procedure, the adhesive strength of plated copper was measured three times according to JIS C6481, and the average value (kg/cm) was obtained.

〔ガラス転移温度(Tg)〕
得られた金属箔張積層板(絶縁層厚さ0.8mm)をダイシングソーでサイズ12.7×2.5mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法によりガラス転移温度を測定した(n=3の平均値)。
[Glass transition temperature (Tg)]
After cutting the obtained metal foil-clad laminate (insulating layer thickness: 0.8 mm) into a size of 12.7×2.5 mm with a dicing saw, the copper foil on the surface was removed by etching to obtain a sample for measurement. Using this measurement sample, the glass transition temperature was measured by the DMA method with a dynamic viscoelasticity analyzer (manufactured by TA Instruments) in accordance with JIS C6481 (average value of n=3).

〔弾性率維持率〕
得られた金属箔張積層板(絶縁層厚さ0.8mm)から銅箔を除去したものを試料として用い、JIS C 6481に規定される方法に準じて、オートグラフ((株)島津製作所製AG-Xplus)にて、それぞれ27℃、260℃で曲げ弾性率を測定した。上記によって測定された27℃の曲げ弾性率(a)と260℃の熱時曲げ弾性率(b)とから、下記式によって弾性率維持率を算出した。
弾性率維持率=(b)/(a)×100
[Retention rate of elastic modulus]
Using the obtained metal foil clad laminate (insulation layer thickness 0.8 mm) from which the copper foil was removed as a sample, Autograph (manufactured by Shimadzu Corporation) was used according to the method specified in JIS C 6481. AG-Xplus), the flexural modulus was measured at 27° C. and 260° C. respectively. From the flexural modulus (a) at 27° C. and the hot flexural modulus (b) at 260° C. measured as described above, the elastic modulus retention rate was calculated by the following formula.
Elastic modulus retention rate = (b) / (a) x 100

〔可撓性〕
得られたプリプレグを、所定直径の棒に巻きつけて180°に折り曲げ、プリプレグの折り曲げ部を観察し、プリプレグに破損が発生したばあいを破損あり、破損が発生しない場合を破損なしとすることで評価を行った。
A:3mmφでプリプレグに破損なし。
B:5mmφでプリプレグに破損なし。
C:10mmφでプリプレグに破損なし。
D:10mmφでプリプレグに破損あり。
[Flexibility]
The obtained prepreg is wound around a bar of a predetermined diameter and bent at 180°, and the bent portion of the prepreg is observed. If the prepreg is damaged, it is regarded as damaged, and if it is not damaged, it is regarded as not damaged. was evaluated.
A: No damage to the prepreg with a diameter of 3 mm.
B: No damage to the prepreg at 5 mmφ.
C: No breakage in the prepreg at 10 mmφ.
D: The prepreg was damaged at 10 mmφ.

Figure 0007121354000017
Figure 0007121354000017

本出願は、2016年5月2日に日本国特許庁へ出願された日本特許出願(特願2016-92758)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2016-92758) filed with the Japan Patent Office on May 2, 2016, the contents of which are incorporated herein by reference.

本発明の樹脂組成物は、プリプレグ、樹脂シート、積層樹脂シート、金属箔張積層板、及びプリント配線板の材料として産業上の利用可能性を有する。 The resin composition of the present invention has industrial applicability as a material for prepregs, resin sheets, laminated resin sheets, metal foil-clad laminates, and printed wiring boards.

Claims (15)

シアン酸エステル化合物(A)と、マレイミド化合物(B)と、アミン変性シリコーン(F)と、を含有し、
該マレイミド化合物(B)のマレイミド基量(β)に対する前記シアン酸エステル化合物(A)のシアン酸エステル基量(α)の比(〔α/β〕)が、0.30以上であり、
前記シアン酸エステル化合物(A)が、下記式(2)で表される化合物を含む、
Figure 0007121354000018

(式(2)中、R3は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、n2は1以上の整数である。)
樹脂組成物。
containing a cyanate ester compound (A), a maleimide compound (B), and an amine-modified silicone (F),
The ratio ([α/β]) of the cyanate ester group amount (α) of the cyanate ester compound (A) to the maleimide group amount (β) of the maleimide compound (B) is 0.30 or more,
The cyanate ester compound (A) contains a compound represented by the following formula (2),
Figure 0007121354000018

(In formula (2), each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and n2 is an integer of 1 or more.)
Resin composition.
前記シアン酸エステル化合物(A)が、下記一般式(1)で表される化合物をさらに含む、
請求項1に記載の樹脂組成物。
Figure 0007121354000019

(式(1)中、R1は、各々独立して、水素原子又は炭素数1~4のアルキル基を表し、R2は、各々独立して、置換基としてシアン酸エステル基、ヒドロキシル基及びアリル基からなる群より選ばれる少なくとも1つを有してもよいフェニル基、水素原子、アリル基、シアン酸エステル基、又は、エポキシ基を表し、n1は1以上の整数であり、mは1~4の整数である。)
The cyanate ester compound (A) further includes a compound represented by the following general formula (1),
The resin composition according to claim 1.
Figure 0007121354000019

(In formula (1), each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, each R 2 independently represents a cyanate ester group, a hydroxyl group and a a phenyl group which may have at least one selected from the group consisting of allyl groups, a hydrogen atom, an allyl group, a cyanate ester group, or an epoxy group; n1 is an integer of 1 or more; m is 1; is an integer between ~4.)
前記シアン酸エステル化合物(A)のシアン酸エステル基当量が、100~220g/eq.である、
請求項1又は2に記載の樹脂組成物。
The cyanate ester group equivalent of the cyanate ester compound (A) is 100 to 220 g/eq. is
The resin composition according to claim 1 or 2.
前記シアン酸エステル化合物(A)が、下記一般式(3)で表される化合物をさらに含む、
請求項1~のいずれかに記載の樹脂組成物。
Figure 0007121354000020
The cyanate ester compound (A) further includes a compound represented by the following general formula (3),
A resin composition according to any one of claims 1 to 3 .
Figure 0007121354000020
前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(4)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種を含む、
請求項1~のいずれかに記載の樹脂組成物。
Figure 0007121354000021

(式中、R4は、各々独立して、水素原子又はメチル基を表し、n3は1以上の整数を表す。)
The maleimide compound (B) is bis(4-maleimidophenyl)methane, 2,2-bis{4-(4-maleimidophenoxy)-phenyl}propane, bis(3-ethyl-5-methyl-4-maleimidophenyl ) containing at least one selected from the group consisting of methane and a maleimide compound represented by the following formula (4),
The resin composition according to any one of claims 1-4 .
Figure 0007121354000021

(In the formula, each R 4 independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 or more.)
前記比(〔α/β〕)が、0.45~1.0である、
請求項1~のいずれかに記載の樹脂組成物。
The ratio ([α/β]) is 0.45 to 1.0,
A resin composition according to any one of claims 1 to 5 .
無機充填材(C)をさらに含む、
請求項1~のいずれかに記載の樹脂組成物。
further comprising an inorganic filler (C),
The resin composition according to any one of claims 1-6 .
前記無機充填材(C)の含有量が、樹脂固形分100質量部に対して、25~700質量部である、
請求項に記載の樹脂組成物。
The content of the inorganic filler (C) is 25 to 700 parts by mass with respect to 100 parts by mass of the resin solid content.
The resin composition according to claim 7 .
前記無機充填材(C)が、シリカ、ベーマイト、及びアルミナからなる群より選択される少なくとも1種類を含む、
請求項7又は8に記載の樹脂組成物。
The inorganic filler (C) contains at least one selected from the group consisting of silica, boehmite, and alumina,
The resin composition according to claim 7 or 8 .
基材と、
該基材に含浸又は塗布された請求項1~のいずれか一項に記載の樹脂組成物と、を有する、
プリプレグ。
a substrate;
and the resin composition according to any one of claims 1 to 9 impregnated or applied to the substrate,
prepreg.
請求項1~のいずれか一項に記載の樹脂組成物をシート状に形成してなる、
樹脂シート。
Forming the resin composition according to any one of claims 1 to 9 into a sheet,
resin sheet.
シート基材と、該シート基材の片面又は両面に配された請求項1~のいずれか一項に記載の樹脂組成物と、を有する、
積層樹脂シート。
A sheet substrate and the resin composition according to any one of claims 1 to 9 arranged on one or both sides of the sheet substrate,
Laminated resin sheet.
請求項10に記載のプリプレグ、請求項11に記載の樹脂シート、及び請求項12に記載の積層樹脂シートからなる群より選択される少なくとも1種を1枚以上有する、
積層板。
At least one selected from the group consisting of the prepreg according to claim 10 , the resin sheet according to claim 11 , and the laminated resin sheet according to claim 12 .
laminated board.
請求項10に記載のプリプレグ、請求項11に記載の樹脂シート、及び請求項12に記載の積層樹脂シートからなる群より選択される少なくとも1種と、
前記プリプレグ、前記樹脂シート、及び前記積層樹脂シートの片面又は両面に配された金属箔と、を有する、
金属箔張積層板。
at least one selected from the group consisting of the prepreg according to claim 10 , the resin sheet according to claim 11 , and the laminated resin sheet according to claim 12 ;
a metal foil arranged on one or both sides of the prepreg, the resin sheet, and the laminated resin sheet;
Metal foil clad laminate.
絶縁層と、該絶縁層の片面又は両面に形成された導体層と、を有し、
前記絶縁層が、請求項1~のいずれか一項に記載の樹脂組成物を含む、
プリント配線板。

Having an insulating layer and a conductor layer formed on one side or both sides of the insulating layer,
The insulating layer contains the resin composition according to any one of claims 1 to 9 ,
printed wiring board.

JP2021115454A 2016-05-02 2021-07-13 Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board Active JP7121354B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016092758 2016-05-02
JP2016092758 2016-05-02
JP2018515427A JP6924388B2 (en) 2016-05-02 2017-04-24 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018515427A Division JP6924388B2 (en) 2016-05-02 2017-04-24 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Publications (2)

Publication Number Publication Date
JP2021178966A JP2021178966A (en) 2021-11-18
JP7121354B2 true JP7121354B2 (en) 2022-08-18

Family

ID=60203047

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018515427A Active JP6924388B2 (en) 2016-05-02 2017-04-24 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board
JP2021115454A Active JP7121354B2 (en) 2016-05-02 2021-07-13 Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018515427A Active JP6924388B2 (en) 2016-05-02 2017-04-24 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Country Status (5)

Country Link
JP (2) JP6924388B2 (en)
KR (2) KR102418675B1 (en)
CN (2) CN108137800B (en)
TW (1) TWI731072B (en)
WO (1) WO2017191771A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102418675B1 (en) * 2016-05-02 2022-07-07 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metallic foil laminated board, and printed wiring board
JP7154475B2 (en) * 2017-03-29 2022-10-18 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, metal foil clad laminate, resin sheet and printed wiring board
JP6994174B2 (en) * 2017-11-14 2022-01-14 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR20210025526A (en) * 2018-06-27 2021-03-09 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition and its application
WO2020017551A1 (en) 2018-07-18 2020-01-23 日立化成株式会社 Copper-clad laminate, printed wiring board, semiconductor package and method for producing copper-clad laminate
JP7243077B2 (en) * 2018-08-10 2023-03-22 株式会社レゾナック Prepregs, cured prepregs, laminates, printed wiring boards and semiconductor packages
WO2020045489A1 (en) * 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
JP7148859B2 (en) * 2018-08-31 2022-10-06 三菱瓦斯化学株式会社 Mixture of cyanate ester compound and curable composition
CN114787276B (en) * 2019-12-11 2023-03-21 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
JP7435454B2 (en) 2020-02-21 2024-02-21 東レ株式会社 Fiber-reinforced composite molded product and its molding method
WO2023110819A1 (en) * 2021-12-14 2023-06-22 Arxada Ag Novel compositions with improved characteristics
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019758A (en) 2012-07-13 2014-02-03 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2014084452A (en) 2012-10-26 2014-05-12 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg, laminate and printed wiring board
JP2015147869A (en) 2014-02-06 2015-08-20 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminate, and printed wiring board
JP2016028164A (en) 2011-01-18 2016-02-25 日立化成株式会社 Resin composition, and prepreg, laminate, and printed wiring board using resin composition
JP6924388B2 (en) 2016-05-02 2021-08-25 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306405A (en) * 1988-06-03 1989-12-11 Hitachi Ltd Orthodiallylbiscyanate-series' compound and composition containing the same compound
JPH02251518A (en) * 1989-03-27 1990-10-09 Mitsui Toatsu Chem Inc Thermosetting resin composition
JP5024205B2 (en) 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
TW201204548A (en) 2010-02-05 2012-02-01 Sumitomo Bakelite Co Prepreg, laminate, printed wiring board, and semiconductor device
JP5810916B2 (en) * 2010-07-26 2015-11-11 三菱レイヨン株式会社 Resin composition, prepreg using the same, and fiber reinforced composite material
CN103562309B (en) * 2011-05-31 2016-05-18 三菱瓦斯化学株式会社 Resin combination, prepreg and laminate
JP2013001807A (en) 2011-06-16 2013-01-07 Panasonic Corp Resin composition for electronic circuit board material, prepreg and laminated plate
JP3173332U (en) 2011-11-17 2012-02-02 奇▲こう▼科技股▲ふん▼有限公司 Oil-impregnated bearing fan structure
JP2013216884A (en) 2012-03-14 2013-10-24 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg and laminated plate
KR102075187B1 (en) * 2012-10-19 2020-02-07 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminate, and printed wiring board
TWI501444B (en) * 2012-12-20 2015-09-21 Ind Tech Res Inst Electrolyte additive for lithium secondary battery
CN103724999A (en) * 2013-05-30 2014-04-16 广东生益科技股份有限公司 Cyanate resin composition and application thereof
KR102646963B1 (en) 2015-07-06 2024-03-13 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, metal-foil-clad laminated board, and printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028164A (en) 2011-01-18 2016-02-25 日立化成株式会社 Resin composition, and prepreg, laminate, and printed wiring board using resin composition
JP2014019758A (en) 2012-07-13 2014-02-03 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same
JP2014084452A (en) 2012-10-26 2014-05-12 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg, laminate and printed wiring board
JP2015147869A (en) 2014-02-06 2015-08-20 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, laminate, and printed wiring board
JP6924388B2 (en) 2016-05-02 2021-08-25 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, laminated resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Also Published As

Publication number Publication date
WO2017191771A1 (en) 2017-11-09
CN108137800B (en) 2021-09-07
JPWO2017191771A1 (en) 2019-03-07
CN108137800A (en) 2018-06-08
CN113845772A (en) 2021-12-28
KR20190004698A (en) 2019-01-14
JP2021178966A (en) 2021-11-18
KR102418675B1 (en) 2022-07-07
TW201807064A (en) 2018-03-01
KR102297015B1 (en) 2021-09-02
KR20210111320A (en) 2021-09-10
JP6924388B2 (en) 2021-08-25
TWI731072B (en) 2021-06-21

Similar Documents

Publication Publication Date Title
JP7121354B2 (en) Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP7153243B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
TWI701266B (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP6388147B1 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7025729B2 (en) Resin composition for printed wiring boards, prepregs, resin sheets, laminated boards, metal foil-clad laminated boards, printed wiring boards, and multilayer printed wiring boards.
TWI642718B (en) Resin composition,insulation layer for printed circuit board and printed circuit board
JP2022046517A (en) Resin composition for electronic material
TWI734690B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP7116370B2 (en) Resin composition, prepreg, resin sheet, laminate, and printed wiring board
JP6681052B2 (en) Prepreg, laminated board, metal foil clad laminated board, printed wiring board, and multilayer printed wiring board
JP6774032B2 (en) Resin composition, prepreg or resin sheet using the resin composition, laminated board and printed wiring board using them
JP2020176267A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP7116927B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, and method for producing resin composition
TWI698483B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6823807B2 (en) Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R151 Written notification of patent or utility model registration

Ref document number: 7121354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151