JP2018090728A - Resin composition for electronic material - Google Patents

Resin composition for electronic material Download PDF

Info

Publication number
JP2018090728A
JP2018090728A JP2016236665A JP2016236665A JP2018090728A JP 2018090728 A JP2018090728 A JP 2018090728A JP 2016236665 A JP2016236665 A JP 2016236665A JP 2016236665 A JP2016236665 A JP 2016236665A JP 2018090728 A JP2018090728 A JP 2018090728A
Authority
JP
Japan
Prior art keywords
resin composition
resin
group
electronic materials
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016236665A
Other languages
Japanese (ja)
Other versions
JP7442255B2 (en
Inventor
展義 大西
Nobuyoshi Onishi
展義 大西
克哉 富澤
Katsuya Tomizawa
克哉 富澤
博史 高橋
Hiroshi Takahashi
博史 高橋
環 伊藤
Tamaki Ito
環 伊藤
英祐 志賀
Eisuke Shiga
英祐 志賀
将太 古賀
Shota Koga
将太 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2016236665A priority Critical patent/JP7442255B2/en
Publication of JP2018090728A publication Critical patent/JP2018090728A/en
Priority to JP2021200181A priority patent/JP2022046517A/en
Priority to JP2023098935A priority patent/JP2023134454A/en
Application granted granted Critical
Publication of JP7442255B2 publication Critical patent/JP7442255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a resin composition for an electronic material for providing a cured product having a lower coefficient of thermal expansion and excellent electrical characteristics such as dielectric constant and dielectric loss tangent; and a prepreg, a resin sheet, a metal foil-clad laminate and a printed wiring board using the resin composition for an electronic material.SOLUTION: There is provided a resin composition for an electronic material which comprises a bismaleimide compound (A), wherein the bismaleimide compound (A) has two maleimide groups and a polyimide group represented by the following formula (1), the two maleimide groups each independently are bonded to both terminals of the polyimide group at least through a first linking group to which 8 or more atoms are linearly linked.SELECTED DRAWING: None

Description

本発明は、電子材料用樹脂組成物に関する。   The present invention relates to a resin composition for electronic materials.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。それに伴い、半導体素子と半導体プラスチックパッケージ用プリント配線板との熱膨張率の差によって生じる半導体プラスチックパッケージの反りが問題となっており、様々な対策が講じられてきている。   In recent years, as semiconductor packages widely used in electronic devices, communication devices, personal computers, etc. have become more sophisticated and smaller in size, higher integration and higher density mounting of each component for semiconductor packages has been accelerated in recent years. ing. Accordingly, warping of the semiconductor plastic package caused by the difference in thermal expansion coefficient between the semiconductor element and the printed wiring board for the semiconductor plastic package has become a problem, and various countermeasures have been taken.

その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1〜3参照)。   One countermeasure is to reduce the thermal expansion of the insulating layer used in the printed wiring board. This is a technique for suppressing warpage by bringing the thermal expansion coefficient of a printed wiring board close to the thermal expansion coefficient of a semiconductor element, and is currently being actively worked on (see, for example, Patent Documents 1 to 3).

特開2013−216884号公報JP 2013-216684 A 特許第3173332号公報Japanese Patent No. 3173332 特開2009−035728号公報JP 2009-035728 A

しかしながら、特許文献1〜3に記載の従来の手法によるプリント配線板の低熱膨張化は既に限界が近づいており、さらなる低熱膨張化が困難となっている。   However, the low thermal expansion of the printed wiring board by the conventional methods described in Patent Documents 1 to 3 is already approaching its limit, and it is difficult to further reduce the thermal expansion.

本発明は、上記問題点に鑑みてなされたものであり、熱膨張率がより低く、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を提供することを目的とする。   The present invention has been made in view of the above problems, and a resin composition for an electronic material that gives a cured product having a lower coefficient of thermal expansion and excellent electrical characteristics such as dielectric constant and dielectric loss tangent, and the electronic material An object of the present invention is to provide a prepreg, a resin sheet, a metal foil-clad laminate, and a printed wiring board using the resin composition.

本発明者らは、上記課題を解決するために鋭意検討した。その結果、所定のビスマレイミド化合物(A)を用いることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。   The present inventors diligently studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using the predetermined bismaleimide compound (A), and the present invention has been completed.

すなわち、本発明は以下のとおりである。
〔1〕
ビスマレイミド化合物(A)を含み、
該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリイミド基1個以上と、を有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合している、
電子材料用樹脂組成物。
〔2〕
前記ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基1個以上をさらに有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1の連結基を介して前記環状炭化水素基に結合し、
前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を介して前記環状炭化水素基に結合している、
〔1〕に記載の電子材料用樹脂組成物。
〔3〕
前記環状炭化水素基が、脂環基である、
〔1〕又は〔2〕に記載の電子材料用樹脂組成物。
〔4〕
〔1〕の連結基及び/又は前記第2の連結基が、置換又は非置換の2価の炭化水素基である、
〔1〕〜〔3〕のいずれか一項に記載の電子材料用樹脂組成物。
〔5〕
前記ビスマレイミド化合物(A)が下記式(2)で表される繰返し単位を有する、
〔1〕〜〔4〕のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表す。)
〔6〕
前記ビスマレイミド化合物(A)が下記式(3)で表される直鎖状ポリマー構造を有する、
〔1〕〜〔5〕のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、nは1〜10の数を表す。)
〔7〕
前記ビスマレイミド化合物(A)の重量平均分子量が、1×103〜1×104である、
〔1〕〜〔6〕のいずれか一項に記載の電子材料用樹脂組成物。
〔8〕
前記ビスマレイミド化合物(A)以外のマレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)、フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含む、
〔1〕〜〔7〕のいずれか一項に記載の電子材料用樹脂組成物。
〔9〕
前記ビスマレイミド化合物(A)の含有量が、樹脂固形分100質量部に対して、5〜60質量部である、
〔1〕〜〔8〕のいずれか一項に記載の電子材料用樹脂組成物。
〔10〕
前記シアン酸エステル化合物(C)の含有量が、樹脂固形分100質量部に対して、10〜60質量部である、
〔8〕又は〔9〕に記載の電子材料用樹脂組成物。
〔11〕
前記エポキシ樹脂(D)の含有量が、樹脂固形分100質量部に対して、10〜45質量部である、
〔8〕〜〔10〕のいずれか一項に記載の電子材料用樹脂組成物。
〔12〕
充填材(I)をさらに含む、
〔1〕〜〔11〕のいずれか一項に記載の電子材料用樹脂組成物。
〔13〕
前記充填材(I)の含有量が、樹脂固形分100質量部に対して、50〜300質量部である、
〔12〕に記載の電子材料用樹脂組成物。
〔14〕
基材と、
該基材に含浸又は塗布された、〔1〕〜〔13〕のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
プリプレグ。
〔15〕
シート基材と、
該シート基材の片面または両面に積層された、〔1〕〜〔13〕のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
レジンシート。
〔16〕
絶縁層と、
該絶縁層の片面又は両面に積層形成された導体層と、を有し、
前記絶縁層が、〔1〕〜〔13〕のいずれか一項に記載の電子材料用樹脂組成物を含む、
金属箔張積層板。
〔17〕
絶縁層と、前記絶縁層の表面に形成された導体層とを有し、
前記絶縁層が、〔1〕〜〔13〕のいずれか一項に記載の電子材料用樹脂組成物を含む、
プリント配線板。
That is, the present invention is as follows.
[1]
A bismaleimide compound (A),
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the following formula (1),
The two maleimide groups are each independently bonded to both ends of the polyimide group through at least a first linking group in which 8 or more atoms are linearly connected.
Resin composition for electronic materials.
[2]
The bismaleimide compound (A) further has one or more cyclic hydrocarbon groups that may contain a hetero atom having 4 to 10 atoms constituting the ring,
Each of the two maleimide groups is independently bonded to the cyclic hydrocarbon group via the first linking group in which 8 or more atoms are linearly linked;
Each of the polyimide groups is independently bonded to the cyclic hydrocarbon group via a second linking group in which 8 or more atoms are connected in a straight chain.
[1] The resin composition for electronic materials according to [1].
[3]
The cyclic hydrocarbon group is an alicyclic group;
The resin composition for electronic materials as described in [1] or [2].
[4]
The linking group of [1] and / or the second linking group is a substituted or unsubstituted divalent hydrocarbon group.
[1]-The resin composition for electronic materials as described in any one of [3].
[5]
The bismaleimide compound (A) has a repeating unit represented by the following formula (2).
The resin composition for electronic materials according to any one of [1] to [4].
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are linked in a straight chain, and R 2 represents the number of atoms constituting the ring, which is substituted or unsubstituted. Represents a cyclic hydrocarbon group which may contain 4 or more and 10 or less heteroatoms.)
[6]
The bismaleimide compound (A) has a linear polymer structure represented by the following formula (3).
The resin composition for electronic materials according to any one of [1] to [5].
(Wherein R 1 and R 3 each independently represents a hydrocarbon group in which 8 or more atoms are linearly linked, and R 2 each independently represents a substituted or unsubstituted ring. The cyclic hydrocarbon group which may contain a hetero atom having 4 to 10 atoms is included, and n represents a number of 1 to 10.
[7]
The bismaleimide compound (A) has a weight average molecular weight of 1 × 10 3 to 1 × 10 4 .
The resin composition for electronic materials as described in any one of [1] to [6].
[8]
Maleimide compound (B) other than the bismaleimide compound (A), cyanate ester compound (C), epoxy resin (D), phenol resin (E), oxetane resin (F), benzoxazine compound (G), and polymerization Further including one or more selected from the group consisting of compounds (H) having a possible unsaturated group,
The resin composition for electronic materials according to any one of [1] to [7].
[9]
Content of the said bismaleimide compound (A) is 5-60 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials according to any one of [1] to [8].
[10]
Content of the said cyanate ester compound (C) is 10-60 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials as described in [8] or [9].
[11]
Content of the said epoxy resin (D) is 10-45 mass parts with respect to 100 mass parts of resin solid content,
[8] The resin composition for electronic materials as described in any one of [10].
[12]
Further comprising a filler (I),
The resin composition for electronic materials according to any one of [1] to [11].
[13]
Content of the said filler (I) is 50-300 mass parts with respect to 100 mass parts of resin solid content,
[12] The resin composition for electronic materials according to [12].
[14]
A substrate;
The resin composition for electronic materials according to any one of [1] to [13], impregnated or coated on the base material,
Prepreg.
[15]
A sheet substrate;
The resin composition for electronic materials according to any one of [1] to [13], which is laminated on one side or both sides of the sheet base material,
Resin sheet.
[16]
An insulating layer;
A conductive layer laminated on one or both sides of the insulating layer,
The insulating layer includes the resin composition for electronic materials according to any one of [1] to [13].
Metal foil-clad laminate.
[17]
Having an insulating layer and a conductor layer formed on the surface of the insulating layer;
The insulating layer includes the resin composition for electronic materials according to any one of [1] to [13].
Printed wiring board.

本発明によれば、熱膨張率がより低く、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を提供することができる。   According to the present invention, a resin composition for electronic materials that gives a cured product having a lower coefficient of thermal expansion and excellent electrical properties such as dielectric constant and dielectric loss tangent, and a prepreg using the resin composition for electronic materials, A resin sheet, a metal foil-clad laminate, and a printed wiring board can be provided.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.

〔電子材料用樹脂組成物〕
本実施形態の電子材料用樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、ビスマレイミド化合物(A)を含み、該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリイミド基1個以上と、を有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合しているものである。
[Resin composition for electronic materials]
The resin composition for electronic materials of the present embodiment (hereinafter also simply referred to as “resin composition”) includes a bismaleimide compound (A), and the bismaleimide compound (A) includes two maleimide groups and Each having two or more polyimide groups represented by the formula (1), and each of the two maleimide groups independently includes at least a first linking group in which 8 or more atoms are linked in a straight chain. And bonded to both ends of the polyimide group.

〔ビスマレイミド化合物(A)〕
ビスマレイミド化合物(A)は、マレイミド基2個と、上記式(1)で表されるポリイミド基1個以上と、を有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合しているものである。このような構造を有するビスマレイミド化合物(A)は、マレイミド基、ポリイミド基の分子内位置の自由度が増加し、結果として、硬化物にしたときの応力緩和能が高く、熱膨張率の低い硬化物が得られる。このような応力緩和能の高いビスマレイミド化合物(A)を用いることにより、後述するプリプレグを例にすれば、樹脂と基材(非樹脂)の応力差が小さくなり、基材の物性に追従し熱膨張量がより低減する。また、このような応力差の減少によって、反りの発生も抑制することが可能となる。さらに、マレイミド基、ポリイミド基の分子内位置の自由度の増加により、硬化物における誘電率及び誘電正接等の電気特性もより向上する傾向にある。したがって、このようなビスマレイミド化合物(A)を用いることにより、高いガラス転移温度(Tg)、耐熱性だけでなく、低熱膨張性、誘電率及び誘電正接等の電気特性に優れる硬化物を与える電子材料用樹脂組成物、並びに、該電子材料用樹脂組成物を用いた、プリプレグ、レジンシート、金属箔張積層板、及びプリント配線板を製造できるようになる。
[Bismaleimide compound (A)]
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the above formula (1), and each of the two maleimide groups is independently 8 or more. The atoms are bonded to both ends of the polyimide group through at least a first linking group in which atoms are linearly connected. The bismaleimide compound (A) having such a structure has an increased degree of freedom in the intramolecular positions of the maleimide group and the polyimide group, and as a result, has a high stress relaxation ability when made into a cured product and a low coefficient of thermal expansion. A cured product is obtained. By using the bismaleimide compound (A) having such a high stress relaxation capability, if the prepreg described later is taken as an example, the stress difference between the resin and the base material (non-resin) is reduced, and the physical properties of the base material are followed. The amount of thermal expansion is further reduced. In addition, the occurrence of warpage can be suppressed by reducing the stress difference. Furthermore, electrical characteristics such as dielectric constant and dielectric loss tangent in the cured product tend to be further improved due to an increase in the degree of freedom of the intramolecular positions of the maleimide group and the polyimide group. Therefore, by using such a bismaleimide compound (A), an electron that gives a cured product that is excellent not only in high glass transition temperature (Tg) and heat resistance but also in electrical characteristics such as low thermal expansion, dielectric constant and dielectric loss tangent. The resin composition for materials, and the prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the resin composition for electronic materials can be produced.

第1の連結基は、8以上の原子が直鎖状に連結したものであれば特に限定されないが、例えば、8以上の炭素原子を有する、置換又は非置換の2価の炭化水素基であることが好ましく、8〜10の炭素原子を有する、置換又は非置換の2価の炭化水素基であることがより好ましい。置換又は非置換の2価の炭化水素基としては、特に限定されないが、例えば、置換又は非置換の直鎖状脂肪族炭化水素基、置換又は非置換の分岐状脂肪族炭化水素基、及び置換又は非置換の環状脂肪族炭化水素基が挙げられる。なかでも、置換又は非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等の非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基が特に好ましい。   The first linking group is not particularly limited as long as 8 or more atoms are linked in a straight chain. For example, the first linking group is a substituted or unsubstituted divalent hydrocarbon group having 8 or more carbon atoms. It is preferably a substituted or unsubstituted divalent hydrocarbon group having 8 to 10 carbon atoms. Although it does not specifically limit as a substituted or unsubstituted bivalent hydrocarbon group, For example, a substituted or unsubstituted linear aliphatic hydrocarbon group, a substituted or unsubstituted branched aliphatic hydrocarbon group, and substituted Or an unsubstituted cycloaliphatic hydrocarbon group is mentioned. Of these, a substituted or unsubstituted linear aliphatic hydrocarbon group is more preferable, and an unsubstituted linear chain such as an octylene group, a nonamethylene group, a decamethylene group, a dodecamethylene group, a hexadecamethylene group, an octadecamethylene group, and the like. An aliphatic hydrocarbon group is more preferable, and an octylene group, a nonamethylene group, and a decamethylene group are particularly preferable.

2個のマレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、ポリイミド基の両端に結合していればよく、第1の連結基と第1の連結基以外の基を介して、2個のマレイミド基がポリイミド基の両端に結合していてもよい。なかでも、ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基1個以上をさらに有し、2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1の連結基を介して前記環状炭化水素基に結合し、前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を介して前記環状炭化水素基に結合しているものであるのが好ましい。このように、第2の連結基を有するビスマレイミド化合物(A)は、マレイミド基、ポリイミド基の分子内位置の自由度がさらに増加する傾向にある。また、第2の連結基と環状炭化水素基とを有することにより、自由体積が増加し、結果として、分子の自由度がより一層向上する傾向にある。そのため、このようなビスマレイミド化合物(A)は、より高い応力緩和能を有する傾向にある。したがって、このようなビスマレイミド化合物(A)を用いることにより、上述したとおり、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。   The two maleimide groups may be independently bonded to both ends of the polyimide group via at least a first linking group in which 8 or more atoms are linearly linked. Two maleimide groups may be bonded to both ends of the polyimide group via a group other than the first linking group. Among them, the bismaleimide compound (A) further has one or more cyclic hydrocarbon groups which may contain a hetero atom having 4 to 10 atoms constituting the ring, and the two maleimide groups are each Independently, the polyimide group is bonded to the cyclic hydrocarbon group via the first linking group in which 8 or more atoms are linearly connected, and each of the polyimide groups is independently 8 or more atoms in a straight line. It is preferable that it is what is couple | bonded with the said cyclic hydrocarbon group through the 2nd coupling group connected in the shape. Thus, the bismaleimide compound (A) having the second linking group tends to further increase the degree of freedom in the intramolecular positions of the maleimide group and the polyimide group. Further, by having the second linking group and the cyclic hydrocarbon group, the free volume increases, and as a result, the degree of molecular freedom tends to be further improved. Therefore, such a bismaleimide compound (A) tends to have higher stress relaxation ability. Therefore, by using such a bismaleimide compound (A), as described above, the thermal expansion coefficient of the obtained cured product tends to be further reduced, and electric characteristics such as dielectric constant and dielectric loss tangent tend to be more excellent. is there.

ここで、ヘテロ原子を含んでもよい環状炭化水素基としては、環を構成する原子数が4以上10以下のものであれば特に限定されないが、例えば、置換又は非置換の脂環基、置換又は非置換の芳香族基、及び置換又は非置換の複素環基が挙げられる。このなかでも、置換又は非置換の脂環基、置換又は非置換の芳香族基が好ましく、置換又は非置換の脂環基がより好ましく、アルキル基置換の脂環基がさらに好ましい。なお、環を構成する原子数とは、環状に連結している原子の数であって、側鎖の置換基等の原子数は含まれない。このような環状炭化水素基を有することにより、ビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。置換又は非置換の脂環基における脂環部分の基としては、例えば、2価又は2価以上の、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基が挙げられる。また、アルキル基置換の脂環基におけるアルキル基は、特に限定されないが、炭素数1〜10のアルキル基が好ましく、炭素数3〜10のアルキル基がより好ましい。炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、テキシル基、n−へプチル基、n−オクチル基、n−エチルヘキシル基、n−ノニル基、n−デシル基が挙げられる。アルキル基置換の脂環基におけるアルキル基は、1つでもよく、2以上であってもよい。   Here, the cyclic hydrocarbon group which may contain a hetero atom is not particularly limited as long as the number of atoms constituting the ring is 4 or more and 10 or less. For example, a substituted or unsubstituted alicyclic group, substituted or substituted Examples thereof include an unsubstituted aromatic group and a substituted or unsubstituted heterocyclic group. Among these, a substituted or unsubstituted alicyclic group and a substituted or unsubstituted aromatic group are preferable, a substituted or unsubstituted alicyclic group is more preferable, and an alkyl group-substituted alicyclic group is more preferable. The number of atoms constituting the ring is the number of atoms linked in a ring, and does not include the number of atoms such as side chain substituents. By having such a cyclic hydrocarbon group, the bismaleimide compound (A) tends to have higher stress relaxation capability, and as a result, the thermal expansion coefficient of the resulting cured product tends to be further lowered, and the dielectric Electric characteristics such as rate and dielectric loss tangent tend to be more excellent. Examples of the alicyclic moiety in the substituted or unsubstituted alicyclic group include a divalent or divalent or higher valent cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, and cyclodecyl group. Moreover, the alkyl group in the alicyclic group substituted with an alkyl group is not particularly limited, but an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 3 to 10 carbon atoms is more preferable. Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, A neopentyl group, n-hexyl group, texyl group, n-heptyl group, n-octyl group, n-ethylhexyl group, n-nonyl group and n-decyl group can be mentioned. The alkyl group-substituted alicyclic group may have one alkyl group or two or more alkyl groups.

また、第2の連結基は、8以上の原子が直鎖状に連結したものであれば特に限定されないが、例えば、8以上の炭素原子を有する、置換又は非置換の2価の炭化水素基であることが好ましく、8〜10の炭素原子を有する、置換又は非置換の2価の炭化水素基であることがより好ましい。置換又は非置換の2価の炭化水素基としては、特に限定されないが、例えば、置換又は非置換の直鎖状脂肪族炭化水素基、置換又は非置換の分岐状脂肪族炭化水素基、及び置換又は非置換の環状脂肪族炭化水素基が挙げられる。なかでも、置換又は非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等の非置換の直鎖状脂肪族炭化水素基がより好ましく、オクチレン基、ノナメチレン基、デカメチレン基が特に好ましい。   The second linking group is not particularly limited as long as 8 or more atoms are linked in a straight chain. For example, a substituted or unsubstituted divalent hydrocarbon group having 8 or more carbon atoms. It is preferably a substituted or unsubstituted divalent hydrocarbon group having 8 to 10 carbon atoms. Although it does not specifically limit as a substituted or unsubstituted bivalent hydrocarbon group, For example, a substituted or unsubstituted linear aliphatic hydrocarbon group, a substituted or unsubstituted branched aliphatic hydrocarbon group, and substituted Or an unsubstituted cycloaliphatic hydrocarbon group is mentioned. Of these, a substituted or unsubstituted linear aliphatic hydrocarbon group is more preferable, and an unsubstituted linear chain such as an octylene group, a nonamethylene group, a decamethylene group, a dodecamethylene group, a hexadecamethylene group, an octadecamethylene group, and the like. An aliphatic hydrocarbon group is more preferable, and an octylene group, a nonamethylene group, and a decamethylene group are particularly preferable.

上記ビスマレイミド化合物(A)は、下記式(2)で表される繰返し単位を有する化合物が好ましい。このようなビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表す。)
The bismaleimide compound (A) is preferably a compound having a repeating unit represented by the following formula (2). Such a bismaleimide compound (A) tends to have a higher stress relaxation capability, and as a result, the thermal expansion coefficient of the resulting cured product tends to be lower, and electrical properties such as dielectric constant and dielectric loss tangent are low. It tends to be better.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are linked in a straight chain, and R 2 represents the number of atoms constituting the ring, which is substituted or unsubstituted. Represents a cyclic hydrocarbon group which may contain 4 or more and 10 or less heteroatoms.)

ここで、R2が環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、R3が、第2の連結基を表す。また、環状炭化水素基R2と結合するR1は、その他端がマレイミド基と結合する場合には第1の連結基を表し、他端がポリイミド基と結合する場合には第2の連結基を表す。一方、R1の他端が、例えば、環状炭化水素基R2と結合する場合には、R1は、2つの環状炭化水素基R2を結合するものであってもよい。なお、式(2)における、8以上の原子が直鎖状に連結した炭化水素基及び環を構成する原子数が4以上10以下の環状炭化水素基は、上記と同様のものを例示することができる。 Here, R 2 represents a cyclic hydrocarbon group that may contain a hetero atom having 4 to 10 atoms constituting the ring, and R 3 represents a second linking group. R 1 bonded to the cyclic hydrocarbon group R 2 represents the first linking group when the other end is bonded to the maleimide group, and the second linking group when the other end is bonded to the polyimide group. Represents. On the other hand, when the other end of R 1 is bonded to, for example, a cyclic hydrocarbon group R 2 , R 1 may be a bond of two cyclic hydrocarbon groups R 2 . In the formula (2), the hydrocarbon group in which 8 or more atoms are connected in a straight chain and the cyclic hydrocarbon group having 4 to 10 atoms constituting the ring are exemplified as those described above. Can do.

より具体的には、上記ビスマレイミド化合物(A)は、下記式(3)で表される直鎖状ポリマー構造を有するものであることが好ましい。このようなビスマレイミド化合物(A)はより高い応力緩和能を有する傾向にあり、結果として、得られる硬化物の熱膨張率がより低下する傾向にあり、誘電率及び誘電正接等の電気特性がより優れる傾向にある。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、nは1〜10の数を表す。)
More specifically, the bismaleimide compound (A) preferably has a linear polymer structure represented by the following formula (3). Such a bismaleimide compound (A) tends to have a higher stress relaxation capability, and as a result, the thermal expansion coefficient of the resulting cured product tends to be lower, and electrical properties such as dielectric constant and dielectric loss tangent are low. It tends to be better.
(Wherein R 1 and R 3 each independently represents a hydrocarbon group in which 8 or more atoms are linearly linked, and R 2 each independently represents a substituted or unsubstituted ring. The cyclic hydrocarbon group which may contain a hetero atom having 4 to 10 atoms is included, and n represents a number of 1 to 10.

式(3)において、R1及びR3が、オクチレン基であり、R2が、炭素原子数6〜8のアルキル基を置換基として有するシクロアルキレン基であることが好ましい。 In Formula (3), R 1 and R 3 are preferably octylene groups, and R 2 is preferably a cycloalkylene group having an alkyl group having 6 to 8 carbon atoms as a substituent.

上記式(3)で表されるビスマレイミド化合物(A)としては、特に限定されないが、例えば、BMI−5000(Designer Molecules inc.製)を用いることができる。このような化合物を用いることにより、熱膨張率がより低下する傾向にある。   The bismaleimide compound (A) represented by the above formula (3) is not particularly limited. For example, BMI-5000 (manufactured by Designer Moleculars Inc.) can be used. By using such a compound, the thermal expansion coefficient tends to be further reduced.

ビスマレイミド化合物(A)の重量平均分子量は、特に限定されないが、好ましくは1×103〜1×104であり、より好ましくは2×103〜9×103であり、特に好ましくは3×103〜8×103である。ビスマレイミド化合物(A)の重量平均分子量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下する傾向にある。なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)として求めることができる。 The weight average molecular weight of the bismaleimide compound (A) is not particularly limited, but is preferably 1 × 10 3 to 1 × 10 4 , more preferably 2 × 10 3 to 9 × 10 3 , and particularly preferably 3 × 10 3 to 8 × 10 3 . When the weight average molecular weight of the bismaleimide compound (A) is within the above range, the thermal expansion coefficient of the obtained cured product tends to be further reduced. In addition, a weight average molecular weight can be calculated | required as a weight average molecular weight (Mw) of polystyrene conversion by gel permeation chromatography (GPC) analysis.

ビスマレイミド化合物(A)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは5〜60質量部であり、好ましくは10〜55質量部であり、好ましくは15〜50質量部である。ビスマレイミド化合物(A)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率、誘電率、誘電正接、弾性率がより低下する傾向にある。なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における溶剤及び充填材を除いた成分の合計が100質量部であることをいうものとする。   Although content of a bismaleimide compound (A) is not specifically limited, Preferably it is 5-60 mass parts with respect to 100 mass parts of resin solid content, Preferably it is 10-55 mass parts, Preferably 15- 50 parts by mass. When the content of the bismaleimide compound (A) is within the above range, the thermal expansion coefficient, dielectric constant, dielectric loss tangent, and elastic modulus of the obtained cured product tend to be further reduced. In the present embodiment, “resin solid content” means a component in the resin composition excluding a solvent and a filler unless otherwise specified, and “resin solid content 100 parts by mass” means a resin composition. The sum of the components excluding the solvent and filler in the product is 100 parts by mass.

〔その他の成分〕
本実施形態の樹脂組成物は、上記ビスマレイミド化合物(A)に加えて、必要に応じて、上記ビスマレイミド化合物(A)以外のマレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)、フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含むことができる。このなかでも、マレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)を含むことが好ましい。以下、各成分について説明する。
[Other ingredients]
In addition to the bismaleimide compound (A), the resin composition of the present embodiment includes a maleimide compound (B) other than the bismaleimide compound (A), a cyanate ester compound (C), and an epoxy resin as necessary. It may further include one or more selected from the group consisting of (D), phenol resin (E), oxetane resin (F), benzoxazine compound (G), and compound (H) having a polymerizable unsaturated group. it can. Among these, it is preferable that a maleimide compound (B), a cyanate ester compound (C), and an epoxy resin (D) are included. Hereinafter, each component will be described.

(マレイミド化合物(B))
上記ビスマレイミド化合物(A)以外のマレイミド化合物(B)としては、特に限定されないが、マレイミド化合物としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N−フェニルマレイミド、N−ヒドロキシフェニルマレイミド、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3,5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3,5−ジエチル−4−マレイミドフェニル)メタン、式(6)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。このなかでも、ビス(4−マレイミドフェニル)メタン、2,2−ビス{4−(4−マレイミドフェノキシ)−フェニル}プロパン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、及び式(6)で表されるマレイミド化合物からなる群より選ばれる少なくとも1種が好ましい。このようなマレイミド化合物を含むことにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。マレイミド化合物は、1種単独で、又は2種以上を組み合わせて使用してもよい。
(式中、R5は、各々独立して、水素原子又はメチル基を表し、n1は1以上の整数を表す。)
(Maleimide compound (B))
The maleimide compound (B) other than the bismaleimide compound (A) is not particularly limited, but the maleimide compound is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. -Phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) ) Methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, a maleimide compound represented by formula (6), of these maleimide compounds Examples include prepolymers, or prepolymers of maleimide compounds and amine compounds. That. Among these, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and At least one selected from the group consisting of maleimide compounds represented by formula (6) is preferred. By including such a maleimide compound, the thermal expansion coefficient of the obtained cured product is further reduced, and the heat resistance tends to be further improved. Maleimide compounds may be used alone or in combination of two or more.
(In the formula, each R 5 independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)

マレイミド化合物(B)の含有量は、樹脂固形分100質量部に対して、好ましくは5〜30質量部であり、より好ましくは10〜25質量部であり、さらに好ましくは15〜20質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、耐熱性、硬化性がより優れる傾向にある。   The content of the maleimide compound (B) is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass, and further preferably 15 to 20 parts by mass with respect to 100 parts by mass of the resin solid content. is there. When the content of the maleimide compound (B) is within the above range, the heat resistance and curability tend to be more excellent.

(シアン酸エステル化合物(C))
シアン酸エステル化合物(C)としては、特に限定されないが、例えば、式(7)で示されるナフトールアラルキル型シアン酸エステル、式(8)で示されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5−ジメチル4−シアナトフェニル)メタン、ビス(4−シアナトフェニル)メタン、1,3−ジシアナトベンゼン、1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−ジシアナトナフタレン、1,4−ジシアナトナフタレン、1,6−ジシアナトナフタレン、1,8−ジシアナトナフタレン、2,6−ジシアナトナフタレン、2、7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4、4’−ジシアナトビフェニル、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、及び2、2’−ビス(4−シアナトフェニル)プロパン;これらシアン酸エステルのプレポリマー等が挙げられる。上述したシアン酸エステル化合物は、1種単独で、又は2種以上を組み合わせて使用してもよい。
(式(7)中、R6は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(7)中、n2は1以上の整数を表す。n2の上限値は、通常は10であり、好ましくは6である。)
(式(8)中、R7は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(8)中、n3は1以上の整数を表す。n3の上限値は、通常は10であり、好ましくは7である。)
(Cyanate ester compound (C))
Although it does not specifically limit as cyanate ester compound (C), For example, the naphthol aralkyl type cyanate ester shown by Formula (7), the novolak type cyanate ester and biphenyl aralkyl type cyanate ester shown by Formula (8) Bis (3,5-dimethyl-4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5-tricyanate Benzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4-cyanatophenyl) And ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, and 2,2′-bis (4-cyanatophenyl) propane; prepolymers of these cyanate esters. You may use the cyanate ester compound mentioned above individually by 1 type or in combination of 2 or more types.
(In formula (7), each R 6 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. In formula (7), n 2 represents an integer of 1 or more. N The upper limit of 2 is usually 10 and preferably 6)
(In formula (8), each R 7 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. In formula (8), n 3 represents an integer of 1 or more. N The upper limit of 3 is usually 10 and preferably 7)

このなかでも、シアン酸エステル化合物(C)が、式(7)で示されるナフトールアラルキル型シアン酸エステル、式(8)で示されるノボラック型シアン酸エステル、及びビフェニルアラルキル型シアン酸エステルからなる群より選ばれる1種以上を含むことが好ましく、式(7)で示されるナフトールアラルキル型シアン酸エステル及び式(8)で示されるノボラック型シアン酸エステルからなる群より選ばれる1種以上を含むことがより好ましい。このようなシアン酸エステル化合物(C)を用いることにより、難燃性により優れ、硬化性がより高く、かつ熱膨張係数がより低い硬化物が得られる傾向にある。   Among these, the cyanate ester compound (C) is a group consisting of a naphthol aralkyl cyanate ester represented by the formula (7), a novolak cyanate ester represented by the formula (8), and a biphenyl aralkyl cyanate ester. It is preferable to include at least one selected from the group consisting of naphthol aralkyl cyanate represented by the formula (7) and novolak cyanate ester represented by the formula (8). Is more preferable. By using such a cyanate ester compound (C), a cured product that is superior in flame retardancy, has higher curability, and has a lower thermal expansion coefficient tends to be obtained.

シアン酸エステル化合物(C)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜60質量部であり、より好ましくは10〜55質量部であり、さらに好ましくは10〜50質量部である。シアン酸エステル化合物(C)の含有量が上記範囲内であることにより、耐熱性、低誘電、低誘電正接等により優れる傾向にある。   The content of the cyanate ester compound (C) is preferably 10 to 60 parts by mass, more preferably 10 to 55 parts by mass, and further preferably 10 to 50 parts by mass with respect to 100 parts by mass of the resin solid content. Part. When the content of the cyanate ester compound (C) is within the above range, it tends to be superior in heat resistance, low dielectric constant, low dielectric loss tangent, and the like.

(エポキシ樹脂(D))
エポキシ樹脂(D)としては、特に限定されないが、例えば、ポリオキシナフチレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、或いはこれらのハロゲン化物等が挙げられる。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。このなかでも、ポリオキシナフチレン型エポキシ樹脂が好ましい。このようなエポキシ樹脂(D)を含むことにより、得られる硬化物の難燃性及び耐熱性がより向上する傾向にある。
(Epoxy resin (D))
The epoxy resin (D) is not particularly limited. For example, polyoxynaphthylene type epoxy resin, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak. Type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, xylene novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether Type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, trigly Diisocyanurate, glycidyl ester type epoxy resin, alicyclic epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolac type epoxy resin, phenol aralkyl novolak type epoxy resin, naphthol aralkyl novolak type epoxy resin, aralkyl novolak type epoxy resin, Biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, butadiene epoxidized compound, hydroxyl group-containing silicone resin and Examples thereof include compounds obtained by reaction with epichlorohydrin or halides thereof. These epoxy resins can be used alone or in combination of two or more. Among these, polyoxynaphthylene type epoxy resins are preferable. By including such an epoxy resin (D), there exists a tendency for the flame retardance and heat resistance of the hardened | cured material obtained to improve more.

エポキシ樹脂(D)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜45質量部であり、より好ましくは10〜40質量部であり、さらに好ましくは10〜35質量部である。エポキシ樹脂(D)の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。   The content of the epoxy resin (D) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and further preferably 10 to 35 parts by mass with respect to 100 parts by mass of the resin solid content. is there. When the content of the epoxy resin (D) is within the above range, the adhesiveness and flexibility tend to be excellent.

(フェノール樹脂(E))
フェノール樹脂(E)としては、特に限定されないが、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Phenolic resin (E))
Although it does not specifically limit as a phenol resin (E), For example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolak resin, bisphenol A novolak type phenol resin, Glycidyl ester type phenol resin, aralkyl novolac type phenol resin, biphenyl aralkyl type phenol resin, cresol novolac type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolac resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolak Type phenolic resin, phenol aralkyl type phenolic resin, naphthol aralkyl type phenolic resin, dicyclopenta Ene type phenolic resin, biphenyl type phenol resins, alicyclic phenol resins, polyol-type phenolic resin, a phosphorus-containing phenol resin, a hydroxyl group-containing silicone resins and the like, but is not particularly limited. These phenol resins can be used individually by 1 type or in combination of 2 or more types.

フェノール樹脂(E)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜45質量部であり、より好ましくは10〜40質量部であり、さらに好ましくは10〜35質量部である。フェノール樹脂(E)の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。   The content of the phenol resin (E) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and further preferably 10 to 35 parts by mass with respect to 100 parts by mass of the resin solid content. is there. When the content of the phenol resin (E) is within the above range, the adhesiveness and flexibility tend to be excellent.

(オキセタン樹脂(F))
オキセタン樹脂(F)としては、特に限定されないが、例えば、オキセタン、2−メチルオキセタン、2,2−ジメチルオキセタン、3−メチルオキセタン、3,3−ジメチルオキセタン等のアルキルオキセタン、3−メチル−3−メトキシメチルオキセタン、3,3’−ジ(トリフルオロメチル)パーフルオキセタン、2−クロロメチルオキセタン、3,3−ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT−101(東亞合成製商品名)、OXT−121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。
(Oxetane resin (F))
Although it does not specifically limit as oxetane resin (F), For example, alkyl oxetane, such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, 3,3-dimethyloxetane, 3-methyl-3 -Methoxymethyloxetane, 3,3'-di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name, manufactured by Toagosei Co., Ltd.) ), OXT-121 (trade name of Toagosei Co., Ltd.) and the like. These oxetane resins can be used alone or in combination of two or more.

オキセタン樹脂(F)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜45質量部であり、より好ましくは10〜40質量部であり、さらに好ましくは10〜35質量部である。オキセタン樹脂(F)の含有量が上記範囲内であることにより、密着性や可撓性等により優れる傾向にある。   The content of the oxetane resin (F) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the resin solid content. is there. When the content of the oxetane resin (F) is within the above range, the adhesiveness and flexibility tend to be superior.

(ベンゾオキサジン化合物(G))
ベンゾオキサジン化合物(G)としては、特に限定されないが、例えば、ビスフェノールA型ベンゾオキサジンBA−BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF−BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS−BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物(G)は、1種又は2種以上混合して用いることができる。
(Benzoxazine compound (G))
Although it does not specifically limit as a benzoxazine compound (G), For example, bisphenol A type benzoxazine BA-BXZ (trade name made by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name made by Konishi Chemical), bisphenol S type Examples include benzoxazine BS-BXZ (trade name, manufactured by Konishi Chemical). These benzoxazine compounds (G) can be used alone or in combination.

ベンゾオキサジン化合物(G)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜45質量部であり、より好ましくは10〜40質量部であり、さらに好ましくは10〜35質量部である。ベンゾオキサジン化合物(G)の含有量が上記範囲内であることにより、耐熱性等により優れる傾向にある。   The content of the benzoxazine compound (G) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 10 to 35 parts by mass with respect to 100 parts by mass of the resin solid content. It is. When the content of the benzoxazine compound (G) is within the above range, it tends to be more excellent in heat resistance and the like.

(重合可能な不飽和基を有する化合物(H))
重合可能な不飽和基を有する化合物(H)としては、特に限定されないが、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。
(Compound having a polymerizable unsaturated group (H))
Although it does not specifically limit as a compound (H) which has a polymerizable unsaturated group, For example, vinyl compounds, such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meta) ) Acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (Meth) acrylates such as (meth) acrylates or monohydric or polyhydric alcohols; bisphenol A type epoxy (meth) acrylates, bisphenol F type epoxy (meth) acrylates, etc. Carboxymethyl (meth) acrylate; benzocyclobutene resin; (bis) maleimide resins. These compounds having a polymerizable unsaturated group can be used alone or in combination.

重合可能な不飽和基を有する化合物(H)の含有量は、樹脂固形分100質量部に対して、好ましくは10〜45質量部であり、より好ましくは10〜40質量部であり、さらに好ましくは10〜35質量部である。重合可能な不飽和基を有する化合物(H)の含有量が上記範囲内であることにより、耐熱性や靱性等により優れる傾向にある。   The content of the polymerizable unsaturated group-containing compound (H) is preferably 10 to 45 parts by mass, more preferably 10 to 40 parts by mass, further preferably 100 parts by mass of the resin solid content. Is 10 to 35 parts by mass. When the content of the polymerizable unsaturated compound-containing compound (H) is within the above range, the heat resistance and toughness tend to be superior.

〔充填材(I)〕
本実施形態の樹脂組成物は、充填材(I)をさらに含有してもよい。充填材(I)としては、公知のものを適宜使用することができ、その種類は特に限定されず、積層板用途において一般に使用されている無機充填材及び/又は有機充填材を好適に用いることができる。
[Filler (I)]
The resin composition of this embodiment may further contain a filler (I). As the filler (I), known ones can be used as appropriate, and the kind thereof is not particularly limited, and inorganic fillers and / or organic fillers generally used in laminated plate applications are preferably used. Can do.

無機充填材としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカなどのシリカ類;ホワイトカーボンなどのケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウムなどの金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウムなどの金属窒化物;硫酸バリウムなどの金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウムなどの金属水和物;酸化モリブデン、モリブデン酸亜鉛などのモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛などの亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E−ガラス、A−ガラス、NE−ガラス、C−ガラス、L−ガラス、D−ガラス、S−ガラス、M−ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラスなどのガラス微粉末類を含む。)、中空ガラス、球状ガラスなどが挙げられる。無機充填材は、1種単独で用いても、2種以上を併用してもよい。このなかでも、ベーマイト及び/又はシリカ類を含むことが好ましい。このような無機充填材を用いることにより、熱膨張率がより低下する傾向にある。   Examples of the inorganic filler include, but are not limited to, silicas such as natural silica, fused silica, synthetic silica, amorphous silica, aerosil, and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, magnesium oxide, Metal oxides such as zirconium oxide; metal nitrides such as boron nitride, agglomerated boron nitride, silicon nitride, and aluminum nitride; metal sulfates such as barium sulfate; aluminum hydroxide, aluminum hydroxide heat-treated products (heating aluminum hydroxide) Treated and reduced in part of crystal water), metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc compounds such as zinc borate and zinc stannate; alumina , Clay, kaolin, talc, calcined clay, calcined Olin, calcined talc, mica, E-glass, A-glass, NE-glass, C-glass, L-glass, D-glass, S-glass, M-glass G20, short glass fiber (E glass, T glass, Including fine glass powders such as D glass, S glass, and Q glass), hollow glass, and spherical glass. An inorganic filler may be used individually by 1 type, or may use 2 or more types together. Among these, it is preferable to contain boehmite and / or silicas. By using such an inorganic filler, the thermal expansion coefficient tends to be further reduced.

また、有機充填材としては、特に限定されないが、例えば、スチレン型、ブタジエン型、アクリル型などのゴムパウダー;コアシェル型のゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダーなどが挙げられる。これらの充填材は、1種を単独で又は2種以上を適宜組み合わせて用いることができる。   Examples of the organic filler include, but are not limited to, rubber powders such as styrene type, butadiene type, and acrylic type; core shell type rubber powder; silicone resin powder; silicone rubber powder; These fillers can be used individually by 1 type or in combination of 2 or more types as appropriate.

充填材(I)の含有量は、特に限定されないが、樹脂固形分100質量部に対して、好ましくは50〜300質量部であり、より好ましくは75〜250質量部であり、さらに好ましくは100〜200質量部である。充填材(I)の含有量が上記範囲内であることにより、熱膨張率がより低下する傾向にある。   Although content of filler (I) is not specifically limited, Preferably it is 50-300 mass parts with respect to 100 mass parts of resin solid content, More preferably, it is 75-250 mass parts, More preferably, 100 -200 parts by mass. When the content of the filler (I) is within the above range, the coefficient of thermal expansion tends to be further reduced.

〔シランカップリング剤及び湿潤分散剤〕
本実施形態の樹脂組成物は、シランカップリング剤や湿潤分散剤をさらに含んでもよい。シランカップリング剤や湿潤分散剤を含むことにより、上記充填材の分散性、樹脂成分、充填材、及び後述する基材の接着強度がより向上する傾向にある。
[Silane coupling agent and wetting and dispersing agent]
The resin composition of this embodiment may further contain a silane coupling agent or a wetting and dispersing agent. By including a silane coupling agent and a wetting and dispersing agent, the dispersibility of the filler, the resin component, the filler, and the adhesive strength of the substrate described later tend to be further improved.

シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されないが、例えば、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランなどのアミノシラン系化合物;γ−グリシドキシプロピルトリメトキシシランなどのエポキシシラン系化合物;γ−アクリロキシプロピルトリメトキシシランなどのアクリルシラン系化合物;N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系化合物;フェニルシラン系化合物などが挙げられる。シランカップリング剤は、1種単独で用いても、2種以上を併用してもよい。   Although it will not specifically limit if it is a silane coupling agent generally used for the surface treatment of an inorganic substance as a silane coupling agent, For example, (gamma) -aminopropyl triethoxysilane, N-beta- (aminoethyl) -gamma Aminosilane compounds such as aminopropyltrimethoxysilane; Epoxysilane compounds such as γ-glycidoxypropyltrimethoxysilane; Acrylicsilane compounds such as γ-acryloxypropyltrimethoxysilane; N-β- (N- Cationic silane compounds such as vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride; phenylsilane compounds and the like. A silane coupling agent may be used individually by 1 type, or may use 2 or more types together.

湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されないが、例えば、ビッグケミー・ジャパン(株)製のDISPER−110、111、118、180、161、BYK−W996、W9010、W903等が挙げられる。   The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints. For example, DISPER-110, 111, 118, 180, 161, BYK-W996 manufactured by Big Chemie Japan Co., Ltd. , W9010, W903, and the like.

〔硬化促進剤〕
本実施形態の樹脂組成物は、硬化促進剤をさらに含んでもよい。硬化促進剤としては、特に限定されないが、例えば、トリフェニルイミダゾール等のイミダゾール類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ−tert−ブチル−ジ−パーフタレートなどの有機過酸化物;アゾビスニトリルなどのアゾ化合物;N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、N,N−ジメチルトルイジン、2−N−エチルアニリノエタノール、トリ−n−ブチルアミン、ピリジン、キノリン、N−メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N−メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。これらのなかでも、トリフェニルイミダゾールが硬化反応を促進し、ガラス転移温度、熱膨張率が優れる傾向にあるため、特に好ましい。
[Curing accelerator]
The resin composition of this embodiment may further contain a curing accelerator. Although it does not specifically limit as a hardening accelerator, For example, imidazoles, such as triphenylimidazole; benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, etc. Organic peroxides; azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine , Pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, tertiary amines such as N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol ; Organic metal salts such as lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, iron acetylacetone; these organic metal salts are phenol, bisphenol, etc. Inorganic metal salts such as tin chloride, zinc chloride, and aluminum chloride; ditinyl tin oxide, and other organic tin compounds such as alkyl tin and alkyl tin oxide. Among these, triphenylimidazole promotes the curing reaction and is particularly preferable because it tends to have excellent glass transition temperature and coefficient of thermal expansion.

〔溶剤〕
本実施形態の樹脂組成物は、溶剤をさらに含んでもよい。溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性がより向上するとともに後述する基材への含浸性がより向上する傾向にある。
〔solvent〕
The resin composition of this embodiment may further contain a solvent. By including the solvent, the viscosity at the time of preparing the resin composition is lowered, the handling property is further improved, and the impregnation property to the base material described later tends to be further improved.

溶剤としては、樹脂組成物中の樹脂成分の一部又は全部を溶解可能なものであれば、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドなどのアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートなどが挙げられる。溶剤は、1種単独で用いても、2種以上を併用してもよい。   The solvent is not particularly limited as long as it can dissolve a part or all of the resin component in the resin composition. For example, ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatics such as toluene and xylene Group hydrocarbons; amides such as dimethylformamide; propylene glycol monomethyl ether and acetate thereof. A solvent may be used individually by 1 type, or may use 2 or more types together.

〔樹脂組成物の製造方法〕
本実施形態の樹脂組成物の製造方法は、特に限定されないが、例えば、上述した各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。この際、各成分を均一に溶解或いは分散させるため、攪拌、混合、混練処理などの公知の処理を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する充填材の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、又は、公転又は自転型の混合装置などの公知の装置を用いて適宜行うことができる。
[Method for producing resin composition]
Although the manufacturing method of the resin composition of this embodiment is not specifically limited, For example, the method of mix | blending each component mentioned above in a solvent one by one and fully stirring is mentioned. At this time, in order to uniformly dissolve or disperse each component, known processes such as stirring, mixing, and kneading can be performed. Specifically, the dispersibility of the filler with respect to the resin composition can be improved by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability. The above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving or rotating mixing device.

また、樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。   In preparing the resin composition, an organic solvent can be used as necessary. The kind of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.

〔用途〕
上記電子材料用樹脂組成物は、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板として好適に用いることができ、プリント配線板用途により好適に用いることができる。以下、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板について説明する。
[Use]
The said resin composition for electronic materials can be used suitably as a prepreg, a resin sheet, a metal foil tension laminated board, or a printed wiring board, and can be used suitably according to a printed wiring board use. Hereinafter, the prepreg, the resin sheet, the metal foil-clad laminate, or the printed wiring board will be described.

〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された、上記樹脂組成物と、を有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態における樹脂成分を基材に含浸又は塗布させた後、100〜200℃の乾燥機中で1〜30分加熱するなどして半硬化(Bステ−ジ化)させることで、本実施形態のプリプレグを作製することができる。
[Prepreg]
The prepreg of this embodiment has a base material and the resin composition impregnated or coated on the base material. The manufacturing method of a prepreg can be performed according to a conventional method, and is not specifically limited. For example, after impregnating or applying the resin component in the present embodiment to the base material, by semi-curing (B stage) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes, The prepreg of this embodiment can be produced.

樹脂組成物(充填材(I)を含む)の含有量は、プリプレグの総量に対して、好ましくは30〜90質量%であり、より好ましくは35〜85質量%であり、好ましくは40〜80質量%である。樹脂組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。   The content of the resin composition (including the filler (I)) is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, and preferably 40 to 80% with respect to the total amount of the prepreg. % By mass. When the content of the resin composition is within the above range, the moldability tends to be further improved.

(基材)
基材としては、特に限定されず、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。基材を構成する繊維の具体例としては、特に限定されないが、例えば、Eガラス、Dガラス、Sガラス、Qガラス、球状ガラス、NEガラス、Lガラス、Tガラスなどのガラス繊維;クォーツなどのガラス以外の無機繊維;ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)などの全芳香族ポリアミド;2,6−ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)などのポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミドなどの有機繊維が挙げられる。これらのなかでも低熱膨張率の観点から、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる少なくとも1種が好ましい。これら基材は、1種単独で用いても、2種以上を併用してもよい。
(Base material)
It does not specifically limit as a base material, The well-known thing used for various printed wiring board materials can be selected suitably according to the intended use and performance, and can be used. Although it does not specifically limit as a specific example of the fiber which comprises a base material, For example, glass fibers, such as E glass, D glass, S glass, Q glass, spherical glass, NE glass, L glass, T glass; Quartz etc. Inorganic fibers other than glass: polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (Technola (registered trademark), Teijin Techno Products Limited Polyesters such as 2,6-hydroxynaphthoic acid / parahydroxybenzoic acid (Vectran (registered trademark), manufactured by Kuraray Co., Ltd.), Zexion (registered trademark, manufactured by KB Selen), etc .; polyparaphenylene Benzoxazole (Zylon (registered trademark), manufactured by Toyobo Co., Ltd.), poly Organic fibers such as imide can be mentioned. Among these, from the viewpoint of a low thermal expansion coefficient, at least one selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers is preferable. These base materials may be used individually by 1 type, or may use 2 or more types together.

基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01〜0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m2以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラスのガラス繊維からなるガラス織布がより好ましい。 Although it does not specifically limit as a shape of a base material, For example, a woven fabric, a nonwoven fabric, roving, a chopped strand mat, a surfacing mat, etc. are mentioned. The weaving method of the woven fabric is not particularly limited, and for example, plain weave, Nanako weave, twill weave and the like are known, and can be appropriately selected from these known ones depending on the intended use and performance. . In addition, a glass woven fabric whose surface is treated with a fiber-opening treatment or a silane coupling agent is preferably used. Although the thickness and mass of the substrate are not particularly limited, those having a thickness of about 0.01 to 0.3 mm are preferably used. In particular, from the viewpoint of strength and water absorption, the substrate is preferably a glass woven fabric having a thickness of 200 μm or less and a mass of 250 g / m 2 or less, and a glass woven fabric made of glass fibers of E glass, S glass, and T glass. More preferred.

〔レジンシート〕
本実施形態のレジンシートは、シート基材と、該シート基材の片面または両面に積層された、上記樹脂組成物と、を有する。レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルムなどのシート基材(支持体)に、直接、プリプレグ等に用いられる熱硬化性樹脂(無機充填材を含む)を塗布及び乾燥して製造することができる。
(Resin sheet)
The resin sheet of this embodiment has a sheet base material and the resin composition laminated on one or both sides of the sheet base material. The resin sheet is used as one means of thinning, and for example, a thermosetting resin (inorganic filler) used for a prepreg or the like directly on a sheet substrate (support) such as a metal foil or a film. Including) can be applied and dried.

シート基材としては、特に限定されないが、各種プリント配線板材料に用いられている公知の物もの使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミ箔、銅箔、金箔など挙げられる。その中でも電解銅箔、PETフィルムが好ましい。   Although it does not specifically limit as a sheet | seat base material, The well-known thing used for various printed wiring board materials can be used. Examples thereof include a polyimide film, a polyamide film, a polyester film, a polyethylene terephthalate (PET) film, a polybutylene terephthalate (PBT) film, a polypropylene (PP) film, a polyethylene (PE) film, an aluminum foil, a copper foil, and a gold foil. Among these, electrolytic copper foil and PET film are preferable.

塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。   Examples of the application method include a method in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied onto a sheet substrate with a bar coater, a die coater, a doctor blade, a baker applicator, or the like.

レジンシートは、上記樹脂組成物をシート基材に塗布後、半硬化(Bステージ化)させたものであることが好ましい。具体的には、例えば、上記樹脂組成物を銅箔などのシート基材に塗布した後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、レジンシートを製造する方法などが挙げられる。シート基材に対する樹脂組成物の付着量は、樹脂シートの樹脂厚で1〜300μmの範囲が好ましい。   The resin sheet is preferably a resin sheet obtained by applying the resin composition to a sheet base material and then semi-curing (B-stage). Specifically, for example, after applying the resin composition to a sheet base material such as copper foil, the resin sheet is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, The manufacturing method etc. are mentioned. The amount of the resin composition attached to the sheet substrate is preferably in the range of 1 to 300 μm in terms of the resin thickness of the resin sheet.

なお、レジンシートは、シート基材から剥離して用いることもできる。   The resin sheet can be used after being peeled from the sheet base material.

〔金属箔張積層板〕
本実施形態の金属箔張積層板は、絶縁層と、該絶縁層の片面または両面に積層形成された導体層と、を有し、絶縁層が、上記樹脂組成物を含む。より具体的には、絶縁層はプリプレグ又は上記レジンシートを用いることができる。すなわち、本実施形態の金属箔張積層板は、上記プリプレグ及び上記レジンシートからなる群より選ばれる少なくとも1種と、金属箔とを積層して硬化して得られるものである。
[Metal foil-clad laminate]
The metal foil-clad laminate of this embodiment has an insulating layer and a conductor layer formed on one side or both sides of the insulating layer, and the insulating layer contains the resin composition. More specifically, a prepreg or the above resin sheet can be used for the insulating layer. That is, the metal foil-clad laminate of this embodiment is obtained by laminating and curing at least one selected from the group consisting of the prepreg and the resin sheet, and the metal foil.

絶縁層は、上記樹脂組成物、1層のプリプレグ、又はレジンシートからなるものであっても、上記樹脂組成物、プリプレグ、又はレジンシートを2層以上積層したものであってもよい。   The insulating layer may be composed of the above resin composition, one prepreg, or a resin sheet, or may be a laminate of two or more of the above resin composition, prepreg, or resin sheet.

導体層は、銅やアルミニウムなどの金属箔とすることができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔などの公知の銅箔が好ましい。また、導体層の厚みは、特に限定されないが、1〜70μmが好ましく、より好ましくは1.5〜35μmである。   The conductor layer can be a metal foil such as copper or aluminum. Although the metal foil used here will not be specifically limited if it is used for printed wiring board material, Well-known copper foils, such as a rolled copper foil and an electrolytic copper foil, are preferable. Moreover, although the thickness of a conductor layer is not specifically limited, 1-70 micrometers is preferable, More preferably, it is 1.5-35 micrometers.

金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができる。また、金属箔張積層板の成形において、温度は100〜300℃、圧力は面圧2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。さらに、必要に応じて、150〜300℃の温度で後硬化を行うこともできる。また、上述のプリプレグと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 The molding method and molding conditions of the metal foil-clad laminate are not particularly limited, and general techniques and conditions of a printed wiring board laminate and a multilayer board can be applied. For example, a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate. In forming a metal foil-clad laminate, the temperature is generally 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally 0.05 to 5 hours. Furthermore, if necessary, post-curing can be performed at a temperature of 150 to 300 ° C. Also, a multilayer board can be formed by laminating and combining the above-described prepreg and a separately prepared wiring board for an inner layer.

〔プリント配線板〕
本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層とを含むプリント配線板であって、前記絶縁層が、上記樹脂組成物を含む。上記の金属箔張積層板は、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、上記の金属箔張積層板は、低い熱膨張率、良好な成形性及び耐薬品性を有し、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。
[Printed wiring board]
The printed wiring board of this embodiment is a printed wiring board including an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition. The metal foil-clad laminate can be suitably used as a printed wiring board by forming a predetermined wiring pattern. The above metal foil-clad laminate has a low coefficient of thermal expansion, good moldability and chemical resistance, and is particularly effectively used as a printed wiring board for semiconductor packages that require such performance. Can do.

本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上述のプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。   Specifically, the printed wiring board of this embodiment can be manufactured by the following method, for example. First, the metal foil-clad laminate (such as a copper-clad laminate) is prepared. An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate. If necessary, surface treatment is performed on the inner layer circuit surface of the inner layer substrate to increase the adhesive strength, then the required number of the prepregs are stacked on the inner layer circuit surface, and a metal foil for the outer layer circuit is laminated on the outer side. Then, it is integrally molded by heating and pressing. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after this multi-layer laminate is subjected to drilling for through holes and via holes, desmear treatment is performed to remove smears, which are resin residues derived from the resin component contained in the cured product layer. . After that, a plated metal film is formed on the wall surface of this hole to connect the inner layer circuit and the metal foil for the outer layer circuit, and the outer layer circuit is formed by etching the metal foil for the outer layer circuit to produce a printed wiring board. Is done.

例えば、上述のプリプレグ(基材及びこれに添着された上述の樹脂組成物)、金属箔張積層板の樹脂組成物層(上述の樹脂組成物からなる層)が、上述の樹脂組成物を含む絶縁層を構成することになる。   For example, the above-described prepreg (the base material and the above-described resin composition attached thereto) and the metal foil-clad laminate resin composition layer (the layer made of the above-described resin composition) include the above-described resin composition. An insulating layer is formed.

また、金属箔張積層板を用いない場合には、上記プリプレグ、上記レジンシート、上記樹脂組成物に、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。   When a metal foil-clad laminate is not used, a printed wiring board may be produced by forming a conductor layer to be a circuit on the prepreg, the resin sheet, or the resin composition. At this time, a method of electroless plating can be used for forming the conductor layer.

本実施形態のプリント配線板は、上述の絶縁層が半導体実装時のリフロー温度下においても優れた弾性率を維持することで、半導体プラスチックパッケージの反りを効果的に抑制することから、半導体パッケージ用プリント配線板として、殊に有効に用いることができる。   The printed wiring board of the present embodiment effectively suppresses the warp of the semiconductor plastic package by maintaining the excellent elastic modulus even under the reflow temperature at the time of mounting the semiconductor on the above-described insulating layer. It can be used particularly effectively as a printed wiring board.

以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The present invention is not limited in any way by the following examples.

〔合成例1〕
反応器内で、α−ナフトールアラルキル型フェノール樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製:ナフトールアラルキルの繰り返し単位数nは1〜5のものが含まれる。)0.47mol(OH基換算)を、クロロホルム500mLに溶解させ、この溶液にトリエチルアミン0.7molを添加した。温度を−10℃に保ちながら反応器内に0.93molの塩化シアンのクロロホルム溶液300gを1.5時間かけて滴下し、滴下終了後、30分撹拌した。その後さらに、0.1molのトリエチルアミンとクロロホルム30gの混合溶液を反応器内に滴下し、30分撹拌して反応を完結させた。副生したトリエチルアミンの塩酸塩を反応液から濾別した後、得られた濾液を0.1N塩酸500mLで洗浄した後、水500mLでの洗浄を4回繰り返した。これを硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、さらに90℃で減圧脱気することにより、褐色固形のα−ナフトールアラルキル型シアン酸エステル樹脂(SNCN)を得た。得られたα−ナフトールアラルキル型シアン酸エステル樹脂を赤外吸収スペクトルにより分析したところ、2264cm-1付近のシアン酸エステル基の吸収が確認された。
[Synthesis Example 1]
In the reactor, α-naphthol aralkyl type phenol resin (SN495V, OH group equivalent: 236 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.): The number of repeating units n of naphthol aralkyl includes 1 to 5. ) 0.47 mol (OH group equivalent) was dissolved in 500 mL of chloroform, and 0.7 mol of triethylamine was added to this solution. While maintaining the temperature at −10 ° C., 300 g of 0.93 mol of cyanogen chloride in chloroform was added dropwise to the reactor over 1.5 hours, and the mixture was stirred for 30 minutes after completion of the addition. Thereafter, a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was dropped into the reactor and stirred for 30 minutes to complete the reaction. After triethylamine hydrochloride formed as a by-product was filtered off from the reaction solution, the obtained filtrate was washed with 500 mL of 0.1N hydrochloric acid, and then washed with 500 mL of water four times. This was dried with sodium sulfate, evaporated at 75 ° C., and degassed at 90 ° C. under reduced pressure to obtain a brown solid α-naphthol aralkyl cyanate ester resin (SNCN). When the obtained α-naphthol aralkyl type cyanate ester resin was analyzed by infrared absorption spectrum, absorption of a cyanate ester group in the vicinity of 2264 cm −1 was confirmed.

〔実施例1〕
ノボラック型マレイミド化合物(BMI−2300、大和化成工業(株)製)を17.3質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を28.7質量部、ポリオキシナフチレン型エポキシ樹脂(HP−6000、DIC(株)製)を29.4質量部、ビスマレイミド化合物(BMI−5000、Designer Molecules inc.製)を24.6質量部、シリカ(SC−5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5−トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
[Example 1]
17.3 parts by mass of a novolac maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 28.7 parts by mass of the naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1, and polyoxynaphthylene type 29.4 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 24.6 parts by mass of bismaleimide compound (BMI-5000, manufactured by Designer Moleculars Inc.), silica (SC-5050MOB, average particle diameter) A varnish was obtained by mixing 120 parts by mass of 1.5 μm, manufactured by Admatex Co., Ltd., and 0.5 parts by mass of 2,4,5-triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.). This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 44.5% by mass. A metal foil-clad laminate was prepared using the obtained prepreg, and the thermal expansion coefficient measured by the following TMA tension method is shown in Table 1.

なお、ビスマレイミド化合物(BMI−5000)は、式(3)において、R1及びR3が、オクチル基であり、R2が、ヘキシル基とオクチル基を置換基として有するシクロヘキシル基であり、重量平均分子量が5000である化合物である。 In the bismaleimide compound (BMI-5000), in formula (3), R 1 and R 3 are octyl groups, R 2 is a cyclohexyl group having a hexyl group and an octyl group as substituents, and the weight It is a compound having an average molecular weight of 5000.

〔比較例1〕
ノボラック型マレイミド化合物(BMI−2300、大和化成工業(株)製)を24.6質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を36.8質量部、ポリオキシナフチレン型エポキシ樹脂(HP−6000、DIC(株)製)を38.6質量部、シリカ(SC−5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5−トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
[Comparative Example 1]
24.6 parts by mass of a novolac maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 36.8 parts by mass of the naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1, and polyoxynaphthylene type 38.6 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 120 parts by mass of silica (SC-5050MOB, average particle size 1.5 μm, manufactured by Admatex Co., Ltd.), 2, 4, 5 -0.5 parts by mass of triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 44.5% by mass. A metal foil-clad laminate was prepared using the obtained prepreg, and the thermal expansion coefficient measured by the following TMA tension method is shown in Table 1.

〔比較例2〕
ノボラック型マレイミド化合物(BMI−2300、大和化成工業(株)製)を12.7質量部、合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を30.9質量部、ポリオキシナフチレン型エポキシ樹脂(HP−6000、DIC(株)製)を31.8質量部、下記式で表されるビスマレイミド化合物(BMI−1000P、大和化成工業(株)製)を24.6質量部、シリカ(SC−5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を120質量部、2,4,5−トリフェニルイミダゾール(東京化成工業(株)製)を0.5質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量44.5質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記のTMA引張法にて熱膨張係数を測定した結果を表1に示した。
(式中、nの平均値は14である。)
[Comparative Example 2]
12.7 parts by mass of a novolac maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), 30.9 parts by mass of the naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1, and polyoxynaphthylene type 31.8 parts by mass of epoxy resin (HP-6000, manufactured by DIC Corporation), 24.6 parts by mass of bismaleimide compound (BMI-1000P, manufactured by Daiwa Kasei Kogyo Co., Ltd.) represented by the following formula, silica 120 parts by mass (SC-5050 MOB, average particle size 1.5 μm, manufactured by Admatechs Co., Ltd.) and 0.5 part by mass of 2,4,5-triphenylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) To get a varnish. This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 44.5% by mass. A metal foil-clad laminate was prepared using the obtained prepreg, and the thermal expansion coefficient measured by the following TMA tension method is shown in Table 1.
(In the formula, the average value of n is 14.)

〔金属箔張積層板の作製〕
実施例1、比較例1又は比較例2で得られたプリプレグを8枚重ねて、12μm厚の電解銅箔(3EC−III、三井金属鉱業(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの金属箔張積層板を得た。
[Production of metal foil-clad laminate]
Eight prepregs obtained in Example 1, Comparative Example 1 or Comparative Example 2 were stacked, and 12 μm thick electrolytic copper foil (3EC-III, manufactured by Mitsui Mining & Smelting Co., Ltd.) was placed up and down, and the pressure was 30 kgf / Lamination was performed at cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a metal foil-clad laminate with an insulating layer thickness of 0.8 mm.

〔熱膨張係数(TMA引張法)〕
得られた8枚重ねの金属箔張積層板に対し、JlS C 6481に規定されるTMA法(Thermo−mechanical analysis)により積層板の絶縁層についてガラスクロスの縦方向の熱膨張係数を測定し、その値を求めた。具体的には、上記で得られた金属箔張積層板の両面の銅箔をエッチングにより除去した後に、熱機械分析装置(TAインスツルメント製)でTMA引張法にて測定を実施した。TMA引張法では、荷重2.5g、チャック間10mm、40℃から340℃まで毎分10℃で昇温し、60℃から120℃における線熱膨張係数(ppm/℃)を測定した。
[Thermal expansion coefficient (TMA tension method)]
With respect to the obtained eight-layer metal foil-clad laminate, the thermal expansion coefficient of the glass cloth in the longitudinal direction was measured for the insulating layer of the laminate by the TMA method (Thermo-mechanical analysis) defined in JLSC 6481. The value was obtained. Specifically, after removing the copper foils on both sides of the metal foil-clad laminate obtained above by etching, measurement was carried out by a TMA tensile method using a thermomechanical analyzer (TA Instruments). In the TMA tensile method, the load was 2.5 g, the chuck was 10 mm, the temperature was raised from 40 ° C. to 340 ° C. at 10 ° C. per minute, and the linear thermal expansion coefficient (ppm / ° C.) from 60 ° C. to 120 ° C. was measured.

〔実施例2〕
合成例1で得られたナフトールアラルキル型シアン酸エステル樹脂を50質量部、ビスマレイミド化合物(BMI−3000J、Designer Molecules inc.製)を50質量部、シリカ(SC−5050MOB、平均粒子径1.5μm、アドマテックス(株)製)を100質量部、オクチル酸亜鉛(日本化学産業(株)製)を0.05質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記の方法にて物性評価した結果を表2に示した。なお、熱膨張係数はTMA圧縮法で測定した。
[Example 2]
50 parts by mass of the naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1, 50 parts by mass of a bismaleimide compound (BMI-3000J, manufactured by Designer Moleculars Inc.), silica (SC-5050MOB, average particle size 1.5 μm) 100 parts by mass of Admatechs Co., Ltd.) and 0.05 parts by mass of zinc octylate (Nippon Chemical Industry Co., Ltd.) were mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated on a 0.1 mm thick T glass woven fabric, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 50 mass%. Table 2 shows the results of producing a metal foil-clad laminate using the obtained prepreg and evaluating the physical properties by the following methods. The thermal expansion coefficient was measured by the TMA compression method.

なお、ビスマレイミド化合物(BMI−3000J)は、式(3)において、R1及びR3が、オクチル基であり、R2が、ヘキシル基とオクチル基を置換基として有するシクロヘキシル基であり、重量平均分子量が3000である化合物である。 In the bismaleimide compound (BMI-3000J), in formula (3), R 1 and R 3 are octyl groups, R 2 is a cyclohexyl group having a hexyl group and an octyl group as substituents, and weight A compound having an average molecular weight of 3000.

〔比較例3〕
ビスマレイミド化合物(BMI−3000J)に代えて、ノボラック型マレイミド化合物(BMI−2300、大和化成工業(株)製)を50質量部用い、オクチル酸亜鉛の使用量を0.1質量部としたこと以外は、実施例2と同様にして、樹脂含有量50質量%のプリプレグを得た。得られたプリプレグを用いて金属箔張積層板を作製し、下記の方法にて物性評価した結果を表2に示した。なお、熱膨張係数はTMA圧縮法で測定した。
[Comparative Example 3]
In place of the bismaleimide compound (BMI-3000J), 50 parts by mass of a novolac maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) was used, and the amount of zinc octylate used was 0.1 parts by mass. Except for the above, a prepreg having a resin content of 50% by mass was obtained in the same manner as in Example 2. Table 2 shows the results of producing a metal foil-clad laminate using the obtained prepreg and evaluating the physical properties by the following methods. The thermal expansion coefficient was measured by the TMA compression method.

〔金属箔張積層板の作製〕
実施例2又は比較例3で得られたプリプレグを8枚重ねて、12μm厚の電解銅箔(3EC−M3−VLP、三井金属(株)製)を上下に配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mmの金属箔張積層板を得た。
[Production of metal foil-clad laminate]
Eight prepregs obtained in Example 2 or Comparative Example 3 were stacked, and 12 μm-thick electrolytic copper foil (3EC-M3-VLP, manufactured by Mitsui Kinzoku Co., Ltd.) was placed up and down, with a pressure of 30 kgf / cm 2 , Lamination molding was performed at a temperature of 220 ° C. for 120 minutes to obtain a metal foil-clad laminate with an insulating layer thickness of 0.8 mm.

〔ガラス転移温度〕
得られた8枚重ねの金属箔張積層板について、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法によりガラス転移温度を測定した。
〔Glass-transition temperature〕
With respect to the obtained 8-layer metal foil-clad laminate, the glass transition temperature was measured by the DMA method with a dynamic viscoelasticity analyzer (TA Instruments) in accordance with JIS C6481.

〔熱膨張係数(TMA圧縮法)〕
得られた8枚重ねの金属箔張積層板に対し、JlS C 6481に規定されるTMA法(Thermo−mechanical analysis)により積層板の絶縁層についてガラスクロスの縦方向の熱膨張係数を測定し、その値を求めた。具体的には、上記で得られた金属箔張積層板の両面の銅箔をエッチングにより除去した後に、熱機械分析装置(TAインスツルメント製)でTMA圧縮法にて測定を実施した。TMA圧縮法では、荷重5g、40℃から340℃まで毎分10℃で昇温し、60℃から120℃における線熱膨張係数(ppm/℃)を測定した。
[Thermal expansion coefficient (TMA compression method)]
With respect to the obtained eight-layer metal foil-clad laminate, the thermal expansion coefficient of the glass cloth in the longitudinal direction was measured for the insulating layer of the laminate by the TMA method (Thermo-mechanical analysis) defined in JLSC 6481. The value was obtained. Specifically, after removing the copper foil on both surfaces of the metal foil-clad laminate obtained above by etching, measurement was performed by a TMA compression method with a thermomechanical analyzer (TA Instruments). In the TMA compression method, the load was 5 g, the temperature was raised from 40 ° C. to 340 ° C. at 10 ° C. per minute, and the linear thermal expansion coefficient (ppm / ° C.) from 60 ° C. to 120 ° C. was measured.

〔積層板誘電率〕
銅張り積層板の銅箔を除去した試験片(n=1)を使用し、空洞共振器摂動法(Agilent 8722ES,アジレントテクノロジー製)にて2、10GHzの誘電率の測定を3回実施し、その平均値を求めた。
[Laminate dielectric constant]
Using the test piece (n = 1) from which the copper foil of the copper-clad laminate was removed, the dielectric constant of 2, 10 GHz was measured three times by the cavity resonator perturbation method (Agilent 8722ES, manufactured by Agilent Technologies) The average value was obtained.

〔積層板誘電正接〕
銅張り積層板の銅箔を除去した試験片(n=1)を使用し、空洞共振器摂動法(Agilent 8722ES,アジレントテクノロジー製)にて2、10GHzの誘電正接の測定を3回実施し、その平均値を求めた。
[Laminated dielectric loss tangent]
Using the test piece (n = 1) from which the copper foil of the copper-clad laminate was removed, the dielectric loss tangent measurement of 2, 10 GHz was performed 3 times by the cavity resonator perturbation method (Agilent 8722ES, manufactured by Agilent Technologies), The average value was obtained.

〔熱重量減少率〕
得られた絶縁層厚さ0.8mmの金属箔張積層板の銅箔をエッチングにより除去した後に、JIS K7120−1987に準拠し、示差熱熱重量同時測定装置TG/DTA6200(エス・アイ・アイ・ナノテクノロジー(株)製)により、試験片3mm×3mm×0.8mm、窒素流通下、開始温度300℃、昇温速度10℃/分で昇温した際の450℃到達時点における熱重量減少率(熱分解量(%))、また、熱重量減少率が1%となる温度について、下記式に基づき求めた。
熱重量減少率(%)=(I−J)/I×100
(Iは開始温度での重量を、Jは450℃における重量を表す。)
[Thermal weight reduction rate]
After removing the copper foil of the obtained metal foil-clad laminate with an insulating layer thickness of 0.8 mm by etching, in accordance with JIS K7120-1987, a differential thermothermal gravimetric simultaneous measurement device TG / DTA6200 (S.I.I.・ The test piece 3mm x 3mm x 0.8mm by Nanotechnology Co., Ltd., decrease in thermal weight when reaching 450 ° C when heated at a starting temperature of 300 ° C and a heating rate of 10 ° C / min under nitrogen flow The temperature at which the rate (thermal decomposition amount (%)) and the thermogravimetric reduction rate were 1% were determined based on the following formula.
Thermal weight loss rate (%) = (I−J) / I × 100
(I represents the weight at the starting temperature, and J represents the weight at 450 ° C.)

本発明の電子材料用樹脂組成物は、プリプレグ、レジンシート、金属箔張積層板、又はプリント配線板の材料として産業上の利用可能性を有する。   The resin composition for electronic materials of the present invention has industrial applicability as a material for a prepreg, a resin sheet, a metal foil-clad laminate, or a printed wiring board.

Claims (17)

ビスマレイミド化合物(A)を含み、
該ビスマレイミド化合物(A)が、マレイミド基2個と、下記式(1)で表されるポリイミド基1個以上と、を有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、前記ポリイミド基の両端に結合している、
電子材料用樹脂組成物。
A bismaleimide compound (A),
The bismaleimide compound (A) has two maleimide groups and one or more polyimide groups represented by the following formula (1),
The two maleimide groups are each independently bonded to both ends of the polyimide group through at least a first linking group in which 8 or more atoms are linearly connected.
Resin composition for electronic materials.
前記ビスマレイミド化合物(A)が、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基1個以上をさらに有し、
2個の前記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した前記第1の連結基を介して前記環状炭化水素基に結合し、
前記ポリイミド基は、各々独立して、8以上の原子が直鎖状に連結した第2の連結基を介して前記環状炭化水素基に結合している、
請求項1に記載の電子材料用樹脂組成物。
The bismaleimide compound (A) further has one or more cyclic hydrocarbon groups that may contain a hetero atom having 4 to 10 atoms constituting the ring,
Each of the two maleimide groups is independently bonded to the cyclic hydrocarbon group via the first linking group in which 8 or more atoms are linearly linked;
Each of the polyimide groups is independently bonded to the cyclic hydrocarbon group via a second linking group in which 8 or more atoms are connected in a straight chain.
The resin composition for electronic materials according to claim 1.
前記環状炭化水素基が、脂環基である、
請求項2に記載の電子材料用樹脂組成物。
The cyclic hydrocarbon group is an alicyclic group;
The resin composition for electronic materials according to claim 2.
前記第1の連結基及び/又は前記第2の連結基が、置換又は非置換の2価の炭化水素基である、
請求項1〜3のいずれか一項に記載の電子材料用樹脂組成物。
The first linking group and / or the second linking group is a substituted or unsubstituted divalent hydrocarbon group.
The resin composition for electronic materials as described in any one of Claims 1-3.
前記ビスマレイミド化合物(A)が下記式(2)で表される繰返し単位を有する、
請求項1〜4のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表す。)
The bismaleimide compound (A) has a repeating unit represented by the following formula (2).
The resin composition for electronic materials as described in any one of Claims 1-4.
(In the formula, R 1 and R 3 each independently represent a hydrocarbon group in which 8 or more atoms are linked in a straight chain, and R 2 represents the number of atoms constituting the ring, which is substituted or unsubstituted. Represents a cyclic hydrocarbon group which may contain 4 or more and 10 or less heteroatoms.)
前記ビスマレイミド化合物(A)が下記式(3)で表される直鎖状ポリマー構造を有する、
請求項1〜5のいずれか一項に記載の電子材料用樹脂組成物。
(式中、R1及びR3は、各々独立して、8以上の原子が直鎖状に連結した炭化水素基を表し、R2は、各々独立して、置換又は非置換の、環を構成する原子数が4以上10以下のヘテロ原子を含んでもよい環状炭化水素基を表し、nは1〜10の数を表す。)
The bismaleimide compound (A) has a linear polymer structure represented by the following formula (3).
The resin composition for electronic materials as described in any one of Claims 1-5.
(Wherein R 1 and R 3 each independently represents a hydrocarbon group in which 8 or more atoms are linearly linked, and R 2 each independently represents a substituted or unsubstituted ring. The cyclic hydrocarbon group which may contain a hetero atom having 4 to 10 atoms is included, and n represents a number of 1 to 10.
前記ビスマレイミド化合物(A)の重量平均分子量が、1×103〜1×104である、
請求項1〜6のいずれか一項に記載の電子材料用樹脂組成物。
The bismaleimide compound (A) has a weight average molecular weight of 1 × 10 3 to 1 × 10 4 .
The resin composition for electronic materials as described in any one of Claims 1-6.
前記ビスマレイミド化合物(A)以外のマレイミド化合物(B)、シアン酸エステル化合物(C)、エポキシ樹脂(D)、フェノール樹脂(E)、オキセタン樹脂(F)、ベンゾオキサジン化合物(G)、及び重合可能な不飽和基を有する化合物(H)からなる群より選ばれる1種以上をさらに含む、
請求項1〜7のいずれか一項に記載の電子材料用樹脂組成物。
Maleimide compound (B) other than the bismaleimide compound (A), cyanate ester compound (C), epoxy resin (D), phenol resin (E), oxetane resin (F), benzoxazine compound (G), and polymerization Further including one or more selected from the group consisting of compounds (H) having a possible unsaturated group,
The resin composition for electronic materials as described in any one of Claims 1-7.
前記ビスマレイミド化合物(A)の含有量が、樹脂固形分100質量部に対して、5〜60質量部である、
請求項1〜8のいずれか一項に記載の電子材料用樹脂組成物。
Content of the said bismaleimide compound (A) is 5-60 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials as described in any one of Claims 1-8.
前記シアン酸エステル化合物(C)の含有量が、樹脂固形分100質量部に対して、10〜60質量部である、
請求項8又は9に記載の電子材料用樹脂組成物。
Content of the said cyanate ester compound (C) is 10-60 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials according to claim 8 or 9.
前記エポキシ樹脂(D)の含有量が、樹脂固形分100質量部に対して、10〜45質量部である、
請求項8〜10のいずれか一項に記載の電子材料用樹脂組成物。
Content of the said epoxy resin (D) is 10-45 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials as described in any one of Claims 8-10.
充填材(I)をさらに含む、
請求項1〜11のいずれか一項に記載の電子材料用樹脂組成物。
Further comprising a filler (I),
The resin composition for electronic materials as described in any one of Claims 1-11.
前記充填材(I)の含有量が、樹脂固形分100質量部に対して、50〜300質量部である、
請求項12に記載の電子材料用樹脂組成物。
Content of the said filler (I) is 50-300 mass parts with respect to 100 mass parts of resin solid content,
The resin composition for electronic materials according to claim 12.
基材と、
該基材に含浸又は塗布された、請求項1〜13のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
プリプレグ。
A substrate;
The resin composition for electronic materials according to any one of claims 1 to 13, which is impregnated or applied to the substrate.
Prepreg.
シート基材と、
該シート基材の片面または両面に積層された、請求項1〜13のいずれか一項に記載の電子材料用樹脂組成物と、を有する、
レジンシート。
A sheet substrate;
The resin composition for electronic materials according to any one of claims 1 to 13, which is laminated on one side or both sides of the sheet base material,
Resin sheet.
絶縁層と、
該絶縁層の片面又は両面に積層形成された導体層と、を有し、
前記絶縁層が、請求項1〜13のいずれか一項に記載の電子材料用樹脂組成物を含む、
金属箔張積層板。
An insulating layer;
A conductive layer laminated on one or both sides of the insulating layer,
The said insulating layer contains the resin composition for electronic materials as described in any one of Claims 1-13,
Metal foil-clad laminate.
絶縁層と、前記絶縁層の表面に形成された導体層とを有し、
前記絶縁層が、請求項1〜13のいずれか一項に記載の電子材料用樹脂組成物を含む、
プリント配線板。
Having an insulating layer and a conductor layer formed on the surface of the insulating layer;
The said insulating layer contains the resin composition for electronic materials as described in any one of Claims 1-13,
Printed wiring board.
JP2016236665A 2016-12-06 2016-12-06 Resin composition for electronic materials Active JP7442255B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016236665A JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials
JP2021200181A JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236665A JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021200181A Division JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material

Publications (2)

Publication Number Publication Date
JP2018090728A true JP2018090728A (en) 2018-06-14
JP7442255B2 JP7442255B2 (en) 2024-03-04

Family

ID=62564430

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016236665A Active JP7442255B2 (en) 2016-12-06 2016-12-06 Resin composition for electronic materials
JP2021200181A Pending JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A Pending JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021200181A Pending JP2022046517A (en) 2016-12-06 2021-12-09 Resin composition for electronic material
JP2023098935A Pending JP2023134454A (en) 2016-12-06 2023-06-16 Resin composition for electronic material

Country Status (1)

Country Link
JP (3) JP7442255B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044128A (en) * 2017-09-06 2019-03-22 味の素株式会社 Resin composition
JP2020094212A (en) * 2018-12-10 2020-06-18 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2020117611A (en) * 2019-01-23 2020-08-06 三菱瓦斯化学株式会社 Resin composition, cured product, molding, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, semiconductor device, encapsulant, fiber-reinforced composite material, and adhesive
JP2020132881A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
KR20200136402A (en) 2018-03-28 2020-12-07 세키스이가가쿠 고교가부시키가이샤 Resin material, laminated structure and multilayer printed wiring board
JP2021011587A (en) * 2020-11-05 2021-02-04 味の素株式会社 Resin composition
KR20210050521A (en) 2018-08-27 2021-05-07 세키스이가가쿠 고교가부시키가이샤 Resin material, laminated structure and multilayer printed wiring board
KR20220043123A (en) 2019-08-01 2022-04-05 세키스이가가쿠 고교가부시키가이샤 Resin material and multilayer printed wiring board
KR20220152533A (en) 2020-03-13 2022-11-16 세키스이가가쿠 고교가부시키가이샤 Resin materials and multi-layer printed wiring boards

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197047B1 (en) 2022-05-27 2022-12-27 三菱瓦斯化学株式会社 Resin compositions, cured products, sealing materials, adhesives, insulating materials, paints, prepregs, multilayer bodies, and fiber-reinforced composite materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
WO2016114287A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
JP2016131243A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet for high multilayer, and high multilayer printed wiring board
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
WO2016152149A1 (en) * 2015-03-23 2016-09-29 タツタ電線株式会社 Method of manufacturing resin impregnated material, composite material and copper-clad laminate
JP2016196549A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
JP2016196635A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY150705A (en) 2007-04-10 2014-02-28 Sumitomo Bakelite Co Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
JP5522051B2 (en) 2008-10-29 2014-06-18 住友ベークライト株式会社 Multilayer printed wiring board and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
WO2016114287A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
JP2016131243A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet for high multilayer, and high multilayer printed wiring board
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
WO2016152149A1 (en) * 2015-03-23 2016-09-29 タツタ電線株式会社 Method of manufacturing resin impregnated material, composite material and copper-clad laminate
JP2016196549A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
JP2016196635A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044128A (en) * 2017-09-06 2019-03-22 味の素株式会社 Resin composition
JP6992333B2 (en) 2017-09-06 2022-01-13 味の素株式会社 Resin composition
KR20200136402A (en) 2018-03-28 2020-12-07 세키스이가가쿠 고교가부시키가이샤 Resin material, laminated structure and multilayer printed wiring board
KR20210050521A (en) 2018-08-27 2021-05-07 세키스이가가쿠 고교가부시키가이샤 Resin material, laminated structure and multilayer printed wiring board
JP2020094212A (en) * 2018-12-10 2020-06-18 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP7215188B2 (en) 2019-01-23 2023-01-31 三菱瓦斯化学株式会社 Resin compositions, cured products, moldings, prepregs, resin sheets, metal foil-clad laminates, printed wiring boards, semiconductor devices, sealing materials, fiber-reinforced composite materials and adhesives
JP2020117611A (en) * 2019-01-23 2020-08-06 三菱瓦斯化学株式会社 Resin composition, cured product, molding, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, semiconductor device, encapsulant, fiber-reinforced composite material, and adhesive
JP7457288B2 (en) 2019-01-23 2024-03-28 三菱瓦斯化学株式会社 Resin compositions, cured products, molded bodies, prepregs, resin sheets, metal foil-clad laminates, printed wiring boards, semiconductor devices, sealing materials, fiber-reinforced composite materials, and adhesives
JP2020132881A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP7474064B2 (en) 2019-02-18 2024-04-24 積水化学工業株式会社 Resin materials and multilayer printed wiring boards
KR20220043123A (en) 2019-08-01 2022-04-05 세키스이가가쿠 고교가부시키가이샤 Resin material and multilayer printed wiring board
KR20220152533A (en) 2020-03-13 2022-11-16 세키스이가가쿠 고교가부시키가이샤 Resin materials and multi-layer printed wiring boards
JP7248000B2 (en) 2020-11-05 2023-03-29 味の素株式会社 resin composition
JP2021011587A (en) * 2020-11-05 2021-02-04 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP2022046517A (en) 2022-03-23
JP2023134454A (en) 2023-09-27
JP7442255B2 (en) 2024-03-04

Similar Documents

Publication Publication Date Title
JP7442255B2 (en) Resin composition for electronic materials
JP7121354B2 (en) Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board
JP7320338B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
JP6388147B1 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7153243B2 (en) Resin composition, prepreg, metal foil-clad laminate, and printed wiring board
KR102431012B1 (en) Resin composition for printed wiring boards, prepregs, resin sheets, laminates, metal foil-clad laminates, printed wiring boards, and multilayer printed wiring boards
JP6249345B2 (en) Resin composition, prepreg, laminate and printed wiring board
JP6910590B2 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, laminated resin sheet, resin sheet, and printed wiring board
JPWO2014061812A1 (en) Resin composition, prepreg, laminate, and printed wiring board
JPWO2015105109A1 (en) Insulating layer for printed wiring board and printed wiring board
JP6452083B2 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP7116370B2 (en) Resin composition, prepreg, resin sheet, laminate, and printed wiring board
KR102026591B1 (en) Prepregs, laminates, metal foil-clad laminates, printed wiring boards, and multilayer printed wiring boards
JP6681055B2 (en) Resin composition, prepreg, laminated board, metal foil-clad laminated board, printed wiring board and multilayer printed wiring board
JP7116927B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, and method for producing resin composition
WO2019203292A1 (en) Thermal curing composition, prepreg, laminate, metal-foil-clad laminate, printed circuit board, and multi-layer printed circuit board
JPWO2019203291A1 (en) Thermosetting compositions, prepregs, laminates, metal foil-clad laminates, printed wiring boards and multilayer printed wiring boards
JP6823807B2 (en) Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board
WO2020262321A1 (en) Resin sheet, metal foil-clad laminate plate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211216

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220218

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230118

C27C Written answer of applicant after an oral proceeding

Free format text: JAPANESE INTERMEDIATE CODE: C2721

Effective date: 20230118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150