JP7441046B2 - 保持装置 - Google Patents

保持装置 Download PDF

Info

Publication number
JP7441046B2
JP7441046B2 JP2020002549A JP2020002549A JP7441046B2 JP 7441046 B2 JP7441046 B2 JP 7441046B2 JP 2020002549 A JP2020002549 A JP 2020002549A JP 2020002549 A JP2020002549 A JP 2020002549A JP 7441046 B2 JP7441046 B2 JP 7441046B2
Authority
JP
Japan
Prior art keywords
holding
cooling
metal layer
joint
holding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020002549A
Other languages
English (en)
Other versions
JP2021111688A (ja
Inventor
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020002549A priority Critical patent/JP7441046B2/ja
Publication of JP2021111688A publication Critical patent/JP2021111688A/ja
Application granted granted Critical
Publication of JP7441046B2 publication Critical patent/JP7441046B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象物を保持する保持装置に関する。
半導体を製造する際にウェハ等の対象物を保持する保持装置として、例えば、静電チャックが用いられる。静電チャックは、対象物が載置される保持部と、保持部を冷却する冷却部と、保持部と冷却部とを接合する接合部と、を備える。このような保持装置において、従来、樹脂性の接着剤からなる接合部が用いられており、接合部の熱抵抗が大きいため、保持部から冷却部への熱伝達に時間を要し、対象物の冷却に時間がかかる場合があった。この問題に対し、有機材料にフィラーを配合した接合剤を使用し、フィラーの形状を工夫することにより熱伝導率を高め、冷却性能を向上させる技術が提案されている(例えば、特許文献1参照)。また、アルミナなどの熱伝導性付与剤を配合した熱伝導性シリコーンを、接着剤層として用い、冷却性能を向上させる技術も提案されている(例えば、特許文献2参照)。
特開2011-222978号公報 特開2008-277446号公報
しかしながら、上記特許文献に記載の技術でも、まだ、冷却性能は十分ではなかった。
本発明は、上述した課題を解決するためになされたものであり、対象物を保持する保持装置において、冷却性能を向上させる他の技術を提供することを目的とする。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、対象物を保持する保持装置が提供される。この保持装置は、板状に形成され、前記対象物が載置される載置面を有する保持部と、前記保持部に対して、前記載置面とは反対側に配置された冷却部と、前記保持部と前記冷却部との間に配置され、前記保持部と前記冷却部とを接合する接合部と、を備え、前記接合部は、カーボンナノチューブから成り、前記カーボンナノチューブは、自身の長手方向が前記保持部と前記冷却部との積層方向に沿うように、配向している。
カーボンナノチューブの軸方向の熱伝導率は、樹脂や、充填剤により高熱伝導化した高熱伝導樹脂シートと比較して、非常に大きい。この構成によれば、保持装置の接合部が、カーボンナノチューブから成り、カーボンナノチューブが自身の長手方向(繊維方向)が保持部と冷却部との積層方向に沿うように配向しているため、保持部と冷却部との間の熱伝導性を向上させることができ、保持装置の急速な加熱・冷却が可能になる。すなわち、保持装置の冷却性能を向上させることができる。
(2)上記形態の保持装置であって、さらに、前記保持部と前記接合部との間、および前記接合部と前記冷却部との間の少なくともいずれか一方に配置される第1金属層を、備えてもよい。このようにすると、接合部と冷却部もしくは保持部との粘着性が強くなり、剥離しにくくなる。
(3)上記形態の保持装置であって、前記保持部側に配置される前記第1金属層と前記保持部との間、および前記冷却部側に配置される前記第1金属層と前記冷却部との間、の少なくともいずれか一方に配置される第2金属層を、備えてもよい。第1金属層と保持部または冷却部との接着性を向上させることができ、接合部の剥離を抑制することができる。
(4)上記形態の保持装置であって、さらに、前記第1金属層の外周面の少なくとも一部の上に形成された第1保護部を備えてもよい。このようにすると、第1金属層の少なくとも一部が露出しないため、対象物を加工する際に用いられるプラズマ等による第1金属層の劣化を抑制することができる。
(5)上記形態の保持装置であって、さらに、前記接合部の外周面の少なくとも一部の上に形成された第2保護部を備えてもよい。このようにすると、対象物を加工する際に用いられるプラズマ等による接合部の劣化を抑制することができる。
(6)上記形態の保持装置であって、前記接合部は、前記積層方向に自身を貫通する貫通孔を備え、前記保持装置は、さらに、前記貫通孔の内周面の少なくとも一部の上に形成された第3保護部を備えてもよい。このようにすると、密閉性が高くなり、冷却用ガス等のガスの漏れを抑制することができる。
(7)上記形態の保持装置であって、前記接合部は、前記積層方向に自身を貫通する貫通孔を備えると共に、前記貫通孔の外周に形成され、前記カーボンナノチューブの密度が他の部分より高い緻密部を備えてもよい。貫通孔の周りは、他の部分に比べ、冷却されにくく、保持部の載置面全体の中で貫通孔の周りの温度は他と比べて高くなりやすい。この構成によれば、貫通孔の周りのカーボンナノチューブの密度が高いため、貫通孔の周りの熱伝導を向上させることができる。そのため、冷却部による冷却効率を高めることができ、保持部の載置面の温度分布のばらつきを低減させることができる。
(8)上記形態の保持装置であって、前記接合部は、前記保持部側の第1表面と前記第1表面の裏側の第1裏面とを有する第1接合部と、前記冷却部側の第2表面と前記第2表面の裏側の第2裏面とを有する第2接合部と、を備え、前記第1接合部の前記第1裏面から積層方向に所定の距離までと、前記第2接合部の前記第2裏面から所定の距離までと、が重なり合っていてもよい。保持部や冷却部に凹凸があった場合でも、第1接合部と第2接合部とを両側から組合わせることにより、それらの凹凸による両者間の距離の違いが緩和され、隙間を低減して接合することができる。その結果、面内で略均一に熱を伝導することができ、保持装置の冷却性能を向上させることができる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、保持装置を含む半導体製造装置、保持装置の製造方法などの形態で実現することができる。
第1実施形態における静電チャックの外観構成を概略的に示す斜視図である。 静電チャックのXZ断面構成を概略的に示す説明図である。 第2実施形態における静電チャックのXZ断面構成を概略的に示す説明図である。 第3実施形態の静電チャックのXZ断面構成を概略的に示す説明図である。 第4実施形態における静電チャックのXZ断面構成を概略的に示す説明図である。 第5実施形態における静電チャックの平面構成を概略的に示す説明図である。 静電チャックのXZ断面構成を概略的に示す説明図である。 第6実施形態における接合部の平面構成を概略的に示す説明図である。 第7実施形態における静電チャックのXZ断面構成を概略的に示す説明図である。
<第1実施形態>
図1は、第1実施形態における静電チャック10の外観構成を概略的に示す斜視図である。図2は、静電チャック10のXZ断面構成を概略的に示す説明図である。図1、図2には、方向を特定するために、互いに直交するXYZ軸が示されている。図2において、Y軸正方向は、紙面裏側に向かう方向である。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック10は実際にはそのような向きとは異なる向きで設置されてもよい。
静電チャック10は、対象物(例えばウェハW)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウェハWを固定するために使用される。静電チャック10は、上下方向(Z軸方向)に並べて配置された保持部100、冷却部200、および保持部100と冷却部200とを接合する接合部300を備える。本実施形態における静電チャック10を、「保持装置」とも呼ぶ。
保持部100は、略円形平面状の載置面S1を有する板状部材であり、セラミック(例えば、アルミナや窒化アルミニウム等)により形成されている。保持部100の直径は、例えば、50mm~500mm程度(通常は200mm~350mm程度)であり、保持部100の厚さは例えば1mm~10mm程度である。
保持部100の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された吸着電極400(図2)が配置されている。Z軸方向視での吸着電極400の形状は、例えば略円形である。吸着電極400に電源(不図示)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWが保持部100の載置面S1に吸着固定される。
冷却部200は、保持部100より径が大きい略円形平面状の板状部材である。冷却部200は、例えばアルミニウムやアルミニウム合金等の金属により形成されている。冷却部200の直径は、例えば、220mm~550mm程度(通常は220mm~350mm)であり、冷却部200の厚さは、例えば、20mm~40mm程度である。
冷却部200の内部には冷媒流路210(図2)が形成されている。静電チャック10の保持部100に保持されたウェハWを、プラズマを利用して加工する際、ウェハWに対してプラズマから入熱され、ウェハWの温度が上昇する。冷却部200に形成された冷媒流路210に冷媒(例えば、フッ素系不活性液体や水等)が流されると、冷却部200が冷却され、接合部300を介した冷却部200と保持部100との間の伝熱により保持部100が冷却され、保持部100の載置面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度制御が実現される。
接合部300は、保持部100の径と等しい略円形平面状の板状部材であり、保持部100と冷却部200とを接合する。接合部300は、保持部100側の第1接着面351(図2)と、冷却部200側の第2接着面352(図2)を有する。接合部300は、カーボンナノチューブから成り、樹脂を含まない。後に詳述するように、接合部300は、複数のカーボンナノチューブの集合体であり、自身の長手方向(繊維方向)が保持部100と冷却部200との積層方向(図面におけるZ軸方向)に沿うように、配向している。換言すると、カーボンナノチューブは、自身の長手方向(繊維方向)が、保持部100の第1接着面351、もしくは冷却部200の第2接着面352に対し、略垂直に配向している。カーボンナノチューブの配向方向は、以下の方法により確認することができる。
カーボンナノチューブが形成された保持部100と冷却部200を割断し、断面を走査電子顕微鏡(SEM)などで観察することで、配向方向を確認できる。電子顕微鏡の中でも、電界放出型走査電子顕微鏡(FE-SEM)が、汎用性が高くかつ比較的高倍率での観察が可能なため好ましい。拡大倍率は、全体の配向方向や1本ごとの形状が確認できるよう適宜設定すればよい。
「略垂直」は、以下の角度を含む概念である。カーボンナノチューブの長手方向が、保持部100の第1接着面351、もしくは冷却部200の第2接着面352に対し垂直になった場合を最大角度の90度(すなわちカーボンナノチューブの長手方向が各接着面に平行になった場合を0度)とすると、好ましくは90度~70度であり、より好ましくは90度~75度であり、さらに好ましくは90度~80度であり、特に好ましくは90度~85度である。90度に近いほど、分子間力による接着性が発現するためである。なお、60度以下は粘着性が発現しないため好ましくない。
カーボンナノチューブは、分子間力により粘着性を示す。但し、カーボンナノチューブの粘着性はせん断方向には強いが、接着面に対し、30度以上の角度があると容易に剥離できるという特徴がある。静電チャック10において、保持部100は剛性が高いセラミックからなる平板であり、冷却部200は剛性が高い金属からなる平板であるため、曲がり難い。すなわち、保持部100および冷却部200は、普通に使用している場合は、接合部300の接着面に対して30度以上の角度の方向には力が働きにくく、剥離しにくい。そのため、本実施形態の接合部300は、本実施形態の保持部100と冷却部200との接合に適している。
カーボンナノチューブの熱伝導率は、カーボンナノチューブの軸方向に、例えば、3000W/mK~6000W/mK程度である。例えば、樹脂の接着剤に充填剤を添加することにより高熱伝導化した場合でも、熱伝導率は10W/mK程度であり、これと比較して、カーボンナノチューブの熱伝導率は、桁違いに大きい。そのため、カーボンナノチューブから成る接合部300により保持部100と冷却部200とが接合された静電チャック10は、急速な加熱・冷却を実現することができる。
カーボンナノチューブの熱分解温度は、大気中で500℃~600℃程度であり、通常の樹脂の熱分解温度よりも高く、耐熱性に優れる。そのため、保持部100の耐熱性を向上させることができる。
接合部300の厚みは、特に限定されないが、0.1mm~2mmが好ましい。保持部100と冷却部200の熱膨張率が異なる場合等に、接合部300の厚みを上記の範囲内にすると、温度変化による保持部100と冷却部200の熱膨張差を良好に緩和することができ、保持部100と冷却部200の剥離や反りを抑制することができる。
接合部300において、熱膨張率差の緩和のためには、カーボンナノチューブが凝集しておらず、個別に分散している方が好ましい。カーボンナノチューブが分散していることで、カーボンナノチューブ1本1本が熱膨張率差に応じて容易にせん断方向に傾斜できるためである。
また、接合部300において、カーボンナノチューブの先端は凝集しておらず、個別に分散していることが好ましい。保持部100および冷却部200の表面には、微細な凹凸が存在しており、カーボンナノチューブが個別に分散していることにより、カーボンナノチューブの先端が凹部に入り込むことができ、接着性の低下を抑制することができる。
カーボンナノチューブの直径は、特に限定されないが、好ましくは0.3nm~2000nmである。より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmであり、特に好ましくは2nm~200nmであり、最も好ましくは2nm~100nmである。カーボンナノチューブの直径が上記範囲内に収まると、より強い接着力が発現できるため、接合部300が剥離し難く、カーボンナノチューブによる半導体製造装置内の汚染を抑制することができる。また、カーボンナノチューブの直径は、細い方、すなわちカーボンナノチューブの層構造が単層に近い方が好ましい。細い方が曲がりやすく、熱膨張率差に応じて容易にせん断方向に傾斜できるためである。
カーボンナノチューブは、単層カーボンナノチューブ、および多層カーボンナノチューブのいずれでも良い。カーボンナノチューブの面密度は、特に限定されないが、放熱性および電気伝導性の観点から、1×1010本/cm2以上が好ましい。
接合部300は、例えば、以下の方法により製造することができる。
カーボンナノチューブを形成する基板を用意する。次いで、基板上に、例えば、スパッタ法、化学蒸着(Chemical Vapor Deposition、CVD)法、物理蒸着(Physical Vapor Deposition、PVD)法、真空蒸着法等により、触媒金属膜を形成する。触媒金属膜としては、例えば、膜厚約2.5nmのFe(鉄)膜を例示する。触媒金属としては、Feのほか、Co(コバルト)、Ni(ニッケル)、W(タングステン)、Mo(モリブデン)、Au(金)、Ag(銀)、Pt(白金)又はこれらのうち少なくとも一の材料を含む合金を用いても良い。また、これらの触媒金属の下地膜として、W(タングステン)、Mo(モリブデン)、Ti(チタン)、Zr(ジルコニウム)、V(バナジウム)、Cr(クロム)、Al(アルミニウム)、Cu(銅)、Au(金)、Pt(白金)、Pd(パラジウム)、Al23(酸化アルミニウム)、TiO2(酸化チタン)、からなる膜又はこれらのうち少なくとも一の材料を含む合金からなる膜を形成しても良い。例えば、Fe(約2.5nm)/Al(約10nm)の積層構造等を適用することができる。下地層の形成方法としては、セラミックの配線形成方法と同じ方法(金属成分を含むペーストの印刷、同時焼成)の他、スパッタ法、CVD法、PVD法、真空蒸着法等が挙げられる。
次いで、基板上に、例えばホットフィラメントCVD法により、触媒金属膜を触媒として、カーボンナノチューブを成長させる。カーボンナノチューブの成長条件は、例えば、原料ガスとしてアセチレン・アルゴンの混合ガス(分圧比1:9)を用い、成膜室内の総ガス圧を約1kPa、ホットフィラメント温度を約1000℃、成長時間を約20分とする。これにより、層数が約3~6層(平均4層程度)、直径が約4~約8nm(平均約6nm)、成長速度が4μm/minの多層カーボンナノチューブを成長させることができる。なお、カーボンナノチューブは、熱CVD法やリモートプラズマCVD法などの他の成膜方法により形成しても良い。また、成長するカーボンナノチューブは、単層カーボンナノチューブでも良い。また、炭素原料としては、アセチレンのほか、メタン、エチレン等の炭化水素類や、エタノール、メタノール等のアルコール類などを用いても良い。このようにして、基板の上で、触媒金属膜が形成された領域に、基板の法線方向に配向(垂直配向)した複数のカーボンナノチューブの集合体であるカーボンナノチューブ集合体を形成することができる。なお、上記の成長条件で形成したカーボンナノチューブでは、全体に触媒を形成した場合の面密度は、約1×1011本/cm2程度であった。なお、触媒金属膜の配置(密度)は、所望の熱伝導の大きさに応じて決定すれば良い。面密度は、形成したカーボンナノチューブを走査電子顕微鏡で観察し、単位面積当たりの本数をカウントすることで算出できる。
上述の方法で製造されたカーボンナノチューブ集合体を、触媒金属膜が形成された基板から剥離して、本実施形態の接合部300として用いる。上述の通り、カーボンナノチューブは、分子間力により粘着性を示すため、接合部300により保持部100と冷却部200とを接合することができる。
以上説明したように、本実施形態の静電チャック10によれば、樹脂を含まず、カーボンナノチューブから成る接合部300により保持部100と冷却部200とを接合している。接合部300において、カーボンナノチューブは、自身の長手方向が保持部100と冷却部200との積層方向に沿うように、配向している。カーボンナノチューブの軸方向の熱伝導率は、樹脂に比較して非常に大きいため、例えば、充填剤を添加することにより高熱伝導化された樹脂の接着剤を用いた場合と比較して、静電チャック10の熱伝導性を向上させることができる。すなわち、本実施形態の静電チャック10によれば、急速な加熱・冷却を実現することができる。
<第2実施形態>
図3は、第2実施形態における静電チャック10AのXZ断面構成を概略的に示す説明図である。図3において、Y軸正方向は、紙面裏側に向かう方向である。本実施形態の静電チャック10Aは、保持部100と接合部300との間に配置される第1金属層510を、さらに備える。以下に説明する実施形態において、第1実施形態の静電チャック10と同一の構成には同一の符号を付し、先行する説明を参照する。
第1金属層510は、金属を主成分とする薄膜状の層である。金属としては、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、W(タングステン)、Mo(モリブデン)、Au(金)、Ag(銀)、Pt(白金)から選ばれる1種もしくは2種、又はこれらのうち少なくとも一の材料を含む合金を用いることができる。
本実施形態の接合部300は、第1実施形態の接合部300の製造方法において、基板として保持部100を用いることにより製造することができる。すなわち、第1金属層510は、保持部100の載置面S1の裏面S2に、スパッタ法、化学蒸着(Chemical Vapor Deposition、CVD)法、物理蒸着(Physical Vapor Deposition、PVD)法、真空蒸着法等により形成され、触媒金属としての機能を奏する。そして、第1金属層510上にカーボンナノチューブを成長させることにより、本実施形態の接合部300が形成される。
本実施形態では、保持部100の裏面S2に形成された接合部300を、保持部100から剥がさず、接合部300が保持部100に接着された状態で、第2接着面352により接合部300を冷却部200に接着する。その結果、保持部100と冷却部200とが接合部300により接合される。
本実施形態の静電チャック10Aによれば、保持部100と接合部300との間に第1金属層510を備えるため、保持部100と接合部300との接着性を強くすることができ、保持部100と接合部300との間の剥離を抑制することができる。そのため、保持部100の載置面S1の温度分布の均一性の低下を抑制することができる。
<第3実施形態>
図4は、第3実施形態の静電チャック10BのXZ断面構成を概略的に示す説明図である。本実施形態の静電チャック10Bは、第2実施形態の静電チャック10Aの構成に加え、さらに、保持部100と第1金属層510との間に配置される第2金属層520を備える。
第2金属層520も、第1金属層510と同様に金属を主成分とする薄膜状の層であるものの、第1金属層510と異なる金属を主成分とする。第2金属層520の主成分金属は、例えば、保持部100の内層の吸着電極400と同じ種類の金属(例えば、W(タングステン)Mo(モリブデン))を用いることができる。本実施形態の第2金属層520の主成分金属としては、W(タングステン)、Mo(モリブデン)、Ti(チタン)、Zr(ジルコニウム)、V(バナジウム)、Cr(クロム)、Al(アルミニウム)、Cu(銅)、Au(金)、Pt(白金)、Pd(パラジウム)、Al23(酸化アルミニウム)、TiO2(酸化チタン)、又はこれらのうち少なくとも一の材料を含む合金を用いることができる。
本実施形態では、例えば、第2金属層520の主成分金属を含む導体ペーストをセラミックグリーンシートに塗布し、同時焼成することにより第2金属層520を形成することができる。
本実施形態の接合部300は、第2実施形態の接合部300の製造方法において、基板として第2金属層520が形成された保持部100を用いることにより製造することができる。本実施形態では、保持部100の載置面S1の裏面S2に形成された第2金属層520の上に、スパッタ法、真空蒸着法等により第1金属層510が形成される。第1金属層510は、第2実施形態と同様に、触媒金属としての機能を奏する。そして、第1金属層510上にカーボンナノチューブを成長させることにより、本実施形態の接合部300が形成される。
本実施形態でも、第2実施形態と同様に、保持部100の裏面S2側に形成された接合部300を、保持部100から剥がさず、接合部300が保持部100に接着された状態で、第2接着面352により接合部300を冷却部200に接着する。その結果、保持部100と冷却部200とが接合部300により接合される。
本実施形態では、セラミックから成る保持部100との接着性が第1金属層510より高い第2金属層520を、第1金属層510と第2金属層520との間に備えることにより、保持部100と接合部300との接着性を、さらに向上させることができる。
また、第2金属層520の主成分金属として、吸着電極400と同じ金属を用いているため、第2金属層520を、セラミックグリーンシートと同時焼成により形成することができ、保持部100と第2金属層520との接着性をより向上させることができる。
<第4実施形態>
図5は、第4実施形態における静電チャック10CのXZ断面構成を概略的に示す説明図である。本実施形態の静電チャック10Cは、冷却部200と接合部300との間に配置される第1金属層510と、第1金属層510の外周面の上に形成された第1保護部600を、さらに備える。
第1金属層510は、第2実施形態と同様の金属を主成分とする薄膜状の層である。本実施形態の第1金属層510は、第2実施形態とは異なり、冷却部200と接合部300との間に配置されている。
本実施形態の接合部300は、第1実施形態の接合部300の製造方法において、基板として冷却部200を用いることにより製造することができる。すなわち、第1金属層510は、冷却部200の上面201に、スパッタ法、真空蒸着法等により形成され、触媒金属としての機能を奏する。そして、第1金属層510上にカーボンナノチューブを成長させることにより、本実施形態の接合部300が形成される。
本実施形態では、冷却部200の上面201側に形成された接合部300を、冷却部200から剥がさず、接合部300が冷却部200に接着された状態で、第1接着面351により接合部300を保持部100に接着する。その結果、保持部100と冷却部200とが接合部300により接合される。
本実施形態において、第1保護部600は、冷却部200と同一の材料から成り、第1金属層510の外周面の全面を覆うように形成されている。すなわち、第1保護部600は、略円環平面状に形成されており、厚みが第1金属層510の厚み以上である。第1保護部600は、第1金属層510の外周面の上に形成されていればよく、第1金属層510の外周面と第1保護部600との間に空隙が形成されていてもよい。他の実施形態では、第1保護部600は第1金属層510の外周面の一部に形成されていてもよい。
本実施形態の静電チャック10Cによれば、冷却部200と接合部300との間に第1金属層510を備えるため、冷却部200と接合部300との粘着性を強くすることができ、冷却部200と接合部300との間の剥離を抑制することができる。
また、静電チャック10Cによれば、第1金属層510の外周面の上に第1保護部600が形成されているため、静電チャック10Cに保持されるウェハWの加工中のプラズマによる第1金属層510の劣化を抑制することができる。そのため、第1金属層510の主成分金属による半導体製造装置内の汚染を抑制することができる。特に、第1金属層510としてCo(コバルト)、Ni(ニッケル)、およびFe(鉄)を用いる場合には、プラズマやチャンバー内部の他の部材や加工中のウェハWなどへの悪影響が懸念されるため、第1保護部600を備えることが好ましい。
<第5実施形態>
図6は、第5実施形態における静電チャック10Dの平面構成を概略的に示す説明図である。図6において、Z軸正方向は、紙面表側に向かう方向である。図7は、静電チャック10DのXZ断面構成を概略的に示す説明図である。図7は、図6におけるA-A断面を示す。本実施形態の静電チャック10Dは、保持部100Dの載置面S1から冷却部200Dの下面202(Z軸負方向の面)に到る貫通孔である冷却用ガス孔102を、備える。冷却用ガス孔102には、例えば、ヘリウムガス等の冷却用ガスが供給される。これにより、ウェハWの均熱性を向上させることができる。また、静電チャック10Dは、保持部100D内の吸着電極400の裏側から冷却部200Dの下面202に到る貫通孔であり、吸着電極400に電圧を印加するための端子孔104を、備える。冷却用ガス孔102および端子孔104は、共に、接合部300Dを貫通している。すなわち、接合部300Dは、積層方向(Z軸方向)に自身を貫通する貫通孔302と貫通孔304を備える。換言すると、冷却用ガス孔102は貫通孔302を含み、端子孔104は貫通孔304を含む。
静電チャック10Dは、接合部300Dの外周面の全面を覆うように形成された第2保護部700を備える。図示するように、本実施形態の第2保護部700は、略円環平面状に形成されており、厚みが接合部300Dの厚み以上である。第2保護部700は、接合部300Dの外周面の上に形成されていればよく、接合部300Dの外周面と第2保護部700との間に空隙が形成されていてもよい。他の実施形態では、第2保護部700は接合部300Dの外周面の一部に形成されていてもよい。第2保護部700は、カーボンより耐プラズマ性が高い材料から成る。耐プラズマ性が高い材料としては、例えば、フッ素系のゴム材料を用いることができる。
また、静電チャック10Dは、接合部300Dの貫通孔302および貫通孔304の内周面の全面を覆うように形成された第3保護部800を備える。図示するように、本実施形態の第3保護部800は、略円環平面状に形成されている。本実施形態では、第3保護部800の内周面の位置が、保持部100に形成された孔および冷却部200に形成された孔の内周面の位置と一致している。第3保護部800は貫通孔302および貫通孔304の内周面の上に形成されていればよく、貫通孔302および貫通孔304の内周面と第3保護部800との間に空隙が形成されていてもよい。他の実施形態では、第3保護部800は貫通孔302および貫通孔304の内周面の一部に形成されていてもよい。また、複数の貫通孔のうち、一部の貫通孔の内周面の上に形成されてもよい。第3保護部800は、接合部300Dより緻密な緻密膜により形成される。例えば、第2保護部700と同様にフッ素系のゴム材料から成る環状部材を用いることができる。
本実施形態の静電チャック10Dによれば、第2保護部700を備えるため、静電チャック10Dに保持されたウェハW(対象物)のプラズマ処理による接合部300Dの劣化を抑制することができ、静電チャック10Dの耐久性を向上させることができる。
また、本実施形態では、第2保護部700が第1金属層510Dの外周面も覆っているため、第1金属層510Dの露出を抑制することができ、第1金属層510Dの主成分金属による半導体装置内の汚染を抑制することができる。なお、第2保護部700のうち、第1金属層510Dの外周面の上に形成されている部分を、「第1保護部」とも呼ぶ。
静電チャック10Dは、貫通孔302の内周面に第3保護部800を備えるため、ヘリウムガス等の冷却ガスの漏れを抑制することができ、効果的に静電チャック10Dの保持部100Dの載置面S1に冷却ガスを導入することができる。また、静電チャック10Dは、貫通孔304の内周面に第3保護部800を備えるため、端子孔104を介した半導体製造装置内への外部の大気の侵入を抑制することができ、半導体装置内の状態(例えば、真空状態)の変化を抑制することができる。
<第6実施形態>
図8は、第6実施形態における接合部300Eの平面構成を概略的に示す説明図である。図8において、Z軸正方向は、紙面表側に向かう方向である。本実施形態の接合部300Eは、第5実施形態の接合部300Dと同様に、積層方向(Z軸方向)に自身を貫通する貫通孔302と貫通孔304を備える。接合部300Eは、貫通孔302と貫通孔304の外周に形成され、カーボンナノチューブの密度が他の部分より高い緻密部306を備える。
緻密部306は、以下の方法により形成することができる。上述の接合部の製造方法において、基板上に触媒金属膜を形成する際に、貫通孔302および貫通孔304を形成したい箇所には、触媒金属膜を形成せず、貫通孔302および貫通孔304の外周に相当する箇所は、触媒金属膜の面積を大きくし(密度を密にし)、その他の部分は、触媒金属膜の面積を小さくする(密度を疎にする)。触媒金属膜の面積を小さくする(密度を疎にする)方法としては、例えば、全面に触媒金属膜を形成した後に、感光性エッチングレジストを用い露光・現像して不要な部分を除去することでパターニングする方法などを用いることができる。本実施形態では、貫通孔302および貫通孔304の外周に相当する箇所は、触媒金属膜をその箇所全面に形成している。
本実施形態の接合部300Eによれば、貫通孔302の外周と貫通孔304の外周に、カーボンナノチューブの密度が他の部分より高い緻密部306を備えるため、貫通孔302の周りと貫通孔304の周りの熱伝導を大きくすることができる。例えば、第5実施形態の保持部100Dと冷却部200Dと、本実施形態の接合部300Eとを備える静電チャックを構成した場合、接合部300Eの貫通孔302および貫通孔304の下には冷却部200Dがない。そのため、接合部300Eが緻密部306を備えない場合、貫通孔302の外周部分および貫通孔304の外周部分は、他の部分に比べ冷却され難く、他の部分より温度が高くなりやすい。これに対し、本実施形態の接合部300Eは緻密部306を備え、上述の通り、貫通孔302の外周部分および貫通孔304の外周部分の熱伝導が大きいため、保持部100Dに形成された冷却用ガス孔102の外周部分および端子孔104の外周部分の熱を、接合部300Eの緻密部306を介して十分に冷却部200Dに伝えることができ、冷却用ガス孔102の周りおよび端子孔104の周りの温度上昇を抑制することができる。その結果、保持部100Dの載置面S1の温度分布のばらつきを抑制することができる。
<第7実施形態>
図9は、第7実施形態における静電チャック10FのXZ断面構成を概略的に示す説明図である。図9(a)は、保持部100と冷却部200とが接合される前の状態を示し、図9(b)は保持部100と冷却部200とが接合された状態を示す。
図示するように、本実施形態の静電チャック10Fは、保持部100と接合部300Fとの間に配置される第1金属層511を備えると共に、冷却部200と接合部300Fとの間に配置される第1金属層512を備える。以下の説明において、第1金属層511と第1金属層512とを区別しない場合には、単に「第1金属層510」とも呼ぶ。本実施形態の静電チャック10Fにおいて、保持部100と接合部300Fとの間、および接合部300Fと冷却部200との間の両方に第1金属層510が配置されている。本実施形態の第1金属層510は、第2実施形態と同様の材料により形成される。
本実施形態の接合部300Fは、保持部100側の第1表面311と第1表面311の裏側の第1裏面312とを有する第1接合部310と、冷却部200側の第2表面321と第2表面321の裏側の第2裏面322とを有する第2接合部320と、を備える。
本実施形態において、図9(a)に示すように、第1接合部310は、保持部100の載置面S1の裏面S2に、第1金属層511を介して配置されている。本実施形態において、例えば、第2実施形態の接合部の製造方法と同様に、基板として保持部100を用い、保持部100の裏面S2に形成された第1金属層511を触媒金属として第1金属層511上にカーボンナノチューブを成長させることにより第1接合部310を形成することができる。他の実施形態では、第1実施形態の接合部の製造方法と同様に形成された第1接合部310を、第1金属層511が形成された保持部100の第1金属層511側に接着してもよい。
本実施形態において、図9(a)に示すように、第2接合部320は、冷却部200の上面201(図9においてZ軸正方向の面)に、第1金属層512を介して配置されている。本実施形態において、例えば、第2実施形態の接合部の製造方法において、基板として冷却部200を用い、冷却部200の上面201に形成された第1金属層512を触媒金属として第1金属層512上にカーボンナノチューブを成長させることにより第2接合部320を形成することができる。他の実施形態では、第1実施形態の接合部の製造方法と同様に形成された第2接合部320を、第1金属層512が形成された冷却部200の第1金属層512側に接着してもよい。
本実施形態において、図9(b)に示すように、接合部300Fは、第1接合部310の第1裏面312から積層方向に所定の距離D1までと、第2接合部320の第2裏面322から所定の距離D1までと、が重なり合って形成されている。
本実施形態の静電チャック10Fによれば、保持部100に形成された第1接合部310と冷却部200に形成された第2接合部320とを組み合わせることにより、保持部100と冷却部200とが接合されている。詳しくは、第1接合部310の第1裏面312から積層方向に所定の距離D1までと、第2接合部320の第2裏面322から所定の距離D1までと、が重なり合っており、互いのカーボンナノチューブが絡み合うと共に、分子間力により第1接合部310と第2接合部320とが接着されている。保持部100や冷却部200の表面に凹凸がある場合、第1接合部310と第2接合部320とが重なり合う距離D1が、それらの凹凸に応じてXY平面方向に変化することにより、保持部100と冷却部200との隙間を抑制して接合することができる。その結果、面内で略均一に熱を伝導することができる。
また、静電チャック10Fにおいて、保持部100と接合部300Fとの間、および接合部300Fと冷却部200との間の両方に第1金属層510が配置されているため、保持部100と接合部300Fとの接着性、冷却部200と接合部300Fとの接着性を、共に向上させることができる。その結果、接合部300Fによる保持部100と冷却部200との接合強度を向上させることができる。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・第2金属層520は、保持部100側に配置される第1金属層510と保持部100との間、および冷却部200側に配置される第1金属層510と冷却部200との間、の少なくともいずれか一方に配置されればよい。例えば、第7実施形態において、保持部100と第1金属層511との間に第2金属層520を配置してもよいし、冷却部200と第1金属層512との間に第2金属層520を配置してもよい。さらに、保持部100と第1金属層511との間と、冷却部200と第1金属層512との間との両方に、第2金属層520を配置してもよい。
・第4実施形態において、冷却部200と接合部300との間に配置されている第1金属層510の外周面の上に形成された第1保護部600を備える例を示したが、他の例では、保持部100と接合部300との間に配置されている第1金属層の外周面の上に形成された第1保護部を備えてもよい。このとき、第1保護部は、保持部100の形成材料と同一の材料により形成されるのが好ましい。このようにすると、半導体製造装置内の異物混入を抑制することができ、また、第1保護部を容易に形成することができる。
・接合部が備える貫通孔の数は、上記実施形態に限定されない。例えば、1つでも、2つよいし、8つ以上でもよい。静電チャックがヒータを備える場合に、ヒータに接続する配線を通すための配線挿通孔を有してもよいし、対象物(例えば、ウェハ)を脱着するためのピンなどが配置されるピン挿通孔を有してもよい。
・保持部100を構成する材料の熱膨張率と、冷却部200を構成する材料の熱膨張率は、同一でもよいし、異なっていてもよい。仮に両材料の熱膨張率が同一の場合にも、保持部100の温度と冷却部200の温度とが異なることにより、それぞれの変形量が異なる。そのため、上記実施形態の接合部300により保持部100と冷却部200とを接合すると、保持部100と冷却部200の熱膨張差を緩和することができ、保持部100の載置面S1の変形を抑制することができる。
・静電チャックを構成する各部、各層の形成材料は上記実施形態に限定されない。例えば、保持部100は、セラミック以外の絶縁性材料により形成されてもよい。例えば、高耐熱樹脂や高耐熱ガラスを用いることができる。高耐熱樹脂の例としてはポリイミド、ポリベンズイミダゾールなどが挙げられる。また、冷却部200は、金属以外の熱伝導性の高い材料により形成されてもよい。例えば、アルミナや窒化アルミニウムなどのセラミックを用いることができる。
・接合部において、保持部100や冷却部200自体の温度分布に応じて、カーボンナノチューブの分布に疎密を設けてもよい。このようにすると、温度分布の均一性を高めることができる。具体的には、保持部100において、ヒータを内蔵する場合、ヒータ部の直上は温度が上昇しやすいので、カーボンナノチューブの分布を密にし、ヒータ部の熱引きを高めてもよい。また、冷却部200において、冷媒流路210の直上は温度が低下しやすいので、カーボンナノチューブの分布を疎にし、熱引きを抑制してもよい。なお、保持部と冷却部の間の全面にカーボンナノチューブが配置されており、かつ保持部100や冷却部200自体の温度分布に応じてカーボンナノチューブの分布に疎密を設けるのが好ましい。仮に、カーボンナノチューブが配置されない部分があると、その部分は放熱できず、極高温になる可能性があるためである。
・上記実施形態において、保持装置として静電チャックを例示したが、保持装置は、静電チャックに限定されない。例えば、CVD、PVD、PLD(Pulsed Laser Deposition)等の真空装置用ヒータ装置、サセプタ、載置台として構成することができる。
・上記実施形態において、略円形平面の板状部材である保持部を例示したが、保持部の平面形状は上記実施形態に限定されない。例えば、矩形平面、多角形平面等の板状部材であってもよい。
以上、実施形態、変形例に基づき本発明について説明してきたが、上記した態様の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
10、10A、10B、10C、10D、10F…静電チャック
100、100D…保持部
102…冷却用ガス孔
104…端子孔
200、200D…冷却部
201…上面
202…下面
210…冷媒流路
300、300D、300E、300F…接合部
302、304…貫通孔
306…緻密部
310…第1接合部
311…第1表面
312…第1裏面
320…第2接合部
321…第2表面
322…第2裏面
351…第1接着面
352…第2接着面
400…吸着電極
510、510D、511、512…第1金属層
520…第2金属層
600…第1保護部
700…第2保護部
800…第3保護部
S1…載置面
S2…裏面
W…ウェハ

Claims (8)

  1. 対象物を保持する保持装置であって、
    板状に形成され、前記対象物が載置される載置面を有する保持部と、
    前記保持部に対して、前記載置面とは反対側に配置された冷却部と、
    前記保持部と前記冷却部との間に配置され、前記保持部と前記冷却部とを接合する接合部と、
    を備え、
    前記接合部は、カーボンナノチューブから成り、
    前記カーボンナノチューブは、自身の長手方向が前記保持部と前記冷却部との積層方向に沿うように、配向しており、
    前記保持装置は、
    さらに、
    前記保持部と前記接合部との間、および前記接合部と前記冷却部との間の少なくともいずれか一方に配置される第1金属層と、
    前記保持部側に配置される前記第1金属層と前記保持部との間、および前記冷却部側に配置される前記第1金属層と前記冷却部との間、の少なくともいずれか一方に配置される第2金属層と、
    前記第1金属層の外周面の少なくとも一部の上に形成された第1保護部と、
    を備えることを特徴とする、
    保持装置。
  2. 対象物を保持する保持装置であって、
    板状に形成され、前記対象物が載置される載置面を有する保持部と、
    前記保持部に対して、前記載置面とは反対側に配置された冷却部と、
    前記保持部と前記冷却部との間に配置され、前記保持部と前記冷却部とを接合する接合部と、
    を備え、
    前記接合部は、カーボンナノチューブから成り、
    前記カーボンナノチューブは、自身の長手方向が前記保持部と前記冷却部との積層方向に沿うように、配向しており、
    前記接合部は、前記積層方向に自身を貫通する貫通孔を備えると共に、前記貫通孔の外周に形成され、前記カーボンナノチューブの密度が他の部分より高い緻密部を備えることを特徴とする、
    保持装置。
  3. 請求項1に記載の保持装置であって、
    前記接合部は、前記積層方向に自身を貫通する貫通孔を備えると共に、前記貫通孔の外周に形成され、前記カーボンナノチューブの密度が他の部分より高い緻密部を備えることを特徴とする、
    保持装置。
  4. 請求項2に記載の保持装置であって、
    さらに、
    前記保持部と前記接合部との間、および前記接合部と前記冷却部との間の少なくともいずれか一方に配置される第1金属層を、備えることを特徴とする、
    保持装置。
  5. 求項4に記載の保持装置であって、
    前記保持部側に配置される前記第1金属層と前記保持部との間、および前記冷却部側に配置される前記第1金属層と前記冷却部との間、の少なくともいずれか一方に配置される第2金属層を、備えることを特徴とする、
    保持装置。
  6. 請求項1から請求項5のいずれか一項に記載の保持装置であって、
    さらに、
    前記接合部の外周面の少なくとも一部の上に形成された第2保護部を備えることを特徴とする、
    保持装置。
  7. 請求項1から請求項6のいずれか一項に記載の保持装置であって、
    前記接合部は、前記積層方向に自身を貫通する貫通孔を備え、
    前記保持装置は、
    さらに、
    前記貫通孔の内周面の少なくとも一部の上に形成された第3保護部を備えることを特徴とする、
    保持装置。
  8. 請求項1から請求項7のいずれか一項に記載の保持装置であって、
    前記接合部は、
    前記保持部側の第1表面と前記第1表面の裏側の第1裏面とを有する第1接合部と、
    前記冷却部側の第2表面と前記第2表面の裏側の第2裏面とを有する第2接合部と、を備え、
    前記第1接合部の前記第1裏面から積層方向に所定の距離までと、前記第2接合部の前記第2裏面から所定の距離までと、が重なり合っていることを特徴とする、
    保持装置。
JP2020002549A 2020-01-10 2020-01-10 保持装置 Active JP7441046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020002549A JP7441046B2 (ja) 2020-01-10 2020-01-10 保持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002549A JP7441046B2 (ja) 2020-01-10 2020-01-10 保持装置

Publications (2)

Publication Number Publication Date
JP2021111688A JP2021111688A (ja) 2021-08-02
JP7441046B2 true JP7441046B2 (ja) 2024-02-29

Family

ID=77060164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002549A Active JP7441046B2 (ja) 2020-01-10 2020-01-10 保持装置

Country Status (1)

Country Link
JP (1) JP7441046B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808928A (zh) * 2021-08-04 2021-12-17 北京华卓精科科技股份有限公司 一种激光退火方法和具备自主冷却功能的多孔吸盘

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054461A1 (ja) 2007-10-23 2009-04-30 Sumitomo Electric Industries, Ltd. 放熱構造及びその製造方法、ヒートシンク及び放熱装置、加熱装置及びサセプタ、セラミックフィルタ及びその製造方法、並びに排ガス浄化用セラミックフィルタ及びディーゼルパティキュレートフィルタ
JP2012142413A (ja) 2010-12-28 2012-07-26 Sumitomo Osaka Cement Co Ltd 静電チャック装置
JP2014053481A (ja) 2012-09-07 2014-03-20 Tokyo Electron Ltd プラズマエッチング装置
JP2018163147A (ja) 2017-03-06 2018-10-18 カーバイス コーポレイション カーボンナノチューブをベースにした熱界面材料ならびにそれを作製および使用する方法
JP2019009270A (ja) 2017-06-23 2019-01-17 新光電気工業株式会社 基板固定装置
US20200008316A1 (en) 2018-06-28 2020-01-02 Carbice Corporation Flexible and conformable heat sinks and methods of making and using thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054461A1 (ja) 2007-10-23 2009-04-30 Sumitomo Electric Industries, Ltd. 放熱構造及びその製造方法、ヒートシンク及び放熱装置、加熱装置及びサセプタ、セラミックフィルタ及びその製造方法、並びに排ガス浄化用セラミックフィルタ及びディーゼルパティキュレートフィルタ
JP2012142413A (ja) 2010-12-28 2012-07-26 Sumitomo Osaka Cement Co Ltd 静電チャック装置
JP2014053481A (ja) 2012-09-07 2014-03-20 Tokyo Electron Ltd プラズマエッチング装置
JP2018163147A (ja) 2017-03-06 2018-10-18 カーバイス コーポレイション カーボンナノチューブをベースにした熱界面材料ならびにそれを作製および使用する方法
JP2019009270A (ja) 2017-06-23 2019-01-17 新光電気工業株式会社 基板固定装置
US20200008316A1 (en) 2018-06-28 2020-01-02 Carbice Corporation Flexible and conformable heat sinks and methods of making and using thereof

Also Published As

Publication number Publication date
JP2021111688A (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
JP5811513B2 (ja) 静電チャック
JP5356972B2 (ja) 放熱用部品及びその製造方法、半導体パッケージ
US7183003B2 (en) Thermal interface material and method for manufacturing same
US8890312B2 (en) Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
JP6432474B2 (ja) 静電チャック
US20060118791A1 (en) Thermal interface material and method for manufacturing same
EP2863426A1 (en) Thermal interface sheet, preparation method therefor and cooling system therefor
US11145531B2 (en) Substrate fixing device
TW200944584A (en) Method for making carbon nanotube composite material
US20240006263A1 (en) Carbon nanotubes disposed on metal substrates with one or more cavities
US20240008229A1 (en) Carbon nanotubes as thermal interface material
WO2017026206A1 (ja) ヒータユニット
JP7441046B2 (ja) 保持装置
JP7172319B2 (ja) 放熱構造体、電子装置、及び放熱構造体の製造方法
JP2023052728A (ja) 回路基板及び半導体装置
JP4640975B2 (ja) 熱拡散シート及び半導体装置
JP6844382B2 (ja) 放熱体、放熱体の製造方法、及び電子装置
JP2012236739A (ja) シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP6354235B2 (ja) 電子機器とその組み立て方法、及びシート状構造体とその製造方法
JP2010253730A (ja) 放熱材料、プリント基板およびプリント基板の製造方法
JP6237231B2 (ja) シート状構造体とその製造方法、電子部品及びその組立方法
JP2019021657A (ja) 電子装置、及び電子装置の製造方法
JP2018129482A (ja) 放熱シート、放熱シートの製造方法、及び電子装置
JP2020184576A (ja) 導電性放熱フィルム、導電性放熱フィルムの製造方法、及び電子装置の製造方法
JP7388998B2 (ja) 保持装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240216

R150 Certificate of patent or registration of utility model

Ref document number: 7441046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150