JP7440820B1 - 溶融金属浴の成分分析システム、溶融金属浴の成分分析方法、溶融亜鉛めっき浴の管理方法、および溶融亜鉛めっき鋼板の製造方法 - Google Patents
溶融金属浴の成分分析システム、溶融金属浴の成分分析方法、溶融亜鉛めっき浴の管理方法、および溶融亜鉛めっき鋼板の製造方法 Download PDFInfo
- Publication number
- JP7440820B1 JP7440820B1 JP2023575519A JP2023575519A JP7440820B1 JP 7440820 B1 JP7440820 B1 JP 7440820B1 JP 2023575519 A JP2023575519 A JP 2023575519A JP 2023575519 A JP2023575519 A JP 2023575519A JP 7440820 B1 JP7440820 B1 JP 7440820B1
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- cylindrical probe
- open end
- temperature
- bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 249
- 239000002184 metal Substances 0.000 title claims abstract description 249
- 238000004458 analytical method Methods 0.000 title claims abstract description 83
- 238000005246 galvanizing Methods 0.000 title claims description 53
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 8
- 239000008397 galvanized steel Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000007726 management method Methods 0.000 title description 2
- 239000000523 sample Substances 0.000 claims abstract description 228
- 239000011261 inert gas Substances 0.000 claims abstract description 92
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 66
- 239000011701 zinc Substances 0.000 claims description 51
- 239000007789 gas Substances 0.000 claims description 45
- 229910052725 zinc Inorganic materials 0.000 claims description 45
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 41
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 238000004611 spectroscopical analysis Methods 0.000 claims description 3
- 238000007747 plating Methods 0.000 description 62
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 60
- 238000004364 calculation method Methods 0.000 description 40
- 229910052786 argon Inorganic materials 0.000 description 31
- 238000005259 measurement Methods 0.000 description 31
- 238000012360 testing method Methods 0.000 description 21
- 238000007654 immersion Methods 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- 238000009616 inductively coupled plasma Methods 0.000 description 15
- 230000008859 change Effects 0.000 description 12
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 230000005587 bubbling Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 239000011573 trace mineral Substances 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 210000004894 snout Anatomy 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000001533 laser emission spectroscopy Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
- G01N33/205—Metals in liquid state, e.g. molten metals
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
[1] 本発明の一態様に係る溶融金属浴の成分分析システムは、レーザ光を発振するレーザ発振器と、開口端が溶融金属浴に浸漬され、前記開口端へ向けて不活性ガスを供給するとともに、前記レーザ光を前記開口端に導光して溶融金属に照射する筒状プローブと、前記レーザ光の照射により生じる前記溶融金属のプラズマ発光を検出し、分光分析する検出部と、を備え、前記溶融金属浴における前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御可能に構成されている。
[2] 上記[1]に記載の溶融金属浴の成分分析システムは、前記溶融金属浴における前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかを制御する位置制御部を有していてもよい。
[3] 上記[1]に記載の溶融金属浴の成分分析システムは、前記溶融金属浴における前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度を制御する位置制御部を有していてもよい。
[4] 上記[2]または[3]に記載の溶融金属浴の成分分析システムは、前記開口端における前記溶融金属の温度を測定する温度センサおよび前記不活性ガスの圧力を測定する圧力センサのうちの少なくともいずれかを有し、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定された前記溶融金属の温度および前記圧力センサにより得られた前記不活性ガスの圧力のうちの少なくともいずれかに基づき制御されてもよい。
[5] 上記[1]~[4]のいずれかに記載の溶融金属浴の成分分析システムは、前記開口端における前記溶融金属の温度を測定する温度センサおよび前記不活性ガスの圧力を測定する圧力センサのうちの少なくともいずれかを有し、下記a~dのいずれか一つ以上の方法により、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御されてもよい。
a.前記圧力センサにより得られる前記不活性ガスのゲージ圧を、予め決定された範囲内となるように制御する
b.前記不活性ガスの圧力の変動を、予め決定された値以下となるように制御する
c.前記溶融金属の温度を、予め決定された温度以上となるように制御する
d.前記溶融金属の温度変動を、予め決定された値以下となるように制御する
[6] 上記[1]~[4]のいずれかに記載の溶融金属浴の成分分析システムでは、前記溶融金属は、溶融亜鉛を含み、前記溶融金属浴は、溶融亜鉛めっき浴であってもよい。
[7] 上記[6]に記載の溶融金属浴の成分分析システムは、前記不活性ガスの圧力を測定する圧力センサを有し、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記圧力センサにより得られる前記不活性ガスのゲージ圧が10~20kPaの範囲になるように制御されてもよい。
[8] 上記[6]または[7]に記載の溶融金属浴の成分分析システムは、前記不活性ガスの圧力を測定する圧力センサを有し、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記圧力センサにより得られる前記不活性ガスの圧力の変動が1.0kPa以下となるように制御されてもよい。
[9] 上記[6]~[8]のいずれかに記載の溶融金属浴の成分分析システムは、前記開口端における前記溶融金属の温度を測定する温度センサを有し、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定される前記溶融金属の温度が440℃以上となるように制御されてもよい。
[10] 上記[4]~[9]のいずれかに記載の溶融金属浴の成分分析システムは、前記開口端における前記溶融金属の温度を測定する温度センサを有し、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定される前記溶融金属の温度の変動が5℃以内となるように制御されてもよい。
[12] 上記[11]に記載の溶融金属浴の成分分析方法では、下記a~dのいずれか一つ以上の方法により、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御されてもよい。
a.前記不活性ガスのゲージ圧を、予め決定された範囲内となるように制御する
b.前記不活性ガスの圧力の変動を、予め決定された値以下となるように制御する
c.前記溶融金属の温度を、予め決定された温度以上となるように制御する
d.前記溶融金属の温度変動を、予め決定された値以下となるように制御する
[13] 上記[11]に記載の溶融金属浴の成分分析方法では、前記溶融金属は、溶融亜鉛であり、前記溶融金属浴は、溶融亜鉛めっき浴であってもよい。
[14] 上記[13]に記載の溶融金属浴の成分分析方法では、前記不活性ガスのゲージ圧が10~20kPaの範囲となるように、前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行ってもよい。
[15] 上記[13]または[14]に記載の溶融金属浴の成分分析方法では、前記不活性ガスの圧力の変動が1.0kPa以内となるように、前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行ってもよい。
[16] 上記[13]~[15]のいずれかに記載の溶融金属浴の成分分析方法では、前記溶融金属の温度が440℃以上となるように、前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれか行ってもよい。
[17] 上記[13]~[16]のいずれかに記載の溶融金属浴の成分分析方法では、前記開口端における前記溶融亜鉛の温度の変動が5℃以内となるように、前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行ってもよい。
まず、本発明の実施形態の説明に先立ち、本開示に至る着想について説明する。
上述したように、本発明者らは、従来提案されてきたレーザを溶融金属に照射し、溶融金属において生じるプラズマ発光を検出、分光分析する方法を検討したところ、同方法においては、溶融金属浴の操業条件等の変更がなく、溶融金属の成分量の変化がない可能性が高いと考えられる場合であっても、長時間、例えば数時間連続的に測定を行うと、溶融金属の成分量の測定値に変動が生じるという問題に直面した。
まず、本実施形態に係る成分分析システムを備えた溶融亜鉛めっき装置の一例を説明する。図1は、本発明の一実施形態に係る溶融亜鉛めっき装置1の概略構成を示す側面図、図2は、図1に示す溶融亜鉛めっき装置1の概略構成を示す平面図(溶融亜鉛めっき浴の上面から見た図)である。なお、溶融金属浴の一例として、代表的に溶融亜鉛めっき装置1中の溶融亜鉛めっき浴3(以下単に「めっき浴」ともいう)について説明するが、本発明は、当然これに限定されず、他の任意の溶融金属浴に適用可能である。
筒状プローブ13の開口端131は、長手方向に対し垂直であってもよいし、斜掛であってもよい。
駆動部34は、支持部材32を固定するとともに、固定部材33に沿って移動可能に構成されている。駆動部34は、後述する位置制御部38からの指示に従い、例えば内蔵されたモータ等の駆動手段により、固定部材33に沿った任意の位置(浸漬深さ)に移動する。これにより、筒状プローブ13の開口端131のめっき浴3中における浸漬深さを変更することが可能となる。すなわち、レーザ装置12および筒状プローブ13を支持する支持部材32が固定部材33に対し駆動部34を用いて移動可能となることにより、筒状プローブ13の開口端131の位置(浸漬深さ)が制御可能となる。同様に、位置制御部38からの指示に従い、筒状プローブ13の鉛直方向に対する角度が制御可能となっている。つまり、位置制御部38からの指示に従い、筒状プローブ13の鉛直方向に対する角度、および、筒状プローブ13の開口端131のめっき浴3中における浸漬深さ(開口端131の位置)が制御可能となっている。
つまり、温度演算部36において検出された溶融金属の温度および圧力演算部37において検出された不活性ガスの圧力に基づいて、筒状プローブ13の開口端131の位置および筒状プローブ13の鉛直方向に対する角度を制御することにより、長時間にわたって溶融金属の成分量の測定値の変動をさらに抑制することができる。
圧力センサは、例えばダイヤフラム式圧力センサでもよく、不活性ガスの圧力が検出可能なように、不活性ガスの導入路に配置されてもよい。圧力センサによって測定された不活性ガスの圧力の情報は、伝送ケーブル35に配されたケーブル(図示せず)を介して、圧力演算部37に送信される。
a.圧力センサにより得られる不活性ガスのゲージ圧を、予め決定された範囲内となるように制御する
b.不活性ガスの圧力の変動を、予め決定された値以下となるように制御する
c.溶融金属の温度を、予め決定された温度以上となるように制御する
d.溶融金属の温度変動を、予め決定された値以下となるように制御する
上記制御は、位置制御部38によって実現される。
本発明者らは、浸漬深さが深い方が前記の4つの因子を目標範囲(例えば、不活性ガスのゲージ圧の予め決定された範囲、不活性ガスの圧力変動の予め決定された範囲、溶融金属の温度の予め決定された範囲内(ある温度以上)および溶融金属の温度の変動範囲)に制御するためには、浸漬深さを深くする方向に制御することが好ましいということを見出した。
レーザ装置12は、精密機器であることから、一般的にはめっき浴3からできる限り離れた位置に配置されることが好ましいと考えられていた。また、筒状プローブ13をめっき浴3の深い位置まで挿入した場合、従来は、めっき浴3における溶融金属の圧力が高まる結果、不活性ガスのゲージ圧が安定せず、分析システムの測定値に誤差が生じやすいと考えられてきた。したがって、従来、例えば、溶融亜鉛めっき浴3では、比較的浅い位置、例えば10cmの深さに筒状プローブ13の開口端131を配置することが好ましいと考えられてきた。
本発明者らは、前記の4つの因子を前記の目標範囲に制御するためには、筒状プローブ13の鉛直方向に対する角度を0°ではなく、一定の傾斜角度とすることが好ましいことも見出した。具体的には、筒状プローブ13の鉛直方向に対する角度は、10~20°であることが好ましい。その角度の下限を11°または12.5°とすることが好ましい。その角度の上限を18°、16°または15°とすることが好ましい。
次に、上述した成分分析システム11を用いた、本実施形態に係る溶融金属浴の成分分析方法について説明する。なお、以下では、図3に示した成分分析システム11を用いて溶融金属浴の成分分析方法を実現する例について説明するが、本発明はかかる例に限定されない。すなわち、以下に説明する溶融金属浴の成分分析方法を実現可能である装置構成であれば、本発明の具体的な態様は特に限定されない。
また、本実施形態においては、上述した成分分析システム11において、温度センサ31および温度演算部36を用いて、筒状プローブ13の開口端131における溶融金属の温度を測定してもよい。溶融金属の温度(温度変動を含む。)が、予め決定された範囲内となるように、筒状プローブ13の開口端131の位置(浸漬深さ)および筒状プローブ13の鉛直方向に対する角度のうちの少なくともいずれかを制御することができる。
より具体的には、本実施形態においては、めっき浴3が溶融亜鉛めっき浴であるため、不活性ガスのゲージ圧が10~20kPaの範囲となるように、筒状プローブ13の開口端131の位置を制御すること、および、筒状プローブ13を鉛直方向に対する角度を制御することのうちの少なくともいずれかを行うことが好ましい。
また、不活性ガスの圧力の変動が1.0kPa以下となるように、筒状プローブ13の開口端131を配置すること、および、筒状プローブ13を鉛直方向に対して傾けることのうちの少なくともいずれかを行うことが好ましい。
より具体的には、本実施形態においては、めっき浴3が溶融亜鉛めっき浴であるため、開口端131における溶融金属の温度が440℃以上となる位置に筒状プローブ13の開口端131の位置を制御すること、および、筒状プローブ13の鉛直方向に対する角度を制御することのうちの少なくともいずれかを行うことが好ましい。
また、開口端131における溶融金属の温度変動に基づいて、めっき浴3における筒状プローブ13の開口端131の位置を制御すること、および、筒状プローブ13の鉛直方向に対する角度を制御することのうちの少なくともいずれかを行うことが好ましい。
より具体的には、開口端131における溶融金属の温度の変動が5℃以内となる位置に筒状プローブ13の開口端131の位置を制御すること、および、筒状プローブ13の鉛直方向に対する角度を制御することのうちの少なくともいずれかを行うことが好ましい。
まず、Alの濃度が0.125~0.143質量%となるように調製した溶融亜鉛浴を複数準備した。各溶融亜鉛浴におけるAl濃度、Fe濃度について、以下の条件で測定を行った。
また、表1の「制御の有無」における「プローブ開口端位置」の項目には、筒状プローブの開口端の鉛直方向位置の制御の有無を記載した。また、表1の「プローブ角度」の項目には、筒状プローブの開口端の鉛直方向に対する角度の制御の有無を記載した。
また、表1の「各パラメータの変動範囲」の項目に各制御項目の制御結果を示す。「プローブ開口端位置(cm)」には、筒状プローブの開口端の鉛直方向位置の変動範囲を記載した。筒状プローブの開口端の鉛直方向位置は、測定開始時の位置を基準とし、上昇を“+”、下降を“-”とした。「プローブ角度(°)」には、筒状プローブの鉛直方向に対する角度の範囲を記載した。「ゲージ圧(kPa)」には、アルゴンガスのゲージ圧の範囲を記載した。「溶融金属温度(℃)」には、温度センサで測定された溶融亜鉛浴の温度範囲を記載した。
図4に、図1~図3に示すような溶融亜鉛めっき浴を用いて本発明例2の条件で実機による試験を実施し、得られた溶解Alの濃度およびアルゴンガスのゲージ圧の経時変化を示す。図4に示すように、溶解Alの濃度は一定の値を示しており、信号の安定性は高く、精度(3σ)は、6000パルスの積算で21ppm、2000パルスの積算で34ppmであった。
さらに、19日間の連続測定を行った結果、AlおよびFe濃度が一定であったことから、上記の方法により、長期にわたって安定的にAlおよびFe濃度が測定可能であることが実証された。
アルゴンガスのゲージ圧は、8.0~8.5kPaの範囲にあったが、経時的なゲージ圧の変動があり、溶解Al濃度の変動はこの影響(つまり、ゲージ圧の変動の影響)によるものと考えられる。筒状プローブの開口端の温度の測定値は、440℃未満の値となることがあった。
図6および図7に、図1~図3に示すような溶融亜鉛めっき浴を用いて本発明例3の条件で実機による試験を実施し、得られた溶解Alの濃度の変化を、参考例としてのICP分析による溶解Al濃度とともに示す。ここで、図7は、図6の試験とは異なるタイミングでの試験結果である。図8および図9に、本発明例3によって測定された溶解Feの濃度の変化を、参考例としてのICP分析による溶解Fe濃度とともに示す。ここで、図9は、図8の試験とは異なるタイミングでの試験結果である。
2 鋼帯
3 めっき浴
4 めっき槽
5 スナウト
6 浴中ロール
7 サポートロール
8 インダクタ
9 ガスワイピング装置
10 合金化炉
11 成分分析システム
12 レーザ装置
13 筒状プローブ
131 開口端
14 伝送ケーブル
20 処理装置
21 検出部
22 信号処理部
30 位置制御装置
31 温度センサ
32 支持部材
33 固定部材
34 駆動部
35 伝送ケーブル
36 温度演算部
37 圧力演算部
38 位置制御部
Claims (16)
- レーザ光を発振するレーザ発振器と、
開口端が溶融金属浴に浸漬され、前記開口端へ向けて不活性ガスを供給するとともに、前記レーザ光を前記開口端に導光して溶融金属に照射する筒状プローブと、
前記レーザ光の照射により生じる前記溶融金属のプラズマ発光を検出し、分光分析する検出部と、を備え、
前記溶融金属浴における前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御可能に構成されており、
前記開口端における前記溶融金属の温度を測定する温度センサおよび前記不活性ガスの圧力を測定する圧力センサのうちの少なくともいずれかを有し、
前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定された前記溶融金属の温度および前記圧力センサにより得られた前記不活性ガスの圧力のうちの少なくともいずれかに基づき制御される、溶融金属浴の成分分析システム。 - 下記a~dのいずれか一つ以上の方法により、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御される、請求項1に記載の溶融金属浴の成分分析システム。
a.前記圧力センサにより得られる前記不活性ガスのゲージ圧を、予め決定された範囲内となるように制御する
b.前記不活性ガスの圧力の変動を、予め決定された値以下となるように制御する
c.前記溶融金属の温度を、予め決定された温度以上となるように制御する
d.前記溶融金属の温度変動を、予め決定された値以下となるように制御する - 前記溶融金属は、溶融亜鉛を含み、前記溶融金属浴は、溶融亜鉛めっき浴である、請求項1または2に記載の溶融金属浴の成分分析システム。
- 前記不活性ガスの圧力を測定する圧力センサを有し、
前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記圧力センサにより得られる前記不活性ガスのゲージ圧が10~20kPaの範囲になるように制御される、請求項3に記載の溶融金属浴の成分分析システム。 - 前記不活性ガスの圧力を測定する圧力センサを有し、
前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記圧力センサにより得られる前記不活性ガスの圧力の変動が1.0kPa以下となるように制御される、請求項3に記載の溶融金属浴の成分分析システム。 - 前記開口端における前記溶融金属の温度を測定する温度センサを有し、
前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定される前記溶融金属の温度が440℃以上となるように制御される、請求項3に記載の溶融金属浴の成分分析システム。 - 前記開口端における前記溶融金属の温度を測定する温度センサを有し、
前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかは、前記温度センサにより測定される前記溶融金属の温度の変動が5℃以内となるように制御される、請求項1または2に記載の溶融金属浴の成分分析システム。 - 溶融金属浴に筒状プローブを浸漬し、前記筒状プローブの開口端に不活性ガスを供給し、レーザ光を前記開口端に導光して溶融金属に照射し、および前記レーザ光の照射により生じる前記溶融金属のプラズマ発光を検出および分光分析する、溶融金属浴の成分分析方法であって、
前記溶融金属の温度および前記不活性ガスの圧力のうちの少なくともいずれかを測定し、
前記溶融金属の温度および前記不活性ガスの圧力のうちの少なくともいずれかに基づき、前記溶融金属浴における前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかを制御する、溶融金属浴の成分分析方法。 - 下記a~dのいずれか一つ以上の方法により、前記筒状プローブの前記開口端の位置および前記筒状プローブの鉛直方向に対する角度のうちの少なくともいずれかが制御される、請求項8に記載の溶融金属浴の成分分析方法。
a.前記不活性ガスのゲージ圧を、予め決定された範囲内となるように制御する
b.前記不活性ガスの圧力の変動を、予め決定された値以下となるように制御する
c.前記溶融金属の温度を、予め決定された温度以上となるように制御する
d.前記溶融金属の温度変動を、予め決定された値以下となるように制御する - 前記溶融金属は、溶融亜鉛であり、前記溶融金属浴は、溶融亜鉛めっき浴である、請求項8に記載の溶融金属浴の成分分析方法。
- 前記不活性ガスのゲージ圧が10~20kPaの範囲となるように、
前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行う、請求項10に記載の溶融金属浴の成分分析方法。 - 前記不活性ガスの圧力の変動が1.0kPa以内となるように、
前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行う、請求項10または11に記載の溶融金属浴の成分分析方法。 - 前記溶融金属の温度が440℃以上となるように、
前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行う、請求項10または11に記載の溶融金属浴の成分分析方法。 - 前記開口端における前記溶融亜鉛の温度の変動が5℃以内となるように、
前記筒状プローブの前記開口端の位置を制御すること、および前記筒状プローブの鉛直方向に対する角度を制御すること、のうちの少なくともいずれかを行う、請求項10または11に記載の溶融金属浴の成分分析方法。 - 請求項8または9に記載の溶融金属浴の成分分析方法によって、溶融亜鉛めっき浴中のAl、Feの少なくとも一つの濃度を測定する工程と、
前記濃度に基づき前記溶融亜鉛めっき浴中のFe、Alのいずれか一つの濃度を制御する工程と、
を有する溶融亜鉛めっき浴の管理方法。 - 請求項8または9に記載の溶融金属浴の成分分析方法によって、溶融亜鉛めっき浴中のFe、Alの少なくとも一つの濃度を測定する工程と、
前記濃度に基づき前記溶融亜鉛めっき浴中のFe、Alのいずれか一つの含有量を制御する工程と、
を有する溶融亜鉛めっき鋼板の製造方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022099507 | 2022-06-21 | ||
JP2022099507 | 2022-06-21 | ||
PCT/JP2023/022918 WO2023249048A1 (ja) | 2022-06-21 | 2023-06-21 | 溶融金属浴の成分分析システム、溶融金属浴の成分分析方法、溶融亜鉛めっき浴の管理方法、および溶融亜鉛めっき鋼板の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2023249048A1 JPWO2023249048A1 (ja) | 2023-12-28 |
JP7440820B1 true JP7440820B1 (ja) | 2024-02-29 |
JPWO2023249048A5 JPWO2023249048A5 (ja) | 2024-05-28 |
Family
ID=89379941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023575519A Active JP7440820B1 (ja) | 2022-06-21 | 2023-06-21 | 溶融金属浴の成分分析システム、溶融金属浴の成分分析方法、溶融亜鉛めっき浴の管理方法、および溶融亜鉛めっき鋼板の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7440820B1 (ja) |
WO (1) | WO2023249048A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003006967A1 (en) | 2001-07-12 | 2003-01-23 | National Research Council Of Canada | Method and apparatus for depth profile analysis by laser induced plasma spectroscopy |
JP2005530989A (ja) | 2002-06-24 | 2005-10-13 | ノランダ インコーポレイティド | レーザー誘起ブレークダウン分光法により溶融材料を分析するための方法および装置 |
JP2007514941A (ja) | 2003-12-17 | 2007-06-07 | ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ | 溶融金属の分析のための装置及び浸漬センサ及び方法 |
JP2008215851A (ja) | 2007-02-28 | 2008-09-18 | Nippon Steel Corp | レーザ誘起蛍光分析用プローブ及びレーザ誘起蛍光分析装置 |
JP2016522416A (ja) | 2013-07-15 | 2016-07-28 | 中国科学院瀋陽自動化研究所 | 遠距離冶金液体金属成分のための現場オンライン検出装置及び方法 |
CN205581003U (zh) | 2016-04-15 | 2016-09-14 | 华菱安赛乐米塔尔汽车板有限公司 | 一种新型锌液成分测量装置 |
WO2020239239A1 (en) | 2019-05-31 | 2020-12-03 | Dt Equipment Ehf. | Non-immersive method and apparatus for quantitative analysis of liquid metals and alloys |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51119332A (en) * | 1975-04-11 | 1976-10-19 | Nippon Steel Corp | Apparatus for detecting plating bath level in hot dip coating tank |
JPS57119241A (en) * | 1981-01-19 | 1982-07-24 | Nippon Steel Corp | Spectroscopic analysis apparatus for direct luminescence of molten metal |
JPS61140842A (ja) * | 1984-12-14 | 1986-06-27 | Kawasaki Steel Corp | 流動状態の金属、絶縁物の連続分析装置 |
JPH07234211A (ja) * | 1993-12-30 | 1995-09-05 | Nkk Corp | 溶融金属のレーザー発光分光分析用プローブ及び分析 方法 |
JP3058030B2 (ja) * | 1994-04-27 | 2000-07-04 | 日本鋼管株式会社 | レーザー発光分光分析方法および装置 |
JP3173354B2 (ja) * | 1995-12-04 | 2001-06-04 | 日本鋼管株式会社 | 溶融亜鉛めっき鋼板の合金化処理方法およびその合金化制御装置 |
KR200470965Y1 (ko) * | 2011-11-21 | 2014-01-23 | (주)포스젯한도 | 강판 연속도금설비의 강판 끝단 위치 감지장치 |
-
2023
- 2023-06-21 JP JP2023575519A patent/JP7440820B1/ja active Active
- 2023-06-21 WO PCT/JP2023/022918 patent/WO2023249048A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003006967A1 (en) | 2001-07-12 | 2003-01-23 | National Research Council Of Canada | Method and apparatus for depth profile analysis by laser induced plasma spectroscopy |
JP2005530989A (ja) | 2002-06-24 | 2005-10-13 | ノランダ インコーポレイティド | レーザー誘起ブレークダウン分光法により溶融材料を分析するための方法および装置 |
JP2007514941A (ja) | 2003-12-17 | 2007-06-07 | ヘレーウス エレクトロ−ナイト インターナシヨナル エヌ ヴイ | 溶融金属の分析のための装置及び浸漬センサ及び方法 |
JP2008215851A (ja) | 2007-02-28 | 2008-09-18 | Nippon Steel Corp | レーザ誘起蛍光分析用プローブ及びレーザ誘起蛍光分析装置 |
JP2016522416A (ja) | 2013-07-15 | 2016-07-28 | 中国科学院瀋陽自動化研究所 | 遠距離冶金液体金属成分のための現場オンライン検出装置及び方法 |
CN205581003U (zh) | 2016-04-15 | 2016-09-14 | 华菱安赛乐米塔尔汽车板有限公司 | 一种新型锌液成分测量装置 |
WO2020239239A1 (en) | 2019-05-31 | 2020-12-03 | Dt Equipment Ehf. | Non-immersive method and apparatus for quantitative analysis of liquid metals and alloys |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023249048A1 (ja) | 2023-12-28 |
WO2023249048A1 (ja) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101009845B1 (ko) | 용융 재료 분석용 레이저 유도 분석 분광법 | |
Konuk et al. | Process control of stainless steel laser welding using an optical spectroscopic sensor | |
TWI543249B (zh) | 基板處理裝置 | |
US20030197125A1 (en) | Apparatus and method for in situ, real time measurements of properties of liquids | |
CN104789959A (zh) | 激光熔敷加工中的质量管理方法以及激光熔敷加工装置 | |
EP0215483B1 (en) | Method of spectroscopically determining the composition of molten iron | |
JP7440820B1 (ja) | 溶融金属浴の成分分析システム、溶融金属浴の成分分析方法、溶融亜鉛めっき浴の管理方法、および溶融亜鉛めっき鋼板の製造方法 | |
RU2664485C1 (ru) | Способ спектрального анализа химического состава расплавленных металлов и устройство для его осуществления | |
JP2022541873A (ja) | 液体金属及び合金の定量的分析のための非浸漬的な方法及び装置 | |
JP5242287B2 (ja) | 半導体薄膜の結晶性評価装置及び結晶性評価方法 | |
JP2005116729A (ja) | レーザ加工装置およびレーザ加工方法 | |
EP0711413B1 (en) | Method for direct chemical analysis of molten metal | |
JPH0815153A (ja) | レーザ発光分光分析方法及びその装置 | |
JP3549477B2 (ja) | 溶融金属の成分測定用プローブ | |
WO2024135276A1 (ja) | 粒子を含む液体の分析方法、溶融亜鉛めっき浴の管理方法、溶融亜鉛めっき鋼板の製造方法、および粒子を含む液体の分析装置 | |
WO2023176939A1 (ja) | レーザー発光分光分析用光学装置、レーザー発光分光分析装置、レーザー発光分光分析方法、及び、溶融金属めっき設備 | |
JP2024120771A (ja) | 溶融亜鉛めっき浴の成分分析方法および成分分析システム | |
JP4880548B2 (ja) | シリコン半導体薄膜の結晶性評価装置及び方法 | |
JP5085594B2 (ja) | 溶鋼の連続モニタリング方法及び連続モニタリング装置 | |
JP2024120770A (ja) | 溶融亜鉛めっき浴の成分分析方法、管理方法及び成分分析システム | |
EP2277031B1 (fr) | Tête de mesure de type libs optimisée pour l'analyse de composés liquides et/ou à haute température | |
JP2004356513A (ja) | レーザアニーリング方法および装置 | |
JP2023551932A (ja) | 液体金属及び合金の定量化学分析の方法及び装置 | |
CN118829871A (zh) | 激光光谱分析用光学装置、激光光谱分析装置、激光光谱分析方法、以及热浸镀金属设备 | |
JP4788089B2 (ja) | 溶融金属の成分測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231207 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240129 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7440820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |