JP7439839B2 - 変倍光学系および光学機器 - Google Patents

変倍光学系および光学機器 Download PDF

Info

Publication number
JP7439839B2
JP7439839B2 JP2021569762A JP2021569762A JP7439839B2 JP 7439839 B2 JP7439839 B2 JP 7439839B2 JP 2021569762 A JP2021569762 A JP 2021569762A JP 2021569762 A JP2021569762 A JP 2021569762A JP 7439839 B2 JP7439839 B2 JP 7439839B2
Authority
JP
Japan
Prior art keywords
lens group
focusing
focusing lens
group
image plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021569762A
Other languages
English (en)
Other versions
JPWO2021140790A1 (ja
Inventor
真美 村谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2021140790A1 publication Critical patent/JPWO2021140790A1/ja
Priority to JP2024012370A priority Critical patent/JP2024045357A/ja
Application granted granted Critical
Publication of JP7439839B2 publication Critical patent/JP7439839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

本発明は、変倍光学系および光学機器に関する。
従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。このような変倍光学系においては、合焦の際の画角変動を抑えることが求められている。
国際公開第2014/196022号
第1の本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、前群と後群とからなり、前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、前記後群は、前記後群の最も物体側に配置された正の屈折力を有する第1合焦レンズ群と、前記第1合焦レンズ群の像面側に配置された負の屈折力を有する第2合焦レンズ群と、前記第2合焦レンズ群の像面側に配置された正の屈折力を有するレンズ群とを有し、変倍の際、隣り合う各レンズ群の間隔が変化し、最も像面側に配置されたレンズ群は光軸に沿って移動し、無限遠物体から近距離物体への合焦の際、前記前群が像面に対して固定され、前記第1合焦レンズ群と前記第2合焦レンズ群とがそれぞれ異なる軌跡で光軸に沿って移動し、以下の条件式を満足する。
0.25<βF1t/βF1w<2.00
0.25<βF2w/βF2t<2.00
但し、βF1t:望遠端状態における前記第1合焦レンズ群の無限遠合焦時の倍率
βF1w:広角端状態における前記第1合焦レンズ群の無限遠合焦時の倍率
βF2t:望遠端状態における前記第2合焦レンズ群の無限遠合焦時の倍率
βF2w:広角端状態における前記第2合焦レンズ群の無限遠合焦時の倍率
第2の本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、前群と後群とからなり、前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、前記後群は、前記後群の最も物体側に配置された合焦の際に光軸に沿って移動する合焦レンズ群を有し、変倍の際、隣り合う各レンズ群の間隔が変化し、前記第3レンズ群は、1つのレンズ成分から構成され、以下の条件式を満足する。
0.35<fF2/fBF2w<0.75
-1.35<fBF2w/fBrw<-0.15
但し、fF2:前記合焦レンズ群の焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の焦点距離
fBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
fBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離
第3の本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、前群と後群とからなり、前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、前記後群は、前記後群の最も物体側に配置された合焦の際に光軸に沿って移動する合焦レンズ群を有し、変倍の際、隣り合う各レンズ群の間隔が変化し、前記第3レンズ群は、3つのレンズ成分から構成され、以下の条件式を満足する。
0.35<fF2/fBF2w<0.75
但し、fF2:前記合焦レンズ群の焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の焦点距離
fBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
本発明に係る光学機器は、上記変倍光学系を備えて構成される。
第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(A)および図2(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図3(A)および図3(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す図である。 図5(A)および図5(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図6(A)および図6(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す図である。 図8(A)および図8(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図9(A)および図9(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第4実施例に係る変倍光学系のレンズ構成を示す図である。 図11(A)および図11(B)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図12(A)および図12(B)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第5実施例に係る変倍光学系のレンズ構成を示す図である。 図14(A)および図14(B)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図15(A)および図15(B)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 各実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 各実施形態に係る変倍光学系の製造方法を示すフローチャートである。
以下、本発明に係る好ましい実施形態について説明する。まず、各実施形態に係る変倍光学系を備えたカメラ(光学機器)を図16に基づいて説明する。このカメラ1は、図16に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる変倍光学系ZLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
被写体からの光は、撮影レンズ3の変倍光学系ZLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
次に、第1実施形態に係る変倍光学系について説明する。第1実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、前群GAと後群GBとから構成される。後群GBは、後群GBの最も物体側に配置された第1合焦レンズ群GF1と、第1合焦レンズ群GF1の像面側に配置された第2合焦レンズ群GF2とを有する。変倍の際、隣り合う各レンズ群の間隔が変化する。無限遠物体から近距離物体への合焦の際、前群GAが像面に対して固定され、第1合焦レンズ群GF1と第2合焦レンズ群GF2とがそれぞれ異なる軌跡で光軸に沿って移動する。なお、第1合焦レンズ群GF1は正の屈折力を有することが望ましい。第2合焦レンズ群GF2は負の屈折力を有することが望ましい。無限遠物体から近距離物体への合焦の際、第1合焦レンズ群GF1が像面側へ移動することが望ましい。無限遠物体から近距離物体への合焦の際、第2合焦レンズ群GF2が像面側へ移動することが望ましい。
上記構成の下、第1実施形態に係る変倍光学系ZLは、以下の条件式(1)および条件式(2)を満足する。
0.25<βF1t/βF1w<2.00 ・・・(1)
0.25<βF2w/βF2t<2.00 ・・・(2)
但し、βF1t:望遠端状態における第1合焦レンズ群GF1の無限遠合焦時の倍率
βF1w:広角端状態における第1合焦レンズ群GF1の無限遠合焦時の倍率
βF2t:望遠端状態における第2合焦レンズ群GF2の無限遠合焦時の倍率
βF2w:広角端状態における第2合焦レンズ群GF2の無限遠合焦時の倍率
第1実施形態によれば、合焦の際の画角変動が少ない変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第1実施形態に係る変倍光学系ZLは、図4に示す変倍光学系ZL(2)でも良く、図7に示す変倍光学系ZL(3)でも良く、図10に示す変倍光学系ZL(4)でも良い。
条件式(1)は、望遠端状態における第1合焦レンズ群GF1の無限遠合焦時の倍率と、広角端状態における第1合焦レンズ群GF1の無限遠合焦時の倍率との適切な関係を規定するものである。また、条件式(2)は、望遠端状態における第2合焦レンズ群GF2の無限遠合焦時の倍率と、広角端状態における第2合焦レンズ群GF2の無限遠合焦時の倍率との適切な関係を規定するものである。
条件式(1)および条件式(2)を満足することで、合焦の際の第1合焦レンズ群GF1と第2合焦レンズ群GF2の倍率変化が相殺され、合焦の際の画角変動を少なくすることができる。
条件式(1)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(1)の下限値を0.30、0.40、0.50、0.55、0.60、0.65、0.68、0.70、さらに0.73に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(1)の上限値を1.85、1.70、1.60、1.50、1.40、1.35、1.30、1.25、1.20、さらに1.18に設定することで、本実施形態の効果をより確実なものとすることができる。
条件式(2)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(2)の下限値を0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、さらに0.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(2)の上限値を1.98、1.95、1.93、1.90、1.88、1.85、1.80、1.70、1.60、1.50、1.40、1.35、さらに1.30に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(3)を満足することが望ましい。
0.01<βF1w/βF2w<0.25 ・・・(3)
条件式(3)は、広角端状態における第1合焦レンズ群GF1の無限遠合焦時の倍率と、広角端状態における第2合焦レンズ群GF2の無限遠合焦時の倍率との適切な関係を規定するものである。条件式(3)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(3)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(3)の下限値を0.02、0.03、さらに0.04に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(3)の上限値を0.23、0.20、0.19、0.18、さらに0.17に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。
0.10<ΔX1w/ΔX2w<0.75 ・・・(4)
但し、ΔX1w:広角端状態における無限遠物体から至近距離物体へ合焦する際の第1合焦レンズ群GF1の移動量
ΔX2w:広角端状態における無限遠物体から至近距離物体へ合焦する際の第2合焦レンズ群GF2の移動量
条件式(4)は、広角端状態における無限遠物体から至近距離物体へ合焦する際の第1合焦レンズ群GF1の移動量と、広角端状態における無限遠物体から至近距離物体へ合焦する際の第2合焦レンズ群GF2の移動量との適切な関係を規定するものである。条件式(4)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(4)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(4)の下限値を0.12、0.14、0.15、0.20、0.23、0.25、0.30、0.35、さらに0.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(4)の上限値を0.73、0.70、0.68、0.65、0.63、さらに0.62に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(5)を満足することが望ましい。
0.001<1/fAt<0.020 ・・・(5)
但し、fAt:望遠端状態における前群GAの焦点距離
条件式(5)は、望遠端状態における前群GAの焦点距離の適切な範囲を規定するものである。条件式(5)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(5)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(5)の下限値を0.002、さらに0.003に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(5)の上限値を0.018、0.015、0.013、さらに0.010に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(6)を満足することが望ましい。
0.001<1/fAF2w<0.015 ・・・(6)
但し、fAF2w:広角端状態における最も物体側のレンズ群から第2合焦レンズ群GF2までの各レンズ群の合成焦点距離
条件式(6)は、広角端状態における最も物体側のレンズ群から第2合焦レンズ群GF2までの各レンズ群の合成焦点距離の適切な範囲を規定するものである。条件式(6)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(6)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(6)の下限値を0.002に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(6)の上限値を0.013、0.010、0.008、さらに0.006に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLにおいて、第2合焦レンズ群GF2は、光軸に沿って物体側から順に並んだ、1枚の正レンズと1枚の負レンズとを有することが望ましい。これにより、合焦の際における色収差等の諸収差の変動を少なくすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(7)を満足することが望ましい。
0.35<fF2/fBF2w<0.75 ・・・(7)
但し、fF2:第2合焦レンズ群GF2の焦点距離
fBF2w:広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成焦点距離
条件式(7)は、第2合焦レンズ群GF2の焦点距離と、広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成焦点距離との適切な関係を規定するものである。条件式(7)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(7)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(7)の下限値を0.36、0.38、0.40、0.42、0.45、0.48、0.50、0.54、さらに0.55に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(7)の上限値を0.73、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(8)を満足することが望ましい。
-2.00<fBF2w/fBrw<-0.15 ・・・(8)
但し、fBF2w:広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成焦点距離
fBrw:広角端状態における第2合焦レンズ群GF2より像面側に配置されたレンズ群の合成焦点距離
条件式(8)は、広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成焦点距離と、広角端状態における第2合焦レンズ群GF2より像面側に配置されたレンズ群の合成焦点距離との適切な関係を規定するものである。条件式(8)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(8)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(8)の下限値を-1.90、-1.80、-1.70、-1.65、-1.35、-1.20、-1.10、さらに-1.05に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(8)の上限値を-0.20、-0.25、-0.30、-0.35、-0.40、-0.45、-0.50、-0.55、さらに-0.58に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(9)を満足することが望ましい。
0.10<βBF2w/βF2w<0.80 ・・・(9)
但し、βBF2w:広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成倍率
条件式(9)は、広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成倍率と、広角端状態における第2合焦レンズ群GF2の倍率との適切な関係を規定するものである。条件式(9)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(9)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(9)の下限値を0.13、0.15、0.18、0.20、さらに0.23に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(9)の上限値を0.78、0.75、0.73、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態に係る変倍光学系ZLは、以下の条件式(10)を満足することが望ましい。
0.05<βBrw/βBF2w<0.50 ・・・(10)
但し、βBrw:広角端状態における第2合焦レンズ群GF2より像面側に配置されたレンズ群の合成倍率
βBF2w:広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成倍率
条件式(10)は、広角端状態における第2合焦レンズ群GF2より像面側に配置されたレンズ群の合成倍率と、広角端状態における第2合焦レンズ群GF2から最も像面側のレンズ群までの各レンズ群の合成倍率との適切な関係を規定するものである。条件式(10)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(10)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(10)の下限値を0.06、0.08、0.10、さらに0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(10)の上限値を0.48、0.45、0.43、0.41、さらに0.40に設定することで、本実施形態の効果をより確実なものとすることができる。
次に、第2実施形態に係る変倍光学系について説明する。第2実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、前群GAと後群GBとから構成される。後群GBは、後群GBの最も物体側に配置された合焦の際に光軸に沿って移動する合焦レンズ群を有する。変倍の際、隣り合う各レンズ群の間隔が変化する。
上記構成の下、第2実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足する。
0.35<fF2/fBF2w<0.75 ・・・(11)
但し、fF2:前記合焦レンズ群の焦点距離、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の焦点距離
fBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
第2実施形態によれば、合焦の際の画角変動が少ない変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第2実施形態に係る変倍光学系ZLは、図4に示す変倍光学系ZL(2)でも良く、図7に示す変倍光学系ZL(3)でも良く、図10に示す変倍光学系ZL(4)でも良く、図13に示す変倍光学系ZL(5)でも良い。
条件式(11)は、合焦レンズ群の焦点距離と、広角端状態における合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離との適切な関係を規定するものである。条件式(11)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(11)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(11)の下限値を0.36、0.38、0.40、0.42、0.45、0.48、0.50、0.54、さらに0.55に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(11)の上限値を0.73、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
第2実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。
-2.00<fBF2w/fBrw<-0.15 ・・・(12)
但し、fBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離
条件式(12)は、広角端状態における合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離と、広角端状態における合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離との適切な関係を規定するものである。条件式(12)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(12)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(12)の下限値を-1.90、-1.80、-1.70、-1.65、-1.35、-1.20、-1.10、さらに-1.05に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(12)の上限値を-0.20、-0.30、-0.35、-0.40、-0.45、-0.50、-0.55、さらに-0.58に設定することで、本実施形態の効果をより確実なものとすることができる。
第2実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。
0.10<βBF2w/βF2w<0.80 ・・・(13)
但し、βBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
βF2w:広角端状態における前記合焦レンズ群の倍率、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の倍率
条件式(13)は、広角端状態における合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率と、広角端状態における合焦レンズ群の倍率との適切な関係を規定するものである。条件式(13)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(13)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(13)の下限値を0.13、0.15、0.18、0.20、さらに0.23に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(13)の上限値を0.78、0.75、0.73、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
第2実施形態に係る変倍光学系ZLは、以下の条件式(14)を満足することが望ましい。
0.05<βBrw/βBF2w<0.50 ・・・(14)
但し、βBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成倍率、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成倍率
βBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
条件式(14)は、広角端状態における合焦レンズ群より像面側に配置されたレンズ群の合成倍率と、広角端状態における合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率との適切な関係を規定するものである。条件式(14)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(14)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(14)の下限値を0.06、0.08、0.10、さらに0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(14)の上限値を0.48、0.45、0.43、0.41、さらに0.40に設定することで、本実施形態の効果をより確実なものとすることができる。
第2実施形態に係る変倍光学系ZLは、以下の条件式(15)を満足することが望ましい。
0.001<1/fAF2w<0.015 ・・・(15)
但し、fAF2w:広角端状態における最も物体側のレンズ群から前記合焦レンズ群までの各レンズ群の合成焦点距離、なお後群GBが前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、最も物体側のレンズ群から前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群までの各レンズ群の合成焦点距離
条件式(15)は、広角端状態における最も物体側のレンズ群から合焦レンズ群までの各レンズ群の合成焦点距離の適切な範囲を規定するものである。条件式(15)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(15)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(15)の下限値を0.002に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(15)の上限値を0.013、0.010、0.008、さらに0.006に設定することで、本実施形態の効果をより確実なものとすることができる。
第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(16)を満足することが望ましい。
0.15<(ftinf-ftmod)/ftinf<0.40 ・・・(16)
但し、ftinf:望遠端状態における変倍光学系ZLの無限遠合焦時の焦点距離
ftmod:望遠端状態における変倍光学系ZLの至近距離合焦時の焦点距離
条件式(16)は、望遠端状態における変倍光学系ZLの無限遠合焦時の焦点距離と、望遠端状態における変倍光学系ZLの至近距離合焦時の焦点距離との適切な関係を規定するものである。条件式(16)を満足することで、合焦の際の画角変動を少なくすることができる。
条件式(16)の対応値が上記範囲を外れてしまうと、合焦の際の画角変動を抑えることが困難になる。条件式(16)の下限値を0.18、0.20、0.22、0.24、0.25、さらに0.26に設定することで、各実施形態の効果をより確実なものとすることができる。また、条件式(16)の上限値を0.38、0.36、0.35、さらに0.33に設定することで、各実施形態の効果をより確実なものとすることができる。
第1実施形態および第2実施形態に係る変倍光学系ZLは、開口絞りSを有し、以下の条件式(17)を満足することが望ましい。
0.35<STw/TLw<0.65 ・・・(17)
但し、STw:広角端状態における開口絞りSから像面までの光軸上の距離
TLw:広角端状態における変倍光学系ZLの全長
条件式(17)は、広角端状態における開口絞りSから像面までの光軸上の距離と、広角端状態における変倍光学系ZLの全長との適切な関係を規定するものである。条件式(17)を満足することで、広角端状態における歪曲収差や像面湾曲等の諸収差を良好に補正することができる。
条件式(17)の対応値が上記範囲を外れてしまうと、広角端状態における歪曲収差や像面湾曲等の諸収差を補正することが困難になる。条件式(17)の下限値を0.33、0.35、0.38、0.40、0.43、0.45、さらに0.46に設定することで、各実施形態の効果をより確実なものとすることができる。また、条件式(17)の上限値を0.63、0.60、0.58、0.56、さらに0.55に設定することで、各実施形態の効果をより確実なものとすることができる。
第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(18)を満足することが望ましい。
0.04<Bft/TLt<0.35 ・・・(18)
但し、Bft:望遠端状態における変倍光学系ZLのバックフォーカス
TLt:望遠端状態における変倍光学系ZLの全長
条件式(18)は、望遠端状態における変倍光学系ZLのバックフォーカスと、望遠端状態における変倍光学系ZLの全長との適切な関係を規定するものである。条件式(18)を満足することで、望遠端状態における球面収差等の諸収差を良好に補正することができる。
条件式(18)の対応値が上記範囲を外れてしまうと、望遠端状態における球面収差等の諸収差を補正することが困難になる。条件式(18)の下限値を0.05、0.06、0.08、0.10、0.13、0.15、さらに0.16に設定することで、各実施形態の効果をより確実なものとすることができる。また、条件式(18)の上限値を0.33、0.30、さらに0.28に設定することで、各実施形態の効果をより確実なものとすることができる。
第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(19)を満足することが望ましい。
0.25<Bfw/fw<0.70 ・・・(19)
但し、Bfw:広角端状態における変倍光学系ZLのバックフォーカス
fw:広角端状態における変倍光学系ZLの焦点距離
条件式(19)は、広角端状態における変倍光学系ZLのバックフォーカスと、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(19)を満足することで、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
条件式(19)の対応値が上記範囲を外れてしまうと、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(19)の下限値を0.28、0.30、0.33、0.35、0.38、0.40、0.43、0.45、0.48、さらに0.50に設定することで、各実施形態の効果をより確実なものとすることができる。また、条件式(19)の上限値を0.68、0.65、0.63、0.60、0.58、さらに0.55に設定することで、各実施形態の効果をより確実なものとすることができる。
続いて、図17を参照しながら、第1実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、前群GAと後GBとを配置する(ステップST1)。次に、後群GBの最も物体側に第1合焦レンズ群GF1を配置し、後群GBの第1合焦レンズ群GF1の像面側に第2合焦レンズ群GF2を配置する(ステップST2)。次に、変倍の際、隣り合う各レンズ群の間隔が変化するように構成する(ステップST3)。また、無限遠物体から近距離物体への合焦の際、前群GAが像面に対して固定され、第1合焦レンズ群GF1と第2合焦レンズ群GF2とがそれぞれ異なる軌跡で光軸に沿って移動するように構成する。そして、少なくとも上記条件式(1)および条件式(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、合焦の際の画角変動が少ない変倍光学系を製造することが可能になる。続いて、第1実施形態の場合と同様に図17を参照しながら、第2実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、前群GAと後GBとを配置する(ステップST1)。次に、後群GBの最も物体側に合焦レンズ群を配置する(ステップST2)。次に、変倍の際、隣り合う各レンズ群の間隔が変化するように構成する(ステップST3)。また、合焦の際、合焦レンズ群が光軸に沿って移動するように構成する。そして、少なくとも上記条件式(11)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、合焦の際の画角変動が少ない変倍光学系を製造することが可能になる。
以下、各実施形態の実施例に係る変倍光学系ZLを図面に基づいて説明する。なお、第1実施形態に対応する実施例は、第1~第4実施例であり、第2実施形態に対応する実施例は、第1~第5実施例である。図1、図4、図7、図10、図13は、第1~第5実施例に係る変倍光学系ZL{ZL(1)~ZL(5)}の構成及び屈折力配分を示す断面図である。第1~第5実施例に係る変倍光学系ZL(1)~ZL(5)の断面図では、無限遠から近距離物体に合焦する際の合焦群の光軸に沿った移動方向を「合焦」という文字とともに矢印で示している。第1~第5実施例に係る変倍光学系ZL(1)~ZL(5)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
これら図1、図4、図7、図10、図13において、各レンズ群および各群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
以下に表1~表5を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
[全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBfを加えた距離を示し、Bfは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
また、第1~第4実施例の[全体諸元]の表において、βF1tは、望遠端状態における第1合焦レンズ群の無限遠合焦時の倍率を示す。βF1wは、広角端状態における第1合焦レンズ群の無限遠合焦時の倍率を示す。βF2tは、望遠端状態における第2合焦レンズ群の無限遠合焦時の倍率を示す。βF2wは、広角端状態における第2合焦レンズ群の無限遠合焦時の倍率を示す。βBF2wは、広角端状態における第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率を示す。βBrwは、広角端状態における第2合焦レンズ群より像面側に配置されたレンズ群の合成倍率を示す。ΔX1wは、広角端状態における無限遠物体から至近距離物体へ合焦する際の第1合焦レンズ群の移動量を示す。ΔX2wは、広角端状態における無限遠物体から至近距離物体へ合焦する際の第2合焦レンズ群の移動量を示す。fF2は、第2合焦レンズ群の焦点距離を示す。fAF2wは、広角端状態における最も物体側のレンズ群から第2合焦レンズ群までの各レンズ群の合成焦点距離を示す。fBF2wは、広角端状態における第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離を示す。fBrwは、広角端状態における第2合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離を示す。fAtは、望遠端状態における前群の焦点距離を示す。
また、第5実施例の[全体諸元]の表において、βF2wは、広角端状態における合焦レンズ群の倍率を示す。βBF2wは、広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率を示す。βBrwは、広角端状態における合焦レンズ群より像面側に配置されたレンズ群の合成倍率を示す。fF2は、合焦レンズ群の焦点距離を示す。AF2wは、広角端状態における最も物体側のレンズ群から合焦レンズ群までの各レンズ群の合成焦点距離を示す。fBF2wは、広角端状態における合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離を示す。fBrwは、広角端状態における合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離を示す。
[レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(S)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。
[可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。また、[可変間隔データ]の表には、無限遠合焦状態での面間隔、および至近距離合焦状態での面間隔を示す。
[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
(第1実施例)
第1実施例について、図1、図2、図3および表1を用いて説明する。図1は、第1実施例に係る変倍光学系ZL(1)のレンズ構成を示す図である。変倍光学系ZL(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群とから構成されている。像面Iは、第6レンズ群G6の後に位置する。
本実施例では、第4レンズ群G4が第1合焦レンズ群GF1として機能し、第5レンズ群G5が第2合焦レンズ群GF2として機能する。すなわち、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3とが、合焦の際に像面Iに対し固定される前群GAを構成する。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6とが、後群GBを構成する。
第1レンズ群G1、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5および第6レンズ群G6は、広角端状態(W)から望遠端状態(T)への変倍の際に、図1下段の矢印が示す軌跡に沿って移動する。これにより、隣り合う各レンズ群の間隔が変化し、撮影倍率が変更される(変倍が行われる)。第2レンズ群G2は固定されており、変倍に際し移動しない。無限遠物体から近距離物体への合焦の際には、図1上段の矢印で示すように、第4レンズ群G4と第5レンズ群G5とが互いに異なる軌跡で像面側へ移動する。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、両凸形状の正レンズL13とから構成される。第2レンズ群G2は、両凹形状の負レンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、両凹形状の負レンズL24とから構成される。 第3レンズ群G3は、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合正レンズと、両凸形状の正レンズL34と両凹形状の負レンズL35との接合正レンズとから構成される。
第4レンズ群G4は、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と、物体側に凸面を向けた正メニスカスレンズL43とから構成される。 第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61と、物体側に凹面を向けた負メニスカスレンズL62とから構成される。また、像面Iの手前には平行平板PPが配置される。
表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。
(表1)
[全体諸元]
変倍比=2.691
βF1t=0.39 βF1w=0.42
βF2t=3.10 βF2w=2.56
βBF2w=1.73 βBrw=0.68
ΔX1w=2.93 ΔX2w=4.92
fF2=-41.42 fAF2w=272.76
fBF2w=-72.93 fBrw=116.51
fAt=106.58
W M T
f 72.10 102.64 194.00
FNO 4.10 4.10 4.11
2ω 33.77 23.58 12.36
Ymax 21.60 21.60 21.60
TL 167.56 185.12 204.48
BF 37.76 40.23 51.42
[レンズ諸元]
面番号 R D nd νd
物体面 ∞
1 144.8366 1.00 1.8000 29.84
2 73.1116 5.85 1.5952 67.73
3 302.7125 0.10
4 68.5085 7.10 1.4970 81.14
5 -2151.2492 (D5)
6 -1656.3623 1.00 1.7200 46.02
7 33.5940 1.06
8 34.1723 7.56 1.8414 24.56
9 -119.9733 0.78
10 -139.3696 1.00 1.8062 40.91
11 53.2947 4.69
12 -43.3327 1.00 1.7620 40.10
13 295.7341 (D13)
14 265.1264 3.48 1.6400 60.08
15 -69.2515 2.00
16 60.6882 1.00 1.8010 34.92
17 29.8803 5.94 1.6400 60.08
18 -155.7130 2.00
19 30.4340 5.81 1.4875 70.32
20 -100.4347 1.59 1.8061 40.93
21 46.2910 2.11
22(S) ∞ (D22)
23 99.4135 2.72 1.6204 60.29
24 -317.0281 0.27
25 51.7395 1.00 1.8850 30.16
26 27.3631 6.31
27 32.8360 4.31 1.7200 43.69
28 3964.4455 (D28)
29 -295.2690 3.45 1.7618 26.52
30 -47.8221 3.63
31 -37.3306 1.00 1.7725 49.62
32 41.6899 (D32)
33 -197.5318 4.59 1.7645 49.10
34 -33.3333 0.41
35 -36.7436 1.00 1.6129 37.00
36 -102.1283 (D36)
37 ∞ 1.60 1.5168 64.13
38 ∞ 2.00
像面 ∞
[レンズ群データ]
群 始面 焦点距離
1 1 122.414
2 6 -31.567
3 14 44.395
4 23 63.962
5 29 -41.417
6 33 116.512
[可変間隔データ]
無限遠 至近
W M T W M T
F 72.100 102.642 194.000 67.277 91.500 139.931
D5 2.000 19.657 39.000 2.000 19.656 39.000
D13 22.402 17.047 2.100 22.402 17.047 2.100
D22 11.833 8.529 8.879 14.761 11.609 10.640
D28 2.330 1.793 2.000 4.318 5.420 13.231
D32 6.916 13.556 16.771 2.000 6.848 3.780
D36 34.707 37.174 48.360 34.708 37.174 48.360
図2(A)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図3(A)は、第1実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図3(B)は、第1実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。無限遠合焦時の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。近距離合焦時の各収差図において、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
各諸収差図より、第1実施例に係る変倍光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第2実施例)
第2実施例について、図4、図5、図6および表2を用いて説明する。図4は、第2実施例に係る変倍光学系ZL(2)のレンズ構成を示す図である。変倍光学系ZL(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群とから構成されている。像面Iは、第6レンズ群G6の後に位置する。
本実施例では、第4レンズ群G4が第1合焦レンズ群GF1として機能し、第5レンズ群G5が第2合焦レンズ群GF2として機能する。すなわち、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3とが、合焦の際に像面Iに対し固定される前群GAを構成する。第4レンズ群G4と、第5レンズ群G5と、第6レンズ群G6とが、後群GBを構成する。
第1レンズ群G1、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5および第6レンズ群G6は、広角端状態(W)から望遠端状態(T)へと移行する際に、図4下段の矢印が示す軌跡に沿って移動する。これにより、隣り合う各レンズ群の間隔が変化し、撮影倍率が変更される(変倍が行われる)。第2レンズ群G2は固定されており、変倍に際し移動しない。無限遠物体から近距離物体への合焦の際には、図4上段の矢印で示すように、第4レンズ群G4と第5レンズ群G5とが互いに異なる軌跡で像面側へ移動する。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。 第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、両凹形状の負レンズL24とから構成される。 第3レンズ群G3は、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合正レンズと、両凸形状の正レンズL34と両凹形状の負レンズL35との接合正レンズとから構成される。
第4レンズ群G4は、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と、両凸形状の正レンズL43とから構成される。第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61と、物体側に凹面を向けた負メニスカスレンズL62とから構成される。また、像面Iの手前には平行平板PPが配置される。
表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。
(表2)
[全体諸元]
変倍比=2.691
βF1t=0.32 βF1w=0.37
βF2t=3.37 βF2w=3.02
βBF2w=1.70 βBrw=0.56
ΔX1w=3.31 ΔX2w=5.65
fF2=-37.31 fAF2w=317.67
fBF2w=-85.60 fBrw=83.79
fAt=128.32
W M T
f 72.10 105.00 194.00
FNO 4.10 4.10 4.10
2ω 33.64 22.98 12.30
Ymax 21.60 21.60 21.60
TL 167.32 186.91 205.27
BF 37.23 37.15 37.11
[レンズ諸元]
面番号 R D nd νd
物体面 ∞
1 164.2107 1.00 1.7950 28.69
2 81.6916 5.44 1.5932 67.90
3 541.7710 0.10
4 64.6180 6.69 1.4970 81.61
5 1556.5885 (D5)
6 372.6279 1.00 1.7200 46.02
7 31.3950 0.58
8 32.1189 8.32 1.7847 25.64
9 -93.6053 0.11
10 -119.9230 1.00 1.7725 49.62
11 44.7568 5.56
12 -37.2692 1.00 1.8061 40.93
13 517.4010 (D13)
14 134.2064 4.10 1.6700 57.33
15 -74.3373 2.00
16 55.0428 1.00 1.8010 34.92
17 27.3081 6.05 1.6400 60.19
18 -146.5253 2.00
19 40.9804 5.06 1.4875 70.32
20 -61.4029 1.34 1.8061 40.97
21 64.3603 6.64
22(S) ∞ (D22)
23 76.0467 2.62 1.6700 47.23
24 -457.2754 0.13
25 93.1674 1.00 1.9020 25.10
26 31.2834 4.96
27 37.8776 3.87 1.8919 37.13
28 -3745.9359 (D28)
29 -78.4678 2.39 1.8467 23.78
30 -44.3923 6.95
31 -34.1777 1.00 1.7725 49.62
32 53.9288 (D32)
33 -268.3415 4.47 1.7550 52.32
34 -47.4541 0.10
35 -47.1341 1.00 1.6398 34.47
36 -52.0094 (D36)
37 ∞ 1.60 1.5168 63.88
38 ∞ 1.00
像面 ∞
[レンズ群データ]
群 始面 焦点距離
1 1 116.302
2 6 -27.897
3 14 42.018
4 23 63.113
5 29 -37.306
6 33 83.793
[可変間隔データ]
無限遠 至近
W M T W M T
F 72.100 105.000 194.000 66.728 93.257 133.735
D5 2.000 21.665 40.000 2.000 21.664 39.999
D13 18.985 14.768 2.100 18.986 14.768 2.100
D22 10.417 6.804 12.049 13.730 9.913 16.049
D28 3.010 2.588 4.969 5.345 6.845 18.954
D32 7.649 15.901 20.943 2.000 8.534 2.958
D36 35.170 35.093 35.120 35.170 35.094 35.120
図5(A)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図5(B)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図6(A)は、第2実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図6(B)は、第2実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第3実施例)
第3実施例について、図7、図8、図9および表3を用いて説明する。図7は、第3実施例に係る変倍光学系ZL(3)のレンズ構成を示す図である。変倍光学系ZL(3)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、開口絞りSと、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群とから構成されている。像面Iは、第8レンズ群G8の後に位置する。
本実施例では、第5レンズ群G5が第1合焦レンズ群GF1として機能し、第6レンズ群G6が第2合焦レンズ群GF2として機能する。すなわち、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、合焦の際に像面Iに対し固定される前群GAを構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とが、後群GBを構成する。
第2レンズ群G2、第3レンズ群G3、第5レンズ群G5、第6レンズ群G6および第8レンズ群G8は、広角端状態(W)から望遠端状態(T)への変倍の際に、図7下段の矢印が示す軌跡に沿って移動する。これにより、隣り合う各レンズ群の間隔が変化し、撮影倍率が変更される(変倍が行われる)。第1レンズ群G1、第4レンズ群G5および第7レンズ群G7は固定されており、変倍に際し移動しない。無限遠物体から近距離物体への合焦の際には、図7上段の矢印で示すように、第5レンズ群G5と第6レンズ群G6とが互いに異なる軌跡で像面側へ移動する。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合負レンズと、両凹形状の負レンズL24とから構成される。第3レンズ群G3は、物体側に凹面を向けた正メニスカスレンズL31から構成される。第4レンズ群G4は、両凸形状の正レンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合正レンズとから構成される。
第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。第6レンズ群G6は、両凸形状の正レンズL61と両凹形状の負レンズL62との接合負レンズから構成される。
第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL71と、両凸形状の正レンズL72とから構成される。第8レンズ群G8は、両凹形状の負レンズL81から構成される。また、像面Iの手前には平行平板PPが配置される。
表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。
(表3)
[全体諸元]
変倍比=2.708
βF1t=0.44 βF1w=0.38
βF2t=3.33 βF2w=4.29
βBF2w=1.78 βBrw=0.41
ΔX1w=1.52 ΔX2w=3.50
fF2=-47.48 fAF2w=208.32
fBF2w=-69.91 fBrw=117.19
fAt=174.21
W M T
f 72.01 131.40 195.00
FNO 4.10 4.10 4.11
2ω 33.51 18.53 12.50
Ymax 21.60 21.60 21.60
TL 190.10 191.04 190.02
BF 37.67 42.70 46.99
[レンズ諸元]
面番号 R D nd νd
物体面 ∞
1 90.2355 1.00 1.9500 29.37
2 60.7702 6.89 1.4970 81.64
3 -2196.2816 0.10
4 51.3148 10.01 1.4970 81.61
5 179.5132 (D5)
6 434.7890 1.49 1.8503 32.35
7 29.2567 6.81
8 -72.2823 1.00 1.4970 81.64
9 34.2350 7.14 2.0007 25.46
10 -94.3337 1.07
11 -56.0853 1.00 1.8061 33.34
12 165.1965 (D12)
13 -248.3690 3.29 1.7000 48.10
14 -52.8624 (D14)
15 89.5312 3.40 1.5168 64.13
16 -155.4452 0.10
17 36.4241 5.38 1.4875 70.32
18 -64.2538 1.00 2.0010 29.12
19 89.8281 1.77
20(S) ∞ (D20)
21 73.1095 1.00 1.7995 42.09
22 54.6786 0.10
23 51.1000 4.20 1.4970 81.64
24 -68.2409 (D24)
25 99.5195 4.17 1.7847 25.64
26 -37.0958 2.83 1.8485 43.79
27 30.2592 (D27)
28 278.5010 1.00 1.7174 29.57
29 51.0864 3.14
30 54.9583 6.33 1.7550 52.33
31 -46.7106 (D31)
32 -69.7842 1.00 1.8340 37.18
33 306.8074 (D33)
34 ∞ 1.60 1.5168 63.88
35 ∞ 1.00
像面 ∞
[レンズ群データ]
群 始面 焦点距離
1 1 96.608
2 6 -35.022
3 13 95.276
4 15 199.774
5 21 75.812
6 25 -47.481
7 28 51.745
8 32 -68.087
[可変間隔データ]
無限遠 至近
W M T W M T
F 72.010 131.396 195.000 67.773 110.730 138.226
D5 2.678 23.180 35.000 2.678 23.180 35.000
D12 34.322 15.720 2.000 34.322 15.720 2.000
D14 2.100 0.200 2.100 2.100 0.200 2.100
D20 12.892 3.238 2.000 14.414 4.678 4.082
D24 3.423 5.836 2.248 5.401 11.525 13.631
D27 6.791 14.033 18.859 3.291 6.903 5.394
D31 14.888 9.803 5.493 14.889 9.803 5.493
D33 35.176 40.197 44.490 35.176 40.197 44.490
図8(A)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図8(B)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図9(A)は、第3実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図9(B)は、第3実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第4実施例)
第4実施例について、図10、図11、図12および表4を用いて説明する。図10は、第4実施例に係る変倍光学系ZL(4)のレンズ構成を示す図である。変倍光学系ZL(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、第5レンズ群G5内に配置された開口絞りSと、負の屈折力を有する第6レンズ群と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群とから構成されている。像面Iは、第8レンズ群G8の後に位置する。
本実施例では、第5レンズ群G5が第1合焦レンズ群GF1として機能し、第6レンズ群G6が第2合焦レンズ群GF2として機能する。すなわち、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、合焦の際に像面Iに対し固定される前群GAを構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とが、後群GBを構成する。
第1レンズ群G1、第2レンズ群G2、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6および第8レンズ群G8は、広角端状態(W)から望遠端状態(T)への変倍の際に、図10下段の矢印が示す軌跡に沿って移動する。これにより、隣り合う各レンズ群の間隔が変化し、撮影倍率が変更される(変倍が行われる)。第2レンズ群G2は固定されており、変倍に際し移動しない。無限遠物体から近距離物体への合焦の際には、図10上段の矢印で示すように、第5レンズ群G5と第6レンズ群G6とが互いに異なる軌跡で像面側へ移動する。
第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、両凹形状の負レンズL24とから構成される。第3レンズ群G3は、両凸形状の正レンズL31から構成される。第4レンズ群G4は、両凸形状の正レンズL41と、両凸形状の正レンズL42と両凹形状の負レンズL43との接合正レンズとから構成される。
第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51と、開口絞りSと、両凸形状の正レンズL52とから構成される。第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61と両凹形状の負レンズL62との接合負レンズから構成される。
第7レンズ群G7は、物体側に凸面を向けた負メニスカスレンズL71と、両凸形状の正レンズL72とから構成される。第8レンズ群G8は、両凹形状の負レンズL81から構成される。また、像面Iの手前には平行平板PPが配置される。
表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。
(表4)
[全体諸元]
変倍比=2.708
βF1t=0.28 βF1w=0.37
βF2t=4.03 βF2w=7.39
βBF2w=1.86 βBrw=0.25
ΔX1w=0.32 ΔX2w=1.98
fF2=-40.33 fAF2w=300.05
fBF2w=-62.42 fBrw=91.39
fAt=281.46
W M T
f 72.01 131.83 195.00
FNO 4.10 4.10 4.10
2ω 33.18 18.31 12.41
Ymax 21.60 21.60 21.60
TL 190.10 196.42 202.79
BF 37.81 43.31 52.83
[レンズ諸元]
面番号 R D nd νd
物体面 ∞
1 79.0842 5.95 1.4875 70.32
2 264.5438 0.10
3 76.9959 1.00 1.6200 36.40
4 48.0525 8.95 1.4970 81.64
5 237.0010 (D5)
6 212.5326 1.00 1.9537 32.32
7 35.1692 2.15
8 52.5161 1.00 1.5935 67.00
9 25.5276 6.40 1.9630 24.11
10 56.3526 4.91
11 -81.6868 1.00 1.7550 52.32
12 117.0223 (D12)
13 229.9072 3.32 2.0007 25.46
14 -149.7696 (D14)
15 108.7396 4.23 1.5186 69.89
16 -81.0701 0.10
17 44.1054 6.79 1.4971 81.56
18 -43.2444 1.00 1.9229 20.88
19 208.7919 6.96
20(S) ∞ (D20)
21 -123.9327 2.46 2.0027 19.32
22 -59.8965 0.10
23 76.0756 2.78 1.4971 81.56
24 -9120.5459 (D24)
25 -400.9124 3.38 1.7847 25.64
26 -35.1385 1.00 1.7440 44.90
27 31.1285 (D27)
28 86.5286 1.00 1.8513 40.10
29 46.8866 3.27
30 51.7194 5.85 1.6976 55.51
31 -51.0112 (D31)
32 -83.2716 1.00 1.7296 54.07
33 200.0000 (D33)
34 ∞ 1.60 1.5168 63.88
35 ∞ 1.00
像面 ∞
[レンズ群データ]
群 始面 焦点距離
1 1 127.643
2 6 -32.627
3 13 91.026
4 15 104.204
5 21 64.670
6 25 -40.331
7 28 51.908
8 32 -80.459
[可変間隔データ]
無限遠 至近
W M T W M T
F 72.100 105.000 194.000 66.728 93.257 133.735
D5 2.000 22.798 35.000 2.000 22.798 35.000
D12 22.209 6.752 2.000 22.209 6.752 2.000
D14 19.979 9.878 2.100 19.979 9.878 2.100
D20 8.931 3.262 3.460 9.340 4.223 4.748
D24 2.155 10.230 12.617 3.818 15.216 21.949
D27 4.073 11.769 16.961 2.000 5.820 6.341
D31 17.106 11.180 2.000 17.106 11.181 2.000
D33 35.348 41.260 50.363 35.442 41.365 50.363
図11(A)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図11(B)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図12(A)は、第4実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図12(B)は、第4実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第4実施例に係る変倍光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
(第5実施例)
第5実施例について、図13、図14、図15および表5を用いて説明する。図13は、第5実施例に係る変倍光学系ZL(5)のレンズ構成を示す図である。変倍光学系ZL(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、第3レンズ群G3内に配置された開口絞りSと、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。像面Iは、第5レンズ群G5の後に位置する。
本実施例では、第4レンズ群G4が合焦レンズ群GFとして機能する。すなわち、第1レンズ群G1と、第2レンズ群G2と、第3レンズ群G3とが、合焦の際に像面に対し固定される前群GAを構成する。第4レンズ群G4と、第5レンズ群G5とが、後群GBを構成する。
第1レンズ群G1、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5は、広角端状態(W)から望遠端状態(T)への変倍の際に、図13下段の矢印が示す軌跡に沿って移動する。これにより、隣り合う各レンズ群の間隔が変化し、撮影倍率が変更される(変倍が行われる)。第2レンズ群G2は固定されており、変倍に際し移動しない。無限遠物体から近距離物体への合焦の際には、図13上段の矢印で示すように、第4レンズ群G4が像面側へ移動する。
第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。第3レンズ群G3は、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合レンズと、両凸形状の正レンズL34と両凹形状の負レンズL35との接合レンズと、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL36と、物体側に凸面を向けた負メニスカスレンズL37と、物体側に凸面を向けた正メニスカスレンズL38とから構成される。
第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51と、物体側に凹面を向けた正メニスカスレンズL52とから構成される。また、像面Iの手前には平行平板PPが配置される。
表5に、第5実施例に係る変倍光学系の諸元の値を掲げる。
(表5)
[全体諸元]
変倍比=2.701
βF2w=2.19
βBF2w=1.45 βBrw=0.66
fF2=-42.46 fAF2w=109.06
fBF2w=-126.62 fBrw=78.93
W M T
f 72.10 111.59 194.00
FNO 4.10 4.10 4.11
2ω 33.07 21.21 12.29
Ymax 21.60 21.60 21.60
TL 170.62 194.98 204.57
BF 26.33 26.34 26.41
[レンズ諸元]
面番号 R D nd νd
物体面 ∞
1 153.0418 1.00 1.7950 28.69
2 81.289 8.42 1.5932 67.90
3 -319.7357 0.10
4 51.972 5.48 1.4970 81.61
5 68.9954 (D5)
6 102.4213 1.00 1.7570 47.82
7 28.2387 2.64
8 30.1162 7.69 1.8052 25.46
9 -120.6517 0.10
10 -275.1702 1.00 1.7725 49.62
11 35.0678 5.57
12 -34.6195 1.00 1.8588 30.00
13 -166.953 (D13)
14 432.4033 3.78 1.6385 55.38
15 -58.0996 0.10
16 43.8656 1.56 1.8010 34.92
17 26.9447 5.92 1.6400 60.19
18 -1604.8469 0.10
19 30.6714 6.26 1.4875 70.32
20 -65.1694 1.60 1.8061 40.97
21 45.6195 2.00
22(S) ∞ 10.68
23 -198.2201 2.52 1.6850 49.22
24 -61.4817 0.43
25 63.3773 1.00 1.9020 25.10
26 29.9748 8.62
27 42.2467 3.43 1.8919 37.13
28 313.3184 (D28)
29 -59.9421 2.43 1.8467 23.78
30 -37.5377 8.57
31 -28.2576 1.00 1.8061 40.93
32 139.4046 (D32)
33 -295.2748 3.37 1.6700 51.72
34 -81.284 0.10
35 -500.48 3.53 1.7283 28.41
36 -89.2134 (D36)
37 ∞ 1.60 1.5168 63.88
38 ∞ 1.00
像面 ∞
[レンズ群データ]
群 始面 焦点距離
1 1 138.365
2 6 -33.239
3 14 41.795
4 29 -42.455
5 33 78.928
[可変間隔データ]
無限遠 至近
W M T W M T
F 72.100 111.593 194.000 67.313 97.936 129.512
D5 6.128 30.481 40.000 6.128 30.481 40.000
D13 25.026 19.401 2.100 25.025 19.401 2.100
D28 3.317 1.297 12.305 6.664 8.143 32.524
D32 8.282 15.926 22.219 4.934 9.079 2.000
D36 24.274 24.285 24.357 24.275 24.286 24.357
図14(A)は、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図14(B)は、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図15(A)は、第5実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図15(B)は、第5実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第5実施例に係る変倍光学系は、無限遠合焦時から近距離合焦時までの全域において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。そのため、近距離物体に合焦する場合にも良好な光学性能を保ちつつ、合焦の際の画角変動を少なくすることができる。
次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(19)に対応する値を、全実施例(第1~第5実施例)について纏めて示す。
条件式(1) 0.25<βF1t/βF1w<2.00
条件式(2) 0.25<βF2w/βF2t<2.00
条件式(3) 0.01<βF1w/βF2w<0.25
条件式(4) 0.10<ΔX1w/ΔX2w<0.75
条件式(5) 0.001<1/fAt<0.020
条件式(6) 0.001<1/fAF2w<0.015
条件式(7) 0.35<fF2/fBF2w<0.75
条件式(8) -2.00<fBF2w/fBrw<-0.15
条件式(9) 0.10<βBF2w/βF2w<0.80
条件式(10) 0.05<βBrw/βBF2w<0.50
条件式(11) 0.35<fF2/fBF2w<0.75
条件式(12) -2.00<fBF2w/fBrw<-0.15
条件式(13) 0.10<βBF2w/βF2w<0.80
条件式(14) 0.05<βBrw/βBF2w<0.50
条件式(15) 0.001<1/fAF2w<0.015
条件式(16) 0.15<(ftinf-ftmod)/ftinf<0.40
条件式(17) 0.35<STw/TLw<0.65
条件式(18) 0.04<Bft/TLt<0.35
条件式(19) 0.25<Bfw/fw<0.70
[条件式対応値]
条件式 第1実施例 第2実施例 第3実施例 第4実施例 第5実施例
(1) 0.944 0.862 1.152 0.754 ―
(2) 0.826 0.896 1.290 1.832 0.868
(3) 0.163 0.124 0.089 0.050 ―
(4) 0.596 0.587 0.435 0.160 ―
(5) 0.009 0.008 0.006 0.004 ―
(6) 0.004 0.003 0.005 0.003 ―
(7) 0.568 0.436 0.679 0.646 ―
(8) -0.626 -1.022 -0.597 -0.683 ―
(9) 0.677 0.562 0.413 0.251 ―
(10) 0.391 0.331 0.233 0.135 ―
(11) 0.568 0.436 0.679 0.646 0.335
(12) -0.626 -1.022 -0.597 -0.683 -1.604
(13) 0.677 0.562 0.413 0.251 0.661
(14) 0.391 0.331 0.233 0.135 0.457
(15) 0.004 0.003 0.005 0.003 0.009
(16) 0.279 0.311 0.291 0.274 0.332
(17) 0.526 0.522 0.524 0.479 0.493
(18) 0.251 0.181 0.247 0.260 0.129
(19) 0.524 0.516 0.523 0.525 0.365
上記各実施例によれば、合焦の際の画角変動が少ない変倍光学系を実現することができる。
上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
以下の内容は、本実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本実施形態の変倍光学系の実施例として5群構成、6群構成、および8群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、7群、9群等)の変倍光学系を構成することもできる。具体的には、本実施形態の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
開口絞りは第3レンズ群又は第4レンズ群に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群 G4 第4レンズ群
G5 第5レンズ群 G6 第6レンズ群
G7 第7レンズ群 G8 第8レンズ群
I 像面 S 開口絞り

Claims (23)

  1. 光軸に沿って物体側から順に並んだ、前群と後群とからなり、
    前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
    前記後群は、前記後群の最も物体側に配置された正の屈折力を有する第1合焦レンズ群と、前記第1合焦レンズ群の像面側に配置された負の屈折力を有する第2合焦レンズ群と、前記第2合焦レンズ群の像面側に配置された正の屈折力を有するレンズ群とを有し、
    変倍の際、隣り合う各レンズ群の間隔が変化し、最も像面側に配置されたレンズ群は光軸に沿って移動し、
    無限遠物体から近距離物体への合焦の際、前記第1合焦レンズ群と前記第2合焦レンズ群とがそれぞれ異なる軌跡で光軸に沿って移動し、
    以下の条件式を満足する変倍光学系。
    0.25<βF1t/βF1w<2.00
    0.25<βF2w/βF2t<2.00
    但し、βF1t:望遠端状態における前記第1合焦レンズ群の無限遠合焦時の倍率
    βF1w:広角端状態における前記第1合焦レンズ群の無限遠合焦時の倍率
    βF2t:望遠端状態における前記第2合焦レンズ群の無限遠合焦時の倍率
    βF2w:広角端状態における前記第2合焦レンズ群の無限遠合焦時の倍率
  2. 無限遠物体から近距離物体への合焦の際、前記第1合焦レンズ群が像面側へ移動する請求項1に記載の変倍光学系。
  3. 無限遠物体から近距離物体への合焦の際、前記第2合焦レンズ群が像面側へ移動する請求項1または2に記載の変倍光学系。
  4. 以下の条件式を満足する請求項1~3のいずれか一項に記載の変倍光学系。
    0.01<βF1w/βF2w<0.25
  5. 以下の条件式を満足する請求項1~4のいずれか一項に記載の変倍光学系。
    0.10<ΔX1w/ΔX2w<0.75
    但し、ΔX1w:広角端状態における無限遠物体から至近距離物体へ合焦する際の前記第1合焦レンズ群の移動量
    ΔX2w:広角端状態における無限遠物体から至近距離物体へ合焦する際の前記第2合焦レンズ群の移動量
  6. 以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
    0.001<1/fAt<0.020
    但し、fAt:望遠端状態における前記前群の焦点距離
  7. 以下の条件式を満足する請求項1~6のいずれか一項に記載の変倍光学系。
    0.001<1/fAF2w<0.015
    但し、fAF2w:広角端状態における最も物体側のレンズ群から前記第2合焦レンズ群までの各レンズ群の合成焦点距離
  8. 前記第2合焦レンズ群は、光軸に沿って物体側から順に並んだ、1枚の正レンズと1枚の負レンズとを有する請求項1~7のいずれか一項に記載の変倍光学系。
  9. 以下の条件式を満足する請求項1~8のいずれか一項に記載の変倍光学系。
    0.35<fF2/fBF2w<0.75
    但し、fF2:前記第2合焦レンズ群の焦点距離
    fBF2w:広角端状態における前記第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
  10. 以下の条件式を満足する請求項1~9のいずれか一項に記載の変倍光学系。
    -2.00<fBF2w/fBrw<-0.15
    但し、fBF2w:広角端状態における前記第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
    fBrw:広角端状態における前記第2合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離
  11. 以下の条件式を満足する請求項1~10のいずれか一項に記載の変倍光学系。
    0.10<βBF2w/βF2w<0.80
    但し、βBF2w:広角端状態における前記第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
  12. 以下の条件式を満足する請求項1~11のいずれか一項に記載の変倍光学系。
    0.05<βBrw/βBF2w<0.50
    但し、βBrw:広角端状態における前記第2合焦レンズ群より像面側に配置されたレンズ群の合成倍率
    βBF2w:広角端状態における前記第2合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
  13. 光軸に沿って物体側から順に並んだ、前群と後群とからなり、
    前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
    前記後群は、前記後群の最も物体側に配置された合焦の際に光軸に沿って移動する合焦レンズ群を有し、
    変倍の際、隣り合う各レンズ群の間隔が変化し、
    前記第3レンズ群は、1つのレンズ成分から構成され、
    以下の条件式を満足する変倍光学系。
    0.35<fF2/fBF2w<0.75
    -1.35<fBF2w/fBrw<-0.15
    但し、fF2:前記合焦レンズ群の焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の焦点距離
    fBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
    fBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離
  14. 光軸に沿って物体側から順に並んだ、前群と後群とからなり、
    前記前群は、最も物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
    前記後群は、前記後群の最も物体側に配置された合焦の際に光軸に沿って移動する合焦レンズ群を有し、
    変倍の際、隣り合う各レンズ群の間隔が変化し、
    前記第3レンズ群は、3つのレンズ成分から構成され、
    以下の条件式を満足する変倍光学系。
    0.35<fF2/fBF2w<0.75
    但し、fF2:前記合焦レンズ群の焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の焦点距離
    fBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成焦点距離
  15. 以下の条件式を満足する請求項14に記載の変倍光学系。
    -2.00<fBF2w/fBrw<-0.15
    但し、fBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成焦点距離
  16. 以下の条件式を満足する請求項13~15のいずれか一項に記載の変倍光学系。
    0.10<βBF2w/βF2w<0.80
    但し、βBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
    βF2w:広角端状態における前記合焦レンズ群の倍率、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群の倍率
  17. 以下の条件式を満足する請求項13~16のいずれか一項に記載の変倍光学系。
    0.05<βBrw/βBF2w<0.50
    但し、βBrw:広角端状態における前記合焦レンズ群より像面側に配置されたレンズ群の合成倍率、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群より像面側に配置されたレンズ群の合成倍率
    βBF2w:広角端状態における前記合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群から最も像面側のレンズ群までの各レンズ群の合成倍率
  18. 以下の条件式を満足する請求項13~17のいずれか一項に記載の変倍光学系。
    0.001<1/fAF2w<0.015
    但し、fAF2w:広角端状態における最も物体側のレンズ群から前記合焦レンズ群までの各レンズ群の合成焦点距離、なお前記後群が前記合焦レンズ群を含む複数の合焦レンズ群を有する場合、最も物体側のレンズ群から前記複数の合焦レンズ群のうち最も像面側に位置する合焦レンズ群までの各レンズ群の合成焦点距離
  19. 以下の条件式を満足する請求項1~18のいずれか一項に記載の変倍光学系。
    0.15<(ftinf-ftmod)/ftinf<0.40
    但し、ftinf:望遠端状態における前記変倍光学系の無限遠合焦時の焦点距離
    ftmod:望遠端状態における前記変倍光学系の至近距離合焦時の焦点距離
  20. 開口絞りを有し、
    以下の条件式を満足する請求項1~19のいずれか一項に記載の変倍光学系。
    0.35<STw/TLw<0.65
    但し、STw:広角端状態における前記開口絞りから像面までの光軸上の距離
    TLw:広角端状態における前記変倍光学系の全長
  21. 以下の条件式を満足する請求項1~20のいずれか一項に記載の変倍光学系。
    0.04<Bft/TLt<0.35
    但し、Bft:望遠端状態における前記変倍光学系のバックフォーカス
    TLt:望遠端状態における前記変倍光学系の全長
  22. 以下の条件式を満足する請求項1~21のいずれか一項に記載の変倍光学系。
    0.25<Bfw/fw<0.70
    但し、Bfw:広角端状態における前記変倍光学系のバックフォーカス
    fw:広角端状態における前記変倍光学系の焦点距離
  23. 請求項1~22のいずれか一項に記載の変倍光学系を備えて構成される光学機器。
JP2021569762A 2020-01-08 2020-12-02 変倍光学系および光学機器 Active JP7439839B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024012370A JP2024045357A (ja) 2020-01-08 2024-01-31 変倍光学系および光学機器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020001436 2020-01-08
JP2020001436 2020-01-08
PCT/JP2020/044760 WO2021140790A1 (ja) 2020-01-08 2020-12-02 変倍光学系、光学機器、および変倍光学系の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024012370A Division JP2024045357A (ja) 2020-01-08 2024-01-31 変倍光学系および光学機器

Publications (2)

Publication Number Publication Date
JPWO2021140790A1 JPWO2021140790A1 (ja) 2021-07-15
JP7439839B2 true JP7439839B2 (ja) 2024-02-28

Family

ID=76788611

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021569762A Active JP7439839B2 (ja) 2020-01-08 2020-12-02 変倍光学系および光学機器
JP2024012370A Pending JP2024045357A (ja) 2020-01-08 2024-01-31 変倍光学系および光学機器

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024012370A Pending JP2024045357A (ja) 2020-01-08 2024-01-31 変倍光学系および光学機器

Country Status (4)

Country Link
US (1) US20230048508A1 (ja)
JP (2) JP7439839B2 (ja)
CN (1) CN114830007B (ja)
WO (1) WO2021140790A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301474A (ja) 2005-04-25 2006-11-02 Sony Corp ズームレンズ及び撮像装置
JP2011209347A (ja) 2010-03-29 2011-10-20 Sony Corp ズームレンズ及び撮像装置
JP2013235218A (ja) 2012-05-11 2013-11-21 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2014102462A (ja) 2012-11-22 2014-06-05 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2014196022A1 (ja) 2013-06-04 2014-12-11 Cbc株式会社 ズームレンズ
JP2015197655A (ja) 2014-04-03 2015-11-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016139125A (ja) 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2017129668A (ja) 2016-01-19 2017-07-27 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2019184968A (ja) 2018-04-17 2019-10-24 オリンパス株式会社 結像光学系及びそれを備えた撮像装置
JP2020034681A (ja) 2018-08-29 2020-03-05 株式会社タムロン ズームレンズ及び撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
WO2015162883A1 (ja) * 2014-04-21 2015-10-29 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
EP3136148A4 (en) * 2014-04-25 2017-11-29 Nikon Corporation Variable power optical system, optical device, and method of manufacturing variable power optical system
CN109863439B (zh) * 2016-10-26 2022-03-01 株式会社尼康 变倍光学系统、光学设备以及拍摄设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301474A (ja) 2005-04-25 2006-11-02 Sony Corp ズームレンズ及び撮像装置
JP2011209347A (ja) 2010-03-29 2011-10-20 Sony Corp ズームレンズ及び撮像装置
JP2013235218A (ja) 2012-05-11 2013-11-21 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2014102462A (ja) 2012-11-22 2014-06-05 Canon Inc ズームレンズ及びそれを有する撮像装置
WO2014196022A1 (ja) 2013-06-04 2014-12-11 Cbc株式会社 ズームレンズ
JP2015197655A (ja) 2014-04-03 2015-11-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016139125A (ja) 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2017129668A (ja) 2016-01-19 2017-07-27 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2019184968A (ja) 2018-04-17 2019-10-24 オリンパス株式会社 結像光学系及びそれを備えた撮像装置
JP2020034681A (ja) 2018-08-29 2020-03-05 株式会社タムロン ズームレンズ及び撮像装置

Also Published As

Publication number Publication date
CN114830007A (zh) 2022-07-29
JP2024045357A (ja) 2024-04-02
WO2021140790A1 (ja) 2021-07-15
CN114830007B (zh) 2023-10-20
JPWO2021140790A1 (ja) 2021-07-15
US20230048508A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US11598940B2 (en) Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
EP2360504A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP5135723B2 (ja) 防振機能を有するズームレンズ、撮像装置、ズームレンズの防振方法、ズームレンズの変倍方法
US11635603B2 (en) Variable power optical system, optical apparatus and manufacturing method for variable power optical system
CN110573924B (zh) 变倍光学系统、光学装置和制造变倍光学系统的方法
CN111527437B (zh) 变倍光学系统以及光学装置
CN110832376A (zh) 变倍光学系统、光学装置以及变倍光学系统的制造方法
CN108139572B (zh) 变焦镜头以及光学设备
WO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
CN110520777B (zh) 变倍光学系统、光学装置和制造变倍光学系统的方法
CN110494786B (zh) 变倍光学系统、光学装置和制造变倍光学系统的方法
WO2020157801A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
CN110546544B (zh) 变倍光学系统、光学装置和制造变倍光学系统的方法
US20210191112A1 (en) Optical system, optical apparatus, and method of manufacturing optical system
CN114270237B (zh) 光学系统及光学设备
JP7439839B2 (ja) 変倍光学系および光学機器
WO2015136988A1 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP7243841B2 (ja) 変倍光学系および光学機器
CN114286960B (zh) 变倍光学系统及光学设备
CN114341696B (zh) 光学系统以及光学设备
CN114341697B (zh) 变倍光学系统以及光学设备
JP6349801B2 (ja) ズームレンズ、光学装置
WO2024034309A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7375970B2 (ja) 変倍光学系およびこれを用いた光学機器
CN114270239B (zh) 光学系统及光学设备、以及变倍光学系统及光学设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7439839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150