WO2014196022A1 - ズームレンズ - Google Patents

ズームレンズ Download PDF

Info

Publication number
WO2014196022A1
WO2014196022A1 PCT/JP2013/065495 JP2013065495W WO2014196022A1 WO 2014196022 A1 WO2014196022 A1 WO 2014196022A1 JP 2013065495 W JP2013065495 W JP 2013065495W WO 2014196022 A1 WO2014196022 A1 WO 2014196022A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom
object side
positive
Prior art date
Application number
PCT/JP2013/065495
Other languages
English (en)
French (fr)
Inventor
勝也 平野
Original Assignee
Cbc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cbc株式会社 filed Critical Cbc株式会社
Priority to US14/892,822 priority Critical patent/US9766436B2/en
Priority to JP2015521203A priority patent/JP6188798B2/ja
Priority to PCT/JP2013/065495 priority patent/WO2014196022A1/ja
Publication of WO2014196022A1 publication Critical patent/WO2014196022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present invention relates to a zoom lens.
  • a zoom lens composed of a plurality of lens groups is known as a high magnification zoom.
  • Patent Document 1 or 2 for example, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive or negative refractive power, and a stop are provided.
  • a zoom lens including a fourth lens group including positive refractive power is disclosed.
  • An object of the present invention is to provide a zoom lens that achieves both high optical performance over the entire zoom range with a high zoom ratio and shortening the optical total length of the zoom lens.
  • the first lens group having a positive refractive power and a focusing function, and a variator function having a negative refractive power and performing zooming are provided.
  • the first lens group includes three or more lenses including at least one concave lens, and satisfies the following conditional expression (1).
  • a zoom lens is provided.
  • the fourth lens group includes at least two lenses, and The zoom lens according to the first aspect is provided, which satisfies the conditional expressions (2) to (5).
  • the fifth lens group comprises at least three lenses, of at least the three lenses of the fifth lens group.
  • the two lenses on the object side are a cemented lens including a positive lens and a negative lens in order from the object side, and satisfy the following conditional expression (6).
  • a zoom lens is provided.
  • n5B ⁇ n5A (6)
  • n5A Refractive index at the d-line of the positive lens included in the cemented lens of the fifth lens group
  • n5B Refractive index at the d-line of the negative lens included in the cemented lens of the fifth lens group
  • the fourth lens group includes at least two lenses
  • the fifth lens group includes at least three lenses. Of the at least three lenses of the fifth lens group, the two lenses on the object side include a positive lens and a negative lens in order from the object side.
  • the zoom lens according to the first aspect is provided, which is a cemented lens configured and satisfies the conditional expressions (2) to (6).
  • the first lens group is composed of three or more lenses including at least one concave lens, and the fourth lens group includes at least two lenses,
  • the fifth lens group includes at least three lenses.
  • the two lenses on the object side include a positive lens and a negative lens in order from the object side.
  • the zoom lens according to the first aspect is provided which is a cemented lens configured and satisfies the conditional expressions (1) to (6).
  • the present invention it is possible to provide a zoom lens that achieves both high optical performance over the entire zoom range with a high zoom ratio and shortening the optical total length of the zoom lens.
  • FIG. (A) is a figure which shows the parameter of each lens group of the zoom lens of Example 1
  • (b) is a figure which shows each parameter in the wide-angle end of a zoom lens of Example 1, an intermediate region, and a telephoto end.
  • (C) is a diagram showing the values of the conditional expressions of the zoom lens of Example 1.
  • FIG. (A) to (c) are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 1
  • (a) is a spherical aberration diagram
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the wide angle end of the zoom lens of Example 1, and (d) is when the half angle of view is 24.19 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 24.19 °
  • (f) is a meridional direction in the case of a half field angle of 17.13 °.
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 17.13 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g).
  • FIG. 1 It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • A) to (c) are longitudinal aberration diagrams in the intermediate range of the zoom lens of Example 1,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate range of the zoom lens of Example 1
  • (d) is when the half angle of view is 3.312 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 3.312 °
  • (f) is a meridional direction in the case of a half field angle of 2.350 °
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 2.350 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 1, (a) is a spherical aberration diagram, and (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 1, and (d) is when the half angle of view is 0.824 °.
  • (E) is a lateral aberration diagram in the sagittal direction when the half field angle is 0.824 °
  • (f) is a meridional direction lateral aberration when the half field angle is 0.585 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half angle of view is 0.585 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure. It is sectional drawing which shows the structure in the wide angle end of the zoom lens which concerns on Example 2 of one Embodiment of this invention.
  • (A) is a figure which shows the parameter of each lens group of the zoom lens of Example 2
  • (b) is a figure which shows each parameter in the wide-angle end of a zoom lens of Example 2, an intermediate area, and a telephoto end.
  • FIG. (A) to (c) are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 2, (a) is a spherical aberration diagram, and (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram, (d) to (g) are lateral aberration diagrams at the wide angle end of the zoom lens of Example 2, and (d) is when the half angle of view is 24.55 °.
  • (E) is a lateral aberration diagram in the sagittal direction when the half field angle is 24.55 °
  • (f) is a meridional direction lateral aberration when the half field angle is 17.26 °
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 17.26 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams in the intermediate range of the zoom lens of Example 2,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate range of the zoom lens of Example 2
  • (d) is when the half angle of view is 3.322 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 3.322 °
  • (f) is a meridional direction in the case of a half field angle of 2.353 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half angle of view is 2.353 °
  • (h) is a spherical aberration diagram of (a)
  • (d) ⁇ It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 2,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 2, and (d) is when the half angle of view is 1.297 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half field angle of 1.297 °
  • (f) is a meridional direction lateral aberration in the case of a half field angle of 0.922 °.
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction when the half angle of view is 0.922 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g).
  • (A) to (c) are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 3, (a) is a spherical aberration diagram, and (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the wide angle end of the zoom lens of Example 3, and (d) is when the half angle of view is 24.57 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 24.57 °
  • (f) is a meridional direction in the case of a half field angle of 17.26 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 17.26 °
  • (h) is a spherical aberration diagram of (a),
  • (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams in the intermediate range of the zoom lens of Example 3,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate region of the zoom lens of Example 3, and (d) is when the half angle of view is 3.338 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 3.338 °
  • (f) is a meridional direction in the meridional direction at a half angle of view of 2.359 °.
  • a lateral aberration diagram (g) is a lateral aberration diagram in the sagittal direction at a half field angle of 2.359 °, (h) is a spherical aberration diagram of (a), (d) ⁇ (g) It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 3
  • (a) is a spherical aberration diagram
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 3, and (d) is when the half angle of view is 1.072 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half field angle of 1.072 °
  • (f) is a meridional direction lateral aberration in the case of a half field angle of 0.759 °.
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction at a half field angle of 0.759 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g).
  • (A) to (c) are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 4, (a) is a spherical aberration diagram, and (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the wide-angle end of the zoom lens of Example 4, and (d) is when the half angle of view is 24.23 °.
  • (E) is a lateral aberration diagram in the sagittal direction when the half angle of view is 24.23 °
  • (f) is a meridional direction aberration in the case of the half angle of view of 17.13 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 17.13 °
  • (h) is a spherical aberration diagram of (a),
  • (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams in the intermediate region of the zoom lens of Example 4,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate region of the zoom lens of Example 4, and (d) is when the half angle of view is 3.373 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 3.373 °
  • (f) is a meridional direction in the case of a half angle of view of 2.367 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half angle of view is 2.367 °
  • (h) is a spherical aberration diagram of (a)
  • (d) ⁇ It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 4,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 4, and (d) is when the half angle of view is 1.085 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 1.085 °
  • (f) is a meridional direction in the case of a half field angle of 0.762 °.
  • It is a lateral aberration diagram
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 0.762 °
  • (h) is a spherical aberration diagram of (a), (d) ⁇ (g).
  • FIG. 1 It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure. It is sectional drawing which shows the structure in the wide angle end of the zoom lens which concerns on Example 5 of one Embodiment of this invention.
  • A is a figure which shows the parameter of each lens group of the zoom lens of Example 5
  • b is a figure which shows each parameter in the wide-angle end of a zoom lens of Example 5, an intermediate area, and a telephoto end.
  • C is a diagram showing the values of the conditional expressions of the zoom lens of Example 5.
  • (A) to (c) are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 5, (a) is a spherical aberration diagram, and (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the wide-angle end of the zoom lens of Example 5, and (d) is when the half angle of view is 24.23 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half angle of view of 24.23 °
  • (f) is a meridional direction in the case of a half field angle of 17.16 °.
  • (g) is a lateral aberration diagram in the sagittal direction when the half field angle is 17.16 °
  • (h) is a spherical aberration diagram of (a),
  • (d) ⁇ (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams in the intermediate range of the zoom lens of Example 5,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate range of the zoom lens of Example 5, and (d) is when the half angle of view is 3.379 °.
  • (E) is a lateral aberration diagram in the sagittal direction at a half field angle of 3.379 °
  • (f) is a meridional direction lateral aberration at a half field angle of 2.369 °.
  • (g) is a lateral aberration diagram in the sagittal direction at a half field angle of 2.369 °
  • (h) is a spherical aberration diagram of (a)
  • (d) ⁇ (g) It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • (A) to (c) are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 5,
  • (a) is a spherical aberration diagram, and
  • (b) is an astigmatism diagram and a field curvature aberration diagram.
  • (C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 5, and (d) is when the half angle of view is 1.086 °.
  • (E) is a lateral aberration diagram in the sagittal direction when the half field angle is 1.086 °
  • (f) is a transverse aberration diagram in the meridional direction when the half field angle is 0.763 °.
  • (G) is a lateral aberration diagram in the sagittal direction when the half angle of view is 0.763 °
  • (h) is a spherical aberration diagram of (a), and (d) to (g). It is a figure which shows the line type with respect to the wavelength of the light in a lateral aberration figure.
  • FIG. 1 is a cross-sectional view showing the configuration of the zoom lens according to the present embodiment at the wide-angle end.
  • Ni represents the surface number of each lens (i is a natural number).
  • Example 1 described later will be described as a representative example of the present embodiment.
  • the zoom lens according to the present embodiment is configured so that zooming can be performed while maintaining the entire optical length.
  • Optical total length refers to the distance from the surface N1 of the lens system to the image plane Simg.
  • the zoom lens according to the present embodiment in order from the object (subject) side, has a first lens group G1 having a positive refractive power and a focusing function, and a first variator function having a negative refractive power and performing zooming.
  • G4 and a fifth lens group G5 having positive or negative refractive power, and the first lens group G1, the third lens group G3, and the fifth lens group upon zooming from the wide angle end to the telephoto end.
  • the second lens group G2 is moved from the object side to the image plane side along the optical axis Z1, and the fourth lens group G4 is moved along the optical axis Z1 to perform the first focusing. Only the lens group G1 is moved along the optical axis Z1. Configured to. Details will be described below.
  • the zoom lens includes five lens groups, and in order from the object side along the optical axis Z1, the first lens group G1, the second lens group G2, and the third lens group G3. , A fourth lens group G4, and a fifth lens group G5.
  • the first lens group G1 has a positive refractive power (optical power), and includes, for example, three or more lenses including at least one concave lens (negative lens).
  • the first lens group G1 includes, for example, in order from the object side, a cemented lens (junction lens) including a negative meniscus lens L1 that is convex on the object side and a positive lens L2 that is convex on both sides, and a positive that is convex on both sides.
  • the lens L3 includes a positive meniscus lens L4 that is convex on the object side.
  • the first lens group G1 has a focusing function.
  • the “focusing function” refers to a function for focusing (focusing on) an object by moving the lens group along the optical axis Z1.
  • a lens group having a focusing function is also referred to as a “focusing lens group”.
  • only the first lens group G1 is a focusing lens group.
  • the second lens group G2 has a negative refractive power.
  • the second lens group G2 includes, for example, in order from the object side, a negative meniscus lens L5 that is convex on the object side, a negative lens L6 that is concave on both sides, and a positive meniscus lens L7 that is convex on the object side. Composed.
  • the second lens group G2 has a variator function.
  • the “variator function” refers to a function of performing zooming by moving the lens group along the optical axis Z1.
  • a lens group having a variator function is also referred to as a “variator lens group”.
  • the third lens group G3 has positive refractive power and includes a diaphragm (iris) SP.
  • the third lens group G3 includes, for example, an aperture SP, a double-sided positive lens L8, a double-sided positive lens L9, a double-sided positive lens L10, and a double-sided negative negative in order from the object side.
  • the fourth lens group G4 has a positive refractive power and includes, for example, at least two lenses.
  • the fourth lens group G4 includes, for example, a double-convex positive lens L12, a negative meniscus lens L13 convex toward the object side, and a positive meniscus lens L14 convex toward the object side, in order from the object side. And a lens.
  • the fourth lens group G4 has a compensator function.
  • the “compensator function” herein refers to a function that corrects the position of the image plane by moving the lens group along the optical axis Z1 in conjunction with the variator lens group during zooming.
  • a lens group having a compensator function is also referred to as a “compensator lens group”.
  • the fourth lens group G4 does not have a focusing function. That is, the fourth lens group G4 is fixed during focusing.
  • the fifth lens group G5 has a positive or negative refractive power and includes at least three lenses. Of the at least three lenses, the two lenses on the object side are bonded lenses that are composed of a positive lens and a negative lens in order from the object side.
  • the fifth lens group G5 includes, for example, in order from the object side, a cemented lens including a double-sided convex positive lens L15 and a double-sided concave negative lens L16, and a double-sided convex positive lens L17.
  • the third lens group G3, the fourth lens group G4, and the fifth lens group G5 constitute a relay system that forms an image on the image plane Simg.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) is disposed at the position of the image plane Simg opposite to the object side in the optical axis Z1 direction.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the second lens group G2 monotonously moves from the object side to the image plane Simg along the optical axis Z1 in, for example, an arrow direction DZ2.
  • the fourth lens group G4 moves to the image side Simg after moving to the object side along the optical axis Z1 in the direction DZ4 of the arrow, for example.
  • the fourth lens group G4 moves so as to draw a convex locus on the object side.
  • the first lens group G1 as the focus lens group when focusing (focusing), only the first lens group G1 as the focus lens group performs focusing from an infinitely distant object to a close object, for example, in the arrow direction DF1, and the optical axis Z1. Move along.
  • the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 are fixed. Thereby, even when the magnification is changed, the amount of extension of the focusing lens group is constant, and stable focusing can be performed.
  • the “feeding amount” of the lens refers to a moving distance for moving the lens back and forth in order to focus.
  • the zoom lens of this embodiment is used for a surveillance camera, for example.
  • a zoom camera with a high zoom ratio and a large solid-state image sensor that achieves high image quality are used for surveillance cameras that monitor traffic roads, ports, borders, and the like. For this reason, a focal length longer than that of an optical system using a small solid-state imaging device is required. Further, since the F number of the optical system is determined by the focal length and the entrance pupil diameter, a large entrance pupil is required to maintain brightness. Therefore, the lens diameter of the first lens group G1 of the zoom lens is increased.
  • the zoom ratio of the zoom lens of the present embodiment is, for example, not less than 10 times and not more than 200 times, and preferably not less than 19 times and not more than 30 times.
  • the diagonal length of the solid-state imaging device to which the zoom lens of this embodiment is connected is, for example, 8 mm (so-called 1/2 inch) or more and 11 mm (so-called 2/3 inch) or less.
  • the lens diameter of the largest lens (for example, lens L1) among zoom lenses is 50 mm or more and 100 mm or less, for example.
  • the zoom lens according to the present embodiment satisfies the following conditional expression (1). 0.45 ⁇ ft / f1 ⁇ 0.6 (1)
  • f1 focal length of the first lens group
  • G1 ft focal length of the entire lens system at the telephoto end.
  • the zoom lens according to the present embodiment satisfies the following conditional expression (1 ′). 0.5 ⁇ ft / f1 ⁇ 0.6 (1 ′)
  • the refractive power of each lens unit can be kept within a predetermined range, and high optical performance can be obtained over the entire zoom range.
  • ft / f1 is smaller than the upper limit, the zoom lens can be reduced in size.
  • the zoom lens according to the present embodiment satisfies the following conditional expressions (2) to (5).
  • f2 focal length of the second lens group
  • G2 f3 focal length of the third lens group
  • G3 f4 focal length of the fourth lens group
  • the zoom lens according to the present embodiment satisfies the following conditional expressions (2 ′) to (5 ′). 1 ⁇ f4 /
  • the second lens group G2 which is a variator lens group
  • the fourth lens group G4 which is a compensator lens group.
  • is larger than the lower limit
  • aberration variation is suppressed during zooming, and good optical performance can be obtained over the entire zoom range.
  • is smaller than the above upper limit value, the image position correction sensitivity is good. Further, the amount of movement of the second lens group G2 and the fourth lens group G4 in the vicinity of the telephoto end can be reduced, and the second lens group G2 and the fourth lens group G4 can be easily moved by the cam mechanism. .
  • the zoom lens can be reduced in size.
  • f3 / f4 is smaller than the above upper limit value, it is possible to suppress degradation of optical performance during zooming. In particular, the occurrence of curvature of field can be suppressed and high optical performance can be obtained.
  • the fifth lens group G5 satisfies the following conditional expression (6).
  • n5B Refractive index at the d-line of the positive lens L15 included in the cemented lens of the fifth lens group G5
  • n5B Refractive index at the d-line of the negative lens L16 included in the cemented lens of the fifth lens group G5.
  • the “d line” means light having a wavelength of 587.6 nm.
  • the variator lens group is in a state where the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed during zooming from the wide-angle end to the telephoto end.
  • the second lens group G2 is moved from the object side to the image plane Simg side along the optical axis Z1, and the fourth lens group G4, which is a compensator lens group, is moved along the optical axis Z1.
  • zooming of the zoom lens can be easily performed by moving one variator lens group while maintaining the optical total length.
  • the zoom lens according to the present embodiment can reduce the telephoto ratio at the telephoto end while having five lens groups. Thereby, the housing which accommodates a zoom lens can be made small.
  • the power arrangement of each lens group can be appropriately adjusted by using the compensator group as the fourth lens group. Thereby, a bright zoom lens with high performance and a large aperture ratio can be provided.
  • the zoom lens according to this embodiment can be configured to be connected to a widely used C mount or CS mount.
  • the fourth lens group serves both as a compensator lens group and a focusing lens group.
  • the extension amount of the fourth lens group at the time of focusing differs between the wide-angle end and the telephoto end.
  • the movement locus of the fourth lens group varies depending on the shooting distance. It may be difficult to move such a fourth lens group by a cam mechanism.
  • the extension amount of the fourth lens group at the time of focusing is increased by increasing the focal length of each lens group. . For this reason, it may be difficult to give the fourth lens group a focusing function.
  • the focusing function is concentrated only on the first lens group G1.
  • a lens group used for zooming and a focusing lens group are divided.
  • the extending amount of the first lens group G1 can be made equal in the entire zoom range.
  • the first lens group G1 can stably focus without complicating the lens driving mechanism of the zoom lens.
  • This embodiment is particularly effective in the case of an optical system that does not allow focus deviation even during zooming, such as a surveillance camera.
  • the above-described high-performance zoom lens can be realized without the zoom lens having an aspheric lens.
  • the present embodiment is not limited to this case, and the zoom lens may have an aspheric lens.
  • the zoom lens may further include a lens having substantially no power.
  • the “lens having substantially no power” refers to a lens or the like that does not have a power that has an influence on the optical performance of the zoom lens according to the present embodiment in principle.
  • the first lens group G1 is the focusing lens group, but the present invention is not limited to this.
  • the first lens group may be configured by a so-called front inner focus system in which a fixed group and a focusing lens group are configured.
  • the zoom lens may be used in a video camera, an electronic still camera, or a broadcast camera.
  • Example 1 Example 1 will be described with reference to FIGS.
  • FIG. 1 is a cross-sectional view showing the configuration at the wide-angle end of the zoom lens according to Example 1 as described above.
  • FIG. 2A is a diagram illustrating parameters of each lens group of the zoom lens of Example 1
  • FIG. 2B is a diagram illustrating parameters at the wide-angle end, the intermediate range, and the telephoto end of the zoom lens of Example 1.
  • FIG. 4C is a diagram illustrating values of conditional expressions of the zoom lens according to the first exemplary embodiment.
  • 3A to 3C are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 1
  • FIG. 3A is a spherical aberration diagram (LONGITUDINAL SPHERICAL ABER.)
  • FIG. 3B is astigmatism.
  • FIG. 3A to 3C are longitudinal aberration diagrams at the wide-angle end of the zoom lens of Example 1
  • FIG. 3A is a spherical aberration diagram (LONGITUDINAL SPHERICAL ABER.)
  • FIG. 2 is a diagram (ASTIGMATIC FIELD CURVES) and a field curvature aberration diagram
  • (c) is a distortion diagram (DISTORTION)
  • (d) to (g) are lateral aberration diagrams at the wide angle end of the zoom lens of Example 1.
  • FIG. And (d) is a transverse aberration diagram in the direction of TANGENTIAL when the half field angle is 24.19 °
  • (e) is a lateral aberration in the sagittal direction when the half field angle is 24.19 °
  • (F) is a lateral aberration diagram in the meridional direction when the half field angle is 17.13 °
  • (g) is the sagittal direction when the half field angle is 17.13 °.
  • (h) is a diagram showing a line type to the wavelength of light in the transverse aberration diagram of spherical aberration diagram, (d) ⁇ (g) of (a).
  • 4A to 4C are longitudinal aberration diagrams in the intermediate region of the zoom lens of Example 1
  • FIG. 4A is a spherical aberration diagram
  • FIG. 4B is an astigmatism diagram and an image plane.
  • C) is a distortion diagram
  • (d) to (g) are lateral aberration diagrams in the intermediate range of the zoom lens of Example 1
  • (d) is a half angle of view.
  • FIGS. 5A to 5C are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 1.
  • FIG. 1 is a lateral aberration diagram in the meridional direction at 312 °
  • (e) is a lateral aberration diagram in the sagittal direction at a half field angle of 3.312 °
  • (f) is at a half field angle of 2.350 °
  • (G) is a lateral aberration diagram in the sagittal direction at a half field angle of 2.350 °
  • (h) is a spherical aberration diagram in (a)
  • (d) to (d) It is a figure which shows the line type with respect to the wavelength of the light in the lateral aberration figure of (g).
  • FIGS. 5A to 5C are longitudinal aberration diagrams at the telephoto end of the zoom lens of Example 1.
  • FIG. 1 is a lateral aberration diagram in the sagittal direction at a half field angle of 3.312 °
  • FIG. 5A is a spherical aberration diagram.
  • FIG. 5B is an astigmatism diagram and a field curvature aberration.
  • C is a distortion diagram
  • (d) to (g) are lateral aberration diagrams at the telephoto end of the zoom lens of Example 1, and (d) is a half field angle of 0.824 °.
  • (E) is a lateral aberration diagram in the sagittal direction when the half angle of view is 0.824 °
  • (f) is a meridional direction when the half angle of view is 0.585 °.
  • (G) is a lateral aberration diagram in the sagittal direction when the half angle of view is 0.585 °
  • (h) is a spherical aberration diagram in (a)
  • (d) to (g) It is a figure which shows the line type with respect to the wavelength of the light in the lateral aberration figure of ().
  • the surface number Ni is the i-th surface number in FIG. 1, r is the radius of curvature (unit: mm) in each surface, and d is the i-th surface and the i + 1-th surface.
  • nd is the refractive index at the d-line of the i-th lens
  • ⁇ d is the d-line, C-line and F of the i-th lens. It is the Abbe number determined by each refractive index in the line.
  • the d-line is one of helium (He) (bright) line spectra, and its wavelength is 587.56 nm.
  • C line is one of the (bright) line spectra of hydrogen (H), and its wavelength is 656.27 nm.
  • the F line is one of the (bright) line spectra of hydrogen (H), and its wavelength is 486.13 nm.
  • a to D are group intervals (unit: mm) of each lens group.
  • the “telephoto ratio” is the ratio of the optical total length of the zoom lens to the focal length at the telephoto end. In the present embodiment, the optical total length is the same value at the wide-angle end, the intermediate range, and the telephoto end.
  • the vertical axis represents the image height (unit: mm) on the image plane Simg. . 5 (b), FIG. 7 (b), and FIG. 9 (b)
  • the dotted line (T) is an astigmatism diagram and a field curvature aberration diagram for the d-line on the meridional (tangential) plane
  • a solid line (S) is an astigmatism diagram and a field curvature aberration diagram for the d line on the sagittal surface.
  • each lens group of the zoom lens of Example 1 is as described in the above embodiment.
  • the zoom lens of Example 1 is configured so that the zoom ratio is 29 times.
  • Example 1 the aperture ratio of the zoom lens is large (the F number is small).
  • the telephoto ratio of the zoom lens is 0.80, and the zoom lens is miniaturized.
  • the zoom lens of Example 1 satisfies the conditional expressions (1) to (6).
  • the zoom lens of Example 1 As shown in FIGS. 3A to 5G, in the zoom lens of Example 1, various aberrations are satisfactorily corrected. That is, it can be seen that the zoom lens of Example 1 has excellent optical performance.
  • Example 2 A second embodiment will be described with reference to FIGS. 6 to 10 are the same as those in FIGS. 1 to 5 of the first embodiment.
  • the zoom lens of Example 2 has the following configuration.
  • the first lens group G1 includes, in order from the object side, a cemented lens including a negative meniscus lens L1 that is convex on the object side and a positive lens L2 that is convex on both sides, and a positive meniscus lens L3 that is convex on the object side.
  • the second lens group G2 includes, in order from the object side, a negative double-sided negative lens L4, a negative double-sided negative lens L5, and a positive meniscus lens L6 convex toward the object side.
  • the third lens group G3 includes, in order from the object side, a cemented lens including a stop SP, a double-convex positive lens L7, a double-convex positive lens L8, a double-convex positive lens L9, and a double-concave negative lens L10.
  • the fourth lens group G4 includes, in order from the object side, a double-sided convex positive lens L11, and a cemented lens including a negative meniscus lens L12 convex toward the object side and a positive meniscus lens L13 convex toward the object side.
  • the fifth lens group G5 includes, in order from the object side, a cemented lens including a double-sided positive lens L14 and a double-sided negative lens L15, and a double-sided positive lens L16.
  • the zoom lens of Example 2 is configured so that the zoom ratio is 19 times.
  • the aperture ratio of the zoom lens is large (F number is small).
  • the telephoto ratio of the zoom lens is 0.89, and the zoom lens is miniaturized.
  • the zoom lens of Example 2 satisfies the conditional expressions (1) to (6).
  • the zoom lens of Example 2 As shown in FIGS. 8A to 10G, in the zoom lens of Example 2, various aberrations are favorably corrected. That is, it can be seen that the zoom lens of Example 2 has excellent optical performance.
  • Example 3 A third embodiment will be described with reference to FIGS. 11 to 15 are the same as those in FIGS. 1 to 5 of the first embodiment. 23 to 25, the line types with respect to the wavelength of light in the spherical aberration diagrams (a) and the lateral aberration diagrams (d) to (g) in each of FIGS. 23 to 25 are different from the line types in each of FIGS. .
  • the zoom lens of Example 3 has the following configuration.
  • the first lens group G1 includes, in order from the object side, a cemented lens including a negative meniscus lens L1 that is convex on the object side and a positive lens L2 that is convex on both sides, and a positive meniscus lens L3 that is convex on the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L4 that is convex on the object side, a negative lens L5 that is concave on both sides, and a positive meniscus lens L6 that is convex on the object side.
  • the third lens group G3 includes, in order from the object side, an aperture stop SP, a double-sided positive lens L7, a positive meniscus lens L8 that is convex on the object side, a double-sided positive lens L9, and a double-sided negative lens L10. And a cemented lens.
  • the fourth lens group G4 includes, in order from the object side, a double-sided convex positive lens L11, and a cemented lens including a negative meniscus lens L12 convex toward the object side and a positive meniscus lens L13 convex toward the object side. .
  • the fifth lens group G5 includes, in order from the object side, a cemented lens including a positive meniscus lens L14 that is concave on the object side and a negative lens L15 that is concave on both sides, and a positive lens L16 that is convex on both sides.
  • the zoom lens of Example 3 is configured so that the zoom ratio is 23 times.
  • Example 3 the aperture ratio of the zoom lens is large (the F number is small).
  • the telephoto ratio of the zoom lens is 0.85, and the zoom lens is miniaturized.
  • the zoom lens of Example 3 satisfies the conditional expressions (1) to (6).
  • the zoom lens of Example 3 As shown in FIGS. 13A to 15G, in the zoom lens of Example 3, various aberrations are favorably corrected. That is, it can be seen that the zoom lens of Example 3 has excellent optical performance.
  • Example 4 A fourth embodiment will be described with reference to FIGS.
  • the configurations of FIGS. 16 to 20 are the same as those of FIGS. 1 to 10 of the first embodiment.
  • the zoom lens of Example 4 has the following configuration.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L1 that is convex on the object side, a positive lens L2 that is convex on both sides, and a positive meniscus lens L3 that is convex on the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L4 that is convex on the object side, a negative lens L5 that is concave on both sides, and a positive meniscus lens L6 that is convex on the object side.
  • the third lens group G3 includes, in order from the object side, an aperture stop SP, a parallel plate L7, a double-sided positive lens L8, a positive meniscus lens L9 convex on the object side, a double-sided positive lens L10, and a double-sided concave lens. And a cemented lens including the negative lens L11.
  • the fourth lens group G4 includes, in order from the object side, a cemented lens including a negative meniscus lens L12 that is convex on the object side and a positive lens L13 that is biconvex.
  • the fifth lens group G5 includes, in order from the object side, a cemented lens including a double-sided positive lens L14 and a double-sided negative lens L15, and a double-sided positive lens L16.
  • the zoom lens of Example 4 is configured so that the zoom ratio is 23 times.
  • the aperture ratio of the zoom lens is large (F number is small).
  • the telephoto ratio of the zoom lens is 0.85, and the zoom lens is miniaturized.
  • the zoom lens of Example 4 satisfies the conditional expressions (1) to (6).
  • Example 5 A fifth embodiment will be described with reference to FIGS.
  • the configurations of FIGS. 21 to 25 are the same as those of FIGS. 1 to 10 of the first embodiment.
  • the zoom lens of Example 5 has the following configuration.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L1 that is convex on the object side, a positive lens L2 that is convex on both sides, a positive lens L3 that is convex on both sides, and a positive meniscus lens L4 that is convex on the object side.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L5 that is convex on the object side, a negative lens L6 that is concave on both sides, and a positive meniscus lens L7 that is convex on the object side.
  • the third lens group G3 includes, in order from the object, a stop SP, a parallel plate L8, a double-sided positive lens L9, a cemented lens including a double-sided positive lens L10, and a double-sided concave negative lens L11, an object And a positive meniscus lens L12 convex to the side.
  • the fourth lens group G4 includes, in order from the object side, a cemented lens including a negative meniscus lens L13 convex toward the object side and a positive meniscus lens L14 convex toward the object side, and a positive meniscus lens L15 convex toward the object side. Composed.
  • the fifth lens group G5 includes, in order from the object side, a cemented lens including a double-sided convex positive lens L16 and a double-sided concave negative lens L17, and a double-sided convex positive lens L18.
  • the zoom lens of Example 5 is configured so that the zoom ratio is 23 times.
  • Example 5 the aperture ratio of the zoom lens is large (the F number is small).
  • the telephoto ratio of the zoom lens is 0.85, and the zoom lens is miniaturized.
  • the zoom lens of Example 5 satisfies the conditional expressions (1) to (6).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 高変倍比のズーム全域で高い光学性能を得ることと、ズームレンズの光学全長を短縮することと、を両立するズームレンズを提供する。 物体側より順に、正の屈折力を有し、フォーカシング機能を有する第1レンズ群と、負の屈折力を有し、変倍を行うバリエータ機能を有する第2レンズ群と、正の屈折力を有し、絞りを含む第3レンズ群と、正の屈折力を有し、変倍の際に像面の位置を補正するコンペンセータ機能を有する第4レンズ群と、正または負の屈折力を有する第5レンズ群と、で構成され、広角端から望遠端への変倍に際し、第1レンズ群、第3レンズ群、および第5レンズ群を固定した状態で、第2レンズ群を光軸に沿って物体側から像面側に移動させるとともに、第4レンズ群を光軸に沿って移動させ、フォーカスに際し、第1レンズ群のみを前記光軸に沿って移動させる。

Description

ズームレンズ
 本発明は、ズームレンズに関する。
 高倍率ズームとして複数のレンズ群からなるズームレンズが知られている。特許文献1または2には、例えば、正の屈折力からなる第1レンズ群と、負の屈折力からなる第2レンズ群と、正または負の屈折力からなる第3レンズ群と、絞りを含み正の屈折力からなる第4レンズ群と、で構成されるズームレンズが開示されている。
特開2008-241884号公報 特開2006-39005号公報
 近年、撮像素子の画素サイズ微細化に伴い、ズーム全域で収差変動を抑制し高い解像度を維持したズームレンズが要求されている。また、レンズを収納するハウジングや雲台の大きさが制約されるため、ズームレンズを小型化することも要求されている。しかしながら、ズームレンズの光学全長を短縮した場合、各レンズ群のパワーが大きくなり、収差補正が困難となる可能性がある。このように、高変倍比のズーム全域で高い光学性能を得ることと、ズームレンズの光学全長を短縮することと、を両立することは困難である可能性があった。
 本発明の目的は、高変倍比のズーム全域で高い光学性能を得ることと、ズームレンズの光学全長を短縮することと、を両立するズームレンズを提供することにある。
 本発明の第1の態様によれば、物体側より順に、正の屈折力を有し、フォーカシング機能を有する第1レンズ群と、負の屈折力を有し、変倍を行うバリエータ機能を有する第2レンズ群と、正の屈折力を有し、絞りを含む第3レンズ群と、正の屈折力を有し、変倍の際に像面の位置を補正するコンペンセータ機能を有する第4レンズ群と、正または負の屈折力を有する第5レンズ群と、で構成され、広角端から望遠端への変倍に際し、前記第1レンズ群、前記第3レンズ群、および前記第5レンズ群を固定した状態で、前記第2レンズ群を光軸に沿って前記物体側から前記像面側に移動させるとともに、前記第4レンズ群を前記光軸に沿って移動させ、フォーカスに際し、前記第1レンズ群のみを前記光軸に沿って移動させることを特徴とするズームレンズが提供される。
 本発明の第2の態様によれば、前記第1レンズ群は、少なくとも1枚の凹レンズを含む3枚以上のレンズで構成され、下記の条件式(1)を満たす第1の態様に記載のズームレンズが提供される。
  0.45<ft/f1<0.6   ・・・(1)
 ただし、
  f1:前記第1レンズ群の焦点距離
  ft:前記望遠端におけるレンズ全系の焦点距離
 本発明の第3の態様によれば、前記第4レンズ群は、少なくとも2枚のレンズを含み、下記の条件式(2)~(5)を満たすことを特徴とする第1の態様に記載のズームレンズが提供される。
  1<f4/|f2|<2.5    ・・・(2)
  0.83<f3/f4<3     ・・・(3)
  0.5<βt4/βw4<1.7  ・・・(4)
  βt4<0.6          ・・・(5)
 ただし、
  f2:前記第2レンズ群の焦点距離
  f3:前記第3レンズ群の焦点距離
  f4:前記第4レンズ群の焦点距離
  βw4:前記広角端での前記第4レンズ群の横倍率
  βt4:前記望遠端での前記第4レンズ群の横倍率
 本発明の第4の態様によれば、前記第5レンズ群は、少なくとも3枚のレンズを含み、前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、下記の条件式(6)を満たすことを特徴とする第1の態様に記載のズームレンズが提供される。
  n5B<n5A          ・・・(6)
 ただし、
  n5A:前記第5レンズ群の前記貼り合せレンズが有する前記正レンズのd線での屈折率
  n5B:前記第5レンズ群の前記貼り合せレンズが有する前記負レンズのd線での屈折率
 本発明の第5の態様によれば、前記第4レンズ群は、少なくとも2枚のレンズを含み、
 前記第5レンズ群は、少なくとも3枚のレンズを含み、前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、上記の条件式(2)~(6)を満たす
ことを特徴とする第1の態様に記載のズームレンズが提供される。
 本発明の第6の態様によれば、前記第1レンズ群は、少なくとも1枚の凹レンズを含む3枚以上のレンズで構成され、前記第4レンズ群は、少なくとも2枚のレンズを含み、
 前記第5レンズ群は、少なくとも3枚のレンズを含み、前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、上記の条件式(1)~(6)を満たすことを特徴とする第1の態様に記載のズームレンズが提供される。
 本発明によれば、高変倍比のズーム全域で高い光学性能を得ることと、ズームレンズの光学全長を短縮することと、を両立するズームレンズを提供することができる。
本発明の一実施形態の実施例1に係るズームレンズの広角端での構成を示す断面図である。 (a)は、実施例1のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例1のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例1のズームレンズの各条件式の値を示す図である。 (a)~(c)は、実施例1のズームレンズの広角端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例1のズームレンズの広角端における横収差図であり、(d)は半画角24.19°のときのメリジオナル方向の横収差図であり、(e)は半画角24.19°のときのサジタル方向の横収差図であり、(f)は半画角17.13°のときのメリジオナル方向の横収差図であり、(g)は半画角17.13°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例1のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例1のズームレンズの中間域における横収差図であり、(d)は半画角3.312°のときのメリジオナル方向の横収差図であり、(e)は半画角3.312°のときのサジタル方向の横収差図であり、(f)は半画角2.350°のときのメリジオナル方向の横収差図であり、(g)は半画角2.350°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例1のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例1のズームレンズの望遠端における横収差図であり、(d)は半画角0.824°のときのメリジオナル方向の横収差図であり、(e)は半画角0.824°のときのサジタル方向の横収差図であり、(f)は半画角0.585°のときのメリジオナル方向の横収差図であり、(g)は半画角0.585°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 本発明の一実施形態の実施例2に係るズームレンズの広角端での構成を示す断面図である。 (a)は、実施例2のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例2のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例2のズームレンズの各条件式の値を示す図である。 (a)~(c)は、実施例2のズームレンズの広角端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例2のズームレンズの広角端における横収差図であり、(d)は半画角24.55°のときのメリジオナル方向の横収差図であり、(e)は半画角24.55°のときのサジタル方向の横収差図であり、(f)は半画角17.26°のときのメリジオナル方向の横収差図であり、(g)は半画角17.26°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例2のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例2のズームレンズの中間域における横収差図であり、(d)は半画角3.322°のときのメリジオナル方向の横収差図であり、(e)は半画角3.322°のときのサジタル方向の横収差図であり、(f)は半画角2.353°のときのメリジオナル方向の横収差図であり、(g)は半画角2.353°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例2のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例2のズームレンズの望遠端における横収差図であり、(d)は半画角1.297°のときのメリジオナル方向の横収差図であり、(e)は半画角1.297°のときのサジタル方向の横収差図であり、(f)は半画角0.922°のときのメリジオナル方向の横収差図であり、(g)は半画角0.922°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 本発明の一実施形態の実施例3に係るズームレンズの広角端での構成を示す断面図である。 (a)は、実施例3のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例3のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例3のズームレンズの各条件式の値を示す図である。 (a)~(c)は、実施例3のズームレンズの広角端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例3のズームレンズの広角端における横収差図であり、(d)は半画角24.57°のときのメリジオナル方向の横収差図であり、(e)は半画角24.57°のときのサジタル方向の横収差図であり、(f)は半画角17.26°のときのメリジオナル方向の横収差図であり、(g)は半画角17.26°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例3のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例3のズームレンズの中間域における横収差図であり、(d)は半画角3.338°のときのメリジオナル方向の横収差図であり、(e)は半画角3.338°のときのサジタル方向の横収差図であり、(f)は半画角2.359°のときのメリジオナル方向の横収差図であり、(g)は半画角2.359°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例3のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例3のズームレンズの望遠端における横収差図であり、(d)は半画角1.072°のときのメリジオナル方向の横収差図であり、(e)は半画角1.072°のときのサジタル方向の横収差図であり、(f)は半画角0.759°のときのメリジオナル方向の横収差図であり、(g)は半画角0.759°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 本発明の一実施形態の実施例4に係るズームレンズの広角端での構成を示す断面図である。 (a)は、実施例4のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例4のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例4のズームレンズの各条件式の値を示す図である。 (a)~(c)は、実施例4のズームレンズの広角端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例4のズームレンズの広角端における横収差図であり、(d)は半画角24.23°のときのメリジオナル方向の横収差図であり、(e)は半画角24.23°のときのサジタル方向の横収差図であり、(f)は半画角17.13°のときのメリジオナル方向の横収差図であり、(g)は半画角17.13°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例4のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例4のズームレンズの中間域における横収差図であり、(d)は半画角3.373°のときのメリジオナル方向の横収差図であり、(e)は半画角3.373°のときのサジタル方向の横収差図であり、(f)は半画角2.367°のときのメリジオナル方向の横収差図であり、(g)は半画角2.367°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例4のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例4のズームレンズの望遠端における横収差図であり、(d)は半画角1.085°のときのメリジオナル方向の横収差図であり、(e)は半画角1.085°のときのサジタル方向の横収差図であり、(f)は半画角0.762°のときのメリジオナル方向の横収差図であり、(g)は半画角0.762°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 本発明の一実施形態の実施例5に係るズームレンズの広角端での構成を示す断面図である。 (a)は、実施例5のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例5のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例5のズームレンズの各条件式の値を示す図である。 (a)~(c)は、実施例5のズームレンズの広角端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例5のズームレンズの広角端における横収差図であり、(d)は半画角24.23°のときのメリジオナル方向の横収差図であり、(e)は半画角24.23°のときのサジタル方向の横収差図であり、(f)は半画角17.16°のときのメリジオナル方向の横収差図であり、(g)は半画角17.16°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例5のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例5のズームレンズの中間域における横収差図であり、(d)は半画角3.379°のときのメリジオナル方向の横収差図であり、(e)は半画角3.379°のときのサジタル方向の横収差図であり、(f)は半画角2.369°のときのメリジオナル方向の横収差図であり、(g)は半画角2.369°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。 (a)~(c)は、実施例5のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例5のズームレンズの望遠端における横収差図であり、(d)は半画角1.086°のときのメリジオナル方向の横収差図であり、(e)は半画角1.086°のときのサジタル方向の横収差図であり、(f)は半画角0.763°のときのメリジオナル方向の横収差図であり、(g)は半画角0.763°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
<本発明の一実施形態>
(1)ズームレンズの構成
 図1を用い、本発明の一実施形態に係るズームレンズについて説明する。図1は、本実施形態に係るズームレンズの広角端での構成を示す断面図である。なお、Niは各レンズの面番号を示している(iは自然数)。ここでは、後述する実施例1を本実施形態の代表例として説明する。
 本実施形態のズームレンズは、光学全長を維持したまま変倍(ズーム)を行うことができるよう構成される。「光学全長」とは、レンズ系の面N1から像面Simgまでの距離のことをいう。
 本実施形態のズームレンズは、物体(被写体)側より順に、正の屈折力を有しフォーカシング機能を有する第1レンズ群G1と、負の屈折力を有し変倍を行うバリエータ機能を有する第2レンズ群G2と、正の屈折力を有し絞りを含む第3レンズ群G3と、正の屈折力を有し変倍の際に像面の位置を補正するコンペンセータ機能を有する第4レンズ群G4と、正または負の屈折力を有する第5レンズ群G5と、で構成され、広角端から望遠端への変倍に際し、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5を固定した状態で、第2レンズ群G2を光軸Z1に沿って物体側から像面側に移動させるとともに、第4レンズ群G4を光軸Z1に沿って移動させ、フォーカスに際し、第1レンズ群G1のみを光軸Z1に沿って移動させるよう構成される。以下、詳細を説明する。
 図1に示されているように、ズームレンズは、5つのレンズ群からなり、光軸Z1に沿って、物体側より順に、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5を備える。
 第1レンズ群G1は、正の屈折力(光学的パワー)を有し、例えば、少なくとも1枚の凹レンズ(負レンズ)を含む3枚以上のレンズで構成される。具体的には、第1レンズ群G1は、例えば、物体側から順に、物体側に凸の負メニスカスレンズL1および両面凸の正レンズL2からなる貼り合せレンズ(接合レンズ)と、両面凸の正レンズL3と、物体側に凸の正メニスカスレンズL4と、で構成される。
 また、第1レンズ群G1は、フォーカシング機能を有する。ここでいう「フォーカシング機能」とは、レンズ群が光軸Z1に沿って移動することによって物体にフォーカスを合わせる(合焦する)機能のことをいう。また、フォーカシング機能を有するレンズ群を「フォーカシングレンズ群」ともいう。本実施形態では、第1レンズ群G1のみがフォーカシングレンズ群である。
 第2レンズ群G2は、負の屈折力を有する。具体的には、第2レンズ群G2は、例えば、物体側から順に、物体側に凸の負メニスカスレンズL5と、両面凹の負レンズL6と、物体側に凸の正メニスカスレンズL7と、で構成される。
 また、第2レンズ群G2は、バリエータ機能を有する。ここでいう「バリエータ機能」とは、レンズ群が光軸Z1に沿って移動することによって変倍を行う機能のことをいう。また、バリエータ機能を有するレンズ群を「バリエータレンズ群」ともいう。
 第3レンズ群G3は、正の屈折力を有し、絞り(アイリス)SPを含む。具体的には、第3レンズ群G3は、例えば、物体側から順に、絞りSPと、両面凸の正レンズL8と、両面凸の正レンズL9と、両面凸の正レンズL10および両面凹の負レンズL11からなる貼り合せレンズと、で構成される。
 第4レンズ群G4は、正の屈折力を有し、例えば、少なくとも2枚のレンズを含む。具体的には、第4レンズ群G4は、例えば、物体側から順に、両面凸の正レンズL12と、物体側に凸の負メニスカスレンズL13および物体側に凸の正メニスカスレンズL14からなる貼り合せレンズと、で構成される。
 また、第4レンズ群G4は、コンペンセータ機能を有する。ここでいう「コンペンセータ機能」とは、変倍の際に、レンズ群がバリエータレンズ群と連動して光軸Z1に沿って移動することによって像面の位置を補正する機能のことをいう。また、コンペンセータ機能を有するレンズ群を「コンペンセータレンズ群」ともいう。一方で、第4レンズ群G4は、フォーカシング機能を有していない。すなわち、フォーカスの際には、第4レンズ群G4は固定される。
 第5レンズ群G5は、正または負の屈折力を有し、少なくとも3枚のレンズを含む。また、少なくとも3枚のレンズのうち物体側の2枚のレンズは、物体側より順に正レンズおよび負レンズから構成される貼り合せレンズである。具体的には、第5レンズ群G5は、例えば、物体側から順に、両面凸の正レンズL15および両面凹の負レンズL16からなる貼り合せレンズと、両面凸の正レンズL17と、で構成される。
 主に、第3レンズ群G3、第4レンズ群G4、および第5レンズ群G5により、像面Simgに結像するリレー系が構成される。
 光軸Z1方向の物体側と反対側である像面Simgの位置には、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)などの固体撮像素子が配置される。
 本実施形態では、広角端から望遠端への変倍に際し、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5を固定した状態で、バリエータレンズ群としての第2レンズ群G2を光軸Z1に沿って物体側から像面Simg側に移動させるとともに、第2レンズ群G2に追従するようにコンペンセータレンズ群としての第4レンズ群G4を光軸Z1に沿って移動させる。これにより、光学全長を維持したまま、容易にズームレンズの変倍を行うことができる。
 また、広角端から望遠端への変倍に際し、第2レンズ群G2は、例えば矢印の方向DZ2に、光軸Z1に沿って物体側から像面Simg側に単調に移動する。一方、第4レンズ群G4は、例えば矢印の方向DZ4に、光軸Z1に沿って物体側に移動した後に像面Simg側に移動する。言い換えれば、第4レンズ群G4は、物体側に凸の軌跡を描くように移動する。これにより、第4レンズ群G4の光軸Z1方向の移動範囲を狭くすることができ、光学全長を短縮化することができる。
 また、本実施形態では、フォーカス(合焦)に際し、フォーカスレンズ群としての第1レンズ群G1のみが、例えば無限遠物体から近距離物体へフォーカスを行う場合に矢印の方向DF1に、光軸Z1に沿って移動する。一方で、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4および第5レンズ群G5は固定される。これにより、変倍しても、フォーカシングレンズ群の繰り出し量は一定となり、安定的にフォーカスを行うことができる。なお、レンズの「繰り出し量」とは、ピントを合わせるために、レンズを前後に移動させる移動距離のことをいう。
 本実施形態のズームレンズは、例えば監視用カメラなどに用いられる。交通道路、港湾または国境などを監視する監視用カメラには、変倍比が高いズームレンズと、高画質を実現する大きな固体撮像素子と、が用いられる。このため、小さな固体撮像素子を用いた光学系よりも長い焦点距離が必要となる。また、光学系のFナンバーは焦点距離と入射瞳径によって求まるので、明るさを維持するためには大きな入射瞳を必要とする。したがって、ズームレンズの第1レンズ群G1のレンズ径が大きくなる。具体的には、本実施形態のズームレンズの変倍比は、例えば、10倍以上200倍以下であり、好ましくは19倍以上30倍以下である。本実施形態のズームレンズを接続する固体撮像素子の対角長は、例えば8mm(いわゆる1/2インチ)以上11mm(いわゆる2/3インチ)以下である。また、ズームレンズのうち最大レンズ(例えばレンズL1)のレンズ径は、例えば、50mm以上100mm以下である。
 次に、本実施形態のズームレンズに係る各レンズ群のパラメータについて説明する。
 例えば、本実施形態に係るズームレンズは、以下の条件式(1)を満たす。
  0.45<ft/f1<0.6  ・・・(1)
 ただし、
  f1:第1レンズ群G1の焦点距離
  ft:望遠端におけるレンズ全系の焦点距離
である。
 好ましくは、本実施形態に係るズームレンズは、以下の条件式(1’)を満たす。
  0.5<ft/f1<0.6   ・・・(1’)
 ft/f1が上記下限値より大きいことにより、各レンズ群の屈折力を所定の範囲に抑え、ズーム全域で高い光学性能を得ることができる。ft/f1が上記上限値より小さいことにより、ズームレンズを小型化することができる。
 また、本実施形態に係るズームレンズは、以下の条件式(2)~(5)を満たす。
  1<f4/|f2|<2.5    ・・・(2)
  0.83<f3/f4<3     ・・・(3)
  0.5<βt4/βw4<1.7  ・・・(4)
  βt4<0.6          ・・・(5)
 ただし、
  f2:第2レンズ群G2の焦点距離
  f3:第3レンズ群G3の焦点距離
  f4:第4レンズ群G4の焦点距離
  βw4:広角端での第4レンズ群G4の横倍率
  βt4:望遠端での第4レンズ群G4の横倍率
である。
 好ましくは、本実施形態に係るズームレンズは、以下の条件式(2’)~(5’)を満たす。
  1<f4/|f2|<1.5    ・・・(2’)
  1<f3/f4<2        ・・・(3’)
  0.9<βt4/βw4<1.3  ・・・(4’)
  βt4<0.55         ・・・(5’)
 上記の条件式(2)を満たすことにより、バリエータレンズ群である第2レンズ群G2とコンペンセータレンズ群である第4レンズ群G4との良好なバランスを維持することができる。具体的には、f4/|f2|が上記下限値より大きいことにより、変倍の際に収差変動を抑制し、ズーム全域で良好な光学性能が得られる。f4/|f2|が上記上限値より小さいことにより、像位置の補正感度が良好である。また、望遠端近辺での第2レンズ群G2および第4レンズ群G4の移動量を小さくすることができ、第2レンズ群G2および第4レンズ群G4をカム機構によって容易に可動させることができる。
 上記の条件式(3)を満たすことにより、コンペンセータレンズ群である第4レンズ群G4に適切なパワー配置が与えられる。具体的には、f3/f4が上記下限値より大きいことにより、ズームレンズを小型化することができる。f3/f4が上記上限値より小さいことにより、変倍の際に、光学性能が劣化することを抑制することができる。特に像面湾曲の発生を抑制し、高い光学性能を得ることができる。
 また、上記の条件式(4)および(5)を満たすことにより、変倍の際に、第4レンズ群G4に適切なパワーを与えることができる。
 また、本実施形態に係る第5レンズ群G5は、以下の条件式(6)を満たす。
  n5B<n5A          ・・・(6)
 ただし、
  n5A:第5レンズ群G5の貼り合せレンズが有する正レンズL15のd線での屈折率
  n5B:第5レンズ群G5の貼り合せレンズが有する負レンズL16のd線での屈折率
である。なお、「d線」とは、波長587.6nmである光のことをいう。
 上記の条件式(6)を満たすことにより、変倍の際の収差変動、特に球面収差、コマ収差を抑制することができる。すなわち、高い光学性能を得ることができる。
(2)本実施の形態の効果
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(a)本実施形態によれば、広角端から望遠端への変倍に際し、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5を固定した状態で、バリエータレンズ群である第2レンズ群G2を光軸Z1に沿って物体側から像面Simg側に移動させるとともに、コンペンセータレンズ群である第4レンズ群G4を光軸Z1に沿って移動させる。これにより、光学全長を維持したまま、一つのバリエータレンズ群を移動させることにより、容易にズームレンズの変倍を行うことができる。また、本実施形態のズームレンズは5つのレンズ群を有しながらも、望遠端での望遠比を小さくすることができる。これにより、ズームレンズを収納するハウジングを小さくすることができる。
(b)本実施形態によれば、コンペンセータ群を第4レンズ群とすることで、各レンズ群のパワー配置を適切に調整することができる。これにより、高性能で且つ大口径比で明るいズームレンズを提供することができる。
(c)本実施形態によれば、コンペンセータ群が像面Simgより十分に離れた距離をもって配置される為、レンズ駆動機構等がレンズマウントに干渉することが抑制される。したがって、ズームレンズを接続するマウントの規格が限定されず、充分なフランジバックを確保することができる。例えば、本実施形態に係るズームレンズを、広く普及されているCマウントまたはCSマウントに接続するよう構成することができる。
(d)本実施形態によれば、フォーカス(合焦)に際し、フォーカスレンズ群である第1レンズ群G1のみが光軸Z1に沿って移動する。一方で、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4および第5レンズ群G5は固定される。これにより、変倍しても、フォーカシングレンズ群の繰り出し量は一定となり、安定的にフォーカスを行うことができる。
 ここで、比較例として、第4レンズ群がコンペンセータレンズ群とフォーカシングレンズ群とを兼ねている場合について考える。比較例では、広角端と望遠端とで、フォーカスの際の第4レンズ群の繰り出し量が異なってしまう。比較例では、変倍の際に、撮影距離によって第4レンズ群の移動軌跡が異なる。このような第4レンズ群をカム機構によって可動させることは困難である可能性がある。また、特にズームレンズを接続する固体撮像素子のサイズが大きくズームレンズのレンズ径が大きい場合では、各レンズ群の焦点距離が長くなることによってフォーカスの際の第4レンズ群の繰り出し量が大きくなる。このため、第4レンズ群にフォーカシング機能を付与することが困難になる可能性がある。
 これに対して、本実施形態によれば、フォーカシング機能は第1レンズ群G1だけに集約される。変倍に用いられるレンズ群と、フォーカシングレンズ群と、が分けられる。これにより、ズーム全域において、第1レンズ群G1の繰り出し量を等しくすることができる。すなわち、撮影距離に関わらず、ズームの際にピントがずれることが抑制される。また、特に固体撮像素子のサイズが大きくズームレンズのレンズ径が大きい場合でも、ズームレンズのレンズ駆動機構を複雑化させることなく、第1レンズ群G1によって安定的にフォーカスを行うことができる。本実施形態は、監視用カメラなどのようにズーミング中であってもピントずれが許容されない光学系の場合に特に有効である。
(e)本実施形態によれば、ズームレンズが非球面レンズを有することなく、上記した高性能のズームレンズを実現することができる。なお、本実施形態は、この場合に限定されることはなく、ズームレンズが非球面レンズを有していても良い。
<本発明の他の実施形態>
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
 上述の実施形態では、ズームレンズが5つのレンズ群からなる場合について説明したが、本発明はこれに限定されるものではない。ズームレンズは、実質的にパワーを有しないレンズ等を更に有していても良い。なお、「実質的にパワーを有しないレンズ」とは、本実施形態のズームレンズの光学性能に原理的に影響をおよぼすようなパワーを有しないレンズ等のことである。
 また、上述の実施形態では第1レンズ群G1がフォーカシングレンズ群である場合について説明したが、本発明はこれに限定されるものではない。第1レンズ群が固定群とフォーカシングレンズ群とで構成される、いわゆるフロントインナーフォーカス方式で構成されていても良い。
 また、上述の実施形態では、ズームレンズが監視用カメラに用いられる場合について説明したが、本発明はこれに限定されるものではない。ズームレンズは、ビデオカメラ、電子スチルカメラ、または放送用カメラに用いられても良い。
 次に、本発明に係る実施例について以下に説明する。
(実施例1)
 図1~図5を用い、実施例1について説明する。
 図1は、上述のように、実施例1に係るズームレンズの広角端での構成を示す断面図である。図2(a)は、実施例1のズームレンズの各レンズ群のパラメータを示す図であり、(b)は、実施例1のズームレンズの広角端、中間域、および望遠端における各パラメータを示す図であり、(c)は、実施例1のズームレンズの各条件式の値を示す図である。図3(a)~(c)は、実施例1のズームレンズの広角端における縦収差図であり、(a)は球面収差図(LONGITUDINAL SPHERICAL ABER.)であり、(b)は非点収差図(ASTIGMATIC FIELD CURVES)ならびに像面湾曲収差図であり、(c)は歪曲収差図(DISTORTION)であ(d)~(g)は、実施例1のズームレンズの広角端における横収差図であり、(d)は半画角24.19°のときのメリジオナル(TANGENTIAL)方向の横収差図であり、(e)は半画角24.19°のときのサジタル(SAGITAL)方向の横収差図であり、(f)は半画角17.13°のときのメリジオナル方向の横収差図であり、(g)は半画角17.13°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。図4(a)~(c)は、は、実施例1のズームレンズの中間域における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例1のズームレンズの中間域における横収差図であり、(d)は半画角3.312°のときのメリジオナル方向の横収差図であり、(e)は半画角3.312°のときのサジタル方向の横収差図であり、(f)は半画角2.350°のときのメリジオナル方向の横収差図であり、(g)は半画角2.350°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。図5(a)~(c)は、実施例1のズームレンズの望遠端における縦収差図であり、(a)は球面収差図であり、(b)は非点収差図ならびに像面湾曲収差図であり、(c)は歪曲収差図であり、(d)~(g)は、実施例1のズームレンズの望遠端における横収差図であり、(d)は半画角0.824°のときのメリジオナル方向の横収差図であり、(e)は半画角0.824°のときのサジタル方向の横収差図であり、(f)は半画角0.585°のときのメリジオナル方向の横収差図であり、(g)は半画角0.585°のときのサジタル方向の横収差図であり、(h)は、(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種を示す図である。
 なお、図2(a)において、面番号Niは図1におけるi番目の面番号であり、rは各面における曲率半径(単位mm)であり、dはi番目の面とi+1番目の面と光軸Z1上のレンズ厚および空気間隔(面間隔)(単位mm)であり、ndはi番目のレンズのd線における屈折率であり、νdはi番目のレンズのd線、C線およびF線におけるそれぞれの屈折率によって求められるアッベ数である。なお、d線とはヘリウム(He)の(輝)線スペクトルの一つであり、その波長が587.56nmである。C線とは水素(H)の(輝)線スペクトルの一つであり、その波長が656.27nmである。また、F線とは水素(H)の(輝)線スペクトルの一つであり、その波長が486.13nmである。また、図3において、A~Dとは、各レンズ群の群間隔(単位mm)である。「望遠比」とは、望遠端の焦点距離に対するズームレンズの光学全長の比率である。本実施形態では、光学全長は、広角端、中間域、および望遠端において同じ値である。また、図5(b)並びに(c)、図7(b)並びに(c)、および図9(b)並びに(c)において、縦軸は像面Simgでの像高(単位mm)である。なお、図5(b)、図7(b)、図9(b)において、点線(T)はメリジオナル(タンジェンシャル)面でのd線に対する非点収差図ならびに像面湾曲収差図であり、実線(S)はサジタル面でのd線に対する非点収差図ならびに像面湾曲収差図である。
 実施例1のズームレンズの各レンズ群の構成は、上述の実施形態にて説明したとおりである。
 図2(a)に示されているように、実施例1のズームレンズは、変倍比が29倍となるように構成されている。
 図2(b)に示されているように、実施例1では、ズームレンズの口径比が大きい(Fナンバーが小さい)。また、ズームレンズの望遠比が0.80であり、ズームレンズが小型化されている。
 図2(c)に示されているように、実施例1のズームレンズは、条件式(1)~(6)を満たす。
 図3(a)~図5(g)に示されているように、実施例1のズームレンズでは、諸収差が良好に補正されている。すなわち、実施例1のズームレンズは優れた光学性能を有していることが分かる。
 以下の実施例において、実施例1と同様な部分については、適宜説明を省略する。
(実施例2)
 図6~図10を用い、実施例2について説明する。なお、図6~図10の構成は、実施例1の図1~図5と同様である。
 図6に示されているように、実施例2のズームレンズは、以下の構成を備える。
 第1レンズ群G1は、物体側から順に、物体側に凸の負メニスカスレンズL1および両面凸の正レンズL2からなる貼り合せレンズと、物体側に凸の正メニスカスレンズL3と、で構成される。
 第2レンズ群G2は、物体側から順に、両面凹の負レンズL4と、両面凹の負レンズL5と、物体側に凸の正メニスカスレンズL6と、で構成される。
 第3レンズ群G3は、物体側から順に、絞りSPと、両面凸の正レンズL7と、両面凸の正レンズL8と、両面凸の正レンズL9および両面凹の負レンズL10からなる貼り合せレンズと、で構成される。
 第4レンズ群G4は、物体側から順に、両面凸の正レンズL11と、物体側に凸の負メニスカスレンズL12および物体側に凸の正メニスカスレンズL13からなる貼り合せレンズと、で構成される。
 第5レンズ群G5は、物体側から順に、両面凸の正レンズL14および両面凹の負レンズL15からなる貼り合せレンズと、両面凸の正レンズL16と、で構成される。
 図7(a)に示されているように、実施例2のズームレンズは、変倍比が19倍となるように構成されている。
 図7(b)に示されているように、実施例2では、ズームレンズの口径比が大きい(Fナンバーが小さい)。また、ズームレンズの望遠比が0.89であり、ズームレンズが小型化されている。
 図7(c)に示されているように、実施例2のズームレンズは、条件式(1)~(6)を満たす。
 図8(a)~図10(g)に示されているように、実施例2のズームレンズでは、諸収差が良好に補正されている。すなわち、実施例2のズームレンズは優れた光学性能を有していることが分かる。
(実施例3)
 図11~図15を用い、実施例3について説明する。なお、図11~図15の構成は、実施例1の図1~図5と同様である。なお、図23~図25のそれぞれにおける(a)の球面収差図,(d)~(g)の横収差図における光の波長に対する線種は、図3~図5のそれぞれにおける線種と異なる。
 図11に示されているように、実施例3のズームレンズは、以下の構成を備える。
 第1レンズ群G1は、物体側から順に、物体側に凸の負メニスカスレンズL1および両面凸の正レンズL2からなる貼り合せレンズと、物体側に凸の正メニスカスレンズL3と、で構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸の負メニスカスレンズL4と、両面凹の負レンズL5と、物体側に凸の正メニスカスレンズL6と、で構成される。
 第3レンズ群G3は、物体側から順に、絞りSPと、両面凸の正レンズL7と、物体側に凸の正メニスカスレンズL8と、両面凸の正レンズL9および両面凹の負レンズL10からなる貼り合せレンズと、で構成される。
 第4レンズ群G4は、物体側から順に、両面凸の正レンズL11と、物体側に凸の負メニスカスレンズL12および物体側に凸の正メニスカスレンズL13からなる貼り合せレンズと、で構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹の正メニスカスレンズL14および両面凹の負レンズL15からなる貼り合せレンズと、両面凸の正レンズL16と、で構成される。
 図12(a)に示されているように、実施例3のズームレンズは、変倍比が23倍となるように構成されている。
 図12(b)に示されているように、実施例3では、ズームレンズの口径比が大きい(Fナンバーが小さい)。また、ズームレンズの望遠比が0.85であり、ズームレンズが小型化されている。
 図12(c)に示されているように、実施例3のズームレンズは、条件式(1)~(6)を満たす。
 図13(a)~図15(g)に示されているように、実施例3のズームレンズでは、諸収差が良好に補正されている。すなわち、実施例3のズームレンズは優れた光学性能を有していることが分かる。
(実施例4)
 図16~図20を用い、実施例4について説明する。なお、図16~図20の構成は、実施例1の図1~図10と同様である。
 図16に示されているように、実施例4のズームレンズは、以下の構成を備える。
 第1レンズ群G1は、物体側から順に、物体側に凸の負メニスカスレンズL1と、両面凸の正レンズL2と、物体側に凸の正メニスカスレンズL3と、で構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸の負メニスカスレンズL4と、両面凹の負レンズL5と、物体側に凸の正メニスカスレンズL6と、で構成される。
 第3レンズ群G3は、物体側から順に、絞りSPと、平行平板L7と、両面凸の正レンズL8と、物体側に凸の正メニスカスレンズL9と、両面凸の正レンズL10および両面凹の負レンズL11からなる貼り合せレンズと、で構成される。
 第4レンズ群G4は、物体側から順に、物体側に凸の負メニスカスレンズL12および両面凸の正レンズL13からなる貼り合せレンズと、で構成される。
 第5レンズ群G5は、物体側から順に、両面凸の正レンズL14および両面凹の負レンズL15からなる貼り合せレンズと、両面凸の正レンズL16と、で構成される。
 図17(a)に示されているように、実施例4のズームレンズは、変倍比が23倍となるように構成されている。
 図17(b)に示されているように、実施例4では、ズームレンズの口径比が大きい(Fナンバーが小さい)。また、ズームレンズの望遠比が0.85であり、ズームレンズが小型化されている。
 図17(c)に示されているように、実施例4のズームレンズは、条件式(1)~(6)を満たす。
 図18(a)~図20(g)に示されているように、実施例4のズームレンズでは、諸収差が良好に補正されている。すなわち、実施例4のズームレンズは優れた光学性能を有していることが分かる。
(実施例5)
 図21~図25を用い、実施例5について説明する。なお、図21~図25の構成は、実施例1の図1~図10と同様である。
 図21に示されているように、実施例5のズームレンズは、以下の構成を備える。
 第1レンズ群G1は、物体側から順に、物体側に凸の負メニスカスレンズL1と、両面凸の正レンズL2と、両面凸の正レンズL3と、物体側に凸の正メニスカスレンズL4と、で構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸の負メニスカスレンズL5と、両面凹の負レンズL6と、物体側に凸の正メニスカスレンズL7と、で構成される。
 第3レンズ群G3は、物体側から順に、絞りSPと、平行平板L8と、両面凸の正レンズL9と、両面凸の正レンズL10および両面凹の負レンズL11からなる貼り合せレンズと、物体側に凸の正メニスカスレンズL12と、で構成される。
 第4レンズ群G4は、物体側から順に、物体側に凸の負メニスカスレンズL13および物体側に凸の正メニスカスレンズL14からなる貼り合せレンズと、物体側に凸の正メニスカスレンズL15と、で構成される。
 第5レンズ群G5は、物体側から順に、両面凸の正レンズL16および両面凹の負レンズL17からなる貼り合せレンズと、両面凸の正レンズL18と、で構成される。
 図22(a)に示されているように、実施例5のズームレンズは、変倍比が23倍となるように構成されている。
 図22(b)に示されているように、実施例5では、ズームレンズの口径比が大きい(Fナンバーが小さい)。また、ズームレンズの望遠比が0.85であり、ズームレンズが小型化されている。
 図22(c)に示されているように、実施例5のズームレンズは、条件式(1)~(6)を満たす。
 図23(a)~図25(g)に示されているように、実施例5のズームレンズでは、諸収差が良好に補正されている。すなわち、実施例5のズームレンズは優れた光学性能を有していることが分かる。
 以上の実施例1~5によれば、高変倍比のズーム全域で高い光学性能を得ることと、ズームレンズの光学全長を短縮することと、を両立するズームレンズを提供することができる。
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群

Claims (6)

  1.  物体側より順に、
     正の屈折力を有し、フォーカシング機能を有する第1レンズ群と、
     負の屈折力を有し、変倍を行うバリエータ機能を有する第2レンズ群と、
     正の屈折力を有し、絞りを含む第3レンズ群と、
     正の屈折力を有し、変倍の際に像面の位置を補正するコンペンセータ機能を有する第4レンズ群と、
     正または負の屈折力を有する第5レンズ群と、
    で構成され、
     広角端から望遠端への変倍に際し、
     前記第1レンズ群、前記第3レンズ群、および前記第5レンズ群を固定した状態で、前記第2レンズ群を光軸に沿って前記物体側から前記像面側に移動させるとともに、前記第4レンズ群を前記光軸に沿って移動させ、
     フォーカスに際し、
     前記第1レンズ群のみを前記光軸に沿って移動させる
    ことを特徴とするズームレンズ。
  2.  前記第1レンズ群は、少なくとも1枚の凹レンズを含む3枚以上のレンズで構成され、
     下記の条件式(1)を満たす
    ことを特徴とする請求項1に記載のズームレンズ。
      0.45<ft/f1<0.6   ・・・(1)
     ただし、
      f1:前記第1レンズ群の焦点距離
      ft:前記望遠端におけるレンズ全系の焦点距離
  3.  前記第4レンズ群は、少なくとも2枚のレンズを含み、
     下記の条件式(2)~(5)を満たす
    ことを特徴とする請求項1に記載のズームレンズ
      1<f4/|f2|<2.5    ・・・(2)
      0.83<f3/f4<3     ・・・(3)
      0.5<βt4/βw4<1.7  ・・・(4)
      βt4<0.6          ・・・(5)
     ただし、
      f2:前記第2レンズ群の焦点距離
      f3:前記第3レンズ群の焦点距離
      f4:前記第4レンズ群の焦点距離
      βw4:前記広角端での前記第4レンズ群の横倍率
      βt4:前記望遠端での前記第4レンズ群の横倍率
  4.  前記第5レンズ群は、少なくとも3枚のレンズを含み、
     前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、
     下記の条件式(6)を満たす
    ことを特徴とする請求項1に記載のズームレンズ。
      n5B<n5A          ・・・(6)
     ただし、
      n5A:前記第5レンズ群の前記貼り合せレンズが有する前記正レンズのd線での屈折率
      n5B:前記第5レンズ群の前記貼り合せレンズが有する前記負レンズのd線での屈折率
  5.  前記第4レンズ群は、少なくとも2枚のレンズを含み、
     前記第5レンズ群は、少なくとも3枚のレンズを含み、
     前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、
     下記の条件式(2)~(6)を満たす
    ことを特徴とする請求項1に記載のズームレンズ
      1<f4/|f2|<2.5    ・・・(2)
      0.83<f3/f4<3     ・・・(3)
      0.5<βt4/βw4<1.7  ・・・(4)
      βt4<0.6          ・・・(5)
      n5B<n5A          ・・・(6)
     ただし、
      f2:前記第2レンズ群の焦点距離
      f3:前記第3レンズ群の焦点距離
      f4:前記第4レンズ群の焦点距離
      βw4:前記広角端での前記第4レンズ群の横倍率
      βt4:前記望遠端での前記第4レンズ群の横倍率
      n5A:前記第5レンズ群の前記貼り合せレンズが有する前記正レンズのd線での屈折率
      n5B:前記第5レンズ群の前記貼り合せレンズが有する前記負レンズのd線での屈折率
  6.  前記第1レンズ群は、少なくとも1枚の凹レンズを含む3枚以上のレンズで構成され、
     前記第4レンズ群は、少なくとも2枚のレンズを含み、
     前記第5レンズ群は、少なくとも3枚のレンズを含み、
     前記第5レンズ群の少なくとも前記3枚のレンズのうち前記物体側の2枚のレンズは、前記物体側より順に正レンズおよび負レンズから構成される貼り合せレンズであり、
     下記の条件式(1)~(6)を満たす
    ことを特徴とする請求項1に記載のズームレンズ
      0.45<ft/f1<0.6   ・・・(1)
      1<f4/|f2|<2.5    ・・・(2)
      0.83<f3/f4<3     ・・・(3)
      0.5<βt4/βw4<1.7  ・・・(4)
      βt4<0.6          ・・・(5)
      n5B<n5A          ・・・(6)
     ただし、
      f1:前記第1レンズ群の焦点距離
      ft:前記望遠端におけるレンズ全系の焦点距離
      f2:前記第2レンズ群の焦点距離
      f3:前記第3レンズ群の焦点距離
      f4:前記第4レンズ群の焦点距離
      βw4:前記広角端での前記第4レンズ群の横倍率
      βt4:前記望遠端での前記第4レンズ群の横倍率
      n5A:前記第5レンズ群の前記貼り合せレンズが有する前記正レンズのd線での屈折率
      n5B:前記第5レンズ群の前記貼り合せレンズが有する前記負レンズのd線での屈折率
PCT/JP2013/065495 2013-06-04 2013-06-04 ズームレンズ WO2014196022A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/892,822 US9766436B2 (en) 2013-06-04 2013-06-04 Zoom lens having first through fifth lens groups and a specific focal distance ratio among the lens groups
JP2015521203A JP6188798B2 (ja) 2013-06-04 2013-06-04 ズームレンズ
PCT/JP2013/065495 WO2014196022A1 (ja) 2013-06-04 2013-06-04 ズームレンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065495 WO2014196022A1 (ja) 2013-06-04 2013-06-04 ズームレンズ

Publications (1)

Publication Number Publication Date
WO2014196022A1 true WO2014196022A1 (ja) 2014-12-11

Family

ID=52007698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065495 WO2014196022A1 (ja) 2013-06-04 2013-06-04 ズームレンズ

Country Status (3)

Country Link
US (1) US9766436B2 (ja)
JP (1) JP6188798B2 (ja)
WO (1) WO2014196022A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445916A (zh) * 2015-12-25 2016-03-30 中山联合光电科技股份有限公司 一种高倍率、短焦端红外共焦的变焦光学系统
JP2017142468A (ja) * 2016-02-12 2017-08-17 株式会社タムロン ズームレンズおよび撮像装置
US11036044B2 (en) * 2018-05-28 2021-06-15 Canon Kabushiki Kaisha Lens system, lens apparatus, adapter apparatus, and image pickup apparatus
JPWO2021140790A1 (ja) * 2020-01-08 2021-07-15
CN114355589A (zh) * 2021-12-29 2022-04-15 福建福光股份有限公司 一种31倍小型化连续变焦距镜头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179578B2 (ja) * 2018-10-24 2022-11-29 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
CN112327470B (zh) * 2019-08-05 2022-10-18 佳能株式会社 变焦镜头和摄像装置
CN114839752B (zh) * 2022-06-10 2024-03-19 舜宇光学(中山)有限公司 变焦镜头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460509A (ja) * 1990-06-29 1992-02-26 Konica Corp ズームレンズ
JPH0876193A (ja) * 1994-09-06 1996-03-22 Canon Inc 実像式の変倍ファインダー光学系
JP2004333664A (ja) * 2003-05-02 2004-11-25 Ricoh Co Ltd ズームレンズ、カメラおよび携帯情報端末装置
JP2006023593A (ja) * 2004-07-08 2006-01-26 Sony Corp ズームレンズ
JP2006171492A (ja) * 2004-12-17 2006-06-29 Konica Minolta Photo Imaging Inc ズームレンズ装置並びにこれを備えたデジタルカメラ及び携帯情報機器
JP2008209741A (ja) * 2007-02-27 2008-09-11 Nikon Corp ズームレンズと、これを有する光学装置
JP2010128032A (ja) * 2008-11-26 2010-06-10 Olympus Imaging Corp ズームレンズ及びこのズームレンズを備えた撮像装置
JP2010128034A (ja) * 2008-11-26 2010-06-10 Olympus Imaging Corp ズームレンズ及びこのズームレンズを備えた撮像装置
JP2013003240A (ja) * 2011-06-14 2013-01-07 Canon Inc ズームレンズ及びそれを有する撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924938B2 (en) 2003-03-19 2005-08-02 Ricoh Company, Ltd. Zoom lens, camera, and mobile information terminal
JP4610959B2 (ja) 2004-07-23 2011-01-12 富士フイルム株式会社 ズームレンズ
JP5006076B2 (ja) 2007-03-26 2012-08-22 富士フイルム株式会社 高倍率ズームレンズおよび撮像装置
JP2010271643A (ja) * 2009-05-25 2010-12-02 Sony Corp 可変焦点距離レンズ系及び撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460509A (ja) * 1990-06-29 1992-02-26 Konica Corp ズームレンズ
JPH0876193A (ja) * 1994-09-06 1996-03-22 Canon Inc 実像式の変倍ファインダー光学系
JP2004333664A (ja) * 2003-05-02 2004-11-25 Ricoh Co Ltd ズームレンズ、カメラおよび携帯情報端末装置
JP2006023593A (ja) * 2004-07-08 2006-01-26 Sony Corp ズームレンズ
JP2006171492A (ja) * 2004-12-17 2006-06-29 Konica Minolta Photo Imaging Inc ズームレンズ装置並びにこれを備えたデジタルカメラ及び携帯情報機器
JP2008209741A (ja) * 2007-02-27 2008-09-11 Nikon Corp ズームレンズと、これを有する光学装置
JP2010128032A (ja) * 2008-11-26 2010-06-10 Olympus Imaging Corp ズームレンズ及びこのズームレンズを備えた撮像装置
JP2010128034A (ja) * 2008-11-26 2010-06-10 Olympus Imaging Corp ズームレンズ及びこのズームレンズを備えた撮像装置
JP2013003240A (ja) * 2011-06-14 2013-01-07 Canon Inc ズームレンズ及びそれを有する撮像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445916A (zh) * 2015-12-25 2016-03-30 中山联合光电科技股份有限公司 一种高倍率、短焦端红外共焦的变焦光学系统
JP2017142468A (ja) * 2016-02-12 2017-08-17 株式会社タムロン ズームレンズおよび撮像装置
US11036044B2 (en) * 2018-05-28 2021-06-15 Canon Kabushiki Kaisha Lens system, lens apparatus, adapter apparatus, and image pickup apparatus
JPWO2021140790A1 (ja) * 2020-01-08 2021-07-15
JP7439839B2 (ja) 2020-01-08 2024-02-28 株式会社ニコン 変倍光学系および光学機器
CN114355589A (zh) * 2021-12-29 2022-04-15 福建福光股份有限公司 一种31倍小型化连续变焦距镜头

Also Published As

Publication number Publication date
JP6188798B2 (ja) 2017-08-30
US20160091692A1 (en) 2016-03-31
US9766436B2 (en) 2017-09-19
JPWO2014196022A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US9684155B2 (en) Optical system and image pickup apparatus including the same
JP6188798B2 (ja) ズームレンズ
JP4560745B2 (ja) 可変焦点距離レンズ系
US8743469B2 (en) Zoom lens and image pickup apparatus including the same
US11016274B2 (en) Fixed focal length lens and image pickup apparatus
US10228534B2 (en) Optical system and image pickup apparatus including the same
US9678317B2 (en) Zoom lens and image pickup apparatus including the same
US8320053B2 (en) Zoom lens
US8958007B2 (en) Zoom lens and image pickup apparatus having the same
US9151935B2 (en) Zoom lens and image pickup apparatus including the same
US9335528B2 (en) Zoom lens and image pickup apparatus including the same
JP6367707B2 (ja) ズームレンズ
US8593736B2 (en) Zoom lens and image pickup apparatus including the same
JP5767330B2 (ja) ズームレンズおよび撮像装置
US8488254B2 (en) Zoom lens optical system and image pickup apparatus having the same
US20140029110A1 (en) Zoom lens and image pickup apparatus including the same
US20160313543A1 (en) Optical system and imaging apparatus including the same
US11703661B2 (en) Optical system and optical apparatus
US11307382B2 (en) Optical system and image pickup apparatus including the same
JP2013054191A (ja) ズームレンズ
JP2018072581A (ja) 防振機能を有する大口径望遠ズームレンズ
US9250421B2 (en) Zoom lens
JP2012002900A (ja) ズームレンズおよび撮像装置
US11500175B2 (en) Optical system and image capturing apparatus including the same
JPWO2013031187A1 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892822

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015521203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886541

Country of ref document: EP

Kind code of ref document: A1