WO2024034309A1 - 変倍光学系、光学機器、および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2024034309A1
WO2024034309A1 PCT/JP2023/025401 JP2023025401W WO2024034309A1 WO 2024034309 A1 WO2024034309 A1 WO 2024034309A1 JP 2023025401 W JP2023025401 W JP 2023025401W WO 2024034309 A1 WO2024034309 A1 WO 2024034309A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
group
refractive power
conditional expression
Prior art date
Application number
PCT/JP2023/025401
Other languages
English (en)
French (fr)
Inventor
拓郎 小野
秀幸 城
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2024034309A1 publication Critical patent/WO2024034309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable magnification optical system, an optical device, and a method for manufacturing a variable magnification optical system.
  • variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc. have been proposed (for example, see Patent Document 1).
  • variable magnification optical system it is difficult to achieve brightness and good optical performance while making it compact.
  • the variable magnification optical system includes an object side lens group having positive refractive power, an intermediate group having positive refractive power, and a rear group arranged in order from the object side along the optical axis.
  • the intermediate group includes at least one lens group
  • the rear group includes a first subsequent lens group having a negative refractive power and a positive refractive power, which are arranged in order from the object side along the optical axis.
  • a third succeeding lens group having a negative refractive power the distance between adjacent lens groups changes during zooming
  • the second succeeding lens group has: It moves along the optical axis during focusing, and satisfies the following conditional expression. 1.05 ⁇ f1/TLw ⁇ 2.00
  • f1 Focal length of the object side lens group
  • TLw Total length of the variable magnification optical system in the wide-angle end state
  • the variable magnification optical system includes an object side lens group having positive refractive power, an intermediate group having positive refractive power, and a rear group arranged in order from the object side along the optical axis.
  • the intermediate group includes at least one lens group
  • the rear group includes a first subsequent lens group having a negative refractive power and a positive refractive power, which are arranged in order from the object side along the optical axis.
  • a third succeeding lens group having a negative refractive power, and when changing magnification, the distance between adjacent lens groups changes, and at least a portion of the intermediate group
  • the lens group is fixed with respect to the image plane and satisfies the following conditional expression. 2.00 ⁇ f1/fMw ⁇ 7.00 However, f1: focal length of the object-side lens group fMw: composite focal length of the intermediate group in the wide-angle end state
  • An optical device includes the variable magnification optical system described above.
  • a method for manufacturing a variable power optical system includes: an object side lens group having a positive refractive power, an intermediate group having a positive refractive power, and a rear lens group arranged in order from the object side along the optical axis.
  • the intermediate group includes at least one lens group, and the rear group includes negative refractive power lenses arranged in order from the object side along the optical axis.
  • the second subsequent lens group has a step of arranging each lens within the lens barrel such that the interval changes, the second subsequent lens group moves along the optical axis during focusing, and the following conditional expression is satisfied. 1.05 ⁇ f1/TLw ⁇ 2.00 However, f1: Focal length of the object side lens group TLw: Total length of the variable magnification optical system in the wide-angle end state
  • a method for manufacturing a variable power optical system includes: an object side lens group having a positive refractive power, an intermediate group having a positive refractive power, and a rear lens group arranged in order from the object side along the optical axis.
  • the intermediate group includes at least one lens group, and the rear group includes negative refractive power lenses arranged in order from the object side along the optical axis.
  • the method includes the step of arranging each lens within the lens barrel such that the interval changes, at least some of the lens groups in the intermediate group are fixed with respect to the image plane, and the following conditional expression is satisfied. 2.00 ⁇ f1/fMw ⁇ 7.00 However, f1: focal length of the object-side lens group fMw: composite focal length of the intermediate group in the wide-angle end state
  • FIG. 3 is a diagram showing a lens configuration of a variable magnification optical system according to a first example.
  • FIGS. 2A and 2B are diagrams of various aberrations when focusing on infinity in the wide-angle end state and the telephoto end state of the variable power optical system according to the first embodiment, respectively.
  • FIG. 7 is a diagram showing a lens configuration of a variable magnification optical system according to a second example.
  • FIGS. 4A and 4B are diagrams of various aberrations when focusing on infinity in the wide-angle end state and the telephoto end state of the variable power optical system according to the second embodiment, respectively.
  • FIG. 7 is a diagram showing a lens configuration of a variable magnification optical system according to a third example.
  • FIGS. 1 is a diagram showing a lens configuration of a variable magnification optical system according to a third example.
  • 6A and 6B are diagrams of various aberrations when focusing on infinity in the wide-angle end state and the telephoto end state of the variable power optical system according to the third embodiment, respectively.
  • 1 is a diagram showing the configuration of a camera equipped with a variable magnification optical system according to each embodiment.
  • 3 is a flowchart illustrating a method for manufacturing the variable power optical system according to the first embodiment.
  • 7 is a flowchart showing a method for manufacturing a variable magnification optical system according to a second embodiment.
  • this camera 1 includes a main body 2 and a photographic lens 3 attached to the main body 2.
  • the main body 2 includes an image sensor 4, a main body control section (not shown) that controls the operation of the digital camera, and a liquid crystal screen 5.
  • the photographing lens 3 includes a variable magnification optical system ZL including a plurality of lens groups, and a lens position control mechanism (not shown) that controls the position of each lens group.
  • the lens position control mechanism includes a sensor that detects the position of the lens group, a motor that moves the lens group back and forth along the optical axis, a control circuit that drives the motor, and the like.
  • variable magnification optical system ZL of the photographic lens 3 The light from the subject is collected by the variable magnification optical system ZL of the photographic lens 3 and reaches the image plane I of the image sensor 4.
  • the light from the subject that has reached the image plane I is photoelectrically converted by the image sensor 4 and recorded in a memory (not shown) as digital image data.
  • the digital image data recorded in the memory can be displayed on the liquid crystal screen 5 in response to user operations.
  • this camera may be a mirrorless camera or a single-lens reflex camera with a quick return mirror.
  • the variable magnification optical system ZL shown in FIG. 7 is a schematic representation of the variable magnification optical system provided in the photographic lens 3, and the lens configuration of the variable magnification optical system ZL is not limited to this configuration. do not have.
  • variable magnification optical system ZL (1) as an example of the variable magnification optical system (zoom lens) ZL according to the first embodiment has positive lenses arranged in order from the object side along the optical axis. It consists of an object-side lens group GA having refractive power, an intermediate group GM having positive refractive power, and a rear group GR. The intermediate group GM has at least one lens group.
  • the rear group GR includes a first subsequent lens group GR1 having a negative refractive power, a second subsequent lens group GR2 having a positive refractive power, and a second subsequent lens group GR2 having a negative refractive power, which are arranged in order from the object side along the optical axis. and a third subsequent lens group GR3.
  • the second subsequent lens group GR2 moves along the optical axis during focusing.
  • variable magnification optical system ZL satisfies the following conditional expression (1). 1.05 ⁇ f1/TLw ⁇ 2.00...(1)
  • f1 Focal length of the object side lens group
  • GA TLw Total length of the variable power optical system ZL in the wide-angle end state
  • variable magnification optical system ZL it is possible to obtain a variable magnification optical system that is small, bright, and has good optical performance, and an optical device equipped with this variable magnification optical system.
  • the variable power optical system ZL according to the first embodiment may be the variable power optical system ZL(2) shown in FIG. 3 or the variable power optical system ZL(3) shown in FIG. 5.
  • Conditional expression (1) defines an appropriate relationship between the focal length of the object-side lens group GA and the total length of the variable magnification optical system ZL in the wide-angle end state. By satisfying conditional expression (1), spherical aberration can be favorably corrected.
  • conditional expression (1) When the corresponding value of conditional expression (1) exceeds the upper limit, the refractive power of the object-side lens group GA becomes weak, making it difficult to make the variable power optical system ZL smaller while correcting spherical aberration.
  • the upper limit of conditional expression (1) By setting the upper limit of conditional expression (1) to 1.90, 1.80, 1.70, 1.60, and even 1.50, the effects of this embodiment can be made more reliable. can.
  • conditional expression (1) When the corresponding value of conditional expression (1) is below the lower limit value, the refractive power of the object-side lens group GA becomes strong, making it difficult to correct the spherical aberration that occurs in the telephoto end state.
  • the lower limit of conditional expression (1) By setting the lower limit of conditional expression (1) to 1.10, 1.15, 1.20, 1.25, and even 1.30, the effects of this embodiment can be made more reliable. can.
  • variable magnification optical system ZL according to the second embodiment has the same configuration as the variable magnification optical system ZL according to the first embodiment, and therefore will be described using the same reference numerals as those in the first embodiment.
  • the variable magnification optical system ZL (1) as an example of the variable magnification optical system (zoom lens) ZL according to the second embodiment has positive lenses arranged in order from the object side along the optical axis. It consists of an object-side lens group GA having refractive power, an intermediate group GM having positive refractive power, and a rear group GR.
  • the intermediate group GM has at least one lens group.
  • the rear group GR includes a first subsequent lens group GR1 having a negative refractive power, a second subsequent lens group GR2 having a positive refractive power, and a second subsequent lens group GR2 having a negative refractive power, which are arranged in order from the object side along the optical axis. and a third subsequent lens group GR3.
  • the distance between adjacent lens groups changes, and at least some of the lens groups in the intermediate group GM are fixed with respect to the image plane I.
  • variable magnification optical system ZL satisfies the following conditional expression (2). 2.00 ⁇ f1/fMw ⁇ 7.00...(2)
  • f1 Focal length of the object side lens group
  • GA fMw Combined focal length of the intermediate group GM in the wide-angle end state
  • variable magnification optical system ZL may be the variable power optical system ZL(2) shown in FIG. 3 or the variable power optical system ZL(3) shown in FIG. 5.
  • Conditional expression (2) defines an appropriate relationship between the focal length of the object-side lens group GA and the composite focal length of the intermediate group GM in the wide-angle end state. By satisfying conditional expression (2), comatic aberration and field curvature can be favorably corrected.
  • conditional expression (2) When the corresponding value of conditional expression (2) exceeds the upper limit, the refractive power of the intermediate group GM in the wide-angle end state becomes strong, making it difficult to suppress fluctuations in coma aberration and field curvature during zooming.
  • the upper limit of conditional expression (2) By setting the upper limit of conditional expression (2) to 6.75, 6.50, 6.25, 6.00, 5.75, and even 5.50, the effect of this embodiment can be made more reliable. It can be done.
  • conditional expression (2) When the corresponding value of conditional expression (2) is below the lower limit value, the refractive power of the intermediate group GM in the wide-angle end state becomes weak, and it is possible to make the variable magnification optical system ZL smaller while correcting coma aberration and curvature of field. It becomes difficult.
  • the lower limit value of conditional expression (2) By setting the lower limit value of conditional expression (2) to 2.25, 2.50, 2.75, 3.00, 3.25, and further to 3.50, the effect of this embodiment can be made more reliable. It can be done.
  • variable power optical system ZL it is desirable that the second subsequent lens group GR2 moves along the optical axis during focusing.
  • variable magnification optical system ZL According to the first embodiment and the second embodiment satisfy the following conditional expression (3). 1.50 ⁇ f1/(-fn1) ⁇ 6.00...(3)
  • fn1 Focal length of the lens group located closest to the object side among the lens groups having negative refractive power in the variable magnification optical system ZL
  • Conditional expression (3) expresses an appropriate relationship between the focal length of the object side lens group GA and the focal length of the lens group disposed closest to the object side among the lens groups having negative refractive power in the variable magnification optical system ZL. This stipulates the following. By satisfying conditional expression (3), spherical aberration can be favorably corrected.
  • conditional expression (3) If the corresponding value of conditional expression (3) exceeds the upper limit, the refractive power of the object-side lens group GA becomes weak, making it difficult to downsize the variable power optical system ZL while correcting spherical aberration.
  • the upper limit of conditional expression (3) By setting the upper limit of conditional expression (3) to 5.50, 5.00, 4.50, 4.00, and even 3.50, the effects of each embodiment can be made more reliable. can.
  • conditional expression (3) When the corresponding value of conditional expression (3) is below the lower limit value, the refractive power of the object-side lens group GA becomes strong, making it difficult to correct the spherical aberration that occurs in the telephoto end state.
  • the lower limit of conditional expression (3) By setting the lower limit of conditional expression (3) to 1.75, 2.00, 2.25, or even 2.50, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (4).
  • fR3 Focal length of the third subsequent lens group GR3
  • ft Focal length of the variable power optical system ZL in the telephoto end state
  • Conditional expression (4) defines an appropriate relationship between the focal length of the third subsequent lens group GR3 and the focal length of the variable power optical system ZL in the telephoto end state.
  • conditional expression (4) If the corresponding value of conditional expression (4) exceeds the upper limit, the refractive power of the third subsequent lens group GR3 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting distortion.
  • the upper limit of conditional expression (4) By setting the upper limit of conditional expression (4) to 0.80, 0.60, 0.50, or even 0.40, the effects of each embodiment can be made more reliable.
  • conditional expression (4) When the corresponding value of conditional expression (4) is below the lower limit value, the refractive power of the third subsequent lens group GR3 becomes strong, making it difficult to suppress fluctuations in distortion aberration during zooming.
  • the lower limit of conditional expression (4) By setting the lower limit of conditional expression (4) to 0.10, 0.15, 0.20, or even 0.25, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (5).
  • fR3 Focal length of the third subsequent lens group GR3
  • fw Focal length of the variable power optical system ZL in the wide-angle end state
  • Conditional expression (5) defines an appropriate relationship between the focal length of the third subsequent lens group GR3 and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • conditional expression (5) When the corresponding value of conditional expression (5) exceeds the upper limit, the refractive power of the third subsequent lens group GR3 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting distortion.
  • the upper limit of conditional expression (5) By setting the upper limit of conditional expression (5) to 1.75, 1.50, 1.25, and even 1.00, the effects of each embodiment can be made more reliable.
  • conditional expression (5) When the corresponding value of conditional expression (5) is below the lower limit, the refractive power of the third subsequent lens group GR3 becomes strong, making it difficult to suppress fluctuations in distortion aberration during zooming.
  • the lower limit of conditional expression (5) By setting the lower limit of conditional expression (5) to 0.20, 0.40, 0.50, or even 0.60, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (6). 0.15 ⁇ (TLt-TLw)/TLw ⁇ 1.00 (6)
  • TLt Total length of the variable power optical system ZL in the telephoto end state
  • TLw Total length of the variable power optical system ZL in the wide-angle end state
  • Conditional expression (6) defines an appropriate relationship between the total length of the variable power optical system ZL in the telephoto end state and the total length of the variable power optical system ZL in the wide-angle end state.
  • conditional expression (6) If the corresponding value of conditional expression (6) exceeds the upper limit, the refractive power of the object-side lens group GA becomes weak, making it difficult to make the variable power optical system ZL smaller while correcting spherical aberration.
  • the upper limit of conditional expression (6) By setting the upper limit of conditional expression (6) to 0.90, 0.80, 0.70, or even 0.60, the effects of each embodiment can be made more reliable.
  • conditional expression (6) When the corresponding value of conditional expression (6) is below the lower limit value, the refractive power of the object-side lens group GA becomes strong, making it difficult to correct the spherical aberration that occurs in the telephoto end state.
  • the lower limit of conditional expression (6) By setting the lower limit of conditional expression (6) to 0.20, 0.25, 0.30, or even 0.35, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (7). 1.50 ⁇ f1/(-fR3) ⁇ 6.00...(7)
  • fR3 focal length of the third subsequent lens group GR3
  • Conditional expression (7) defines an appropriate relationship between the focal length of the object-side lens group GA and the focal length of the third subsequent lens group GR3. By satisfying conditional expression (7), it is possible to satisfactorily correct coma aberration.
  • conditional expression (7) When the corresponding value of conditional expression (7) exceeds the upper limit, the refractive power of the object side lens group GA becomes weaker than the refractive power of the third subsequent lens group GR3, making it difficult to correct coma aberration.
  • the upper limit of conditional expression (7) By setting the upper limit of conditional expression (7) to 5.50, 5.00, 4.50, or even 4.00, the effects of each embodiment can be made more reliable.
  • conditional expression (7) When the corresponding value of conditional expression (7) is below the lower limit value, the refractive power of the third subsequent lens group GR3 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting coma aberration.
  • the lower limit value of conditional expression (7) By setting the lower limit value of conditional expression (7) to 1.60, 1.70, 1.80, 1.90, and even 2.00, the effects of each embodiment can be made more reliable. can.
  • the third subsequent lens group GR3 includes a lens that satisfies the following conditional expressions (8) and (9). 50.0 ⁇ d3 ⁇ 80.0...(8) 1.45 ⁇ nd3 ⁇ 1.58...(9) However, ⁇ d3: Abbe number of the lens in the third subsequent lens group GR3 nd3: Refractive index for the d-line of the lens in the third subsequent lens group GR3
  • Conditional expression (8) defines an appropriate range for the Abbe number of the lenses in the third subsequent lens group GR3.
  • Conditional expression (9) defines an appropriate range for the refractive index for the d-line of the lenses in the third subsequent lens group GR3.
  • conditional expression (8) exceeds the upper limit, the material of the lenses in the third subsequent lens group GR3 will be a special glass, and the manufacturing cost will increase.
  • the upper limit of conditional expression (8) By setting the upper limit of conditional expression (8) to 79.0, 78.0, 77.0, or even 75.0, the effects of each embodiment can be made more reliable.
  • conditional expression (8) When the corresponding value of conditional expression (8) is below the lower limit value, it becomes difficult to correct the chromatic aberration of magnification.
  • the lower limit value of conditional expression (8) By setting the lower limit value of conditional expression (8) to 51.0, 52.0, 53.0, 54.0, and further to 55.0, the effects of each embodiment can be made more reliable. can.
  • conditional expression (9) exceeds the upper limit, the material of the lenses in the third subsequent lens group GR3 becomes a high refractive index material, and the weight increases.
  • the upper limit of conditional expression (9) is 1.57, 1.56, and even 1.55, the effects of each embodiment can be made more reliable.
  • conditional expression (9) If the corresponding value of conditional expression (9) is below the lower limit value, the material of the lens in the third subsequent lens group GR3 becomes a low refractive index material, and the curvature of the surface of the lens needs to be increased, so that distortion is corrected. becomes difficult to do.
  • the lower limit of conditional expression (9) By setting the lower limit of conditional expression (9) to 1.46, 1.47, and even 1.48, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL According to the first embodiment and the second embodiment satisfy the following conditional expression (10). 1.80 ⁇ TLw/(-fR3) ⁇ 2.70...(10) However, TLw: Total length of the variable magnification optical system ZL in the wide-angle end state fR3: Focal length of the third subsequent lens group GR3
  • Conditional expression (10) defines an appropriate relationship between the total length of the variable power optical system ZL in the wide-angle end state and the focal length of the third subsequent lens group GR3. By satisfying conditional expression (10), the overall length of the variable power optical system ZL can be shortened while maintaining good optical performance.
  • conditional expression (10) exceeds the upper limit value, the refractive power of the third subsequent lens group GR3 becomes strong, making it difficult to suppress fluctuations in distortion aberration during zooming.
  • the upper limit of conditional expression (10) is 2.65, 2.60, 2.55, and even 2.50, the effects of each embodiment can be made more reliable.
  • conditional expression (10) If the corresponding value of conditional expression (10) is below the lower limit, the total length of the variable magnification optical system ZL in the wide-angle end state becomes long, making it difficult to shorten the total length of the variable magnification optical system ZL.
  • the lower limit of conditional expression (10) By setting the lower limit of conditional expression (10) to 1.85, 1.90, 1.95, and even 2.00, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL According to the first embodiment and the second embodiment satisfy the following conditional expression (11). 0.30 ⁇ (-fR1)/fR2 ⁇ 1.30 (11)
  • fR1 Focal length of the first subsequent lens group GR1
  • fR2 Focal length of the second subsequent lens group GR2
  • Conditional expression (11) defines an appropriate relationship between the focal length of the first succeeding lens group GR1 and the focal length of the second succeeding lens group GR2. By satisfying conditional expression (11), spherical aberration can be favorably corrected.
  • conditional expression (11) exceeds the upper limit, the refractive power of the first subsequent lens group GR1 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting spherical aberration.
  • the upper limit of conditional expression (11) is 1.20, 1.10, 1.00, or even 0.90, the effects of each embodiment can be made more reliable.
  • conditional expression (11) When the corresponding value of conditional expression (11) is below the lower limit value, the refractive power of the first subsequent lens group GR1 becomes strong, making it difficult to correct spherical aberration.
  • the lower limit of conditional expression (11) By setting the lower limit of conditional expression (11) to 0.40, 0.50, or even 0.60, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (12). 0.70 ⁇ (-fR1)/fMw ⁇ 2.00 (12)
  • fR1 Focal length of the first subsequent lens group GR1
  • fMw Combined focal length of the intermediate group GM in the wide-angle end state
  • Conditional expression (12) defines an appropriate relationship between the focal length of the first subsequent lens group GR1 and the composite focal length of the intermediate group GM in the wide-angle end state. By satisfying conditional expression (12), spherical aberration can be favorably corrected.
  • conditional expression (12) When the corresponding value of conditional expression (12) exceeds the upper limit, the refractive power of the first subsequent lens group GR1 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting spherical aberration.
  • the upper limit of conditional expression (12) By setting the upper limit of conditional expression (12) to 1.90, 1.80, 1.70, or even 1.65, the effects of each embodiment can be made more reliable.
  • conditional expression (12) When the corresponding value of conditional expression (12) is below the lower limit value, the refractive power of the first subsequent lens group GR1 becomes strong, making it difficult to suppress fluctuations in spherical aberration during zooming.
  • the lower limit of conditional expression (12) By setting the lower limit of conditional expression (12) to 0.80, 0.90, 1.00, or even 1.10, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL According to the first embodiment and the second embodiment satisfy the following conditional expression (13). 1.00 ⁇ fR2/fMw ⁇ 3.00 (13)
  • fR2 Focal length of the second subsequent lens group GR2
  • fMw Combined focal length of the intermediate group GM in the wide-angle end state
  • Conditional expression (13) defines an appropriate relationship between the focal length of the second subsequent lens group GR2 and the composite focal length of the intermediate group GM in the wide-angle end state. By satisfying conditional expression (13), field curvature can be favorably corrected.
  • conditional expression (13) exceeds the upper limit, the refractive power of the second subsequent lens group GR2 becomes weak, making it difficult to downsize the variable magnification optical system ZL while correcting field curvature.
  • the upper limit of conditional expression (13) is 2.90, 2.80, 2.70, 2.60, and even 2.50, the effects of each embodiment can be made more reliable. can.
  • conditional expression (13) When the corresponding value of conditional expression (13) is below the lower limit value, the refractive power of the second subsequent lens group GR2 becomes strong, making it difficult to correct the curvature of field.
  • the lower limit value of conditional expression (13) By setting the lower limit value of conditional expression (13) to 1.10, 1.20, 1.30, 1.35, and even 1.40, the effects of each embodiment can be made more reliable. can.
  • variable magnification optical system ZL According to the first embodiment and the second embodiment satisfy the following conditional expression (14). 1.00 ⁇ (-fR3)/fMw ⁇ 3.50 (14) However, fR3: Focal length of the third subsequent lens group GR3 fMw: Combined focal length of the intermediate group GM in the wide-angle end state
  • Conditional expression (14) defines an appropriate relationship between the focal length of the third subsequent lens group GR3 and the composite focal length of the intermediate group GM in the wide-angle end state.
  • conditional expression (14) When the corresponding value of conditional expression (14) exceeds the upper limit, the refractive power of the third subsequent lens group GR3 becomes weak, making it difficult to downsize the variable power optical system ZL while correcting distortion aberration.
  • the upper limit of conditional expression (14) By setting the upper limit of conditional expression (14) to 3.00, 2.50, 2.25, or even 2.00, the effects of each embodiment can be made more reliable.
  • conditional expression (14) When the corresponding value of conditional expression (14) is below the lower limit value, the refractive power of the third subsequent lens group GR3 becomes strong, making it difficult to correct distortion aberration.
  • the lower limit of conditional expression (14) By setting the lower limit of conditional expression (14) to 1.10, 1.15, 1.20, and even 1.25, the effects of each embodiment can be made more reliable.
  • variable magnification optical system ZL according to the first embodiment and the second embodiment satisfy the following conditional expression (15). 0.10 ⁇ Bft/ft ⁇ 0.80 (15) However, Bft: Back focus of the variable power optical system ZL in the telephoto end state ft: Focal length of the variable power optical system ZL in the telephoto end state
  • Conditional expression (15) defines an appropriate relationship between the back focus of the variable power optical system ZL in the telephoto end state and the focal length of the variable power optical system ZL in the telephoto end state.
  • conditional expression (15) By satisfying conditional expression (15), it is possible to obtain a variable power optical system that is small, bright, and has good optical performance.
  • the upper limit of conditional expression (15) By setting the upper limit of conditional expression (15) to 0.75, 0.70, 0.65, 0.60, and even 0.50, the effects of this embodiment can be made more reliable. can. Further, by setting the lower limit value of conditional expression (15) to 0.15, 0.20, 0.25, or even 0.30, the effects of this embodiment can be made more reliable.
  • variable power optical system ZL it is desirable that the third subsequent lens group GR3 be fixed to the image plane I during variable power. This makes it possible to simplify the structure of parts that hold each lens group, and to reduce the weight of the variable power optical system ZL.
  • variable power optical system ZL it is desirable that the first subsequent lens group GR1 moves along the optical axis during focusing. This makes it possible to satisfactorily suppress fluctuations in field curvature during focusing.
  • an object-side lens group GA having a positive refractive power, an intermediate group GM having a positive refractive power, and a rear group GR are arranged in order from the object side along the optical axis (step ST1). At this time, at least one lens group is arranged in the intermediate group GM.
  • the rear group GR includes, in order from the object side along the optical axis, a first trailing lens group GR1 having a negative refractive power, a second trailing lens group GR2 having a positive refractive power, and a second trailing lens group GR2 having a negative refractive power.
  • a third subsequent lens group GR3 is arranged.
  • the configuration is such that the distance between adjacent lens groups changes during zooming (step ST2).
  • the second subsequent lens group GR2 is configured to move along the optical axis during focusing (step ST3).
  • each lens is arranged within the lens barrel so that at least the above conditional expression (1) is satisfied (step ST4). According to such a manufacturing method, it is possible to manufacture a variable power optical system that is small, bright, and has good optical performance.
  • an object-side lens group GA having a positive refractive power, an intermediate group GM having a positive refractive power, and a rear group GR are arranged in order from the object side along the optical axis (step ST11). At this time, at least one lens group is arranged in the intermediate group GM.
  • the rear group GR includes, in order from the object side along the optical axis, a first trailing lens group GR1 having a negative refractive power, a second trailing lens group GR2 having a positive refractive power, and a second trailing lens group GR2 having a negative refractive power.
  • a third subsequent lens group GR3 is arranged.
  • the distance between adjacent lens groups changes, and at least some of the lens groups in the intermediate group GM are configured to be fixed with respect to the image plane I (step ST12).
  • each lens is arranged within the lens barrel so that at least the above conditional expression (2) is satisfied (step ST13). According to such a manufacturing method, it is possible to manufacture a variable power optical system that is small, bright, and has good optical performance.
  • variable magnification optical system ZL according to an example of each embodiment will be described based on the drawings.
  • 1, 3, and 5 are cross-sectional views showing the configuration and refractive power distribution of variable magnification optical systems ZL ⁇ ZL(1) to ZL(3) ⁇ according to the first to third embodiments.
  • each lens group is shown when changing the power from the wide-angle end state (W) to the telephoto end state (T).
  • W wide-angle end state
  • T telephoto end state
  • the direction of movement is indicated by an arrow.
  • the moving direction of the focusing lens group when focusing from infinity to a close object is indicated by an arrow together with the word "focus".
  • each lens group is represented by a combination of a symbol G and a number
  • each lens is represented by a combination of a symbol L and a number.
  • lens groups and the like are expressed using combinations of codes and numbers independently for each embodiment. Therefore, even if the same combination of symbols and numbers is used between the embodiments, it does not mean that they have the same configuration.
  • Tables 1 to 3 are shown below, of which Table 1 is a table showing each specification data of the first example, Table 2 is a table of the second example, and Table 3 is a table showing each specification data of the third example.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degree)
  • is the half angle of view
  • Y is the image height.
  • TL indicates the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image plane of the variable magnification optical system when focusing at infinity, plus Bf (back focus), and Bf is the distance at infinity.
  • Bf back focus
  • Bf is the distance at infinity. The distance on the optical axis from the lens surface closest to the image plane of the variable magnification optical system to the image plane during long distance focusing (air equivalent distance) is shown.
  • fMw indicates the composite focal length of the intermediate group in the wide-angle end state.
  • the surface number indicates the order of the optical surfaces from the object side along the direction of propagation of the light ray
  • R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side).
  • D is the surface spacing that is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member for the d-line
  • ⁇ d is the optical The Abbe number based on the d-line of the material of the member is shown.
  • the radius of curvature " ⁇ " indicates a plane or an aperture
  • (diaphragm S) indicates an aperture diaphragm S, respectively.
  • the description of the refractive index nd 1.00000 of air is omitted.
  • the [Variable Interval Data] table shows the surface spacing at surface number i where the surface spacing is (Di) in the [Lens Specifications] table. Further, the [Variable Interval Data] table shows the surface spacing in the infinity focus state and the surface spacing in the close focus state. D0 indicates the distance from the object to the lens surface closest to the object in the variable magnification optical system.
  • the [Lens group data] table shows the starting surface (the surface closest to the object) and focal length of each lens group.
  • the focal length f, radius of curvature R, surface spacing D, and other lengths are generally expressed in mm unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, even if the optical performance is proportionally reduced, the same optical performance can be obtained, so the present invention is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration of a variable magnification optical system according to a first embodiment.
  • the variable magnification optical system ZL(1) according to the first embodiment includes a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the first lens group G1 and the fourth lens group G4 move toward the object side along the optical axis
  • the second lens group G2 and the fifth lens group Lens group G5 moves toward the image plane along the optical axis, and the distance between adjacent lens groups changes.
  • the third lens group G3 and the sixth lens group G6 are fixed with respect to the image plane I.
  • an aperture stop S is arranged between the second lens group G2 and the third lens group G3, and during zooming, the aperture stop S moves along the optical axis together with the second lens group G2.
  • the sign (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same in all the examples below.
  • the first lens group G1 includes a cemented positive lens consisting of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side along the optical axis, and a biconvex positive lens L12. It is composed of a lens L13.
  • the second lens group G2 includes a cemented negative lens consisting of a biconcave negative lens L21 and a positive meniscus lens L22 with a convex surface facing the object side, arranged in order from the object side along the optical axis; It is composed of a lens L23.
  • the third lens group G3 includes a positive meniscus lens L31 with a convex surface facing the object side, a biconvex positive lens L32, a biconcave negative lens L33, and an object, which are arranged in order from the object side along the optical axis. It is composed of a cemented negative lens with a positive meniscus lens L34 having a convex surface facing the side, a positive lens L35 having a convex shape on the object side, and a positive lens L36 having a biconvex shape.
  • the positive lens L35 has aspherical lens surfaces on both sides.
  • the fourth lens group G4 is composed of a cemented negative lens consisting of a positive meniscus lens L41 with a convex surface facing the object side and a negative meniscus lens L42 with a convex surface facing the object side.
  • the fifth lens group G5 is composed of a positive meniscus lens L51 with a concave surface facing the object side.
  • the positive meniscus lens L51 has aspherical lens surfaces on both sides.
  • the sixth lens group G6 is composed of a negative meniscus lens L61 with a concave surface facing the object side.
  • the negative meniscus lens L61 has an aspherical lens surface on the object side.
  • An image plane I is arranged on the image side of the sixth lens group G6.
  • the first lens group G1 corresponds to the object side lens group GA.
  • the second lens group G2 and the third lens group G3 constitute an intermediate group GM having positive refractive power as a whole.
  • the fourth lens group G4 corresponds to the first subsequent lens group GR1 that constitutes the rear group GR.
  • the fifth lens group G5 corresponds to the second subsequent lens group GR2 that constitutes the rear group GR.
  • the sixth lens group G6 corresponds to the third subsequent lens group GR3 that constitutes the rear group GR.
  • the first subsequent lens group GR1 (fourth lens group G4) moves toward the image plane along the optical axis
  • the second subsequent lens group GR2 (fifth lens group G4) moves toward the image plane along the optical axis.
  • Group G5) moves toward the object side along the optical axis.
  • Table 1 below lists the values of the specifications of the variable power optical system according to the first example.
  • FIG. 2(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable magnification optical system according to the first example.
  • FIG. 2B is a diagram showing various aberrations when focusing on infinity in the telephoto end state of the variable magnification optical system according to the first embodiment.
  • FNO indicates an F number
  • A indicates a half angle of view.
  • the spherical aberration diagram shows the value of the F number corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram each show the maximum half angle of view
  • the coma aberration diagram shows the value of each half angle of view.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that in the aberration diagrams of each example shown below, the same symbols as in this example are used, and overlapping explanations will be omitted.
  • variable magnification optical system according to the first example has excellent imaging performance with various aberrations well corrected from the wide-angle end state to the telephoto end state.
  • FIG. 3 is a diagram showing a lens configuration of a variable magnification optical system according to a second embodiment.
  • the variable magnification optical system ZL(2) according to the second embodiment includes a first lens group G1 having a positive refractive power and a second lens group having a positive refractive power, which are arranged in order from the object side along the optical axis. It is composed of a lens group G2, a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.
  • the first lens group G1 and the third lens group G3 move toward the object side along the optical axis, and the fourth lens group G4 moves along the optical axis. , and the distance between adjacent lens groups changes.
  • the second lens group G2 and the fifth lens group G5 are fixed with respect to the image plane I.
  • an aperture stop S is arranged inside the second lens group G2, and the aperture stop S is fixed with respect to the image plane I during zooming.
  • the first lens group G1 includes a cemented positive lens consisting of a negative meniscus lens L11 with a convex surface facing the object side and a positive meniscus lens L12 with a convex surface facing the object side, arranged in order from the object side along the optical axis; It is composed of a convex positive lens L13.
  • the second lens group G2 includes a cemented negative lens consisting of a biconcave negative lens L21 and a positive meniscus lens L22 with a convex surface facing the object side, arranged in order from the object side along the optical axis; A lens L23, a biconvex positive lens L24, a biconvex positive lens L25, a cemented negative lens consisting of a biconcave negative lens L26, and a biconvex positive lens L27, and a biconvex positive lens. L28 and a biconvex positive lens L29.
  • the positive lens L28 has aspherical lens surfaces on both sides.
  • An aperture stop S is arranged between the negative lens L23 and the positive lens L24 in the second lens group G2.
  • the third lens group G3 is composed of a cemented negative lens consisting of a biconvex positive lens L31 and a biconcave negative lens L32.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 with a concave surface facing the object side.
  • the positive meniscus lens L41 has aspherical lens surfaces on both sides.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 with a concave surface facing the object side.
  • the negative meniscus lens L51 has aspherical lens surfaces on both sides.
  • An image plane I is arranged on the image side of the fifth lens group G5.
  • the first lens group G1 corresponds to the object side lens group GA.
  • the second lens group G2 constitutes an intermediate group GM having positive refractive power as a whole.
  • the third lens group G3 corresponds to the first subsequent lens group GR1 that constitutes the rear group GR.
  • the fourth lens group G4 corresponds to the second subsequent lens group GR2 that constitutes the rear group GR.
  • the fifth lens group G5 corresponds to the third subsequent lens group GR3 that constitutes the rear group GR.
  • Table 2 below lists the values of the specifications of the variable power optical system according to the second embodiment.
  • FIG. 4(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable magnification optical system according to the second example.
  • FIG. 4B is a diagram showing various aberrations when focusing on infinity in the telephoto end state of the variable magnification optical system according to the second embodiment. From the various aberration diagrams, it can be seen that the variable magnification optical system according to the second example has excellent imaging performance with various aberrations well corrected from the wide-angle end state to the telephoto end state.
  • FIG. 5 is a diagram showing a lens configuration of a variable magnification optical system according to a third embodiment.
  • the variable magnification optical system ZL(3) according to the third embodiment includes a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power, which are arranged in order from the object side along the optical axis.
  • It is composed of six lens groups G6 and a seventh lens group G7 having negative refractive power.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 move toward the object side along the optical axis
  • the The second lens group G2 and the sixth lens group G6 move toward the image plane along the optical axis, and the distance between adjacent lens groups changes.
  • the fourth lens group G4 and the seventh lens group G7 are fixed with respect to the image plane I.
  • an aperture stop S is arranged between the second lens group G2 and the third lens group G3, and during zooming, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 includes a cemented positive lens consisting of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side along the optical axis, and a cemented positive lens with a convex surface facing the object side. and a positive meniscus lens L13.
  • the second lens group G2 includes a cemented negative lens consisting of a biconcave negative lens L21 and a positive meniscus lens L22 with a convex surface facing the object side, arranged in order from the object side along the optical axis; It is composed of a lens L23.
  • the third lens group G3 is composed of a positive meniscus lens L31 with a convex surface facing the object side.
  • the fourth lens group G4 includes a positive meniscus lens L41 with a convex surface facing the object side, a negative meniscus lens L42 with a convex surface facing the object side, and a negative meniscus lens L42 with a convex surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a cemented negative lens with a positive meniscus lens L43, a positive meniscus lens L44 with a convex surface facing the object side, and a biconvex positive lens L45.
  • the positive meniscus lens L44 has aspherical lens surfaces on both sides.
  • the fifth lens group G5 is composed of a cemented negative lens consisting of a positive meniscus lens L51 with a convex surface facing the object side and a negative meniscus lens L52 with a convex surface facing the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 with a concave surface facing the object side.
  • the positive meniscus lens L61 has aspherical lens surfaces on both sides.
  • the seventh lens group G7 is composed of a plano-concave negative lens L71 with its plane facing toward the image plane.
  • the negative lens L71 has an aspherical lens surface on the object side.
  • An image plane I is arranged on the image side of the seventh lens group G7.
  • the first lens group G1 corresponds to the object side lens group GA.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 constitute an intermediate group GM having positive refractive power as a whole.
  • the fifth lens group G5 corresponds to the first subsequent lens group GR1 that constitutes the rear group GR.
  • the sixth lens group G6 corresponds to the second subsequent lens group GR2 that constitutes the rear group GR.
  • the seventh lens group G7 corresponds to the third subsequent lens group GR3 that constitutes the rear group GR.
  • the first subsequent lens group GR1 (fifth lens group G5) moves toward the image plane along the optical axis
  • the second subsequent lens group GR2 (sixth lens group G5) moves toward the image plane along the optical axis.
  • Group G6) moves toward the object side along the optical axis.
  • Table 3 lists the values of the specifications of the variable power optical system according to the third embodiment.
  • FIG. 6(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable magnification optical system according to the third example.
  • FIG. 6(B) is a diagram showing various aberrations when focusing on infinity in the telephoto end state of the variable power optical system according to the third embodiment. From the various aberration diagrams, it can be seen that the variable magnification optical system according to the third example has various aberrations well corrected from the wide-angle end state to the telephoto end state, and has excellent imaging performance.
  • Conditional expression (1) 1.05 ⁇ f1/TLw ⁇ 2.00
  • Conditional expression (2) 2.00 ⁇ f1/fMw ⁇ 7.00
  • Conditional expression (3) 1.50 ⁇ f1/(-fn1) ⁇ 6.00
  • Conditional expression (4) 0.05 ⁇ (-fR3)/ft ⁇ 1.00
  • Conditional expression (5) 0.00 ⁇ (-fR3)/fw ⁇ 2.00
  • Conditional expression (6) 0.15 ⁇ (TLt-TLw)/TLw ⁇ 1.00
  • Conditional expression (7) 1.50 ⁇ f1/(-fR3) ⁇ 6.00
  • Conditional expression (8) 50.0 ⁇ d3 ⁇ 80.0
  • Conditional expression (9) 1.45 ⁇ nd3 ⁇ 1.58
  • Conditional expression (10) 1.80 ⁇ TLw/(-fR3) ⁇ 2.70
  • Conditional expression (11) 0.30 ⁇ (-fR1)/fR2 ⁇ 1.30
  • Conditional expression (12) 0.70 ⁇ (-fR1)/fMw ⁇ 2.00
  • Conditional expression (11) 0.30 ⁇ (-fR1)/fMw ⁇ 2.00
  • variable power optical system of each embodiment one with a five group configuration, one with a six group configuration, and one with a seven group configuration are shown, but the present application is not limited to this, and other group configurations (for example, an eight group configuration) are shown. , 9 groups, 10 groups, etc.) can also be configured.
  • a configuration may be adopted in which a lens or lens group is added to the closest to the object side or the closest to the image plane of the variable magnification optical system of each embodiment.
  • a lens or lens group may be added to the intermediate group closest to the object side or closest to the image plane in the variable power optical system of each embodiment.
  • the lens group refers to a portion having at least one lens separated by an air gap that changes during zooming.
  • the first succeeding lens group and the second succeeding lens group i.e., the fourth lens group and the fifth lens group, or the third lens group and the fourth lens group, or the fifth lens group
  • a focusing lens group that focuses from an object at infinity to a close object by moving one or more lens groups, or partial lens groups in the optical axis direction (not limited to the lens group and the sixth lens group) Also good.
  • the focusing lens group can also be applied to autofocus, and is also suitable for motor drive (using an ultrasonic motor or the like) for autofocus.
  • Corrects image blur caused by camera shake by moving the lens group or partial lens group so that it has a component perpendicular to the optical axis, or rotating (swinging) it in a plane that includes the optical axis. It can also be used as an anti-vibration lens group.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface. It is preferable that the lens surface is spherical or flat because it facilitates lens processing and assembly adjustment and prevents deterioration of optical performance due to errors in processing and assembly adjustment. Further, even if the image plane shifts, there is little deterioration in depiction performance, which is preferable.
  • the aspherical surface can be an aspherical surface made by grinding, a glass molded aspherical surface made by molding glass into an aspherical shape, or a composite aspherical surface made by molding resin into an aspherical shape on the glass surface. Either is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop is preferably disposed inside the intermediate group (that is, between the second lens group and the third lens group, or inside the second lens group), but it is preferable that the aperture stop is not provided with a member serving as an aperture stop.
  • the frame of the lens may be used instead.
  • Each lens surface may be coated with an antireflection film that has high transmittance over a wide wavelength range in order to reduce flare and ghosting and achieve optical performance with high contrast.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group G7 7th lens group I Image plane S Aperture diaphragm

Abstract

変倍光学系(ZL)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群(GA)と、正の屈折力を有する中間群(GM)と、後群(GR)とからなり、中間群(GM)は、少なくとも1つのレンズ群を有し、後群(GR)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群(GR1)と、正の屈折力を有する第2後続レンズ群(GR2)と、負の屈折力を有する第3後続レンズ群(GR3)とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、第2後続レンズ群(GR2)は、合焦の際に光軸に沿って移動し、以下の条件式を満足する。 1.05<f1/TLw<2.00 但し、f1:物体側レンズ群(GA)の焦点距離 TLw:広角端状態における変倍光学系(ZL)の全長

Description

変倍光学系、光学機器、および変倍光学系の製造方法
 本発明は、変倍光学系、光学機器、および変倍光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。このような変倍光学系においては、小型にしつつ、明るくて良好な光学性能を得ることが難しい。
特開2021-43375号公報
 第1の態様に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなり、前記中間群は、少なくとも1つのレンズ群を有し、前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第2後続レンズ群は、合焦の際に光軸に沿って移動し、以下の条件式を満足する。
 1.05<f1/TLw<2.00
 但し、f1:前記物体側レンズ群の焦点距離
    TLw:広角端状態における前記変倍光学系の全長
 第2の態様に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなり、前記中間群は、少なくとも1つのレンズ群を有し、前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記中間群における少なくとも一部のレンズ群が像面に対して固定され、以下の条件式を満足する。
 2.00<f1/fMw<7.00
 但し、f1:前記物体側レンズ群の焦点距離
    fMw:広角端状態における前記中間群の合成焦点距離
 第3の態様に係る光学機器は、上記変倍光学系を備えて構成される。
 第4の態様に係る変倍光学系の製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなる変倍光学系の製造方法であって、前記中間群は、少なくとも1つのレンズ群を有し、前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記第2後続レンズ群は、合焦の際に光軸に沿って移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置するステップを有する。
 1.05<f1/TLw<2.00
 但し、f1:前記物体側レンズ群の焦点距離
    TLw:広角端状態における前記変倍光学系の全長
 第5の態様に係る変倍光学系の製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなる変倍光学系の製造方法であって、前記中間群は、少なくとも1つのレンズ群を有し、前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記中間群における少なくとも一部のレンズ群が像面に対して固定され、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置するステップを有する。
 2.00<f1/fMw<7.00
 但し、f1:前記物体側レンズ群の焦点距離
    fMw:広角端状態における前記中間群の合成焦点距離
第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(A)、図2(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す図である。 図4(A)、図4(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す図である。 図6(A)、図6(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 各実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 第1実施形態に係る変倍光学系の製造方法を示すフローチャートである。 第2実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、各実施形態に係る変倍光学系を備えたカメラ(光学機器)を図7に基づいて説明する。このカメラ1は、図7に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる変倍光学系ZLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
 被写体からの光は、撮影レンズ3の変倍光学系ZLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。また、図7に示す変倍光学系ZLは、撮影レンズ3に備えられる変倍光学系を模式的に示したものであり、変倍光学系ZLのレンズ構成はこの構成に限定されるものではない。
 次に、第1実施形態に係る変倍光学系について説明する。第1実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群GAと、正の屈折力を有する中間群GMと、後群GRとからなる。中間群GMは、少なくとも1つのレンズ群を有する。後群GRは、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群GR1と、正の屈折力を有する第2後続レンズ群GR2と、負の屈折力を有する第3後続レンズ群GR3とを有する。変倍の際に、隣り合う各レンズ群の間隔が変化する。第2後続レンズ群GR2は、合焦の際に光軸に沿って移動する。
 上記構成の下、第1実施形態に係る変倍光学系ZLは、以下の条件式(1)を満足する。
 1.05<f1/TLw<2.00 ・・・(1)
 但し、f1:物体側レンズ群GAの焦点距離
    TLw:広角端状態における変倍光学系ZLの全長
 第1実施形態によれば、小型でありながら、明るくて良好な光学性能を有する変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第1実施形態に係る変倍光学系ZLは、図3に示す変倍光学系ZL(2)でも良く、図5に示す変倍光学系ZL(3)でも良い。
 条件式(1)は、物体側レンズ群GAの焦点距離と、広角端状態における変倍光学系ZLの全長との適切な関係を規定するものである。条件式(1)を満足することで、球面収差を良好に補正することができる。
 条件式(1)の対応値が上限値を上回ると、物体側レンズ群GAの屈折力が弱くなり、球面収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(1)の上限値を、1.90、1.80、1.70、1.60、さらに1.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(1)の対応値が下限値を下回ると、物体側レンズ群GAの屈折力が強くなり、望遠端状態において発生する球面収差を補正することが困難になる。条件式(1)の下限値を、1.10、1.15、1.20、1.25、さらに1.30に設定することで、本実施形態の効果をより確実なものとすることができる。
 次に、第2実施形態に係る変倍光学系について説明する。第2実施形態に係る変倍光学系ZLは、第1実施形態に係る変倍光学系ZLと同様の構成であるため、第1実施形態と同一の符号を付して説明する。第2実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群GAと、正の屈折力を有する中間群GMと、後群GRとからなる。中間群GMは、少なくとも1つのレンズ群を有する。後群GRは、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群GR1と、正の屈折力を有する第2後続レンズ群GR2と、負の屈折力を有する第3後続レンズ群GR3とを有する。変倍の際に、隣り合う各レンズ群の間隔が変化し、中間群GMにおける少なくとも一部のレンズ群が像面Iに対して固定される。
 上記構成の下、第2実施形態に係る変倍光学系ZLは、以下の条件式(2)を満足する。
 2.00<f1/fMw<7.00 ・・・(2)
 但し、f1:物体側レンズ群GAの焦点距離
    fMw:広角端状態における中間群GMの合成焦点距離
 第2実施形態によれば、小型でありながら、明るくて良好な光学性能を有する変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第2実施形態に係る変倍光学系ZLは、図3に示す変倍光学系ZL(2)でも良く、図5に示す変倍光学系ZL(3)でも良い。
 条件式(2)は、物体側レンズ群GAの焦点距離と、広角端状態における中間群GMの合成焦点距離との適切な関係を規定するものである。条件式(2)を満足することで、コマ収差および像面湾曲を良好に補正することができる。
 条件式(2)の対応値が上限値を上回ると、広角端状態における中間群GMの屈折力が強くなり、変倍の際のコマ収差および像面湾曲の変動を抑えることが困難になる。条件式(2)の上限値を、6.75、6.50、6.25、6.00、5.75、さらに5.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)の対応値が下限値を下回ると、広角端状態における中間群GMの屈折力が弱くなり、コマ収差および像面湾曲を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(2)の下限値を、2.25、2.50、2.75、3.00、3.25、さらに3.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 第2実施形態に係る変倍光学系ZLにおいて、第2後続レンズ群GR2は、合焦の際に光軸に沿って移動することが望ましい。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(3)を満足することが望ましい。
 1.50<f1/(-fn1)<6.00 ・・・(3)
 但し、fn1:変倍光学系ZLにおける負の屈折力を有するレンズ群のうち最も物体側に配置されたレンズ群の焦点距離
 条件式(3)は、物体側レンズ群GAの焦点距離と、変倍光学系ZLにおける負の屈折力を有するレンズ群のうち最も物体側に配置されたレンズ群の焦点距離との適切な関係を規定するものである。条件式(3)を満足することで、球面収差を良好に補正することができる。
 条件式(3)の対応値が上限値を上回ると、物体側レンズ群GAの屈折力が弱くなり、球面収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(3)の上限値を、5.50、5.00、4.50、4.00、さらに3.50に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(3)の対応値が下限値を下回ると、物体側レンズ群GAの屈折力が強くなり、望遠端状態において発生する球面収差を補正することが困難になる。条件式(3)の下限値を、1.75、2.00、2.25、さらに2.50に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。
 0.05<(-fR3)/ft<1.00 ・・・(4)
 但し、fR3:第3後続レンズ群GR3の焦点距離
    ft:望遠端状態における変倍光学系ZLの焦点距離
 条件式(4)は、第3後続レンズ群GR3の焦点距離と、望遠端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(4)を満足することで、小型でありながら、歪曲収差を良好に補正することができる。
 条件式(4)の対応値が上限値を上回ると、第3後続レンズ群GR3の屈折力が弱くなり、歪曲収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(4)の上限値を、0.80、0.60、0.50、さらに0.40に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(4)の対応値が下限値を下回ると、第3後続レンズ群GR3の屈折力が強くなり、変倍の際の歪曲収差の変動を抑えることが困難になる。条件式(4)の下限値を、0.10、0.15、0.20、さらに0.25に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(5)を満足することが望ましい。
 0.00<(-fR3)/fw<2.00 ・・・(5)
 但し、fR3:第3後続レンズ群GR3の焦点距離
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(5)は、第3後続レンズ群GR3の焦点距離と、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(5)を満足することで、小型でありながら、歪曲収差を良好に補正することができる。
 条件式(5)の対応値が上限値を上回ると、第3後続レンズ群GR3の屈折力が弱くなり、歪曲収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(5)の上限値を、1.75、1.50、1.25、さらに1.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(5)の対応値が下限値を下回ると、第3後続レンズ群GR3の屈折力が強くなり、変倍の際の歪曲収差の変動を抑えることが困難になる。条件式(5)の下限値を、0.20、0.40、0.50、さらに0.60に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(6)を満足することが望ましい。
 0.15<(TLt-TLw)/TLw<1.00 ・・・(6)
 但し、TLt:望遠端状態における変倍光学系ZLの全長
    TLw:広角端状態における変倍光学系ZLの全長
 条件式(6)は、望遠端状態における変倍光学系ZLの全長と、広角端状態における変倍光学系ZLの全長との適切な関係を規定するものである。条件式(6)を満足することで、球面収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、物体側レンズ群GAの屈折力が弱くなり、球面収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(6)の上限値を、0.90、0.80、0.70、さらに0.60に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(6)の対応値が下限値を下回ると、物体側レンズ群GAの屈折力が強くなり、望遠端状態において発生する球面収差を補正することが困難になる。条件式(6)の下限値を、0.20、0.25、0.30、さらに0.35に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(7)を満足することが望ましい。
 1.50<f1/(-fR3)<6.00 ・・・(7)
 但し、fR3:第3後続レンズ群GR3の焦点距離
 条件式(7)は、物体側レンズ群GAの焦点距離と、第3後続レンズ群GR3の焦点距離との適切な関係を規定するものである。条件式(7)を満足することで、コマ収差を良好に補正することができる。
 条件式(7)の対応値が上限値を上回ると、物体側レンズ群GAの屈折力が第3後続レンズ群GR3の屈折力に比べて弱くなり、コマ収差を補正することが困難になる。条件式(7)の上限値を、5.50、5.00、4.50、さらに4.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(7)の対応値が下限値を下回ると、第3後続レンズ群GR3の屈折力が弱くなり、コマ収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(7)の下限値を、1.60、1.70、1.80、1.90、さらに2.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLにおいて、第3後続レンズ群GR3は、以下の条件式(8)および条件式(9)を満足するレンズを有することが望ましい。
 50.0<νd3<80.0 ・・・(8)
 1.45<nd3<1.58 ・・・(9)
 但し、νd3:第3後続レンズ群GR3におけるレンズのアッベ数
    nd3:第3後続レンズ群GR3におけるレンズのd線に対する屈折率
 条件式(8)は、第3後続レンズ群GR3におけるレンズのアッベ数について、適切な範囲を規定するものである。条件式(9)は、第3後続レンズ群GR3におけるレンズのd線に対する屈折率について、適切な範囲を規定するものである。条件式(8)および条件式(9)を満足することで、倍率色収差を良好に補正することができる。
 条件式(8)の対応値が上限値を上回ると、第3後続レンズ群GR3におけるレンズの材料が特殊なガラスとなり、製造コストが高くなる。条件式(8)の上限値を、79.0、78.0、77.0、さらに75.0に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(8)の対応値が下限値を下回ると、倍率色収差を補正することが困難になる。条件式(8)の下限値を、51.0、52.0、53.0、54.0、さらに55.0に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(9)の対応値が上限値を上回ると、第3後続レンズ群GR3におけるレンズの材料が高屈折率材料となり、重量が増加する。条件式(9)の上限値を、1.57、1.56、さらに1.55に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(9)の対応値が下限値を下回ると、第3後続レンズ群GR3におけるレンズの材料が低屈折率材料となり、当該レンズの表面の曲率を高くする必要があるため、歪曲収差を補正することが困難になる。条件式(9)の下限値を、1.46、1.47、さらに1.48に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(10)を満足することが望ましい。
 1.80<TLw/(-fR3)<2.70 ・・・(10)
 但し、TLw:広角端状態における変倍光学系ZLの全長
    fR3:第3後続レンズ群GR3の焦点距離
 条件式(10)は、広角端状態における変倍光学系ZLの全長と、第3後続レンズ群GR3の焦点距離との適切な関係を規定するものである。条件式(10)を満足することで、良好な光学性能を維持しつつ、変倍光学系ZLの全長を短縮することができる。
 条件式(10)の対応値が上限値を上回ると、第3後続レンズ群GR3の屈折力が強くなり、変倍の際の歪曲収差の変動を抑えることが困難になる。条件式(10)の上限値を、2.65、2.60、2.55、さらに2.50に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(10)の対応値が下限値を下回ると、広角端状態における変倍光学系ZLの全長が長くなり、変倍光学系ZLの全長を短縮することが困難になる。条件式(10)の下限値を、1.85、1.90、1.95、さらに2.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足することが望ましい。
 0.30<(-fR1)/fR2<1.30 ・・・(11)
 但し、fR1:第1後続レンズ群GR1の焦点距離
    fR2:第2後続レンズ群GR2の焦点距離
 条件式(11)は、第1後続レンズ群GR1の焦点距離と、第2後続レンズ群GR2の焦点距離との適切な関係を規定するものである。条件式(11)を満足することで、球面収差を良好に補正することができる。
 条件式(11)の対応値が上限値を上回ると、第1後続レンズ群GR1の屈折力が弱くなり、球面収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(11)の上限値を、1.20、1.10、1.00、さらに0.90に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(11)の対応値が下限値を下回ると、第1後続レンズ群GR1の屈折力が強くなり、球面収差を補正することが困難になる。条件式(11)の下限値を、0.40、0.50、さらに0.60に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。
 0.70<(-fR1)/fMw<2.00 ・・・(12)
 但し、fR1:第1後続レンズ群GR1の焦点距離
    fMw:広角端状態における中間群GMの合成焦点距離
 条件式(12)は、第1後続レンズ群GR1の焦点距離と、広角端状態における中間群GMの合成焦点距離との適切な関係を規定するものである。条件式(12)を満足することで、球面収差を良好に補正することができる。
 条件式(12)の対応値が上限値を上回ると、第1後続レンズ群GR1の屈折力が弱くなり、球面収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(12)の上限値を、1.90、1.80、1.70、さらに1.65に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(12)の対応値が下限値を下回ると、第1後続レンズ群GR1の屈折力が強くなり、変倍の際の球面収差の変動を抑えることが困難になる。条件式(12)の下限値を、0.80、0.90、1.00、さらに1.10に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。
 1.00<fR2/fMw<3.00 ・・・(13)
 但し、fR2:第2後続レンズ群GR2の焦点距離
    fMw:広角端状態における中間群GMの合成焦点距離
 条件式(13)は、第2後続レンズ群GR2の焦点距離と、広角端状態における中間群GMの合成焦点距離との適切な関係を規定するものである。条件式(13)を満足することで、像面湾曲を良好に補正することができる。
 条件式(13)の対応値が上限値を上回ると、第2後続レンズ群GR2の屈折力が弱くなり、像面湾曲を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(13)の上限値を、2.90、2.80、2.70、2.60、さらに2.50に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(13)の対応値が下限値を下回ると、第2後続レンズ群GR2の屈折力が強くなり、像面湾曲を補正することが困難になる。条件式(13)の下限値を、1.10、1.20、1.30、1.35、さらに1.40に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(14)を満足することが望ましい。
 1.00<(-fR3)/fMw<3.50 ・・・(14)
 但し、fR3:第3後続レンズ群GR3の焦点距離
    fMw:広角端状態における中間群GMの合成焦点距離
 条件式(14)は、第3後続レンズ群GR3の焦点距離と、広角端状態における中間群GMの合成焦点距離との適切な関係を規定するものである。条件式(14)を満足することで、小型でありながら、歪曲収差を良好に補正することができる。
 条件式(14)の対応値が上限値を上回ると、第3後続レンズ群GR3の屈折力が弱くなり、歪曲収差を補正しつつ変倍光学系ZLを小型にすることが困難になる。条件式(14)の上限値を、3.00、2.50、2.25、さらに2.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(14)の対応値が下限値を下回ると、第3後続レンズ群GR3の屈折力が強くなり、歪曲収差を補正することが困難になる。条件式(14)の下限値を、1.10、1.15、1.20、さらに1.25に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(15)を満足することが望ましい。
 0.10<Bft/ft<0.80 ・・・(15)
 但し、Bft:望遠端状態における変倍光学系ZLのバックフォーカス
    ft:望遠端状態における変倍光学系ZLの焦点距離
 条件式(15)は、望遠端状態における変倍光学系ZLのバックフォーカスと、望遠端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(15)を満足することで、小型でありながら、明るくて良好な光学性能を有する変倍光学系を得ることが可能になる。条件式(15)の上限値を、0.75、0.70、0.65、0.60、さらに0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(15)の下限値を、0.15、0.20、0.25、さらに0.30に設定することで、本実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLにおいて、変倍の際に、第3後続レンズ群GR3が像面Iに対して固定されることが望ましい。これにより、各レンズ群を保持する部品等の構造を単純にすることが可能になり、変倍光学系ZLを軽量化することができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLにおいて、第1後続レンズ群GR1は、合焦の際に光軸に沿って移動することが望ましい。これにより、合焦の際の像面湾曲の変動を良好に抑えることができる。
 続いて、図8を参照しながら、第1実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、正の屈折力を有する物体側レンズ群GAと、正の屈折力を有する中間群GMと、後群GRとを配置する(ステップST1)。このとき、中間群GMには、少なくとも1つのレンズ群を配置する。後群GRには、光軸に沿って物体側から順に、負の屈折力を有する第1後続レンズ群GR1と、正の屈折力を有する第2後続レンズ群GR2と、負の屈折力を有する第3後続レンズ群GR3とを配置する。次に、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST2)。次に、第2後続レンズ群GR2が合焦の際に光軸に沿って移動するように構成する(ステップST3)。そして、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、小型でありながら、明るくて良好な光学性能を有する変倍光学系を製造することが可能になる。
 続いて、図9を参照しながら、第2実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、正の屈折力を有する物体側レンズ群GAと、正の屈折力を有する中間群GMと、後群GRとを配置する(ステップST11)。このとき、中間群GMには、少なくとも1つのレンズ群を配置する。後群GRには、光軸に沿って物体側から順に、負の屈折力を有する第1後続レンズ群GR1と、正の屈折力を有する第2後続レンズ群GR2と、負の屈折力を有する第3後続レンズ群GR3とを配置する。次に、変倍の際に、隣り合う各レンズ群の間隔が変化し、中間群GMにおける少なくとも一部のレンズ群が像面Iに対して固定されるように構成する(ステップST12)。そして、少なくとも上記条件式(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST13)。このような製造方法によれば、小型でありながら、明るくて良好な光学性能を有する変倍光学系を製造することが可能になる。
 以下、各実施形態の実施例に係る変倍光学系ZLを図面に基づいて説明する。図1、図3、図5は、第1~第3実施例に係る変倍光学系ZL{ZL(1)~ZL(3)}の構成及び屈折力配分を示す断面図である。第1~第3実施例に係る変倍光学系ZL(1)~ZL(3)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の移動方向を矢印で示している。また、無限遠から近距離物体に合焦する際の合焦レンズ群の移動方向を「合焦」という文字とともに矢印で示している。
 これら図1、図3、図5において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表3を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の変倍光学系の最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の距離にBf(バックフォーカス)を加えた距離を示し、Bfは無限遠合焦時の変倍光学系の最も像面側のレンズ面から像面までの光軸上の距離(空気換算距離)を示す。なお、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。また、[全体諸元]の表において、fMwは、広角端状態における中間群の合成焦点距離を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(サグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12…(A)
 [可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。また、[可変間隔データ]の表には、無限遠合焦状態での面間隔、および近距離合焦状態での面間隔を示す。D0は、物体から変倍光学系における最も物体側のレンズ面までの距離を示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る変倍光学系のレンズ構成を示す図である。第1実施例に係る変倍光学系ZL(1)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1レンズ群G1および第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2および第5レンズ群G5が光軸に沿って像面側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第3レンズ群G3および第6レンズ群G6は像面Iに対して固定される。また、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置され、変倍の際、開口絞りSは第2レンズ群G2とともに光軸に沿って移動する。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、両凸形状の正レンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、両凹形状の負レンズL23と、から構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と、両凹形状の負レンズL33と物体側に凸面を向けた正メニスカスレンズL34との接合負レンズと、物体側が凸形状の正レンズL35と、両凸形状の正レンズL36と、から構成される。正レンズL35は、両側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合負レンズから構成される。
 第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51から構成される。正メニスカスレンズL51は、両側のレンズ面が非球面である。
 第6レンズ群G6は、物体側に凹面を向けた負メニスカスレンズL61から構成される。負メニスカスレンズL61は、物体側のレンズ面が非球面である。第6レンズ群G6の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が物体側レンズ群GAに該当する。第2レンズ群G2と第3レンズ群G3とが、全体として正の屈折力を有する中間群GMを構成する。第4レンズ群G4が、後群GRを構成する第1後続レンズ群GR1に該当する。第5レンズ群G5が、後群GRを構成する第2後続レンズ群GR2に該当する。第6レンズ群G6が、後群GRを構成する第3後続レンズ群GR3に該当する。無限遠物体から近距離物体への合焦の際、第1後続レンズ群GR1(第4レンズ群G4)が光軸に沿って像面側へ移動し、第2後続レンズ群GR2(第5レンズ群G5)が光軸に沿って物体側へ移動する。
 以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。
(表1)
[全体諸元]
変倍比=2.354
fMw=45.030
         W      M      T
  f     82.400    115.000    194.000
FNO     2.910     2.910     2.910
 2ω     28.655    20.555    12.452
  Y     21.600    21.600    21.600
 TL    142.000    183.500    223.700
 Bf     16.055    16.055    16.055
[レンズ諸元]
 面番号    R     D     nd    νd
  1    171.877   2.200   1.90366   31.27
  2    114.587   7.087   1.43700   95.10
  3   -1237.212   0.100
  4    123.415   6.288   1.43700   95.10
  5   -6347.604   (D5)
  6    -177.063   1.500   1.48749   70.32
  7     32.128   3.865   1.66382   27.35
  8     55.335   3.525
  9    -129.581   1.500   1.56384   60.71
  10    268.506   1.997
  11     ∞    (D11)            (絞りS)
  12    46.856   3.567   1.94595   17.98
  13    107.185   2.885
  14    49.829   4.450   1.51860   69.89
  15   -1266.722   2.161
  16   -255.399   1.491   1.92286   20.88
  17    29.834   4.780   1.43700   95.10
  18    151.838   0.329
  19*    48.160   3.811   1.59245   66.92
  20*     ∞    8.140
  21    91.502   4.163   1.79952   42.09
  22    -76.369   (D22)
  23    68.549   2.667   1.94595   17.98
  24    229.390   1.234   1.76684   46.78
  25    23.740   (D25)
  26*   -90.743   5.919   1.59245   66.92
  27*   -28.235   (D27)
  28*   -27.328   1.800   1.48749   70.32
  29   -1984.395   Bf
[非球面データ]
 第19面
 κ=0.000,A4=1.504E-09,A6=-6.079E-09,A8=4.173E-11,A10=-1.301E-13
 A12=1.109E-16
 第20面
 κ=0.000,A4=5.705E-06,A6=-4.363E-09,A8=2.313E-11,A10=-5.797E-14
 A12=0.000E+00
 第26面
 κ=0.000,A4=3.822E-07,A6=2.351E-08,A8=-1.490E-10,A10=5.248E-13
 A12=-1.193E-15
 第27面
 κ=0.000,A4=8.257E-06,A6=2.275E-08,A8=-1.369E-10,A10=4.522E-13
 A12=-9.834E-16
 第28面
 κ=0.000,A4=1.670E-05,A6=3.104E-09,A8=4.253E-12,A10=-5.342E-14
 A12=1.371E-16
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    82.400   115.000   194.000
 物体距離     ∞     ∞     ∞
  D5      2.268   45.455   74.464
  D11      8.943    7.215    5.299
  D22     12.359    9.050    5.044
  D25     18.808   24.308   30.596
  D27      7.608    5.416    3.135
 近距離合焦状態
          W     M     T
  倍率     0.0906   0.1207   0.1786
 物体距離   858.088   816.520   776.229
  D5      2.268   45.455   74.464
  D11      8.943    7.215    5.299
  D22     15.090   14.130   12.840
  D25     14.310   16.930   20.630
  D27      9.370    7.710    5.300
[レンズ群データ]
 群   始面   焦点距離
 G1    1    195.199
 G2    6    -63.022
 G3    12    39.950
 G4    23    -54.456
 G5    26    66.832
 G6    28    -56.858
 図2(A)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では最大の半画角をそれぞれ示し、コマ収差図では各半画角の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る変倍光学系のレンズ構成を示す図である。第2実施例に係る変倍光学系ZL(2)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1レンズ群G1および第3レンズ群G3が光軸に沿って物体側へ移動し、第4レンズ群G4が光軸に沿って像面側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第2レンズ群G2および第5レンズ群G5は像面Iに対して固定される。また、第2レンズ群G2の内部に開口絞りSが配置され、変倍の際、開口絞りSは像面Iに対して固定される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、両凸形状の正レンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、両凹形状の負レンズL23と、両凸形状の正レンズL24と、両凸形状の正レンズL25と、両凹形状の負レンズL26と両凸形状の正レンズL27との接合負レンズと、両凸形状の正レンズL28と、両凸形状の正レンズL29と、から構成される。正レンズL28は、両側のレンズ面が非球面である。第2レンズ群G2における負レンズL23と正レンズL24との間に、開口絞りSが配置される。
 第3レンズ群G3は、両凸形状の正レンズL31と両凹形状の負レンズL32との接合負レンズから構成される。
 第4レンズ群G4は、物体側に凹面を向けた正メニスカスレンズL41から構成される。正メニスカスレンズL41は、両側のレンズ面が非球面である。
 第5レンズ群G5は、物体側に凹面を向けた負メニスカスレンズL51から構成される。負メニスカスレンズL51は、両側のレンズ面が非球面である。第5レンズ群G5の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が物体側レンズ群GAに該当する。第2レンズ群G2が、全体として正の屈折力を有する中間群GMを構成する。第3レンズ群G3が、後群GRを構成する第1後続レンズ群GR1に該当する。第4レンズ群G4が、後群GRを構成する第2後続レンズ群GR2に該当する。第5レンズ群G5が、後群GRを構成する第3後続レンズ群GR3に該当する。無限遠物体から近距離物体への合焦の際、第1後続レンズ群GR1(第3レンズ群G3)が光軸に沿って像面側へ移動し、第2後続レンズ群GR2(第4レンズ群G4)が光軸に沿って物体側へ移動する。
 以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。
(表2)
[全体諸元]
変倍比=2.354
fMw=44.470
         W      M      T
  f     82.400    115.000    194.000
FNO     2.910     2.910     2.910
 2ω     28.666    20.520    12.390
  Y     21.600    21.600    21.600
 TL    141.300    181.600    223.000
 Bf     17.580    17.580    17.580
[レンズ諸元]
 面番号    R     D     nd    νd
  1    140.242   2.500   1.95375   32.33
  2     93.845   7.711   1.43700   95.10
  3    3243.579   0.100
  4    115.926   7.006   1.49700   81.64
  5   -1142.670   (D5)
  6    -107.638   1.500   1.49700   81.64
  7     44.592   3.895   1.66382   27.35
  8    154.097   3.169
  9    -52.031   1.500   1.51823   58.82
  10    343.677   6.157
  11     ∞    2.955            (絞りS)
  12    215.864   4.047   1.94595   17.98
  13    -76.395   1.807
  14    301.612   3.389   1.59319   67.90
  15    -91.000   0.595
  16    -64.738   1.474   1.92286   20.88
  17    37.030   5.294   1.43700   95.10
  18   -201.403   1.095
  19*    44.800   4.784   1.59255   67.86
  20*   -258.339   0.100
  21    121.430   3.915   1.79950   42.34
  22    -95.231   (D22)
  23    121.448   2.670   1.94595   17.98
  24   -383.141   1.224   1.72000   43.61
  25    25.672   (D25)
  26*   -73.480   5.620   1.67790   54.89
  27*   -28.683   (D27)
  28*   -30.014   1.900   1.48749   70.32
  29*   -317.720   Bf
[非球面データ]
 第19面
 κ=0.000,A4=-2.580E-06,A6=-2.781E-09,A8=6.087E-12,A10=-1.542E-14
 A12=1.672E-17
 第20面
 κ=0.000,A4=9.392E-08,A6=-2.660E-09,A8=2.889E-12,A10=-4.235E-15
 A12=0.000E+00
 第26面
 κ=0.000,A4=-1.401E-06,A6=8.643E-09,A8=-1.465E-11,A10=-2.254E-14
 A12=-1.063E-16
 第27面
 κ=0.000,A4=5.349E-06,A6=7.127E-09,A8=-1.507E-11,A10=7.454E-15
 A12=-1.405E-16
 第28面
 κ=0.000,A4=2.023E-05,A6=-3.714E-08,A8=1.151E-10,A10=-1.819E-13
 A12=1.124E-16
 第29面
 κ=0.000,A4=7.556E-06,A6=-3.415E-08,A8=1.029E-10,A10=-1.477E-13
 A12=6.108E-17
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    82.400   115.000   194.000
 物体距離     ∞     ∞     ∞
  D5      2.685   42.953   84.443
  D22     12.981    9.243    1.500
  D25     23.498   29.829   43.044
  D27      9.566    6.973    1.500
 近距離合焦状態
          W     M     T
  倍率     0.0916   0.1229   0.1796
 物体距離   858.824   818.461   776.971
  D5      2.685   42.953   84.443
  D22     15.210   13.450   10.380
  D25     19.410   23.250   29.550
  D27     11.430    9.340    6.120
[レンズ群データ]
 群   始面   焦点距離
 G1    1    171.084
 G2    6    44.469
 G3    23    -52.063
 G4    26    66.055
 G5    28    -68.139
 図4(A)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る変倍光学系のレンズ構成を示す図である。第3実施例に係る変倍光学系ZL(3)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1レンズ群G1、第3レンズ群G3、および第5レンズ群G5が光軸に沿って物体側へ移動し、第2レンズ群G2および第6レンズ群G6が光軸に沿って像面側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、変倍の際、第4レンズ群G4および第7レンズ群G7は像面Iに対して固定される。また、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置され、変倍の際、開口絞りSは第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、両凹形状の負レンズL23と、から構成される。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31から構成される。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凸面を向けた負メニスカスレンズL42と物体側に凸面を向けた正メニスカスレンズL43との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL44と、両凸形状の正レンズL45と、から構成される。正メニスカスレンズL44は、両側のレンズ面が非球面である。
 第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51と物体側に凸面を向けた負メニスカスレンズL52との接合負レンズから構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、両側のレンズ面が非球面である。
 第7レンズ群G7は、像面側に平面を向けた平凹形状の負レンズL71から構成される。負レンズL71は、物体側のレンズ面が非球面である。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が物体側レンズ群GAに該当する。第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とが、全体として正の屈折力を有する中間群GMを構成する。第5レンズ群G5が、後群GRを構成する第1後続レンズ群GR1に該当する。第6レンズ群G6が、後群GRを構成する第2後続レンズ群GR2に該当する。第7レンズ群G7が、後群GRを構成する第3後続レンズ群GR3に該当する。無限遠物体から近距離物体への合焦の際、第1後続レンズ群GR1(第5レンズ群G5)が光軸に沿って像面側へ移動し、第2後続レンズ群GR2(第6レンズ群G6)が光軸に沿って物体側へ移動する。
 以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。
(表3)
[全体諸元]
変倍比=2.691
fMw=36.199
         W      M      T
  f     82.400    115.000    194.000
FNO     2.910     2.910     2.910
 2ω     33.525    21.010    12.536
  Y     21.600    21.600    21.600
 TL    160.100    211.900    223.700
 Bf     16.055    16.055    16.055
[レンズ諸元]
 面番号    R     D     nd    νd
  1    199.073   2.200   1.90366   31.27
  2    126.494   8.129   1.43700   95.10
  3    -719.999   0.100
  4    116.402   7.427   1.43700   95.10
  5    6813.349   (D5)
  6    -338.526   1.500   1.49700   81.14
  7     34.249   3.505   1.66382   27.35
  8     56.082   3.516
  9    -106.736   1.500   1.59349   67.00
  10    335.611   (D10)
  11     ∞    3.047            (絞りS)
  12    39.818   3.718   1.94595   17.98
  13    78.706   (D13)
  14    41.584   4.793   1.49782   82.57
  15   1846.157   1.539
  16   1852.423   1.471   1.92286   20.88
  17    25.361   4.747   1.43700   95.10
  18    84.999   0.100
  19*    38.841   3.249   1.59255   67.86
  20*   109.734   10.867
  21    77.691   3.955   1.80611   40.73
  22    -82.716   (D22)
  23    51.729   2.629   1.94595   17.98
  24    104.337   1.205   1.78590   44.17
  25    22.293   (D25)
  26*   -58.828   4.495   1.59245   66.92
  27*   -28.061   (D27)
  28*   -33.565   1.800   1.48749   70.32
  29     ∞    Bf
[非球面データ]
 第19面
 κ=0.000,A4=3.529E-06,A6=7.180E-09,A8=1.864E-11,A10=0.000E+00
 A12=0.000E+00
 第20面
 κ=0.000,A4=1.102E-05,A6=8.970E-09,A8=1.747E-11,A10=0.000E+00
 A12=0.000E+00
 第26面
 κ=0.000,A4=-5.680E-07,A6=7.802E-09,A8=5.979E-12,A10=-4.891E-13
 A12=1.108E-15
 第27面
 κ=0.000,A4=9.289E-06,A6=5.070E-09,A8=8.783E-11,A10=-7.537E-13
 A12=1.362E-15
 第28面
 κ=0.000,A4=1.899E-05,A6=2.021E-08,A8=1.589E-11,A10=-1.257E-13
 A12=3.238E-16
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    82.400   115.000   194.000
 物体距離     ∞     ∞     ∞
  D5      1.933   55.833   90.777
  D10     26.678   24.269    1.502
  D13      2.794    3.106    2.766
  D22     10.272    6.444    1.500
  D25     19.265   26.828   33.592
  D27      7.054    3.319    1.500
 近距離合焦状態
          W     M     T
  倍率     0.00796   0.116    0.1758
 物体距離   840.025   788.167   776.252
  D5      1.933   55.833   90.777
  D10     26.678   24.269    1.502
  D13      2.794    3.106    2.766
  D22     12.447   11.588   15.168
  D25     14.990   18.456   15.465
  D27      9.160    6.549    5.959
[レンズ群データ]
 群   始面   焦点距離
 G1    1    195.158
 G2    6    -62.952
 G3    12    81.410
 G4    14    55.746
 G5    23    -58.164
 G6    26    85.895
 G7    28    -68.853
 図6(A)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(15)に対応する値を、全実施例(第1~第3実施例)について纏めて示す。
 条件式(1)  1.05<f1/TLw<2.00
 条件式(2)  2.00<f1/fMw<7.00
 条件式(3)  1.50<f1/(-fn1)<6.00
 条件式(4)  0.05<(-fR3)/ft<1.00
 条件式(5)  0.00<(-fR3)/fw<2.00
 条件式(6)  0.15<(TLt-TLw)/TLw<1.00
 条件式(7)  1.50<f1/(-fR3)<6.00
 条件式(8)  50.0<νd3<80.0
 条件式(9)  1.45<nd3<1.58
 条件式(10) 1.80<TLw/(-fR3)<2.70
 条件式(11) 0.30<(-fR1)/fR2<1.30
 条件式(12) 0.70<(-fR1)/fMw<2.00
 条件式(13) 1.00<fR2/fMw<3.00
 条件式(14) 1.00<(-fR3)/fMw<3.50
 条件式(15) 0.10<Bft/ft<0.80
 [条件式対応値](第1~第3実施例)
  条件式  第1実施例  第2実施例  第3実施例
  (1)   1.3795    1.2152    1.2231
  (2)   4.3349    3.8475    5.3924
  (3)   3.0984    3.2841    3.0984
  (4)   0.2933    0.3510    0.3552
  (5)   0.6905    0.8265    0.9556
  (6)   0.5774    0.5803    0.3985
  (7)   3.4306    2.5125    2.8331
  (8)   1.4875    1.4875    1.4875
  (9)   70.32     70.32     70.32
 (10)   2.4868    2.0675    2.3164
 (11)   0.8148    0.7881    0.6772
 (12)   1.2093    1.1707    1.6068
 (13)   1.4842    1.4854    2.3729
 (14)   1.2627    1.5323    1.9020
 (15)   0.3564    0.3953    0.4437
 上記各実施例によれば、小型でありながら、明るくて良好な光学性能を有する変倍光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、各実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 各実施形態の変倍光学系の実施例として5群構成のものと6群構成のものと7群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、8群、9群、10群等)の変倍光学系を構成することもできる。例えば、各実施形態の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。また例えば、各実施形態の変倍光学系における中間群の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 各実施形態の変倍光学系において、第1後続レンズ群と第2後続レンズ群(すなわち、第4レンズ群と第5レンズ群、もしくは、第3レンズ群と第4レンズ群、もしくは、第5レンズ群と第6レンズ群)に限らず、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、中間群の内部(すなわち、第2レンズ群と第3レンズ群との間、もしくは、第2レンズ群の内部)に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
 G7 第7レンズ群
  I 像面               S 開口絞り

Claims (20)

  1.  光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなり、
     前記中間群は、少なくとも1つのレンズ群を有し、
     前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記第2後続レンズ群は、合焦の際に光軸に沿って移動し、
     以下の条件式を満足する変倍光学系。
     1.05<f1/TLw<2.00
     但し、f1:前記物体側レンズ群の焦点距離
        TLw:広角端状態における前記変倍光学系の全長
  2.  光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなり、
     前記中間群は、少なくとも1つのレンズ群を有し、
     前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、前記中間群における少なくとも一部のレンズ群が像面に対して固定され、
     以下の条件式を満足する変倍光学系。
     2.00<f1/fMw<7.00
     但し、f1:前記物体側レンズ群の焦点距離
        fMw:広角端状態における前記中間群の合成焦点距離
  3.  前記第2後続レンズ群は、合焦の際に光軸に沿って移動する請求項2に記載の変倍光学系。
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の変倍光学系。
     1.50<f1/(-fn1)<6.00
     但し、fn1:前記変倍光学系における負の屈折力を有するレンズ群のうち最も物体側に配置されたレンズ群の焦点距離
  5.  以下の条件式を満足する請求項1~4のいずれか一項に記載の変倍光学系。
     0.05<(-fR3)/ft<1.00
     但し、fR3:前記第3後続レンズ群の焦点距離
        ft:望遠端状態における前記変倍光学系の焦点距離
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
     0.00<(-fR3)/fw<2.00
     但し、fR3:前記第3後続レンズ群の焦点距離
        fw:広角端状態における前記変倍光学系の焦点距離
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の変倍光学系。
     0.15<(TLt-TLw)/TLw<1.00
     但し、TLt:望遠端状態における前記変倍光学系の全長
        TLw:広角端状態における前記変倍光学系の全長
  8.  以下の条件式を満足する請求項1~7のいずれか一項に記載の変倍光学系。
     1.50<f1/(-fR3)<6.00
     但し、fR3:前記第3後続レンズ群の焦点距離
  9.  前記第3後続レンズ群は、以下の条件式を満足するレンズを有する請求項1~8のいずれか一項に記載の変倍光学系。
     50.0<νd3<80.0
     1.45<nd3<1.58
     但し、νd3:前記第3後続レンズ群における前記レンズのアッベ数
        nd3:前記第3後続レンズ群における前記レンズのd線に対する屈折率
  10.  以下の条件式を満足する請求項1~9のいずれか一項に記載の変倍光学系。
     1.80<TLw/(-fR3)<2.70
     但し、TLw:広角端状態における前記変倍光学系の全長
        fR3:前記第3後続レンズ群の焦点距離
  11.  以下の条件式を満足する請求項1~10のいずれか一項に記載の変倍光学系。
     0.30<(-fR1)/fR2<1.30
     但し、fR1:前記第1後続レンズ群の焦点距離
        fR2:前記第2後続レンズ群の焦点距離
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の変倍光学系。
     0.70<(-fR1)/fMw<2.00
     但し、fR1:前記第1後続レンズ群の焦点距離
        fMw:広角端状態における前記中間群の合成焦点距離
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の変倍光学系。
     1.00<fR2/fMw<3.00
     但し、fR2:前記第2後続レンズ群の焦点距離
        fMw:広角端状態における前記中間群の合成焦点距離
  14.  以下の条件式を満足する請求項1~13のいずれか一項に記載の変倍光学系。
     1.00<(-fR3)/fMw<3.50
     但し、fR3:前記第3後続レンズ群の焦点距離
        fMw:広角端状態における前記中間群の合成焦点距離
  15.  以下の条件式を満足する請求項1~14のいずれか一項に記載の変倍光学系。
     0.10<Bft/ft<0.80
     但し、Bft:望遠端状態における前記変倍光学系のバックフォーカス
        ft:望遠端状態における前記変倍光学系の焦点距離
  16.  変倍の際に、前記第3後続レンズ群が像面に対して固定される請求項1~15のいずれか一項に記載の変倍光学系。
  17.  前記第1後続レンズ群は、合焦の際に光軸に沿って移動する請求項1~16のいずれか一項に記載の変倍光学系。
  18.  請求項1~17のいずれか一項に記載の変倍光学系を備えて構成される光学機器。
  19.  光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなる変倍光学系の製造方法であって、
     前記中間群は、少なくとも1つのレンズ群を有し、
     前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記第2後続レンズ群は、合焦の際に光軸に沿って移動し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置するステップを有する変倍光学系の製造方法。
     1.05<f1/TLw<2.00
     但し、f1:前記物体側レンズ群の焦点距離
        TLw:広角端状態における前記変倍光学系の全長
  20.  光軸に沿って物体側から順に並んだ、正の屈折力を有する物体側レンズ群と、正の屈折力を有する中間群と、後群とからなる変倍光学系の製造方法であって、
     前記中間群は、少なくとも1つのレンズ群を有し、
     前記後群は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1後続レンズ群と、正の屈折力を有する第2後続レンズ群と、負の屈折力を有する第3後続レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、前記中間群における少なくとも一部のレンズ群が像面に対して固定され、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置するステップを有する変倍光学系の製造方法。
     2.00<f1/fMw<7.00
     但し、f1:前記物体側レンズ群の焦点距離
        fMw:広角端状態における前記中間群の合成焦点距離
PCT/JP2023/025401 2022-08-10 2023-07-10 変倍光学系、光学機器、および変倍光学系の製造方法 WO2024034309A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-127959 2022-08-10
JP2022127959 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034309A1 true WO2024034309A1 (ja) 2024-02-15

Family

ID=89851406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025401 WO2024034309A1 (ja) 2022-08-10 2023-07-10 変倍光学系、光学機器、および変倍光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2024034309A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101316A (ja) * 2011-10-17 2013-05-23 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2013109013A (ja) * 2011-11-17 2013-06-06 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014157225A (ja) * 2013-02-15 2014-08-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2016126226A (ja) * 2015-01-07 2016-07-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016139125A (ja) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2017173680A (ja) * 2016-03-25 2017-09-28 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019008236A (ja) * 2017-06-28 2019-01-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020027156A (ja) * 2018-08-10 2020-02-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2022103302A (ja) * 2018-11-20 2022-07-07 株式会社ニコン 変倍光学系および光学機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101316A (ja) * 2011-10-17 2013-05-23 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
JP2013109013A (ja) * 2011-11-17 2013-06-06 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014157225A (ja) * 2013-02-15 2014-08-28 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2016126226A (ja) * 2015-01-07 2016-07-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2016139125A (ja) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP2017173680A (ja) * 2016-03-25 2017-09-28 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2019008236A (ja) * 2017-06-28 2019-01-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020027156A (ja) * 2018-08-10 2020-02-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2022103302A (ja) * 2018-11-20 2022-07-07 株式会社ニコン 変倍光学系および光学機器

Similar Documents

Publication Publication Date Title
JP5581730B2 (ja) 変倍光学系、光学装置
EP2360504A1 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP5321608B2 (ja) 変倍光学系、光学装置
US10095012B2 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP7259905B2 (ja) ズームレンズおよび光学機器
JP2008203471A (ja) ズームレンズ、光学機器、および結像方法
WO2010004806A1 (ja) ズームレンズ、これを有する光学機器及びズームレンズの製造方法
WO2015075943A1 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP2023065618A (ja) 光学系、光学機器、および光学系の製造方法
JP2023060139A (ja) 光学系、光学機器、および光学系の製造方法
JP5333906B2 (ja) ズームレンズおよび光学機器
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
JP2023091028A (ja) 光学系、光学機器、および光学系の製造方法
WO2024034309A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
CN113302533A (zh) 变倍光学系统、光学设备以及变倍光学系统的制造方法
JP7420200B2 (ja) 変倍光学系および光学機器
JP7243841B2 (ja) 変倍光学系および光学機器
JP7409511B2 (ja) 変倍光学系および光学機器
JP7364084B2 (ja) 変倍光学系および光学機器
WO2024053269A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2022024624A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2024034428A1 (ja) 光学系、光学機器及び光学系の製造方法
WO2022024623A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP5252287B2 (ja) ズームレンズおよび光学機器
JP2024011103A (ja) 変倍光学系、光学機器、および変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852292

Country of ref document: EP

Kind code of ref document: A1