WO2022024624A1 - 変倍光学系、光学機器、および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2022024624A1
WO2022024624A1 PCT/JP2021/024063 JP2021024063W WO2022024624A1 WO 2022024624 A1 WO2022024624 A1 WO 2022024624A1 JP 2021024063 W JP2021024063 W JP 2021024063W WO 2022024624 A1 WO2022024624 A1 WO 2022024624A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
lens
focusing
magnification optical
Prior art date
Application number
PCT/JP2021/024063
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2022540082A priority Critical patent/JPWO2022024624A1/ja
Publication of WO2022024624A1 publication Critical patent/WO2022024624A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable magnification optical system, an optical device, and a method for manufacturing the variable magnification optical system.
  • variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc. have been proposed (see, for example, Patent Document 1).
  • it is difficult to suppress aberration fluctuations during focusing.
  • the variable magnification optical system includes a front lens group having a positive refractive force, a first intermediate lens group having a negative refractive force, and a positive refractive force arranged in order from the object side along the optical axis.
  • the second intermediate lens group and the succeeding lens group have a The first focusing lens group that moves along the optical axis during focusing and the first focusing lens that is arranged on the image side of the first focusing lens group and moves along the optical axis during focusing. It includes at least one other in-focus lens group that moves along the optical axis in a trajectory different from the group, and satisfies the following conditional expression.
  • f1 the focal length of the front lens group
  • fM1w the focal length of the first intermediate lens group in the wide-angle end state
  • BFw the back focus of the variable-magnification optical system in the wide-angle end state
  • fw the variable-magnification optical in the wide-angle end state.
  • the optical device according to the present invention is configured to include the above-mentioned variable magnification optical system.
  • the method for manufacturing a variable magnification optical system according to the present invention includes a front lens group having a positive refractive force, a first intermediate lens group having a negative refractive force, and a positive lens group arranged in order from the object side along the optical axis.
  • This is a method for manufacturing a variable magnification optical system having a second intermediate lens group having a refractive power of the same as that of a subsequent lens group. Is arranged on the most object side of the subsequent lens group, and is arranged on the image side of the first in-focus lens group and the first in-focus lens group that move along the optical axis during focusing.
  • the lens barrel includes at least one other in-focus lens group that moves along the optical axis in a trajectory different from that of the first in-focus lens group at the time of focusing, and satisfies the following conditional expression. Place each lens inside. 4.30 ⁇ f1 / (-fM1w) ⁇ 10.00 0.10 ⁇ BFw / fw ⁇ 1.00 However, f1: the focal length of the front lens group fM1w: the focal length of the first intermediate lens group in the wide-angle end state BFw: the back focus of the variable-magnification optical system in the wide-angle end state fw: the variable-magnification optical in the wide-angle end state.
  • 5 (A) and 5 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second embodiment, respectively.
  • 6 (A) and 6 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second embodiment, respectively. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 3rd Example.
  • 8 (A) and 8 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third embodiment, respectively.
  • 9 (A) and 9 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third embodiment, respectively. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 4th Embodiment.
  • 11 (A) and 11 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fourth embodiment, respectively.
  • 12 (A) and 12 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fourth embodiment, respectively.
  • FIG. 14 (A) and 14 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fifth embodiment, respectively.
  • 15 (A) and 15 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fifth embodiment, respectively.
  • 17 (A) and 17 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the sixth embodiment, respectively.
  • 18 (A) and 18 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the sixth embodiment, respectively. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 7th Example.
  • 20 (A) and 20 (B) are aberration diagrams at infinity focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the seventh embodiment, respectively.
  • 21 (A) and 21 (B) are aberration diagrams at short-distance focusing in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the seventh embodiment, respectively. It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on this embodiment. It is a flowchart which shows the manufacturing method of the variable magnification optical system which concerns on this embodiment.
  • the camera 1 includes a main body 2 and a photographing lens 3 mounted on the main body 2.
  • the main body 2 includes an image sensor 4, a main body control unit (not shown) that controls the operation of a digital camera, and a liquid crystal screen 5.
  • the photographing lens 3 includes a variable magnification optical system ZL composed of a plurality of lens groups and a lens position control mechanism (not shown) for controlling the position of each lens group.
  • the lens position control mechanism includes a sensor that detects the position of the lens group, a motor that moves the lens group back and forth along the optical axis, a control circuit that drives the motor, and the like.
  • variable magnification optical system ZL of the photographing lens 3 The light from the subject is focused by the variable magnification optical system ZL of the photographing lens 3 and reaches the image plane I of the image pickup element 4.
  • the light from the subject that has reached the image plane I is photoelectrically converted by the image pickup device 4 and recorded as digital image data in a memory (not shown).
  • the digital image data recorded in the memory can be displayed on the liquid crystal screen 5 according to the operation of the user.
  • This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.
  • the variable magnification optical system ZL shown in FIG. 22 schematically shows the variable magnification optical system provided in the photographing lens 3, and the lens configuration of the variable magnification optical system ZL is not limited to this configuration. No.
  • variable-magnification optical system ZL (1) as an example of the variable-magnification optical system (zoom lens) ZL according to the present embodiment has positive refractive powers arranged in order from the object side along the optical axis. It is composed of a front lens group GA having a force, a first intermediate lens group GM1 having a negative refractive power, a second intermediate lens group GM2 having a positive refractive power, and a succeeding lens group GR. At the time of scaling, the distance between adjacent lens groups changes.
  • the trailing lens group GR is arranged on the most object side of the trailing lens group GR, and is an image from the first focusing lens group GF1 and the first focusing lens group GF1 that move along the optical axis during focusing. Includes at least one other in-focus lens group that is located on the side and moves along the optical axis in a trajectory different from that of the first in-focus lens group GF1 during in-focus.
  • variable magnification optical system ZL satisfies the following conditional expression (1) and conditional expression (2). 4.30 ⁇ f1 / (-fM1w) ⁇ 10.00 ... (1) 0.10 ⁇ BFw / fw ⁇ 1.00 ... (2)
  • f1 focal length of the front lens group
  • GA fM1w focal length of the first intermediate lens group GM1 in the wide-angle end state
  • BFw back focus of the variable-magnification optical system ZL in the wide-angle end state
  • fw variable-magnification optical system in the wide-angle end state ZL focal length
  • variable magnification optical system having less aberration fluctuation during focusing and an optical device provided with this variable magnification optical system. Since the succeeding lens group GR has a plurality of focusing lens groups, it is possible to suppress fluctuations in various aberrations such as spherical aberration during focusing without increasing the size of the focusing lens group. Further, by changing the distance between adjacent lens groups at the time of scaling, it is possible to satisfactorily correct the aberration at the time of scaling.
  • variable-magnification optical system ZL may be the variable-magnification optical system ZL (2) shown in FIG. 4, the variable-magnification optical system ZL (3) shown in FIG. 7, and the variable-magnification optical system shown in FIG. ZL (4) may be used. Further, the variable magnification optical system ZL according to the present embodiment may be the variable magnification optical system ZL (5) shown in FIG. 13, the variable magnification optical system ZL (6) shown in FIG. 16, or the variable magnification optical system ZL (6) shown in FIG. The optical system ZL (7) may be used.
  • Conditional expression (1) defines an appropriate relationship between the focal length of the front lens group GA and the focal length of the first intermediate lens group GM1 in the wide-angle end state. By satisfying the conditional equation (1), it is possible to suppress fluctuations in various aberrations such as spherical aberration during scaling.
  • the refractive power of the first intermediate lens group GM1 becomes stronger, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration at the time of scaling. Become.
  • the upper limit of the conditional expression (1) 9.50, 9.00, 8.80, 8.50, 8.30, 8.00, and further 7.80, the effect of this embodiment can be obtained. It can be made more reliable.
  • the refractive power of the front lens group GA becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration at the time of scaling.
  • Conditional expression (2) defines an appropriate relationship between the back focus of the variable magnification optical system ZL in the wide-angle end state and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • the back focus of the variable magnification optical system ZL in the wide-angle end state becomes larger than the focal length of the variable magnification optical system ZL in the wide-angle end state, so that the wide-angle end It becomes difficult to correct various aberrations such as coma in the state.
  • This implementation is performed by setting the upper limit of the conditional expression (2) to 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, and further 0.60. The effect of the morphology can be made more certain.
  • the corresponding value of the conditional expression (2) is less than the lower limit, the back focus of the variable magnification optical system ZL in the wide-angle end state becomes smaller than the focal length of the variable magnification optical system ZL in the wide-angle end state, so that the wide-angle end It becomes difficult to correct various aberrations such as coma in the state. In addition, it becomes difficult to arrange the mechanical member of the lens barrel.
  • the lower limit of the conditional expression (2) By setting the lower limit of the conditional expression (2) to 0.15, 0.25, 0.25, 0.30, 0.35, 0.40, and further 0.43, the effect of the present embodiment can be obtained. It can be made more reliable.
  • the second intermediate lens group GM2 includes a lens group having at least two positive refractive powers, and it is desirable that the following conditional expression (3) is satisfied. 1.50 ⁇ f1 / fM21 ⁇ 7.00 ... (3) However, fM21: the focal length of the lens group on the most object side among the lens groups included in the second intermediate lens group GM2.
  • Conditional expression (3) defines an appropriate relationship between the focal length of the front lens group GA and the focal length of the lens group on the most object side among the lens groups included in the second intermediate lens group GM2. By satisfying the conditional expression (3), it is possible to suppress fluctuations in various aberrations such as spherical aberration during focusing.
  • the refractive power of the lens group on the object side among the lens groups included in the second intermediate lens group GM2 becomes stronger, so that spherical aberration during focusing is caused. It becomes difficult to suppress fluctuations in various aberrations including the above.
  • Set the upper limit of the conditional expression (3) to 6.80, 6.50, 6.30, 6.00, 5.80, 5.00, 4.50, 4.00, and further 3.50. Therefore, the effect of this embodiment can be made more certain.
  • the refractive power of the front lens group GA becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing.
  • the lower limit of the conditional expression (3) is 1.60, 1.80, 2.00, 2.10, and further 2.20, the effect of the present embodiment can be further ensured. can.
  • variable magnification optical system ZL satisfies the following conditional expression (4). 2.00 ⁇ f1 / fw ⁇ 8.00 ... (4)
  • Conditional expression (4) defines an appropriate relationship between the focal length of the front lens group GA and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • the refractive power of the front lens group GA becomes weak, so that the amount of movement of the front lens group GA at the time of scaling increases and the lens barrel becomes large.
  • the refractive power of the front lens group GA becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration at the time of scaling.
  • the lower limit of the conditional expression (4) to 2.30, 2.50, 2.80, 3.00, 3.30, 3.50, and further 3.80, the effect of this embodiment can be obtained. It can be made more reliable.
  • variable magnification optical system ZL satisfies the following conditional expression (5). 0.20 ⁇
  • fFs the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR.
  • Conditional expression (5) defines an appropriate relationship between the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR and the focal length of the front lens group GA. Is.
  • the refractive power of the focusing lens group becomes weak, so that the amount of movement of the focusing lens group at the time of focusing becomes large and the lens barrel becomes large. Further, since the refractive power of the front lens group GA becomes strong, it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration at the time of scaling.
  • the upper limit of the conditional expression (5) is set to 1.80, 1.50, 1.30, 1.00, 0.85, 0.70, 0.65, 0.60, and further 0.58. Therefore, the effect of this embodiment can be made more certain.
  • the refractive power of the focusing lens group becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing. Further, since the refractive power of the front lens group GA is weakened, the amount of movement of the front lens group GA at the time of scaling becomes large, and the lens barrel becomes large.
  • variable magnification optical system ZL satisfies the following conditional expression (6). 1.50 ⁇
  • fFs the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR.
  • Conditional expression (6) is appropriate for the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR and the focal length of the first intermediate lens group GM1 in the wide-angle end state. It defines the relationship.
  • conditional expression (6) it is possible to suppress fluctuations in various aberrations such as spherical aberration during focusing.
  • various aberrations such as coma in the wide-angle end state can be satisfactorily corrected.
  • the refractive power of the first intermediate lens group GM1 in the wide-angle end state becomes strong, so that various aberrations such as coma aberration in the wide-angle end state can be corrected. It will be difficult.
  • Set the upper limit of the conditional expression (6) to 4.85, 4.70, 4.50, 4.35, 4.25, 3.85, 3.50, 3.00, and 2.50. Therefore, the effect of this embodiment can be made more certain.
  • the refractive power of the focusing lens group becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing.
  • the lower limit of the conditional expression (6) 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, and further 1.83, the effect of this embodiment can be obtained. It can be made more reliable.
  • variable magnification optical system ZL satisfies the following conditional expression (7). 0.90 ⁇
  • fFs the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group
  • GR fM2w the focal length of the second intermediate lens group GM2 in the wide-angle end state.
  • Conditional expression (7) is appropriate for the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR and the focal length of the second intermediate lens group GM2 in the wide-angle end state. It defines the relationship.
  • conditional expression (7) it is possible to suppress fluctuations in various aberrations such as spherical aberration during focusing.
  • various aberrations such as coma in the wide-angle end state can be satisfactorily corrected.
  • the refractive power of the second intermediate lens group GM2 in the wide-angle end state becomes strong, so that various aberrations such as coma aberration in the wide-angle end state can be corrected. It will be difficult.
  • Set the upper limit of the conditional expression (7) to 3.80, 3.50, 3.30, 3.00, 2.80, 2.60, 2.00, 1.80, and further 1.50. Therefore, the effect of this embodiment can be made more certain.
  • the refractive power of the focusing lens group becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing.
  • the lower limit of the conditional expression (7) 0.95, 0.98, 1.00, 1.03, and further 1.05, the effect of the present embodiment can be further ensured. can.
  • variable magnification optical system ZL satisfies the following conditional expression (8). 0.20 ⁇ f1 / (-fRw) ⁇ 5.00 ... (8)
  • fRw the focal length of the subsequent lens group GR in the wide-angle end state.
  • Conditional expression (8) defines an appropriate relationship between the focal length of the front lens group GA and the focal length of the succeeding lens group GR in the wide-angle end state.
  • the refractive power of the succeeding lens group GR in the wide-angle end state becomes strong, and it becomes difficult to correct various aberrations such as coma in the wide-angle end state.
  • the refractive power of the front lens group GA is weakened, the amount of movement of the front lens group GA at the time of scaling becomes large, and the lens barrel becomes large.
  • This implementation is performed by setting the upper limit of the conditional expression (8) to 4.50, 4.00, 3.80, 3.50, 3.30, 3.00, 2.80, and further 2.50. The effect of the morphology can be made more certain.
  • the refractive power of the succeeding lens group GR in the wide-angle end state becomes weak, and it becomes difficult to correct various aberrations such as coma in the wide-angle end state.
  • the lower limit of the conditional expression (8) By setting the lower limit of the conditional expression (8) to 0.40, 0.50, 0.60, 0.65, 0.68, and further 0.70, the effect of the present embodiment is more reliable. Can be.
  • variable magnification optical system ZL satisfies the following conditional expression (9). 0.10 ⁇ MTF1 / MTF2 ⁇ 3.00 ... (9)
  • MTF1 Absolute value of the amount of movement of the first focusing lens group GF1 when focusing from an infinity object to a short-distance object in the telephoto end state
  • MTF2 From an infinity object to a short-distance object in the telephoto end state Absolute value of the amount of movement of the focusing lens group closest to the first focusing lens group GF1 among the other focusing lens groups during focusing
  • the amount of movement of the first in-focus lens group GF1 when focusing from an infinite object to a short-distance object in the telephoto end state is the closest to the first in-focus lens group GF1. It defines an appropriate relationship with the amount of movement of the focal lens group.
  • the corresponding value of the conditional expression (9) exceeds the upper limit value, the amount of movement of the first focusing lens group GF1 becomes too large when focusing from an infinity object to a short-distance object in the telephoto end state. , It becomes difficult to suppress fluctuations in various aberrations such as spherical aberration.
  • the upper limit of the conditional expression (9) to 2.80, 2.50, 2.30, 2.00, 1.80, 1.65, and further 1.50, the effect of this embodiment can be obtained. It can be made more reliable.
  • the focusing lens group closest to the first focusing lens group GF1 when focusing from an infinity object to a short-range object in the telephoto end state. Since the amount of movement becomes too large, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration.
  • the lower limit of the conditional expression (9) By setting the lower limit of the conditional expression (9) to 0.13, 0.15, 0.18, 0.20, 0.23, and further 0.25, the effect of the present embodiment is more reliable. Can be.
  • variable magnification optical system ZL satisfies the following conditional expression (10). 0.10 ⁇ F1w / ⁇ F2w ⁇ 3.00 ... (10) However, ⁇ F1w: Of the focusing lens groups included in the succeeding lens group GR, the composite laterality at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group located on the object side of the focusing lens group on the image side most.
  • Magnification ⁇ F2w Lateral magnification when focusing on an infinite object at the wide-angle end state of the focusing lens group on the image side of the focusing lens group included in the subsequent lens group GR.
  • the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group on the image side and the focusing on the image side are the most. It defines an appropriate relationship with the combined lateral magnification when the infinity object is in focus in the wide-angle end state of the in-focus lens group located on the object side of the in-focus lens group.
  • the corresponding value of the conditional expression (10) exceeds the upper limit value, the combined lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group located on the object side of the focusing lens group on the image side becomes large. It will be too much. Therefore, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinite object to a short-distance object in the wide-angle end state.
  • Set the upper limit of the conditional expression (10) to 2.80, 2.50, 2.30, 2.00, 1.80, 1.50, 1.30, 1.00, and further 0.90. Therefore, the effect of this embodiment can be made more certain.
  • the corresponding value of the conditional expression (10) is less than the lower limit value, the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group on the image side becomes too large. Therefore, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinite object to a short-distance object in the wide-angle end state.
  • the lower limit of the conditional expression (10) By setting the lower limit of the conditional expression (10) to 0.20, 0.35, 0.50, 0.55, 0.58, and further 0.60, the effect of the present embodiment is more reliable. Can be.
  • variable magnification optical system ZL satisfies the following conditional expression (11). 0.10 ⁇ F1t / ⁇ F2t ⁇ 3.00 ... (11)
  • ⁇ F1t Of the in-focus lens groups included in the subsequent lens group GR, the synthetic laterality of the in-focus lens group located on the object side of the in-focus lens group on the image side at the telephoto end state at the time of focusing on an infinite object.
  • Magnification ⁇ F2t Lateral magnification when the infinity object is in focus at the telephoto end of the in-focus lens group on the image side of the in-focus lens group included in the subsequent lens group GR.
  • the lateral magnification at the time of focusing on an infinite object in the telephoto end state of the focusing lens group on the image side and the focusing on the image side are the most. It defines an appropriate relationship with the combined lateral magnification when the infinity object is in focus in the telephoto end state of the in-focus lens group located on the object side of the in-focus lens group.
  • the corresponding value of the conditional expression (11) exceeds the upper limit value, the combined lateral magnification at the time of focusing on an infinite object in the telephoto end state of the in-focus lens group located on the object side of the in-focus lens group on the image side becomes large. It will be too much. Therefore, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinite object to a short-distance object in the telephoto end state.
  • Set the upper limit of the conditional expression (11) to 2.80, 2.50, 2.30, 2.00, 1.80, 1.50, 1.30, 1.00, and further 0.80. Therefore, the effect of this embodiment can be made more certain.
  • the corresponding value of the conditional expression (11) is less than the lower limit value, the lateral magnification at the time of focusing on an infinite object in the telephoto end state of the focusing lens group on the image side becomes too large. Therefore, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration when focusing from an infinite object to a short-distance object in the telephoto end state.
  • the lower limit of the conditional expression (11) By setting the lower limit of the conditional expression (11) to 0.13, 0.15, 0.18, 0.20, 0.23, and further 0.25, the effect of the present embodiment is more reliable. Can be.
  • variable magnification optical system ZL satisfies the following conditional expression (12). 0.50 ⁇ F1w ⁇ 2.60 ... (12) However, ⁇ F1w: Of the in-focus lens groups included in the subsequent lens group GR, the composite lateral view of the in-focus lens group located on the object side of the in-focus lens group on the image side at the wide-angle end state at the time of focusing on an infinite object. magnification
  • conditional equation (12) among the in-focus lens groups included in the succeeding lens group GR, when the infinity object is in focus in the wide-angle end state of the in-focus lens group located on the object side of the in-focus lens group on the image side. It defines an appropriate range for the combined horizontal magnification of. By satisfying the conditional equation (12), it is possible to suppress fluctuations in various aberrations such as spherical aberration and coma during focusing.
  • conditional expression (12) exceeds the upper limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • the upper limit of the conditional expression (12) is 2.58, 2.55, 2.00, 1.80, 1.50, 1.30, and further 1.20, the effect of this embodiment can be obtained. It can be made more reliable.
  • conditional expression (12) If the corresponding value of the conditional expression (12) is less than the lower limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • the lower limit of the conditional expression (12) By setting the lower limit of the conditional expression (12) to 0.55, 0.60, 0.65, 0.70, and further 0.73, the effect of the present embodiment can be further ensured. can.
  • variable magnification optical system ZL satisfies the following conditional expression (13). 0.20 ⁇ F2w ⁇ 1.80 ... (13)
  • ⁇ F2w Among the focusing lens groups included in the succeeding lens group GR, the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group on the image side.
  • Conditional expression (13) defines an appropriate range for the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the in-focus lens group on the image side of the in-focus lens group included in the succeeding lens group GR. It is something to do. By satisfying the conditional equation (13), it is possible to suppress fluctuations in various aberrations such as spherical aberration and coma during focusing.
  • conditional expression (13) If the corresponding value of the conditional expression (13) exceeds the upper limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • the upper limit of the conditional expression (13) By setting the upper limit of the conditional expression (13) to 1.78, 1.75, 1.73, 1.70, 1.68, and 1.60, the effect of this embodiment is more reliable. Can be.
  • conditional expression (13) If the corresponding value of the conditional expression (13) is less than the lower limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • the lower limit of the conditional expression (13) By setting the lower limit of the conditional expression (13) to 0.23, 0.25, and further 0.28, the effect of the present embodiment can be further ensured.
  • variable magnification optical system ZL satisfies the following conditional expression (14).
  • ⁇ F1w Of the in-focus lens groups included in the subsequent lens group GR, the composite lateral view of the in-focus lens group located on the object side of the in-focus lens group on the image side at the wide-angle end state at the time of focusing on an infinite object. magnification
  • conditional equation (14) among the in-focus lens groups included in the succeeding lens group GR, when the infinity object is in focus in the wide-angle end state of the in-focus lens group located on the object side of the in-focus lens group on the image side. It defines an appropriate range for the combined horizontal magnification of.
  • the conditional equation (14) it is possible to suppress fluctuations in various aberrations such as spherical aberration and coma during focusing. If the corresponding value of the conditional expression (14) exceeds the upper limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • variable magnification optical system ZL satisfies the following conditional expression (15). ⁇ F2w + (1 / ⁇ F2w) ⁇ -2 ⁇ 0.25 ... (15) However, ⁇ F2w: Among the focusing lens groups included in the succeeding lens group GR, the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group on the image side.
  • Conditional expression (15) defines an appropriate range for the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the in-focus lens group on the image side of the in-focus lens group included in the succeeding lens group GR. It is something to do. By satisfying the conditional equation (15), it is possible to suppress fluctuations in various aberrations such as spherical aberration and coma during focusing. If the corresponding value of the conditional expression (15) exceeds the upper limit value, it becomes difficult to suppress fluctuations in various aberrations during focusing.
  • the succeeding lens group GR is at least one arranged on the image side of the focusing lens group on the image side among the focusing lens groups included in the succeeding lens group GR. It is desirable to include a lens group. This makes it possible to effectively suppress fluctuations in various aberrations such as spherical aberration during focusing.
  • variable magnification optical system ZL satisfies the following conditional expression (16). 0.10 ⁇
  • fFs the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group
  • GR fRF the image of the focusing lens group on the image side of the at least one lens group. Focal length of lens groups arranged next to each other on the side
  • conditional equation (16) is arranged adjacent to the focal length of the focusing lens group having the strongest refractive power among the focusing lens groups included in the succeeding lens group GR and the image side of the focusing lens group on the image side. It defines an appropriate relationship with the focal length of the lens group.
  • the upper limit of the conditional expression (16) is 3.80, 3.50, 3.30, 3.00, 2.80, 2.50, 2.30, 2.00, 1.50, 1.30, Further, by setting it to 1.00, the effect of the present embodiment can be further ensured.
  • the refractive power of the focusing lens group becomes strong, so that it becomes difficult to suppress fluctuations of various aberrations such as spherical aberration during focusing.
  • variable magnification optical system ZL satisfies the following conditional expression (17). 2 ⁇ w> 75.0 ° ⁇ ⁇ ⁇ (17) However, 2 ⁇ w: the total angle of view of the variable magnification optical system ZL in the wide-angle end state.
  • the conditional expression (17) defines an appropriate range for the entire angle of view of the variable magnification optical system ZL in the wide-angle end state. Satisfying the conditional expression (17) is preferable because a variable magnification optical system having a wide angle of view can be obtained.
  • the lower limit of the conditional expression (17) By setting the lower limit of the conditional expression (17) to 78.0 °, 80.0 °, and further 83.0 °, the effect of the present embodiment can be further ensured.
  • variable magnification optical system ZL satisfies the following conditional expression (18).
  • ft the focal length of the variable magnification optical system ZL in the telephoto end state.
  • Conditional expression (18) defines an appropriate relationship between the focal length of the variable magnification optical system ZL in the telephoto end state and the focal length of the variable magnification optical system ZL in the wide-angle end state. Satisfying the conditional expression (18) is preferable because a variable magnification optical system having a high magnification ratio can be obtained. By setting the lower limit of the conditional expression (18) to 3.80, 4.00, 4.20, and further 4.40, the effect of the present embodiment can be further ensured.
  • variable magnification optical system ZL satisfies the following conditional expression (19). 0.10 ⁇ (-fN) /fL ⁇ 1.00 ... (19)
  • fN the focal length of the lens arranged second from the image side of the variable magnification optical system ZL
  • fL the focal length of the lens arranged on the image side of the variable magnification optical system ZL.
  • the focal length of the lens arranged second from the image side of the variable magnification optical system ZL and the focal length of the lens arranged on the image side of the variable magnification optical system ZL are appropriate. It defines the relationship.
  • various aberrations such as coma aberration in the wide-angle end state can be satisfactorily corrected.
  • the refractive power of the lens arranged on the image side of the variable magnification optical system ZL becomes stronger, so that various aberrations such as coma aberration in the wide-angle end state are caused. It becomes difficult to correct.
  • the upper limit of the conditional expression (19) is set to 0.95, 0.90, 0.85, 0.83, 0.80, 0.78, 0.75, 0.73, and further 0.70. Therefore, the effect of this embodiment can be made more certain.
  • the refractive power of the lens arranged second from the image side of the variable magnification optical system ZL becomes stronger, so that coma aberration in the wide-angle end state is started. It becomes difficult to correct various aberrations.
  • variable magnification optical system ZL the manufacturing method of the above-mentioned variable magnification optical system ZL will be outlined with reference to FIG. 23.
  • the front lens group GA having a positive refractive power
  • the first intermediate lens group GM1 having a negative refractive power
  • the second intermediate lens group GM2 having a positive refractive power.
  • the subsequent lens group GR are arranged (step ST1).
  • the first focusing lens group GF1 that moves along the optical axis at the time of focusing is arranged on the most object side of the succeeding lens group GR, and the first focusing lens group GF1 in the succeeding lens group GR is arranged.
  • On the image side at least one other focusing lens group that moves along the optical axis with a trajectory different from that of the first focusing lens group GF1 at the time of focusing is arranged (step ST3).
  • each lens is arranged in the lens barrel so as to satisfy at least the above conditional expression (1) and conditional expression (2) (step ST4). According to such a manufacturing method, it becomes possible to manufacture a variable magnification optical system having less aberration fluctuation during focusing.
  • variable magnification optical system ZL according to the embodiment of the present embodiment will be described with reference to the drawings.
  • FIG. 4, FIG. 7, FIG. 10, FIG. 13, FIG. 16, and FIG. 19 show the configuration and configuration of the variable magnification optical system ZL ⁇ ZL (1) to ZL (7) ⁇ according to the first to seventh embodiments.
  • the moving direction along the optical axis of the focusing group when focusing on a short-range object from infinity is shown. It is indicated by an arrow with the word "focus".
  • variable magnification optical systems ZL (1) to ZL (7) according to the first to seventh embodiments, the magnification of each lens group when scaling from the wide-angle end state (W) to the telephoto end state (T)
  • W wide-angle end state
  • T telephoto end state
  • each lens group is represented by a combination of reference numerals G and numbers, and each lens is represented by a combination of reference numerals L and numbers. ..
  • the lens group and the like are represented by independently using combinations of the reference numerals and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.
  • Tables 1 to 7 are shown below, of which Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the first embodiment. 5 Examples, Table 6 is a table showing each specification data in the 6th Example, and Table 7 is a table showing each specification data in the 7th Example.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degrees)
  • is the half angle of view
  • Ymax is the maximum image height.
  • TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity, plus BF
  • BF is the image from the final surface of the lens on the optical axis at infinity.
  • the distance to the surface I (back focus) is shown. It should be noted that these values are shown for each of the wide-angle end (W) and the telephoto end (T) in each variable magnification state.
  • fM1w indicates the focal length of the first intermediate lens group in the wide-angle end state.
  • fM2w indicates the focal length of the second intermediate lens group in the wide-angle end state.
  • MTF1 indicates the absolute value of the amount of movement of the first focusing lens group when focusing from an infinity object to a short-distance object in the telephoto end state.
  • MTF2 determines the absolute value of the amount of movement of the focusing lens group closest to the first focusing lens group among other focusing lens groups when focusing from an infinity object to a short-range object in the telephoto end state. show.
  • ⁇ F1w determines the combined lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group located on the object side of the focusing lens group on the image side among the focusing lens groups included in the succeeding lens group.
  • ⁇ F2w indicates the lateral magnification at the time of focusing on an infinite object in the wide-angle end state of the focusing lens group on the image side among the focusing lens groups included in the succeeding lens group.
  • ⁇ F1t is the combined lateral magnification of the in-focus lens group located on the object side of the image-side in-focus lens group among the in-focus lens groups included in the subsequent lens group at the telephoto end state when the object is in focus at infinity. show.
  • ⁇ F2t indicates the lateral magnification at the time of focusing on an infinite object in the telephoto end state of the in-focus lens group on the image side among the in-focus lens groups included in the subsequent lens group.
  • fN indicates the focal length of the lens arranged second from the image side of the variable magnification optical system.
  • fL indicates the focal length of the lens arranged on the image side of the variable magnification optical system.
  • fRw indicates the focal length of the subsequent lens group in the wide-angle end state.
  • the plane numbers indicate the order of the optical planes from the object side along the traveling direction of the light beam
  • R is the radius of curvature of each optical plane (the plane whose center of curvature is located on the image side).
  • D is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member with respect to the d line
  • ⁇ d is optical.
  • the Abbe numbers based on the d-line of the material of the member are shown. “ ⁇ ” of the radius of curvature indicates a plane or an opening, and (aperture S) indicates an opening aperture S.
  • the description of the refractive index nd of air 1.00000 is omitted.
  • the table of [Variable spacing data] shows the surface spacing at the surface number i in which the surface spacing is (Di) in the table of [Lens specifications].
  • the table of [Variable Interval Data] shows the surface spacing in the infinity focusing state and the surface spacing in the short distance focusing state.
  • the table of [lens group data] shows the starting surface (the surface closest to the object) and the focal length of each lens group.
  • mm is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.
  • FIG. 1 is a diagram showing a lens configuration of a variable magnification optical system according to the first embodiment.
  • the variable magnification optical system ZL (1) according to the first embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a third lens group having a negative refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the symbol (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.
  • the first lens group G1 is a junction positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis, and an object. It is composed of a positive meniscus lens L13 with a convex surface facing to the side.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a convex surface facing the object side, and a convex surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a positive meniscus lens L23 bonded to the positive meniscus lens L23 and a negative meniscus lens L24 with a concave surface facing the object side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the positive lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is a junction positive lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42 arranged in order from the object side along the optical axis, and a biconvex positive lens. It is composed of a bonded positive lens of the lens L43 and a negative meniscus lens L44 having a concave surface facing the object side, and a positive meniscus lens L45 having a concave surface facing the object side.
  • the positive meniscus lens L45 has an aspherical lens surface on the object side.
  • the fifth lens group G5 is composed of a positive meniscus lens L51 having a concave surface facing the object side and a negative lens L52 having both concave shapes arranged in order from the object side along the optical axis.
  • the sixth lens group G6 is composed of a biconcave negative lens L61.
  • the negative lens L61 has an aspherical lens surface on the object side.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the seventh lens group G7.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3 and the fourth lens group G4 form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the fifth lens group G5 and the sixth lens group G6 constituting the succeeding lens group GR are on the image side along the optical axis with different trajectories (movement amount). Move to.
  • the fifth lens group G5 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the sixth lens group G6 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 1 below lists the specifications of the variable magnification optical system according to the first embodiment.
  • FIG. 2A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the first embodiment.
  • FIG. 2B is a diagram of various aberrations at infinity focusing in the telephoto end state of the variable magnification optical system according to the first embodiment.
  • FIG. 3A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the first embodiment.
  • FIG. 3B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the first embodiment.
  • FNO indicates an F number and Y indicates an image height.
  • NA indicates the numerical aperture and Y indicates the image height.
  • the spherical aberration diagram shows the value of the F number or numerical aperture corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height.
  • the solid line shows the sagittal image plane and the broken line shows the meridional image plane.
  • the same reference numerals as those of the present embodiment are used, and duplicate description is omitted.
  • variable magnification optical system satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 4 is a diagram showing a lens configuration of the variable magnification optical system according to the second embodiment.
  • the variable magnification optical system ZL (2) according to the second embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a third lens group having a negative refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 is a junction positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis, and an object. It is composed of a positive meniscus lens L13 with a convex surface facing to the side.
  • the second lens group G2 is a junction of a negative meniscus lens L21 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconcave negative lens L22, and a biconvex positive lens L23. It is composed of a positive lens and a negative meniscus lens L24 with a concave surface facing the object side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 includes a positive meniscus lens L31 having a convex surface facing the object side, a biconvex positive lens L32, and a negative meniscus having a convex surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a bonded positive lens of a lens L33 and a biconvex positive lens L34, and a negative meniscus lens L35 with a concave surface facing the object side.
  • the fourth lens group G4 is composed of a bonded positive lens of a negative meniscus lens L41 with a convex surface facing the object side and a biconvex positive lens L42.
  • the fifth lens group G5 is a junction of a biconcave negative lens L51 arranged in order from the object side along the optical axis, a biconvex positive lens L52, and a negative meniscus lens L53 with a concave surface facing the object side. It consists of a positive lens.
  • the negative meniscus lens L53 has an aspherical lens surface on the image side.
  • the sixth lens group G6 is composed of a biconcave negative lens L61.
  • the negative lens L61 has an aspherical lens surface on the object side.
  • the seventh lens group G7 is composed of a biconvex positive lens L71.
  • the image plane I is arranged on the image side of the seventh lens group G7.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3 and the fourth lens group G4 form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the fifth lens group G5 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the sixth lens group G6 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 2 below lists the specifications of the variable magnification optical system according to the second embodiment.
  • FIG. 5A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the second embodiment.
  • FIG. 5B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the second embodiment.
  • FIG. 6A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the second embodiment.
  • FIG. 6B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the second embodiment.
  • variable magnification optical system According to the second embodiment satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 7 is a diagram showing a lens configuration of the variable magnification optical system according to the third embodiment.
  • the variable magnification optical system ZL (3) according to the third embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a third lens group having a positive refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 is a junction positive lens of a plano-concave negative lens L11 and a biconvex positive lens L12 arranged in order from the object side along the optical axis and facing the object side, and the object side. It is composed of a positive meniscus lens L13 having a convex surface facing the surface.
  • the second lens group G2 is a junction of a negative meniscus lens L21 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconcave negative lens L22, and a biconvex positive lens L23. It is composed of a positive lens and a flat concave negative lens L24 with a plane facing the image side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 includes a positive meniscus lens L31 having a convex surface facing the object side, a biconvex positive lens L32, and a negative meniscus having a concave surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a lens L33.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is a junction of a biconvex positive lens L41 arranged in order from the object side along the optical axis, a negative meniscus lens L42 with a convex surface facing the object side, and a biconvex positive lens L43. It consists of a positive lens.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side and a biconvex positive lens L52 arranged in order from the object side along the optical axis.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 with a concave surface facing the object side.
  • the positive meniscus lens L61 has an aspherical lens surface on the image side.
  • the seventh lens group G7 is composed of a biconcave negative lens L71 arranged in order from the object side along the optical axis, and a positive meniscus lens L72 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the seventh lens group G7.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3 and the fourth lens group G4 form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the fifth lens group G5 and the sixth lens group G6 constituting the succeeding lens group GR have different trajectories (movement amounts) from each other along the optical axis on the object side.
  • the fifth lens group G5 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the sixth lens group G6 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 3 lists the specifications of the variable magnification optical system according to the third embodiment.
  • FIG. 8A is an aberration diagram at infinity focusing in the wide-angle end state of the variable magnification optical system according to the third embodiment.
  • FIG. 8B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the third embodiment.
  • FIG. 9A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the third embodiment.
  • FIG. 9B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the third embodiment.
  • variable magnification optical system According to the third embodiment satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 10 is a diagram showing a lens configuration of the variable magnification optical system according to the fourth embodiment.
  • the variable magnification optical system ZL (4) according to the fourth embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a third lens group having a negative refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 is a junction positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis, and an object. It is composed of a positive meniscus lens L13 with a convex surface facing to the side.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a convex surface facing the object side, and a convex surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a bonded positive lens with a positive meniscus lens L23 and a negative lens L24 having a biconcave shape.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a positive meniscus lens L31 having a convex surface facing the object side and a regular meniscus lens L32 having a convex surface facing the object side.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is a junction positive lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42 arranged in order from the object side along the optical axis, and a biconvex positive lens. It is composed of a junction negative lens of the lens L43 and a negative meniscus lens L44 having a concave surface facing the object side, and a positive meniscus lens L45 having a concave surface facing the object side.
  • the positive meniscus lens L45 has an aspherical lens surface on the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51 and a biconcave negative lens L52 arranged in order from the object side along the optical axis.
  • the sixth lens group G6 is composed of a biconcave negative lens L61.
  • the negative lens L61 has an aspherical lens surface on the object side.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the seventh lens group G7.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3 and the fourth lens group G4 form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the fifth lens group G5 and the sixth lens group G6 constituting the succeeding lens group GR are on the image side along the optical axis with different trajectories (movement amount). Move to.
  • the fifth lens group G5 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the sixth lens group G6 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 4 lists the specifications of the variable magnification optical system according to the fourth embodiment.
  • FIG. 11A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the fourth embodiment.
  • FIG. 11B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the fourth embodiment.
  • FIG. 12A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the fourth embodiment.
  • FIG. 12B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the fourth embodiment.
  • variable magnification optical system satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 13 is a diagram showing a lens configuration of the variable magnification optical system according to the fifth embodiment.
  • the variable magnification optical system ZL (5) according to the fifth embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, and a third lens group having a negative refractive power.
  • the aperture stop S is arranged between the third lens group G3 and the fourth lens group G4. At the time of scaling, the aperture stop S moves along the optical axis together with the fourth lens group G4.
  • the first lens group G1 is a junction positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis, and an object. It is composed of a positive meniscus lens L13 with a convex surface facing to the side.
  • the second lens group G2 includes a biconcave negative lens L21 arranged in order from the object side along the optical axis, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L22 having a convex surface facing the object side. It is composed of a positive junction lens with L23 and a positive lens.
  • the negative lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a biconcave negative lens L31.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a convex surface facing the object side and a regular meniscus lens L42 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the positive meniscus lens L41 has an aspherical lens surface on the object side.
  • the fifth lens group G5 has a positive meniscus lens L51 having a convex surface facing the object side and a positive lens L52 having a biconvex shape arranged in order from the object side along the optical axis, and a concave surface on the object side. It is composed of a junction negative lens of a positive meniscus lens L53 facing and a negative meniscus lens L54 having a concave surface facing the object side, and a positive meniscus lens L55 having a concave surface facing the object side.
  • the positive meniscus lens L55 has an aspherical lens surface on the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61 and a biconcave negative lens L62 arranged in order from the object side along the optical axis.
  • the 7th lens group G7 is composed of a biconcave negative lens L71.
  • the negative lens L71 has an aspherical lens surface on the object side.
  • the eighth lens group G8 is composed of a positive meniscus lens L81 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the eighth lens group G8.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 and the third lens group G3 form a first intermediate lens group GM1 having a negative refractive power as a whole.
  • the fourth lens group G4 and the fifth lens group G5 constitute a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the sixth lens group G6, the seventh lens group G7, and the eighth lens group G8 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the 6th lens group G6 and the 7th lens group G7 constituting the succeeding lens group GR are on the image side along the optical axis with different trajectories (movement amount). Move to. That is, the sixth lens group G6 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the seventh lens group G7 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 5 below lists the specifications of the variable magnification optical system according to the fifth embodiment.
  • FIG. 14A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the fifth embodiment.
  • FIG. 14B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the fifth embodiment.
  • FIG. 15A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the fifth embodiment.
  • FIG. 15B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the fifth embodiment.
  • variable magnification optical system satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 16 is a diagram showing a lens configuration of the variable magnification optical system according to the sixth embodiment.
  • the first lens group G1 having a positive refractive power and the second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a third lens group having a positive refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 includes a bonded positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side along the optical axis, and a convex surface toward the object side. It is composed of a positive meniscus lens L13 directed to the lens.
  • the second lens group G2 is a junction of a negative meniscus lens L21 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconcave negative lens L22, and a biconvex positive lens L23. It is composed of a positive lens and a biconcave negative lens L24.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 includes a positive meniscus lens L31 having a convex surface facing the object side, a biconvex positive lens L32, and a negative meniscus having a concave surface facing the object side, arranged in order from the object side along the optical axis. It is composed of a lens L33.
  • the positive meniscus lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is a junction of a biconvex positive lens L41 arranged in order from the object side along the optical axis, a negative meniscus lens L42 with a convex surface facing the object side, and a biconvex positive lens L43. It consists of a negative lens.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 with a concave surface facing the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 with a concave surface facing the object side.
  • the positive meniscus lens L71 has an aspherical lens surface on the image side.
  • the eighth lens group G8 is composed of a biconcave negative lens L81 arranged in order from the object side along the optical axis, and a positive meniscus lens L82 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the eighth lens group G8.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3 and the fourth lens group G4 form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, the seventh lens group G7, and the eighth lens group G8 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 constituting the succeeding lens group GR emit light with different trajectories (movement amount).
  • the fifth lens group G5 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the sixth lens group G6 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • the seventh lens group G7 corresponds to the third in-focus lens group GF3, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 6 below lists the specifications of the variable magnification optical system according to the sixth embodiment.
  • FIG. 17A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the sixth embodiment.
  • FIG. 17B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the sixth embodiment.
  • FIG. 18A is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the sixth embodiment.
  • FIG. 18B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the sixth embodiment.
  • variable magnification optical system According to the sixth embodiment satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 19 is a diagram showing a lens configuration of the variable magnification optical system according to the seventh embodiment.
  • the variable magnification optical system ZL (7) according to the seventh embodiment has a first lens group G1 having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis.
  • Group G2 a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, a fifth lens group G5 having a positive refractive power, and a third lens group having a positive refractive power.
  • the aperture stop S is arranged between the second lens group G2 and the third lens group G3. At the time of scaling, the aperture stop S moves along the optical axis together with the third lens group G3.
  • the first lens group G1 includes a bonded positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side along the optical axis, and a convex surface toward the object side. It is composed of a positive meniscus lens L13 directed to the lens.
  • the second lens group G2 is a junction of a negative meniscus lens L21 having a convex surface facing the object side arranged in order from the object side along the optical axis, a biconcave negative lens L22, and a biconvex positive lens L23. It is composed of a positive lens and a flat concave negative lens L24 with a plane facing the image side.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the third lens group G3 is composed of a biconvex positive lens L31 and a biconvex positive lens L32 arranged in order from the object side along the optical axis.
  • the positive lens L31 has an aspherical lens surface on the object side.
  • the fourth lens group G4 is composed of a negative lens L41 having a concave shape.
  • the fifth lens group G5 is a junction of a biconvex positive lens L51 arranged in order from the object side along the optical axis, a negative meniscus lens L52 having a convex surface facing the object side, and a biconvex positive lens L53. It consists of a positive lens.
  • the sixth lens group G6 is composed of a negative meniscus lens L61 having a concave surface facing the object side and a biconvex positive lens L62 arranged in order from the object side along the optical axis.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 with a concave surface facing the object side.
  • the positive meniscus lens L71 has an aspherical lens surface on the image side.
  • the eighth lens group G8 is composed of a biconcave negative lens L81 arranged in order from the object side along the optical axis, and a positive meniscus lens L82 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the eighth lens group G8.
  • the first lens group G1 constitutes the front lens group GA having a positive refractive power.
  • the second lens group G2 constitutes the first intermediate lens group GM1 having a negative refractive power.
  • the third lens group G3, the fourth lens group G4, and the fifth lens group G5 together form a second intermediate lens group GM2 having a positive refractive power as a whole.
  • the sixth lens group G6, the seventh lens group G7, and the eighth lens group G8 together form a subsequent lens group GR having a negative refractive power as a whole.
  • the 6th lens group G6 and the 7th lens group G7 constituting the succeeding lens group GR are on the object side along the optical axis with different trajectories (movement amount). Move to. That is, the sixth lens group G6 corresponds to the first in-focus lens group GF1 arranged on the most object side of the succeeding lens group GR.
  • the seventh lens group G7 corresponds to the second in-focus lens group GF2, which is another in-focus lens group arranged on the image side of the first in-focus lens group GF1.
  • Table 7 below lists the specifications of the variable magnification optical system according to the seventh embodiment.
  • FIG. 20A is a diagram of various aberrations at infinity focusing in the wide-angle end state of the variable magnification optical system according to the seventh embodiment.
  • FIG. 20B is an aberration diagram at infinity focusing in the telephoto end state of the variable magnification optical system according to the seventh embodiment.
  • FIG. 21 (A) is a diagram of various aberrations at the time of short-distance focusing in the wide-angle end state of the variable magnification optical system according to the seventh embodiment.
  • FIG. 21B is a diagram of various aberrations at the time of short-distance focusing in the telephoto end state of the variable magnification optical system according to the seventh embodiment.
  • variable magnification optical system according to the seventh embodiment satisfactorily corrects various aberrations from the wide-angle end state to the telephoto end state not only at infinity focusing but also at short-distance focusing. It can be seen that it has excellent imaging performance.
  • Conditional expression (1) 4.30 ⁇ f1 / (-fM1w) ⁇ 10.00
  • Conditional expression (2) 0.10 ⁇ BFw / fw ⁇ 1.00
  • Conditional expression (3) 1.50 ⁇ f1 / fM21 ⁇ 7.00
  • Conditional expression (4) 2.00 ⁇ f1 / fw ⁇ 8.00
  • Conditional expression (5) 0.20 ⁇
  • Conditional expression (6) 1.50 ⁇
  • Conditional expression (7) 0.90 ⁇
  • Conditional expression (8) 0.20 ⁇ f1 / (-fRw) ⁇ 5.00
  • Conditional expression (9) 0.10 ⁇ MTF1 / MTF2 ⁇ 3.00
  • the focusing lens group by reducing the size and weight of the focusing lens group, it is possible to realize quiet and high-speed focusing (focusing) without increasing the size of the lens barrel. Further, it is possible to realize a variable magnification optical system in which the aberration fluctuation at the time of scaling from the wide-angle end state to the telephoto end state and the aberration fluctuation at the time of focusing from an infinity object to a short-range object are small.
  • variable magnification optical system of the present embodiment a 7-group configuration and an 8-group configuration are shown, but the present application is not limited to this, and a variable magnification optical system having another group configuration (for example, 9 groups, etc.) is used. It can also be configured. Specifically, a lens or a lens group may be added to the most object side or the most image plane side of the variable magnification optical system of the present embodiment.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes at the time of scaling.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to focus on a short-range object from an infinity object.
  • the in-focus lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the lens group or partial lens group is moved so as to have a component in the direction perpendicular to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to correct image blur caused by camera shake. It may be used as an anti-vibration lens group.
  • the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface.
  • lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable.
  • the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical surface shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical surface shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
  • GRIN lens refractive index distribution type lens
  • the aperture diaphragm is preferably arranged between the second lens group and the third lens group, or between the third lens group and the fourth lens group, but the lens is not provided with a member as the aperture diaphragm.
  • the role may be substituted by the frame of.
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group G7 7th lens group G8 8th lens group I image plane S Aperture aperture

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

変倍光学系(ZL)は、正の屈折力を有する前側レンズ群(GA)と、負の屈折力を有する第1中間レンズ群(GM1)と、正の屈折力を有する第2中間レンズ群(GM2)と、後続レンズ群(GR)とを有し、後続レンズ群(GR)は、合焦の際に光軸に沿って移動する複数の合焦レンズ群を含み、以下の条件式を満足する。 4.30<f1/(-fM1w)<10.00 0.10<BFw/fw<1.00 但し、f1:前側レンズ群(GA)の焦点距離 fM1w:広角端状態における第1中間レンズ群(GM1)の焦点距離 BFw:広角端状態における変倍光学系(ZL)のバックフォーカス fw:広角端状態における変倍光学系(ZL)の焦点距離

Description

変倍光学系、光学機器、および変倍光学系の製造方法
 本発明は、変倍光学系、光学機器、および変倍光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。このような変倍光学系においては、合焦の際の収差変動を抑えることが難しい。
特開2019-12243号公報
 本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前側レンズ群と、負の屈折力を有する第1中間レンズ群と、正の屈折力を有する第2中間レンズ群と、後続レンズ群とを有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記後続レンズ群は、前記後続レンズ群の最も物体側に配置され、合焦の際に光軸に沿って移動する第1の合焦レンズ群と、前記第1の合焦レンズ群より像側に配置され、合焦の際に前記第1の合焦レンズ群と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群とを含み、以下の条件式を満足する。
 4.30<f1/(-fM1w)<10.00
 0.10<BFw/fw<1.00
 但し、f1:前記前側レンズ群の焦点距離
    fM1w:広角端状態における前記第1中間レンズ群の焦点距離
    BFw:広角端状態における前記変倍光学系のバックフォーカス
    fw:広角端状態における前記変倍光学系の焦点距離
 本発明に係る光学機器は、上記変倍光学系を備えて構成される。
 本発明に係る変倍光学系の製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前側レンズ群と、負の屈折力を有する第1中間レンズ群と、正の屈折力を有する第2中間レンズ群と、後続レンズ群とを有する変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記後続レンズ群は、前記後続レンズ群の最も物体側に配置され、合焦の際に光軸に沿って移動する第1の合焦レンズ群と、前記第1の合焦レンズ群より像側に配置され、合焦の際に前記第1の合焦レンズ群と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群とを含み、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 4.30<f1/(-fM1w)<10.00
 0.10<BFw/fw<1.00
 但し、f1:前記前側レンズ群の焦点距離
    fM1w:広角端状態における前記第1中間レンズ群の焦点距離
    BFw:広角端状態における前記変倍光学系のバックフォーカス
    fw:広角端状態における前記変倍光学系の焦点距離
第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(A)、図2(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図3(A)、図3(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す図である。 図5(A)、図5(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図6(A)、図6(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す図である。 図8(A)、図8(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図9(A)、図9(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第4実施例に係る変倍光学系のレンズ構成を示す図である。 図11(A)、図11(B)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図12(A)、図12(B)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第5実施例に係る変倍光学系のレンズ構成を示す図である。 図14(A)、図14(B)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図15(A)、図15(B)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第6実施例に係る変倍光学系のレンズ構成を示す図である。 図17(A)、図17(B)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図18(A)、図18(B)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 第7実施例に係る変倍光学系のレンズ構成を示す図である。 図20(A)、図20(B)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 図21(A)、図21(B)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 本実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、本実施形態に係る変倍光学系を備えたカメラ(光学機器)を図22に基づいて説明する。このカメラ1は、図22に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる変倍光学系ZLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
 被写体からの光は、撮影レンズ3の変倍光学系ZLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。また、図22に示す変倍光学系ZLは、撮影レンズ3に備えられる変倍光学系を模式的に示したものであり、変倍光学系ZLのレンズ構成はこの構成に限定されるものではない。
 次に、本実施形態に係る変倍光学系について説明する。本実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する前側レンズ群GAと、負の屈折力を有する第1中間レンズ群GM1と、正の屈折力を有する第2中間レンズ群GM2と、後続レンズ群GRとを有して構成される。変倍の際に、隣り合う各レンズ群の間隔が変化する。後続レンズ群GRは、後続レンズ群GRの最も物体側に配置され、合焦の際に光軸に沿って移動する第1の合焦レンズ群GF1と、第1の合焦レンズ群GF1より像側に配置され、合焦の際に第1の合焦レンズ群GF1と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群とを含む。
 上記構成の下、本実施形態に係る変倍光学系ZLは、以下の条件式(1)および条件式(2)を満足する。
 4.30<f1/(-fM1w)<10.00 ・・・(1)
 0.10<BFw/fw<1.00      ・・・(2)
 但し、f1:前側レンズ群GAの焦点距離
    fM1w:広角端状態における第1中間レンズ群GM1の焦点距離
    BFw:広角端状態における変倍光学系ZLのバックフォーカス
    fw:広角端状態における変倍光学系ZLの焦点距離
 本実施形態によれば、合焦の際の収差変動が少ない変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。なお、後続レンズ群GRが複数の合焦レンズ群を有することにより、合焦レンズ群を大型化することなく、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。また、変倍の際に、隣り合う各レンズ群の間隔を変化させることによって、変倍の際の収差補正を良好に行うことができる。
 本実施形態に係る変倍光学系ZLは、図4に示す変倍光学系ZL(2)でも良く、図7に示す変倍光学系ZL(3)でも良く、図10に示す変倍光学系ZL(4)でも良い。また、本実施形態に係る変倍光学系ZLは、図13に示す変倍光学系ZL(5)でも良く、図16に示す変倍光学系ZL(6)でも良く、図19に示す変倍光学系ZL(7)でも良い。
 条件式(1)は、前側レンズ群GAの焦点距離と、広角端状態における第1中間レンズ群GM1の焦点距離との適切な関係を規定するものである。条件式(1)を満足することで、変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(1)の対応値が上限値を上回ると、第1中間レンズ群GM1の屈折力が強くなるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(1)の上限値を、9.50、9.00、8.80、8.50、8.30、8.00、さらに7.80に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(1)の対応値が下限値を下回ると、前側レンズ群GAの屈折力が強くなるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(1)の下限値を、4.50、4.80、5.00、さらに5.40に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)は、広角端状態における変倍光学系ZLのバックフォーカスと、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(2)を満足することで、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(2)の対応値が上限値を上回ると、広角端状態における変倍光学系ZLの焦点距離に対して、広角端状態における変倍光学系ZLのバックフォーカスが大きくなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(2)の上限値を、0.95、0.90、0.85、0.80、0.75、0.70、0.65、さらに0.60に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)の対応値が下限値を下回ると、広角端状態における変倍光学系ZLの焦点距離に対して、広角端状態における変倍光学系ZLのバックフォーカスが小さくなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。また、鏡筒のメカ部材を配置することが困難になる。条件式(2)の下限値を、0.15、0.20、0.25、0.30、0.35、0.40、さらに0.43に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLにおいて、第2中間レンズ群GM2は、少なくとも二つの正の屈折力を有するレンズ群を含み、以下の条件式(3)を満足することが望ましい。
 1.50<f1/fM21<7.00 ・・・(3)
 但し、fM21:第2中間レンズ群GM2に含まれるレンズ群のうち最も物体側のレンズ群の焦点距離
 条件式(3)は、前側レンズ群GAの焦点距離と、第2中間レンズ群GM2に含まれるレンズ群のうち最も物体側のレンズ群の焦点距離との適切な関係を規定するものである。条件式(3)を満足することで、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(3)の対応値が上限値を上回ると、第2中間レンズ群GM2に含まれるレンズ群のうち最も物体側のレンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(3)の上限値を、6.80、6.50、6.30、6.00、5.80、5.00、4.50、4.00、さらに3.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(3)の対応値が下限値を下回ると、前側レンズ群GAの屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(3)の下限値を、1.60、1.80、2.00、2.10、さらに2.20に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。
 2.00<f1/fw<8.00 ・・・(4)
 条件式(4)は、前側レンズ群GAの焦点距離と、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(4)を満足することで、鏡筒を大型化することなく、変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(4)の対応値が上限値を上回ると、前側レンズ群GAの屈折力が弱くなるため、変倍の際の前側レンズ群GAの移動量が大きくなり、鏡筒が大型化する。条件式(4)の上限値を、7.80、7.50、7.40、7.00、6.50、6.30、さらに6.00に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(4)の対応値が下限値を下回ると、前側レンズ群GAの屈折力が強くなるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(4)の下限値を、2.30、2.50、2.80、3.00、3.30、3.50、さらに3.80に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(5)を満足することが望ましい。
 0.20<|fFs|/f1<2.00 ・・・(5)
 但し、fFs:後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
 条件式(5)は、後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離と、前側レンズ群GAの焦点距離との適切な関係を規定するものである。条件式(5)を満足することで、鏡筒を大型化することなく、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。また、鏡筒を大型化することなく、変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(5)の対応値が上限値を上回ると、合焦レンズ群の屈折力が弱くなるため、合焦の際の合焦レンズ群の移動量が大きくなり、鏡筒が大型化する。また、前側レンズ群GAの屈折力が強くなるため、変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(5)の上限値を、1.80、1.50、1.30、1.00、0.85、0.70、0.65、0.60、さらに0.58に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(5)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。また、前側レンズ群GAの屈折力が弱くなるため、変倍の際の前側レンズ群GAの移動量が大きくなり、鏡筒が大型化する。条件式(5)の下限値を、0.22、0.24、0.25、さらに0.26に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(6)を満足することが望ましい。
 1.50<|fFs|/(-fM1w)<5.00 ・・・(6)
 但し、fFs:後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
 条件式(6)は、後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離と、広角端状態における第1中間レンズ群GM1の焦点距離との適切な関係を規定するものである。条件式(6)を満足することで、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。また、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、広角端状態における第1中間レンズ群GM1の屈折力が強くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(6)の上限値を、4.85、4.70、4.50、4.35、4.25、3.85、3.50、3.00、さらに2.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(6)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(6)の下限値を、1.55、1.60、1.65、1.70、1.75、1.80、さらに1.83に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(7)を満足することが望ましい。
 0.90<|fFs|/fM2w<4.00 ・・・(7)
 但し、fFs:後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
    fM2w:広角端状態における第2中間レンズ群GM2の焦点距離
 条件式(7)は、後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離と、広角端状態における第2中間レンズ群GM2の焦点距離との適切な関係を規定するものである。条件式(7)を満足することで、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。また、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(7)の対応値が上限値を上回ると、広角端状態における第2中間レンズ群GM2の屈折力が強くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(7)の上限値を、3.80、3.50、3.30、3.00、2.80、2.60、2.00、1.80、さらに1.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(7)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(7)の下限値を、0.95、0.98、1.00、1.03、さらに1.05に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(8)を満足することが望ましい。
 0.20<f1/(-fRw)<5.00 ・・・(8)
 但し、fRw:広角端状態における後続レンズ群GRの焦点距離
 条件式(8)は、前側レンズ群GAの焦点距離と、広角端状態における後続レンズ群GRの焦点距離との適切な関係を規定するものである。条件式(8)を満足することで、鏡筒を大型化することなく、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(8)の対応値が上限値を上回ると、広角端状態における後続レンズ群GRの屈折力が強くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。また、前側レンズ群GAの屈折力が弱くなるため、変倍の際の前側レンズ群GAの移動量が大きくなり、鏡筒が大型化する。条件式(8)の上限値を、4.50、4.00、3.80、3.50、3.30、3.00、2.80、さらに2.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(8)の対応値が下限値を下回ると、広角端状態における後続レンズ群GRの屈折力が弱くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(8)の下限値を、0.40、0.50、0.60、0.65、0.68、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(9)を満足することが望ましい。
 0.10<MTF1/MTF2<3.00 ・・・(9)
 但し、MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の第1の合焦レンズ群GF1の移動量の絶対値
    MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の他の合焦レンズ群のうち第1の合焦レンズ群GF1に最も近い合焦レンズ群の移動量の絶対値
 条件式(9)は、望遠端状態における無限遠物体から近距離物体への合焦の際の第1の合焦レンズ群GF1の移動量と、第1の合焦レンズ群GF1に最も近い合焦レンズ群の移動量との適切な関係を規定するものである。条件式(9)を満足することで、望遠端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(9)の対応値が上限値を上回ると、望遠端状態における無限遠物体から近距離物体への合焦の際に、第1の合焦レンズ群GF1の移動量が大きくなりすぎるため、球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(9)の上限値を、2.80、2.50、2.30、2.00、1.80、1.65、さらに1.50に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(9)の対応値が下限値を下回ると、望遠端状態における無限遠物体から近距離物体への合焦の際に、第1の合焦レンズ群GF1に最も近い合焦レンズ群の移動量が大きくなりすぎるため、球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(9)の下限値を、0.13、0.15、0.18、0.20、0.23、さらに0.25に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(10)を満足することが望ましい。
 0.10<βF1w/βF2w<3.00 ・・・(10)
 但し、βF1w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
    βF2w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
 条件式(10)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率と、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率との適切な関係を規定するものである。条件式(10)を満足することで、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(10)の対応値が上限値を上回ると、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率が大きくなりすぎてしまう。そのため、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(10)の上限値を、2.80、2.50、2.30、2.00、1.80、1.50、1.30、1.00、さらに0.90に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(10)の対応値が下限値を下回ると、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率が大きくなりすぎてしまう。そのため、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(10)の下限値を、0.20、0.35、0.50、0.55、0.58、さらに0.60に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足することが望ましい。
 0.10<βF1t/βF2t<3.00 ・・・(11)
 但し、βF1t:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の望遠端状態における無限遠物体合焦時の合成横倍率
    βF2t:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の望遠端状態における無限遠物体合焦時の横倍率
 条件式(11)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の望遠端状態における無限遠物体合焦時の横倍率と、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の望遠端状態における無限遠物体合焦時の合成横倍率との適切な関係を規定するものである。条件式(11)を満足することで、望遠端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(11)の対応値が上限値を上回ると、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の望遠端状態における無限遠物体合焦時の合成横倍率が大きくなりすぎてしまう。そのため、望遠端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(11)の上限値を、2.80、2.50、2.30、2.00、1.80、1.50、1.30、1.00、さらに0.80に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(11)の対応値が下限値を下回ると、最も像側の合焦レンズ群の望遠端状態における無限遠物体合焦時の横倍率が大きくなりすぎてしまう。そのため、望遠端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(11)の下限値を、0.13、0.15、0.18、0.20、0.23、さらに0.25に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。
 0.50<βF1w<2.60 ・・・(12)
 但し、βF1w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
 条件式(12)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率について、適切な範囲を規定するものである。条件式(12)を満足することで、合焦の際の球面収差やコマ収差をはじめとする諸収差の変動を抑えることができる。
 条件式(12)の対応値が上限値を上回ると、合焦の際の諸収差の変動を抑えることが困難になる。条件式(12)の上限値を、2.58、2.55、2.00、1.80、1.50、1.30、さらに1.20に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(12)の対応値が下限値を下回ると、合焦の際の諸収差の変動を抑えることが困難になる。条件式(12)の下限値を、0.55、0.60、0.65、0.70、さらに0.73に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。
 0.20<βF2w<1.80 ・・・(13)
 但し、βF2w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
 条件式(13)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率について、適切な範囲を規定するものである。条件式(13)を満足することで、合焦の際の球面収差やコマ収差をはじめとする諸収差の変動を抑えることができる。
 条件式(13)の対応値が上限値を上回ると、合焦の際の諸収差の変動を抑えることが困難になる。条件式(13)の上限値を、1.78、1.75、1.73、1.70、1.68、さらに1.60に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(13)の対応値が下限値を下回ると、合焦の際の諸収差の変動を抑えることが困難になる。条件式(13)の下限値を、0.23、0.25、さらに0.28に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(14)を満足することが望ましい。
 {βF1w+(1/βF1w)}-2≦0.25 ・・・(14)
 但し、βF1w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
 条件式(14)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率について、適切な範囲を規定するものである。条件式(14)を満足することで、合焦の際の球面収差やコマ収差をはじめとする諸収差の変動を抑えることができる。条件式(14)の対応値が上限値を上回ると、合焦の際の諸収差の変動を抑えることが困難になる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(15)を満足することが望ましい。
 {βF2w+(1/βF2w)}-2≦0.25 ・・・(15)
 但し、βF2w:後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
 条件式(15)は、後続レンズ群GRに含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率について、適切な範囲を規定するものである。条件式(15)を満足することで、合焦の際の球面収差やコマ収差をはじめとする諸収差の変動を抑えることができる。条件式(15)の対応値が上限値を上回ると、合焦の際の諸収差の変動を抑えることが困難になる。
 本実施形態に係る変倍光学系ZLにおいて、後続レンズ群GRは、後続レンズ群GRに含まれる合焦レンズ群のうち最も像側の合焦レンズ群より像側に配置された、少なくとも一つのレンズ群を含むことが望ましい。これにより、合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(16)を満足することが望ましい。
 0.10<|fFs|/|fRF|<4.00 ・・・(16)
 但し、fFs:後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
    fRF:前記少なくとも一つのレンズ群のうち、最も像側の合焦レンズ群の像側に隣り合って配置されたレンズ群の焦点距離
 条件式(16)は、後続レンズ群GRに含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離と、最も像側の合焦レンズ群の像側に隣り合って配置されたレンズ群の焦点距離との適切な関係を規定するものである。条件式(16)を満足することで、合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(16)の対応値が上限値を上回ると、最も像側の合焦レンズ群の像側に隣り合って配置されたレンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(16)の上限値を、3.80、3.50、3.30、3.00、2.80、2.50、2.30、2.00、1.50、1.30、さらに1.00に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(16)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなるため、合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難になる。条件式(16)の下限値を、0.13、0.15、さらに0.18に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(17)を満足することが望ましい。
 2ωw>75.0° ・・・(17)
 但し、2ωw:広角端状態における変倍光学系ZLの全画角
 条件式(17)は、広角端状態における変倍光学系ZLの全画角について、適切な範囲を規定するものである。条件式(17)を満足することで、画角の広い変倍光学系が得られるので好ましい。条件式(17)の下限値を、78.0°、80.0°、さらに83.0°に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(18)を満足することが望ましい。
 ft/fw>3.50 ・・・(18)
 但し、ft:望遠端状態における変倍光学系ZLの焦点距離
 条件式(18)は、望遠端状態における変倍光学系ZLの焦点距離と、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(18)を満足することで、変倍比の高い変倍光学系が得られるので好ましい。条件式(18)の下限値を、3.80、4.00、4.20、さらに4.40に設定することで、本実施形態の効果をより確実なものとすることができる。
 本実施形態に係る変倍光学系ZLは、以下の条件式(19)を満足することが望ましい。
 0.10<(-fN)/fL<1.00 ・・・(19)
 但し、fN:変倍光学系ZLの像側から数えて2番目に配置されたレンズの焦点距離
    fL:変倍光学系ZLの最も像側に配置されたレンズの焦点距離
 条件式(19)は、変倍光学系ZLの像側から数えて2番目に配置されたレンズの焦点距離と、変倍光学系ZLの最も像側に配置されたレンズの焦点距離との適切な関係を規定するものである。条件式(19)を満足することで、広角端状態におけるコマ収差をはじめとする諸収差を良好に補正することができる。
 条件式(19)の対応値が上限値を上回ると、変倍光学系ZLの最も像側に配置されたレンズの屈折力が強くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(19)の上限値を、0.95、0.90、0.85、0.83、0.80、0.78、0.75、0.73、さらに0.70に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(19)の対応値が下限値を下回ると、変倍光学系ZLの像側から数えて2番目に配置されたレンズの屈折力が強くなるため、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難になる。条件式(19)の下限値を、0.13、0.15、さらに0.18に設定することで、本実施形態の効果をより確実なものとすることができる。
 続いて、図23を参照しながら、上述の変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、正の屈折力を有する前側レンズ群GAと、負の屈折力を有する第1中間レンズ群GM1と、正の屈折力を有する第2中間レンズ群GM2と、後続レンズ群GRとを配置する(ステップST1)。次に、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST2)。次に、後続レンズ群GRの最も物体側に、合焦の際に光軸に沿って移動する第1の合焦レンズ群GF1を配置し、後続レンズ群GRにおける第1の合焦レンズ群GF1より像側に、合焦の際に第1の合焦レンズ群GF1と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群を配置する(ステップST3)。そして、少なくとも上記条件式(1)および条件式(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、合焦の際の収差変動が少ない変倍光学系を製造することが可能になる。
 以下、本実施形態の実施例に係る変倍光学系ZLを図面に基づいて説明する。図1、図4、図7、図10、図13、図16、図19は、第1~第7実施例に係る変倍光学系ZL{ZL(1)~ZL(7)}の構成及び屈折力配分を示す断面図である。第1~第7実施例に係る変倍光学系ZL(1)~ZL(7)の断面図では、無限遠から近距離物体に合焦する際の合焦群の光軸に沿った移動方向を「合焦」という文字とともに矢印で示している。第1~第7実施例に係る変倍光学系ZL(1)~ZL(7)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これら図1、図4、図7、図10、図13、図16、図19において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 また、[全体諸元]の表において、fM1wは、広角端状態における第1中間レンズ群の焦点距離を示す。fM2wは、広角端状態における第2中間レンズ群の焦点距離を示す。MTF1は、望遠端状態における無限遠物体から近距離物体への合焦の際の第1の合焦レンズ群の移動量の絶対値を示す。MTF2は、望遠端状態における無限遠物体から近距離物体への合焦の際の他の合焦レンズ群のうち第1の合焦レンズ群に最も近い合焦レンズ群の移動量の絶対値を示す。βF1wは、後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率を示す。βF2wは、後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率を示す。βF1tは、後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の望遠端状態における無限遠物体合焦時の合成横倍率を示す。βF2tは、後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の望遠端状態における無限遠物体合焦時の横倍率を示す。fNは、変倍光学系の像側から数えて2番目に配置されたレンズの焦点距離を示す。fLは、変倍光学系の最も像側に配置されたレンズの焦点距離を示す。fRwは、広角端状態における後続レンズ群の焦点距離を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(サグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(A)
 [可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。また、[可変間隔データ]の表には、無限遠合焦状態での面間隔、および近距離合焦状態での面間隔を示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図3および表1を用いて説明する。図1は、第1実施例に係る変倍光学系のレンズ構成を示す図である。第1実施例に係る変倍光学系ZL(1)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。正レンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合正レンズと、物体側に凹面を向けた正メニスカスレンズL45と、から構成される。正メニスカスレンズL45は、物体側のレンズ面が非球面である。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52と、から構成される。
 第6レンズ群G6は、両凹形状の負レンズL61から構成される。負レンズL61は、物体側のレンズ面が非球面である。
 第7レンズ群G7は、物体側に凸面を向けた正メニスカスレンズL71から構成される。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第5レンズ群G5と第6レンズ群G6とが、互いに異なる軌跡(移動量)で光軸に沿って像側へ移動する。すなわち、第5レンズ群G5が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第6レンズ群G6が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。
(表1)
[全体諸元]
変倍比=4.74
fM1w=-17.655             fM2w=29.833
MTF1=0.344              MTF2=0.846
βF1w=1.071              βF2w=1.577
βF1t=1.111              βF2t=3.094
  fN=-38.218               fL=129.310
 fRw=-46.388
        W      M      T
  f     24.700    84.962   116.999
FNO     4.07     4.07     4.07
 2ω     85.22     27.40     20.32
Ymax    21.60     21.60     21.60
 TL    128.45    162.37    178.87
 BF     13.699    35.087    35.287
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    164.9399   2.000   1.73800   32.26
  2     56.4260   7.579   1.59319   67.90
  3    329.6967   0.200
  4     61.7045   5.273   1.81600   46.59
  5    267.7629   (D5)
  6*    242.3772   1.500   1.81600   46.59
  7     16.6184   5.149
  8    879.6675   1.000   1.58913   61.22
  9     18.5708   4.233   1.95000   29.37
  10    79.8132   2.602
  11    -27.5163   1.000   1.77250   49.62
  12    -60.4508   (D12)
  13     ∞     2.000             (絞りS)
  14*    33.9421   3.661   1.74310   49.44
  15   -231.3985   (D15)
  16    30.3875   1.000   1.88300   40.66
  17    15.6459   6.192   1.49782   82.57
  18   -453.7663   0.776
  19    575.4338   5.622   1.51680   64.14
  20    -18.7425   1.000   2.00069   25.46
  21    -32.0090   1.264
  22*   -70.8783   5.056   1.55332   71.67
  23    -21.6449   (D23)
  24    -90.7732   3.558   1.94595   17.98
  25    -39.1419   0.200
  26   -156.1339   1.000   1.90366   31.27
  27    79.8952   (D27)
  28*   -85.4924   1.500   1.81600   46.59
  29    49.4815   (D29)
  30    55.2902   3.197   1.90200   25.26
  31    102.2388   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=5.35995E-06,A6=-8.27153E-09,A8=2.12565E-11,A10=-2.60526E-14
 第14面
 κ=1.0000,A4=-7.33442E-06,A6=4.81859E-09,A8=-4.26147E-11,A10=-2.53196E-14
 第22面
 κ=1.0000,A4=-2.36052E-05,A6=6.01748E-09,A8=1.01789E-10,A10=1.24064E-13
 第28面
 κ=1.0000,A4=-5.15978E-06,A6=-5.92439E-09,A8=4.45911E-12,A10=-6.10897E-15
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.000  31.270  39.333    2.000  31.270  39.333
 D12  17.917   3.226   2.000   17.917   3.226   2.000
 D15  13.739   3.651   2.000   13.739   3.651   2.000
 D23   6.364   2.978   2.000    6.466   3.278   2.344
 D27   4.416   6.716   5.540    5.042   7.231   6.042
 D29   3.757  12.879  26.147    3.029  12.064  25.302
[レンズ群データ]
 群   始面   焦点距離
 G1    1    97.130
 G2    6    -17.655
 G3    14    40.069
 G4    16    35.478
 G5    24   -320.573
 G6    28    -38.218
 G7    30    129.310
 図2(A)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図3(A)は、第1実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図3(B)は、第1実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。無限遠合焦時の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。近距離合焦時の各収差図において、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図4~図6および表2を用いて説明する。図4は、第2実施例に係る変倍光学系のレンズ構成を示す図である。第2実施例に係る変倍光学系ZL(2)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と、物体側に凸面を向けた負メニスカスレンズL33と両凸形状の正レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35と、から構成される。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズと、から構成される。負メニスカスレンズL53は、像側のレンズ面が非球面である。
 第6レンズ群G6は、両凹形状の負レンズL61から構成される。負レンズL61は、物体側のレンズ面が非球面である。
 第7レンズ群G7は、両凸形状の正レンズL71から構成される。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第5レンズ群G5が、光軸に沿って物体側へ移動し、後続レンズ群GRを構成する第6レンズ群G6が、光軸に沿って像側へ移動する。すなわち、第5レンズ群G5が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第6レンズ群G6が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。
(表2)
[全体諸元]
変倍比=4.74
fM1w=-17.052             fM2w=29.062
MTF1=0.279              MTF2=0.983
βF1w=1.045              βF2w=1.670
βF1t=1.038              βF2t=3.943
  fN=-31.580               fL=78.519
 fRw=-61.009
        W      M      T
  f     24.700    69.988    117.001
FNO     4.06     4.06     4.07
 2ω     85.22     33.90     20.18
Ymax    21.60     21.60     21.60
 TL    134.46    162.88    189.46
 BF     11.455    31.812    35.779
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    158.1192   2.000   1.73800   32.36
  2     69.8101   6.421   1.59319   67.90
  3    308.6050   0.200
  4     66.9111   5.695   1.81600   46.59
  5    207.3443   (D5)
  6*    78.5237   1.500   1.81600   46.59
  7     16.7218   5.684
  8    -172.8187   1.000   1.80400   46.60
  9     21.0165   4.905   1.90200   25.26
  10   -209.4912   1.624
  11    -33.2740   1.000   1.81600   46.59
  12   -156.9568   (D12)
  13     ∞     2.000             (絞りS)
  14    37.1973   2.686   1.80518   25.45
  15    73.4737   0.200
  16    49.8914   3.509   1.59319   67.90
  17   -304.2612   0.200
  18    35.7712   1.000   1.84850   43.79
  19    16.8712   7.999   1.59319   67.90
  20    -57.2564   1.355
  21    -36.5767   1.000   2.00069   25.46
  22    -90.8325   (D22)
  23    39.2071   1.000   2.00069   25.46
  24    25.6545   6.685   1.59319   67.90
  25    -38.5079   (D25)
  26    -38.3881   1.000   1.94595   17.98
  27    96.5319   0.415
  28    37.3704   7.406   1.89286   20.36
  29    -30.3636   1.000   1.68893   31.16
  30*   -185.8364   (D30)
  31*   -42.4996   1.500   1.81600   46.59
  32    66.5016   (D32)
  33    148.1143   4.377   1.89286   20.36
  34   -131.2552   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=1.23369E-06,A6=-3.23247E-09,A8=-1.36560E-12,A10=3.42111E-15
 第30面
 κ=1.0000,A4=2.14045E-05,A6=-7.56199E-10,A8=-2.61800E-11,A10=1.98882E-13
 第31面
 κ=1.0000,A4=-3.01641E-06,A6=-1.16781E-08,A8=-5.08849E-11,A10=3.00363E-13
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.000  26.048  41.130    2.000  26.048  41.130
 D12  21.130   5.163   2.000   21.130   5.163   2.000
 D22  12.345   4.345   2.000   12.345   4.345   2.000
 D25   2.023   7.035   9.889    2.000   6.858   9.610
 D30   7.665   6.668   3.602    8.357   7.660   4.865
 D32   4.476   8.453  21.695    3.807   7.637  20.712
[レンズ群データ]
 群   始面   焦点距離
 G1    1    111.149
 G2    6    -17.052
 G3    14    34.545
 G4    23    40.961
 G5    26    915.545
 G6    31    -31.580
 G7    33    78.519
 図5(A)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図5(B)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図6(A)は、第2実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図6(B)は、第2実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図7~図9および表3を用いて説明する。図7は、第3実施例に係る変倍光学系のレンズ構成を示す図である。第3実施例に係る変倍光学系ZL(3)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に平面を向けた平凹形状の負レンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合正レンズと、像側に平面を向けた平凹形状の負レンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と、物体側に凹面を向けた負メニスカスレンズL33と、から構成される。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と両凸形状の正レンズL43との接合正レンズと、から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、から構成される。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61から構成される。正メニスカスレンズL61は、像側のレンズ面が非球面である。
 第7レンズ群G7は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL71と、物体側に凸面を向けた正メニスカスレンズL72と、から構成される。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第5レンズ群G5と第6レンズ群G6とが、互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動する。すなわち、第5レンズ群G5が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第6レンズ群G6が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。
(表3)
[全体諸元]
変倍比=4.56
fM1w=-21.004             fM2w=33.500
MTF1=1.413              MTF2=0.980
βF1w=0.770              βF2w=0.954
βF1t=0.658              βF2t=0.946
  fN=-29.642              fL=97.753
 fRw=-158.485
        W      M      T
  f     22.600    70.008    103.000
FNO     4.08     4.08     4.08
 2ω     91.54     32.98     22.38
Ymax    21.60     21.60     21.60
 TL    139.45    164.17    199.46
 BF     11.455    38.439    39.811
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1      ∞     2.000   1.84666   23.80
  2    205.3318   6.252   1.59319   67.90
  3    -265.8961   0.200
  4     76.0378   4.794   1.77250   49.62
  5    155.1941   (D5)
  6*    118.3890   1.500   1.74389   49.53
  7     19.9637   7.065
  8    -66.8860   1.000   1.59319   67.90
  9     24.3441   6.322   1.68893   31.16
  10    -44.9916   0.573
  11    -35.2853   1.000   1.81600   46.59
  12     ∞     (D12)
  13     ∞     2.000             (絞りS)
  14*    53.1253   2.930   1.69343   53.30
  15   3836.4092   0.200
  16    51.4447   4.772   1.59319   67.90
  17    -49.9261   2.897
  18    -36.2339   1.000   1.83481   42.73
  19   -1562.5863   (D19)
  20    41.8346   4.903   1.59319   67.90
  21    -69.8682   0.200
  22    94.4862   1.000   1.81600   46.59
  23    19.6322   7.665   1.49782   82.57
  24    -56.1775   (D24)
  25    -29.1264   1.000   1.90200   25.26
  26    -57.1334   2.304
  27    93.4868   5.411   1.80400   46.60
  28    -48.3174   (D28)
  29    -85.5900   1.691   1.77387   47.25
  30*   -67.1935   (D30)
  31    -56.6426   1.000   1.83481   42.73
  32    44.2945   2.378
  33    64.6533   3.175   1.94595   17.98
  34    209.7975   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=2.28381E-06,A6=-1.46352E-09,A8=-1.25256E-12,A10=5.36019E-15
 第14面
 κ=1.0000,A4=-2.87497E-06,A6=1.67465E-09,A8=-4.38683E-12,A10=-1.60647E-15
 第30面
 κ=1.0000,A4=9.04034E-06,A6=8.01114E-10,A8=6.16585E-12,A10=-1.63681E-14
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.000  16.912  51.168    2.000  16.912  51.168
 D12  23.202   2.589   2.000   23.202   2.589   2.000
 D19  10.189   2.436   2.000   10.189   2.436   2.000
 D24   5.554  14.413  18.443    4.619  13.500  17.030
 D28   2.044   8.464   8.285    2.513   8.681   8.718
 D30   9.778   5.681   2.517   10.245   6.377   3.497
[レンズ群データ]
 群   始面   焦点距離
 G1    1    157.131
 G2    6    -22.004
 G3    14    59.544
 G4    20    43.565
 G5    25    84.112
 G6    29    388.390
 G7    31    -43.760
 図8(A)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図8(B)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図9(A)は、第3実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図9(B)は、第3実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図10~図12および表4を用いて説明する。図10は、第4実施例に係る変倍光学系のレンズ構成を示す図である。第4実施例に係る変倍光学系ZL(4)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第6レンズ群G1~G6が光軸に沿って物体側へ移動し、第7レンズ群G7が光軸に沿って一旦物体側へ移動してから像側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、両凹形状の負レンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた正メニスカスレンズL32と、から構成される。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL45と、から構成される。正メニスカスレンズL45は、物体側のレンズ面が非球面である。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、両凹形状の負レンズL52と、から構成される。
 第6レンズ群G6は、両凹形状の負レンズL61から構成される。負レンズL61は、物体側のレンズ面が非球面である。
 第7レンズ群G7は、物体側に凸面を向けた正メニスカスレンズL71から構成される。第7レンズ群G7の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第5レンズ群G5と第6レンズ群G6とが、互いに異なる軌跡(移動量)で光軸に沿って像側へ移動する。すなわち、第5レンズ群G5が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第6レンズ群G6が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。
(表4)
[全体諸元]
変倍比=7.85
fM1w=-17.910             fM2w=29.807
MTF1=0.411              MTF2=0.952
βF1w=1.005              βF2w=1.561
βF1t=1.019              βF2t=3.610
  fN=-35.994               fL=170.661
 fRw=-44.489
        W      M      T
  f     24.700    104.937    194.000
FNO     4.02     5.60     6.42
 2ω     85.20     22.32     12.46
Ymax    21.60     21.60     21.60
 TL    130.17    173.77    204.45
 BF     12.455    42.064    38.864
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    143.1350   2.000   1.73800   32.33
  2     54.4612   7.561   1.59319   67.90
  3    300.0372   0.200
  4     69.5685   5.062   1.77250   49.62
  5    409.0849   (D5)
  6*    350.7774   1.500   1.88202   37.22
  7     18.4546   4.874
  8    680.4222   1.000   1.49782   82.57
  9     19.1843   4.572   1.85000   27.03
  10    106.5036   1.893
  11    -45.6629   1.000   1.77250   49.62
  12   1027.7309   (D12)
  13     ∞     2.000             (絞りS)
  14*    29.9260   2.529   1.67798   54.89
  15    104.6758   0.200
  16    37.9415   1.902   1.80809   22.74
  17    50.9616   (D17)
  18    24.4645   1.758   1.90265   35.77
  19    14.5575   6.153   1.49782   82.57
  20   -102.7198   0.611
  21   1507.9760   4.275   1.51680   64.13
  22    -24.0428   1.000   2.00069   25.46
  23    -87.8436   0.355
  24*   -128.1468   4.545   1.55332   71.68
  25    -20.7344   (D25)
  26    738.8688   4.696   1.80809   22.74
  27    -32.2613   0.200
  28    -47.0892   1.000   1.81600   46.59
  29    81.3412   (D29)
  30*   -59.9653   1.500   1.77387   47.25
  31    52.5852   (D31)
  32    51.1837   3.083   1.68893   31.16
  33    88.4174   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=3.16658E-06,A6=-5.96049E-09,A8=1.61416E-11,A10=-2.62532E-14
 第14面
 κ=1.0000,A4=-7.64081E-06,A6=-1.02540E-08,A8=8.93373E-11,A10=-6.51264E-13
 第24面
 κ=1.0000,A4=-3.12885E-05,A6=3.71787E-08,A8=-1.70544E-10,A10=1.40544E-12
 第30面
 κ=1.0000,A4=-5.46471E-06,A6=-2.65649E-0,A8=1.47492E-10,A10=-2.98216E-13
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.010  35.817  51.220    2.010  35.817  51.220
 D12  21.188   4.932   2.030   21.188   4.932   2.030
 D17  13.539   4.497   2.000   13.539   4.497   2.000
 D25   7.124   3.715   2.000    7.265   4.018   2.411
 D29   4.593   6.548   4.486    5.167   7.059   5.027
 D31   3.794  10.730  38.386    3.078   9.916  37.434
[レンズ群データ]
 群   始面   焦点距離
 G1    1    103.273
 G2    6    -17.910
 G3    14    44.938
 G4    18    37.783
 G5    26   -980.001
 G6    30    -35.994
 G7    32    170.661
 図11(A)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図11(B)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図12(A)は、第4実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図12(B)は、第4実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第4実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図13~図15および表5を用いて説明する。図13は、第5実施例に係る変倍光学系のレンズ構成を示す図である。第5実施例に係る変倍光学系ZL(5)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第7レンズ群G1~G7が光軸に沿って物体側へ移動し、第8レンズ群G8が光軸に沿って一旦物体側へ移動してから像側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第3レンズ群G3と第4レンズ群G4との間に配設される。変倍の際、開口絞りSは、第4レンズ群G4とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合正レンズと、から構成される。負レンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、両凹形状の負レンズL31から構成される。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凸面を向けた正メニスカスレンズL42と、から構成される。正メニスカスレンズL41は、物体側のレンズ面が非球面である。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と両凸形状の正レンズL52との接合正レンズと、物体側に凹面を向けた正メニスカスレンズL53と物体側に凹面を向けた負メニスカスレンズL54との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL55と、から構成される。正メニスカスレンズL55は、物体側のレンズ面が非球面である。
 第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL61と、両凹形状の負レンズL62と、から構成される。
 第7レンズ群G7は、両凹形状の負レンズL71から構成される。負レンズL71は、物体側のレンズ面が非球面である。
 第8レンズ群G8は、物体側に凸面を向けた正メニスカスレンズL81から構成される。第8レンズ群G8の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2と、第3レンズ群G3とが、全体として負の屈折力を有する第1中間レンズ群GM1を構成する。第4レンズ群G4と、第5レンズ群G5とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第6レンズ群G6と第7レンズ群G7とが、互いに異なる軌跡(移動量)で光軸に沿って像側へ移動する。すなわち、第6レンズ群G6が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第7レンズ群G7が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表5に、第5実施例に係る変倍光学系の諸元の値を掲げる。
(表5)
[全体諸元]
変倍比=7.85
fM1w=-17.295             fM2w=29.310
MTF1=0.371              MTF2=0.950
βF1w=1.002              βF2w=1.550
βF1t=1.016              βF2t=3.590
  fN=-36.530               fL=180.299
 fRw=-44.658
        W      M      T
  f     24.700    104.916    193.992
FNO     3.98     5.60     6.48
 2ω     85.20     22.32     12.46
Ymax    21.60     21.60     21.60
 TL    129.45    174.02    204.45
 BF     12.454    43.256    39.757
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    140.6369   2.000   1.73800   32.33
  2     54.2993   7.774   1.59319   67.90
  3    306.9344   0.200
  4     70.1192   5.137   1.77250   49.62
  5    433.0896   (D5)
  6*   -348.9741   1.500   1.88202   37.22
  7     18.5669   4.368
  8    132.2861   1.000   1.49782   82.57
  9     19.1562   4.619   1.85000   27.03
  10    92.2216   (D10)
  11    -59.9587   1.000   1.77250   49.62
  12    207.6789   (D12)
  13     ∞     2.000             (絞りS)
  14*    29.0382   2.246   1.67798   54.89
  15    56.3251   0.200
  16    35.5481   2.153   1.80809   22.74
  17    64.9456   (D17)
  18    22.8201   1.147   1.90265   35.77
  19    14.0716   6.794   1.49782   82.57
  20    -62.9717   0.250
  21   -578.5647   3.866   1.51680   64.13
  22    -26.3104   1.000   2.00069   25.46
  23   -262.9123   0.400
  24*   -252.2011   4.807   1.55332   71.68
  25    -20.2354   (D25)
  26    406.6131   4.916   1.80809   22.74
  27    -31.2178   0.200
  28    -44.1001   1.000   1.81600   46.59
  29    76.8052   (D29)
  30*   -65.9674   1.500   1.77387   47.25
  31    49.9596   (D31)
  32    48.7044   2.979   1.68893   31.16
  33    78.1205   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=6.01924E-06,A6=-9.78216E-09,A8=1.91188E-11,A10=-2.54581E-14
 第14面
 κ=1.0000,A4=-8.67328E-06,A6=-1.41146E-08,A8=1.05557E-10,A10=-7.15518E-13
 第24面
 κ=1.0000,A4=-3.58225E-05,A6=5.16946E-08,A8=-2.69722E-10,A10=2.25425E-12
 第30面
 κ=1.0000,A4=-5.04731E-06,A6=-3.08030E-08,A8=1.84868E-10,A10=-5.03672E-13
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.591  35.849  51.107    2.591  35.849  51.107
 D10   2.474   1.925   1.779    2.474   1.925   1.779
 D12  19.518   4.834   2.144   19.518   4.834   2.144
 D17  13.288   4.561   2.000   13.288   4.561   2.000
 D25   7.742   3.790   2.000    7.926   4.060   2.371
 D29   4.510   6.280   4.193    5.056   6.817   4.772
 D31   3.824  10.476  38.417    3.094   9.669  37.467
[レンズ群データ]
 群   始面   焦点距離
 G1    1    101.843
 G2    6    -28.919
 G3    11    -60.130
 G4    14    45.188
 G5    18    37.275
 G6    26   -979.922
 G7    30    -36.530
 G8    32    180.299
 図14(A)は、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図14(B)は、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図15(A)は、第5実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図15(B)は、第5実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第5実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図16~図18および表6を用いて説明する。図16は、第6実施例に係る変倍光学系のレンズ構成を示す図である。第6実施例に係る変倍光学系ZL(6)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群G8とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第8レンズ群G1~G8が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合正レンズと、両凹形状の負レンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32と、物体側に凹面を向けた負メニスカスレンズL33と、から構成される。正メニスカスレンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と両凸形状の正レンズL43との接合負レンズと、から構成される。
 第5レンズ群G5は、物体側に凹面を向けた負メニスカスレンズL51から構成される。
 第6レンズ群G6は、両凸形状の正レンズL61から構成される。
 第7レンズ群G7は、物体側に凹面を向けた正メニスカスレンズL71から構成される。正メニスカスレンズL71は、像側のレンズ面が非球面である。
 第8レンズ群G8は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL81と、物体側に凸面を向けた正メニスカスレンズL82と、から構成される。第8レンズ群G8の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第5レンズ群G5と、第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第5レンズ群G5と第6レンズ群G6と第7レンズ群G7とが、互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動する。すなわち、第5レンズ群G5が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第6レンズ群G6が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。第7レンズ群G7が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第3の合焦レンズ群GF3に該当する。
 以下の表6に、第6実施例に係る変倍光学系の諸元の値を掲げる。
(表6)
[全体諸元]
変倍比=4.70
fM1w=-19.907             fM2w=32.581
MTF1=2.249              MTF2=2.096
βF1w=0.765              βF2w=0.949
βF1t=0.684              βF2t=0.943
  fN=-37.608               fL=176.733
 fRw=-190.173
        W      M      T
  f     24.700    70.009    115.999
FNO     4.06     4.02     4.12
 2ω     86.44     32.64     19.92
Ymax    21.60     21.60     21.60
 TL    139.45    169.68    199.08
 BF     12.344    33.226    39.472
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    462.2978   2.000   1.84666   23.80
  2    117.9843   7.772   1.59319   67.90
  3    -332.8090   0.200
  4     68.5981   5.329   1.77250   49.62
  5    140.6044   (D5)
  6*    102.1762   1.500   1.74389   49.53
  7     20.0193   7.301
  8    -53.3166   1.000   1.59319   67.90
  9     23.3630   6.829   1.68893   31.16
  10    -34.9416   0.488
  11    -29.8911   1.000   1.81600   46.59
  12    771.9204   (D12)
  13     ∞     2.000             (絞りS)
  14*    64.5221   2.313   1.69343   53.30
  15    218.6309   0.200
  16    42.2294   5.148   1.59319   67.90
  17    -50.9166   0.846
  18    -38.4211   1.000   1.83481   42.73
  19   -121.6787   (D19)
  20    50.5091   4.565   1.59319   67.90
  21    -73.4692   0.200
  22    144.3902   1.000   1.81600   46.59
  23    20.8080   7.069   1.49782   82.57
  24    -58.5658   (D24)
  25    -36.5746   1.000   1.90200   25.26
  26    -88.6629   (D26)
  27    78.2651   5.215   1.80400   46.60
  28    -61.1685   (D28)
  29   -115.4337   1.682   1.77387   47.25
  30*   -84.6141   (D30)
  31    -93.1742   1.000   1.83481   42.73
  32    47.5819   1.399
  33    51.8920   2.458   1.94594   17.98
  34    73.5164   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=1.46132E-06,A6=-1.42920E-09,A8=2.79764E-12,A10=5.33710E-15
 第14面
 κ=1.0000,A4=-3.76343E-06,A6=1.16052E-09,A8=-1.11309E-11,A10=1.96066E-14
 第30面
 κ=1.0000,A4=9.30832E-06,A6=3.85397E-09,A8=-9.94633E-12,A10=2.27044E-14
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.000  24.468  49.503    2.000  24.468  49.503
 D12  20.478   3.818   2.074   20.478   3.818   2.074
 D19   8.916   3.265   2.000    8.916   3.265   2.000
 D24   6.612  13.356  22.504    5.023  11.937  20.255
 D26   3.664   3.898   2.010    3.909   4.002   2.162
 D28   3.789   9.856   8.781    4.421  10.371   9.746
 D30  11.138   7.275   2.224   11.850   8.075   3.355
[レンズ群データ]
 群   始面   焦点距離
 G1    1    134.376
 G2    6    -19.907
 G3    14    53.036
 G4    20    55.179
 G5    25    -69.654
 G6    27    43.428
 G7    29    399.999
 G8    31    -47.335
 図17(A)は、第6実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図17(B)は、第6実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図18(A)は、第6実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図18(B)は、第6実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第6実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図19~図21および表7を用いて説明する。図19は、第7実施例に係る変倍光学系のレンズ構成を示す図である。第7実施例に係る変倍光学系ZL(7)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群G8とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第8レンズ群G1~G8が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。変倍の際、開口絞りSは、第3レンズ群G3とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合正レンズと、像側に平面を向けた平凹形状の負レンズL24と、から構成される。負メニスカスレンズL21は、物体側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と、から構成される。正レンズL31は、物体側のレンズ面が非球面である。
 第4レンズ群G4は、両凹形状の負レンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合正レンズと、から構成される。
 第6レンズ群G6は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と、から構成される。
 第7レンズ群G7は、物体側に凹面を向けた正メニスカスレンズL71から構成される。正メニスカスレンズL71は、像側のレンズ面が非球面である。
 第8レンズ群G8は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL81と、物体側に凸面を向けた正メニスカスレンズL82と、から構成される。第8レンズ群G8の像側に、像面Iが配置される。
 本実施例では、第1レンズ群G1が、正の屈折力を有する前側レンズ群GAを構成する。第2レンズ群G2が、負の屈折力を有する第1中間レンズ群GM1を構成する。第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とが、全体として正の屈折力を有する第2中間レンズ群GM2を構成する。第6レンズ群G6と、第7レンズ群G7と、第8レンズ群G8とが、全体として負の屈折力を有する後続レンズ群GRを構成する。無限遠物体から近距離物体への合焦の際、後続レンズ群GRを構成する第6レンズ群G6と第7レンズ群G7とが、互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動する。すなわち、第6レンズ群G6が、後続レンズ群GRの最も物体側に配置された第1の合焦レンズ群GF1に該当する。第7レンズ群G7が、第1の合焦レンズ群GF1より像側に配置された他の合焦レンズ群である第2の合焦レンズ群GF2に該当する。
 以下の表7に、第7実施例に係る変倍光学系の諸元の値を掲げる。
(表7)
[全体諸元]
変倍比=4.56
fM1w=-20.363             fM2w=33.345
MTF1=1.381              MTF2=0.984
βF1w=0.763              βF2w=0.948
βF1t=0.650              βF2t=0.940
  fN=-30.226               fL=100.683
 fRw=-177.170
        W      M      T
  f     22.600    70.004    103.000
FNO     4.09     4.09     4.08
 2ω     91.56     33.96     22.38
Ymax    21.60     21.60     21.60
 TL    139.45    165.05    199.45
 BF     11.779    38.577    39.906
[レンズ諸元]
 面番号    R     D     nd    νd
 物体面    ∞
  1    6659.3699   2.000   1.84666   23.80
  2    195.3556   6.352   1.59319   67.90
  3    -273.7600   0.200
  4     73.6739   4.876   1.77250   49.62
  5    149.1863   (D5)
  6*    113.0230   1.500   1.74389   49.53
  7     19.5406   7.132
  8    -63.0618   1.000   1.59319   67.90
  9     24.3284   6.267   1.68893   31.16
  10    -43.5952   0.573
  11    -34.2926   1.000   1.81600   46.59
  12     ∞     (D12)
  13     ∞     2.000             (絞りS)
  14*    57.8680   3.090   1.69343   53.30
  15   -302.2108   0.200
  16    48.4547   4.785   1.59319   67.90
  17    -53.3050   (D17)
  18    -38.1755   1.000   1.83481   42.730
  19    616.7068   (D19)
  20    42.1940   4.851   1.59319   67.90
  21    -69.0643   0.200
  22    98.4698   1.000   1.81600   46.59
  23    19.6428   7.597   1.49782   82.57
  24    -56.1321   (D24)
  25    -29.3608   1.000   1.90200   25.26
  26    -58.1915   1.995
  27    90.0589   5.380   1.80400   46.60
  28    -48.9540   (D28)
  29    -85.0115   1.709   1.77387   47.25
  30*   -65.3126   (D30)
  31    -62.1123   1.000   1.83481   42.73
  32    42.8077   3.227
  33    69.1642   3.143   1.94594   17.98
  34    247.0342   BF
  像面    ∞
[非球面データ]
 第6面
 κ=1.0000,A4=2.33500E-06,A6=-8.92215E-10,A8=-3.76442E-12,A10=9.61354E-15
 第14面
 κ=1.0000,A4=-2.41342E-06,A6=1.12249E-09A8=-3.73343E-13,A10=-1.07003E-14
 第30面
 κ=1.0000,A4=9.05002E-06,A6=4.53686E-10,A8=5.24788E-12,A10=-1.61841E-14
[可変間隔データ]
        無限遠合焦状態         近距離合焦状態
      W    M    T     W    M    T
 D5   2.000  17.263  50.507    2.000  17.263  50.507
 D12  22.632   2.617   2.000   22.632   2.617   2.000
 D17   2.327   2.925   2.897    2.327   2.925   2.897
 D19  10.846   2.372   2.000   10.846   2.372   2.000
 D24   5.406  14.281  18.351    4.526  13.387  16.970
 D28   2.000   8.343   8.382    2.443   8.546   8.779
 D30   9.389   5.598   2.334    9.827   6.289   3.318
[レンズ群データ]
 群   始面   焦点距離
 G1    1    153.821
 G2    6    -20.363
 G3    14    27.666
 G4    18    -43.034
 G5    20    44.173
 G6    25    84.579
 G7    29    350.941
 G8    31    -44.997
 図20(A)は、第7実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図20(B)は、第7実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。図21(A)は、第7実施例に係る変倍光学系の広角端状態における近距離合焦時の諸収差図である。図21(B)は、第7実施例に係る変倍光学系の望遠端状態における近距離合焦時の諸収差図である。各諸収差図より、第7実施例に係る変倍光学系は、無限遠合焦時だけでなく近距離合焦時においても、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(19)に対応する値を、全実施例(第1~第7実施例)について纏めて示す。
 条件式(1)  4.30<f1/(-fM1w)<10.00
 条件式(2)  0.10<BFw/fw<1.00
 条件式(3)  1.50<f1/fM21<7.00
 条件式(4)  2.00<f1/fw<8.00
 条件式(5)  0.20<|fFs|/f1<2.00
 条件式(6)  1.50<|fFs|/(-fM1w)<5.00
 条件式(7)  0.90<|fFs|/fM2w<4.00
 条件式(8)  0.20<f1/(-fRw)<5.00
 条件式(9)  0.10<MTF1/MTF2<3.00
 条件式(10) 0.10<βF1w/βF2w<3.00
 条件式(11) 0.10<βF1t/βF2t<3.00
 条件式(12) 0.50<βF1w<2.60
 条件式(13) 0.20<βF2w<1.80
 条件式(14) {βF1w+(1/βF1w)}-2≦0.25
 条件式(15) {βF2w+(1/βF2w)}-2≦0.25
 条件式(16) 0.10<|fFs|/|fRF|<4.00
 条件式(17) 2ωw>75.0°
 条件式(18) ft/fw>3.50
 条件式(19) 0.10<(-fN)/fL<1.00
 [条件式対応値](第1~第4実施例)
  条件式  第1実施例  第2実施例  第3実施例  第4実施例
  (1)   5.502     6.518     7.481     5.766
  (2)   0.555     0.464     0.507     0.504
  (3)   2.424     3.217     2.639     2.298
  (4)   3.932     4.500     6.953     4.181
  (5)   0.393     0.284     0.535     0.349
  (6)   2.165     1.852     4.005     2.010
  (7)   1.281     1.087     2.511     1.208
  (8)   2.094     1.822     0.991     2.321
  (9)   0.407     0.284     1.442     0.432
 (10)   0.679     0.626     0.807     0.644
 (11)   0.359     0.263     0.695     0.282
 (12)   1.071     1.045     0.770     1.005
 (13)   1.577     1.670     0.954     1.561
 (14)   0.249     0.250     0.234     0.250
 (15)   0.205     0.194     0.249     0.206
 (16)   0.296     0.402     1.922     0.211
 (17)   85.22     85.22     91.54     85.20
 (18)   4.737     4.737     4.558     7.854
 (19)   0.296     0.402     0.303     0.211
 [条件式対応値](第5~第7実施例)
  条件式  第5実施例  第6実施例  第7実施例
  (1)   5.889     6.750     7.554
  (2)   0.504     0.500     0.521
  (3)   2.254     2.534     5.560
  (4)   4.123     5.440     6.806
  (5)   0.359     0.323     0.550
  (6)   2.112     2.182     4.154
  (7)   1.246     1.333     2.537
  (8)   2.280     0.707     0.868
  (9)   0.391     1.073     1.403
 (10)   0.647     0.806     0.805
 (11)   0.283     0.725     0.692
 (12)   1.002     0.765     0.763
 (13)   1.550     0.949     0.948
 (14)   0.250     0.233     0.233
 (15)   0.208     0.249     0.249
 (16)   0.203     0.917     1.880
 (17)   85.20     86.44     91.56
 (18)   7.854     4.696     4.558
 (19)   0.203     0.213     0.300
 上記各実施例によれば、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく、静粛で高速なフォーカシング(合焦)を実現することができる。また、広角端状態から望遠端状態への変倍の際の収差変動、および無限遠物体から近距離物体への合焦の際の収差変動が少ない変倍光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態の変倍光学系の実施例として7群構成および8群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、9群等)の変倍光学系を構成することもできる。具体的には、本実施形態の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、第2レンズ群と第3レンズ群との間、または第3レンズ群と第4レンズ群との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
 G7 第7レンズ群          G8 第8レンズ群
  I 像面               S 開口絞り

Claims (21)

  1.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前側レンズ群と、負の屈折力を有する第1中間レンズ群と、正の屈折力を有する第2中間レンズ群と、後続レンズ群とを有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記後続レンズ群は、前記後続レンズ群の最も物体側に配置され、合焦の際に光軸に沿って移動する第1の合焦レンズ群と、前記第1の合焦レンズ群より像側に配置され、合焦の際に前記第1の合焦レンズ群と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群とを含み、
     以下の条件式を満足する変倍光学系。
     4.30<f1/(-fM1w)<10.00
     0.10<BFw/fw<1.00
     但し、f1:前記前側レンズ群の焦点距離
        fM1w:広角端状態における前記第1中間レンズ群の焦点距離
        BFw:広角端状態における前記変倍光学系のバックフォーカス
        fw:広角端状態における前記変倍光学系の焦点距離
  2.  前記第2中間レンズ群は、少なくとも二つの正の屈折力を有するレンズ群を含み、
     以下の条件式を満足する請求項1に記載の変倍光学系。
     1.50<f1/fM21<7.00
     但し、fM21:前記第2中間レンズ群に含まれるレンズ群のうち最も物体側のレンズ群の焦点距離
  3.  以下の条件式を満足する請求項1または2に記載の変倍光学系。
     2.00<f1/fw<8.00
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の変倍光学系。
     0.20<|fFs|/f1<2.00
     但し、fFs:前記後続レンズ群に含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
  5.  以下の条件式を満足する請求項1~4のいずれか一項に記載の変倍光学系。
     1.50<|fFs|/(-fM1w)<5.00
     但し、fFs:前記後続レンズ群に含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
     0.90<|fFs|/fM2w<4.00
     但し、fFs:前記後続レンズ群に含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
        fM2w:広角端状態における前記第2中間レンズ群の焦点距離
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の変倍光学系。
     0.20<f1/(-fRw)<5.00
     但し、fRw:広角端状態における前記後続レンズ群の焦点距離
  8.  以下の条件式を満足する請求項1~7のいずれか一項に記載の変倍光学系。
     0.10<MTF1/MTF2<3.00
     但し、MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記第1の合焦レンズ群の移動量の絶対値
        MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の前記他の合焦レンズ群のうち前記第1の合焦レンズ群に最も近い合焦レンズ群の移動量の絶対値
  9.  以下の条件式を満足する請求項1~8のいずれか一項に記載の変倍光学系。
     0.10<βF1w/βF2w<3.00
     但し、βF1w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
        βF2w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
  10.  以下の条件式を満足する請求項1~9のいずれか一項に記載の変倍光学系。
     0.10<βF1t/βF2t<3.00
     但し、βF1t:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の望遠端状態における無限遠物体合焦時の合成横倍率
        βF2t:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の望遠端状態における無限遠物体合焦時の横倍率
  11.  以下の条件式を満足する請求項1~10のいずれか一項に記載の変倍光学系。
     0.50<βF1w<2.60
     但し、βF1w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の変倍光学系。
     0.20<βF2w<1.80
     但し、βF2w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の変倍光学系。
     {βF1w+(1/βF1w)}-2≦0.25
     但し、βF1w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群より物体側に位置する合焦レンズ群の広角端状態における無限遠物体合焦時の合成横倍率
  14.  以下の条件式を満足する請求項1~13のいずれか一項に記載の変倍光学系。
     {βF2w+(1/βF2w)}-2≦0.25
     但し、βF2w:前記後続レンズ群に含まれる合焦レンズ群のうち、最も像側の合焦レンズ群の広角端状態における無限遠物体合焦時の横倍率
  15.  前記後続レンズ群は、前記後続レンズ群に含まれる合焦レンズ群のうち最も像側の合焦レンズ群より像側に配置された、少なくとも一つのレンズ群を含む請求項1~14のいずれか一項に記載の変倍光学系。
  16.  以下の条件式を満足する請求項15に記載の変倍光学系。
     0.10<|fFs|/|fRF|<4.00
     但し、fFs:前記後続レンズ群に含まれる合焦レンズ群のうち最も屈折力が強い合焦レンズ群の焦点距離
        fRF:前記少なくとも一つのレンズ群のうち、前記最も像側の合焦レンズ群の像側に隣り合って配置されたレンズ群の焦点距離
  17.  以下の条件式を満足する請求項1~16のいずれか一項に記載の変倍光学系。
     2ωw>75.0°
     但し、2ωw:広角端状態における前記変倍光学系の全画角
  18.  以下の条件式を満足する請求項1~17のいずれか一項に記載の変倍光学系。
     ft/fw>3.50
     但し、ft:望遠端状態における前記変倍光学系の焦点距離
  19.  以下の条件式を満足する請求項1~18のいずれか一項に記載の変倍光学系。
     0.10<(-fN)/fL<1.00
     但し、fN:前記変倍光学系の像側から数えて2番目に配置されたレンズの焦点距離
        fL:前記変倍光学系の最も像側に配置されたレンズの焦点距離
  20.  請求項1~19のいずれか一項に記載の変倍光学系を備えて構成される光学機器。
  21.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前側レンズ群と、負の屈折力を有する第1中間レンズ群と、正の屈折力を有する第2中間レンズ群と、後続レンズ群とを有する変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記後続レンズ群は、前記後続レンズ群の最も物体側に配置され、合焦の際に光軸に沿って移動する第1の合焦レンズ群と、前記第1の合焦レンズ群より像側に配置され、合焦の際に前記第1の合焦レンズ群と異なる軌跡で光軸に沿って移動する少なくとも一つの他の合焦レンズ群とを含み、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する変倍光学系の製造方法。
     4.30<f1/(-fM1w)<10.00
     0.10<BFw/fw<1.00
     但し、f1:前記前側レンズ群の焦点距離
        fM1w:広角端状態における前記第1中間レンズ群の焦点距離
        BFw:広角端状態における前記変倍光学系のバックフォーカス
        fw:広角端状態における前記変倍光学系の焦点距離
PCT/JP2021/024063 2020-07-28 2021-06-25 変倍光学系、光学機器、および変倍光学系の製造方法 WO2022024624A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540082A JPWO2022024624A1 (ja) 2020-07-28 2021-06-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-126912 2020-07-28
JP2020126912 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022024624A1 true WO2022024624A1 (ja) 2022-02-03

Family

ID=80037308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024063 WO2022024624A1 (ja) 2020-07-28 2021-06-25 変倍光学系、光学機器、および変倍光学系の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022024624A1 (ja)
WO (1) WO2022024624A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076493A (ja) * 2006-09-19 2008-04-03 Olympus Imaging Corp ズームレンズ及びそれを用いた電子撮像装置
JP2014066944A (ja) * 2012-09-27 2014-04-17 Sony Corp ズームレンズおよび撮像装置
JP2018054989A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 光学系およびそれを有する光学機器
WO2019097719A1 (ja) * 2017-11-20 2019-05-23 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076493A (ja) * 2006-09-19 2008-04-03 Olympus Imaging Corp ズームレンズ及びそれを用いた電子撮像装置
JP2014066944A (ja) * 2012-09-27 2014-04-17 Sony Corp ズームレンズおよび撮像装置
JP2018054989A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 光学系およびそれを有する光学機器
WO2019097719A1 (ja) * 2017-11-20 2019-05-23 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法

Also Published As

Publication number Publication date
JPWO2022024624A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
JP5104084B2 (ja) 広角レンズ、光学装置、広角レンズのフォーカシング方法
EP1870760A1 (en) Retrofocus type of zoom lens having four lens groups
JP5622103B2 (ja) ズームレンズ、このズームレンズを搭載した光学機器、及び、ズームレンズの製造方法
JP5273172B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
WO2017057658A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP7438795B2 (ja) ズームレンズおよび撮像装置
JP7218813B2 (ja) 変倍光学系及び光学機器
JP5212813B2 (ja) ズームレンズ、これを搭載する光学機器および製造方法
CN113302533B (zh) 变倍光学系统以及光学设备
WO2022024624A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2022024625A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7081689B2 (ja) 変倍光学系および光学機器
JP6281200B2 (ja) 変倍光学系及び光学装置
WO2022024622A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2022024623A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP5505770B2 (ja) ズームレンズ、光学機器
JP7420200B2 (ja) 変倍光学系および光学機器
WO2024034309A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2024053269A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2022137820A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2021256065A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2024034428A1 (ja) 光学系、光学機器及び光学系の製造方法
JP2024011103A (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP2023134830A (ja) 変倍光学系および光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851552

Country of ref document: EP

Kind code of ref document: A1