JP7435880B2 - n型SiC単結晶基板及びSiCエピタキシャルウェハ - Google Patents
n型SiC単結晶基板及びSiCエピタキシャルウェハ Download PDFInfo
- Publication number
- JP7435880B2 JP7435880B2 JP2023086144A JP2023086144A JP7435880B2 JP 7435880 B2 JP7435880 B2 JP 7435880B2 JP 2023086144 A JP2023086144 A JP 2023086144A JP 2023086144 A JP2023086144 A JP 2023086144A JP 7435880 B2 JP7435880 B2 JP 7435880B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- sic single
- sic
- substrate
- crystal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 353
- 239000000758 substrate Substances 0.000 title claims description 175
- 239000002019 doping agent Substances 0.000 claims description 54
- 229910010271 silicon carbide Inorganic materials 0.000 description 210
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 208
- 239000011810 insulating material Substances 0.000 description 73
- 238000000034 method Methods 0.000 description 71
- 230000008569 process Effects 0.000 description 56
- 239000006061 abrasive grain Substances 0.000 description 53
- 238000004519 manufacturing process Methods 0.000 description 50
- 229910052580 B4C Inorganic materials 0.000 description 47
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 47
- 238000012545 processing Methods 0.000 description 46
- 239000002002 slurry Substances 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 37
- 239000002994 raw material Substances 0.000 description 30
- 239000002245 particle Substances 0.000 description 27
- 239000000654 additive Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- 230000002829 reductive effect Effects 0.000 description 16
- 230000000996 additive effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 238000009826 distribution Methods 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 238000009434 installation Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- QEALYLRSRQDCRA-UHFFFAOYSA-N myristamide Chemical compound CCCCCCCCCCCCCC(N)=O QEALYLRSRQDCRA-UHFFFAOYSA-N 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
一方で、量産における8インチのSiC単結晶基板の歩留まりは、6インチのSiC単結晶基板と同程度の評価基準又はそれ以上に厳しい評価基準によって決まるものである。一歩一歩の改良が8インチのSiC単結晶基板の製造技術の確立につながっていく。
図1(a)は本実施形態に係るSiC単結晶基板の断面模式図であり、(b)は平面模式図である。
図1に示すSiC単結晶基板1は、8インチのn型SiC単結晶基板であって、直径が195~205mmの範囲であり、厚みが300~650μmの範囲であり、表裏両面の加工変質層の厚さが0.1nm以下であり、ドーパント濃度が2×1018/cm3以上、6×1019/cm3以下である。
オフ角が大きいほどSiC単結晶インゴットから得られるウェハ枚数が少なくなるため、コスト削減の観点からはオフ角が小さいことが好ましい。SiC単結晶基板のオフ角が例えば、0.4°~5°のものを用いることができる。0.4°はステップフロー成長をさせることが可能なオフ角として下限といえるものである。
SiC単結晶基板のドーパント濃度が2×1018/cm3未満の場合SiC単結晶基板の抵抗率が大きくなり過ぎるからであり、また、ドーパント濃度が6×1019/cm3を超えると、SiC単結晶基板における積層欠陥の抑制が困難となるからである。SiC単結晶基板のドーパント濃度を2×1018/cm3以上、6×1019/cm3以下の範囲内にすることにより、SiC単結晶基板の積層欠陥を抑制しつつ、抵抗率を低減することができる。
ドーパント濃度の大きさは公知の方法で調整することができる。例えば、結晶成長中に坩堝(図5の符号10参照)内に導入するドーパントガスの量を、導入時間や分圧等で調整することによってドーパント濃度の大きさを調整することができる。
図1では、面1A内におけるドーパント濃度の測定点として、面内中心Oを含む、9点を図示している。
図1において、符号1bbは最外周1bから1mmの円を示す。
図2に示すSiC単結晶基板1において、主面1aから主面から同一深さにおける面1AAを10mm角のメッシュMに分割し、各メッシュ内の任意の点でのドーパント濃度をそのメッシュのドーパント濃度とした場合に、ドーパント濃度が、面内中心を含むメッシュM0のドーパント濃度に対して±20%以内であるメッシュの割合が80%以上であることが好ましい。
他方の面(以下、「裏面」ということがある。)は鏡面でなくてもよいが、おもて面が鏡面であり裏面が鏡面ではないSiC単結晶基板はおもて面と裏面とで残留応力の差異が生じ、残留応力を補償するように基板が反り返ってしまう(トワイマン効果)という問題がある。裏面も鏡面とすることでトワイマン効果に起因する基板の反りを抑制することができる。おもて面は鏡面でかつ裏面は非鏡面である場合でも、反りが小さいSiC単結晶基板を作製する方法が開発されている(例えば、特許文献2参照)。
SiC単結晶基板は、SiC単結晶インゴットをスライスし、表面を平坦化することによって作製される。このような機械的加工を施すと基板の表面に加工歪みが導入されてしまう。SiC単結晶基板の表面において加工歪みが生じている部分を加工変質層という。おもて面、裏面に加工変質層を有する場合、おもて面及び裏面で加工歪みの差異を生じ、残留応力にも差異を生じて、トワイマン効果によって基板の反りが発生する。基板両面における加工変質層が発する応力状態のバランスで基板の形状(反り)が決定される。
本実施形態に係るSiC単結晶基板では、新規なラッピング加工用スラリーを用いてラッピングを行うことによって、厚みの面内ばらつきの低減が実現している。
SiC単結晶基板1の基板厚みの面内ばらつきは、加工変質層の深さの面内ばらつきを反映したものと考えている。
なお、エッチピットの総数は転位の総数に相当する。
貫通転位(TD)に同定されるエッチピットの密度は、1×103個/cm2以下であることがより好ましく、5×102個/cm2以下であることがさらに好ましい。
基底面転位に同定されるエッチピットの密度は、2×103個/cm2以下であることがより好ましく、1×103個/cm2以下であることがさらに好ましく、5×102個/cm2以下であることがもっと好ましい。
ここで、貫通転位は、貫通らせん転位(TSD)及び貫通刃状転位(TED)を合わせたものである。
なお、転位の種類は光学顕微鏡等を用いて、KOHエッチングによって現れたエッチピットの形状から判別することができ、単位面積当たりのエッチピットの数をカウントすることができる。一般には、中型六角形状を有するエッチピットは貫通らせん転位(TSD)に相当し、小型六角形状を有するエッチピットは貫通刃状転位(TED)に相当し、楕円形状(貝殻形状)を有するエッチピットが基底面転位(BPD)に相当する。また、大型六角形状を有するエッチピットはマイクロパイプ(MP)に相当する。
本実施形態に係るSiC単結晶基板の製造方法について、n型SiC単結晶インゴットの作製工程と、インゴットからのSiC単結晶基板の作製工程に分けて説明する。以下では、ドーパントとして窒素が導入されたn型SiC単結晶インゴットの作製工程を例として説明する。
鋭意研究を続ける中で、本発明者は、8インチ径のSiC単結晶インゴットの作製にあたっては、6インチ径のSiC単結晶インゴットに対して、径方向及び垂直方向(結晶成長方向)の温度勾配についてより厳密な制御がキーポイントになることを見出した。そして、特許文献4で開示された方法を適用することによって、径方向及び垂直方向(結晶成長方向)の温度勾配についてより厳密な制御を実現できることを見出した。具体的には、結晶成長をガイドするガイド部材の外側を、ガイド部材の延在方向に沿って移動できる断熱材を備えたSiC単結晶製造装置を用いることができる。なお、径方向及び垂直方向(結晶成長方向)の温度勾配についてより厳密な制御する方法として、特許文献4で開示された方法に限定されない。
以下図示において、種結晶設置部11と原料Gとが対向する方向を上下方向とし、上下方向に対して垂直な方向を左右方向とする。
結晶成長の過程において、断熱材30の原料側の端面30aと単結晶Cの表面Caとの位置関係を制御することができる。
また、結晶成長の過程において、断熱材30の原料側の端面30aが単結晶Cの表面Caから20mm以内に位置することができる。
また、結晶成長の過程において、断熱材30の原料側の端面30aが、単結晶Cの表面Caかより種結晶設置部11側に配置するようにすることができる。
また、断熱材30の厚みが0.2mm以上製造されるSiC単結晶インゴットの成長量の半分以下とすることができる。
単結晶C内に生じる応力は、結晶面の歪、ズレ等を生み出す。単結晶C内の歪や格子面のズレは、基底面転位(BPD)等のキラー欠陥の発生原因となりうる。
得られたn型SiC単結晶インゴットからSiC単結晶基板を作製する工程においては、所定の研磨スラリーを用いてラッピングを含む平坦化工程と、加工変質層除去工程と、を含む。SiC単結晶基板の作製において、ラッピング加工において特徴的なスラリーを用いてラッピング加工を行うことができる。それ以外は、SiC単結晶インゴットから、SiC単結晶基板を得るまでの加工については公知の方法を用いることができる。以下、ラッピング加工工程について説明する。
遊離砥粒方式の加工工程では、例えば水と、炭化ホウ素砥粒と、炭化ホウ素砥粒を分散させる添加剤と、を含むスラリーを上定盤と下定盤との間にかけ流すとともに上定盤21と下定盤によりSiC基板1に圧力を加え、SiC基板1の表面を平坦化する。加工工程で用いるスラリーは、例えば水を主成分として含むスラリーである。水を主成分として含むスラリーを用いる場合、炭化ホウ素砥粒の分散性を高められ、加工工程において二次凝集が生じづらい。また、水を主成分として含むスラリーを用いる場合、SiC基板のうち、スラリー供給孔が設けられた上定盤側の面は、水の直接供給により、表面を洗浄され、スラリー供給孔が設けられていない下定盤側の面は、SiC基板とキャリアプレートとの隙間から供給された水によって洗浄される。ラッピング加工で用いられたスラリーは、タンクに回収され、当該タンクから再度供給される。
具体的には、加工工程において加工前の炭化ホウ素砥粒の平均粒径に対する加工後の炭化ホウ素砥粒の平均粒径の比が0.91以上1.2以下である程度に、炭化ホウ素砥粒の粒径の変化を抑制できる。ここで、該比に1より大きい数値が含まれる理由は、加工工程において、炭化ホウ素砥粒が二次凝集し、一部の炭化ホウ素砥粒の粒径が加工前よりも大きくなる場合があるためである。
このように、このラッピング加工では、炭化ホウ素砥粒の粒径の管理を容易にすると共に、コスト削減を実現することができ、加えて環境負荷を低減することができるとともにクラックの発生を抑制できる。
まず、図5に示したSiC単結晶製造装置を用いてn型SiC単結晶インゴットを作製した。
まず、種結晶Sとして、(0001)面を主面とし、オフ角4°で、直径200mm、厚さ5.0mmの4H-SiC単結晶を用いた。結晶成長初期においては、坩堝本体側壁の種結晶表面と同一高さ近傍の温度(Tr)が30~150℃で、坩堝蓋部外壁の平面視して種結晶中央部の温度(Tg)が50~250℃であって、かつ、TrとTgとの温度差(ΔT)が20~100℃となるように坩堝温度を制御した。結晶成長に合わせて、断熱材30を、断熱材30の原料側端面(下面)が単結晶の表面より蓋部側であってかつ断熱材30の原料側端面と単結晶の表面との成長方向の距離が10mm以内になるように段階的に移動しながら、結晶成長を行った。また、窒素ガスは、成長開始から1時間が経過した時点で、分圧554Paで45分間導入した。
こうして得られたn型SiC単結晶インゴットは、直径が208mm、高さが20.2mmであった。
次いで、板厚を測定したSiC基板を研磨装置のキャリアプレートに載置し、ラッピング加工を行った。ラッピング加工用スラリーは、水に所定量の炭化ホウ素砥粒および添加剤としてのAD8(10体積%)を添加し、分散することにより得られた。炭化ホウ素砥粒としては、粒度F320(JIS R6001)を用いた。ここで、スラリー中の添加剤としてのグリセリン(アイケミテクノ社製)の割合は、6体積%とした。
ラッピング加工は、ラッピング加工用スラリーを供給量16L/minで供給しながら遊離砥粒方式で行った。ラッピング加工用スラリーは、循環して使用した。
ラッピング加工後、加工前と同様の方法でスラリー中炭化ホウ素砥粒の粒径分布の測定を行うとともに加工前と同様の方法で板厚の測定を行い、加工速度の算出も行った。このラッピング加工において、15枚のSiC基板の加工速度の平均は、18μm/hであった。
測定を行った後に、先のラッピング加工で用いたスラリーを供給し、スラリーを循環させながら2回目のラッピング加工および測定を行った。また、実施例1では、これを繰り返し、合計8回のラッピング加工および測定を行った。
SiC単結晶インゴットの作製において、原料最高温度点の温度を20℃上昇させる変更を行うと共に、ラッピング後の基板厚みの面内ばらつきが実施例1より小さくなるようにラッピング加工における研磨装置の駆動条件を調整し、さらに窒素ガスの導入量を変えた以外は、実施例と同様な条件にてSiC単結晶基板を得た。
断熱材30を有さないSiC単結晶製造装置を用い、種結晶Sとして直径150mmのものを用い、結晶成長中にTr、Tg、及び、ΔTを制御せず、ラッピング工程において、添加剤(AD8)を含まないラッピング加工用スラリーを用いると共に、窒素ガスの導入量を変えた以外は実施例と同様な条件にてSiC単結晶基板を得た。
原料最高温度点の温度を10℃上昇させる変更を行うと共に、窒素ガスの導入量を変えた以外は比較例1と同様な条件にてSiC単結晶基板を得た。
断熱材30を有さないSiC単結晶製造装置を用いてSiC単結晶インゴットを作製し、ラッピング工程において、添加剤(AD8)を含まないラッピング加工用スラリーを用いると共に、窒素ガスの導入量を変えた以外は、実施例1と同様な条件にてSiC単結晶基板を得た。
実施例1、実施例2、比較例1~3のSiC単結晶基板について、所定の点のドーパントである窒素の濃度を、積層面から厚み方向に向かってSIMSを用いて測定した。表1に結果を示す。表1中の各点の窒素濃度はそれぞれ、深さ3μmの面における中心点Oと、外周から1.0mmの点p1と、それらの間を4等分した3点(p2、p3、p4)である(図1参照)。また、表1中の面内平均窒素濃度はそれら5点の平均窒素濃度であり、5点の窒素濃度分布は中心の窒素濃度に対する、他の4点のうち、中心の窒素濃度との差が最も大きい点の窒素濃度の差の割合を示すものである。また、表1中の所定のメッシュ数の割合〔%〕は、基板を10mm角のメッシュに分けて、各メッシュ内の中心点でのドーパント濃度が、面内中心を含むメッシュM0のドーパント濃度に対して±20%以内にあるメッシュの割合である。図10に10mm角のメッシュに分け方を模式的に示す。図10は10mm角のメッシュの分け方の一例であってこれに限定されない。
実施例1及び2は、比較例1~3に比べて、SORI及び基板厚みのいずれも大幅に低減されていた。
また、実施例1及び2(8インチ基板)は、比較例1及び2(6インチ基板)に匹敵する程度を超え、エッチピット総数も十分に低減されており、かつ、TDエッチピット密度及びBPDエッチピット密度のいずれについても大幅に低減されていた。この結果は、実施例1及び2において、より精密な温度制御を行った効果であると考えられる。
また、実施例1及び2(8インチ基板)は、比較例3(8インチ基板)に比べて、エッチピット総数、TDエッチピット密度及びBPDエッチピット密度のいずれについても大幅に低減されていた。この結果から、8インチのSiC単結晶基板の作製においては、6インチのSiC単結晶基板の作製に比べて、より精密な温度制御の影響が大きいことが分かった。
Claims (6)
- 8インチのn型SiC単結晶基板であって、
直径が195~205mmの範囲であり、
板厚が300~650μmの範囲であり、
主面から深さ方向で板厚に対して5%以内の面内の、任意に選択された少なくとも5点において、ドーパント濃度が2×1018/cm3以上、6×1019/cm3以下である、n型SiC単結晶基板。 - 主面から同一深さにおける面内中心でのドーパント濃度に対して、最外周から1mm以内の点を含む、半径方向の少なくとも5点のドーパント濃度が±20%以内である、請求項1に記載のn型SiC単結晶基板。
- 主面から同一深さにおける面内中心でのドーパント濃度に対して、最外周から1mm以内の点を含む、半径方向の少なくとも5点のドーパント濃度が±15%以内である、請求項1に記載のn型SiC単結晶基板。
- 主面から同一深さにおける面内中心でのドーパント濃度に対して、最外周から1mm以内の点を含む、半径方向の少なくとも5点のドーパント濃度が±10%以内である、請求項1に記載のn型SiC単結晶基板。
- 8インチのn型SiC単結晶基板であって、
直径が195~205mmの範囲であり、
ドーパント濃度が2×1018/cm3以上、6×1019/cm3以下であり、
主面から同一深さにおける面を10mm角のメッシュに分割し、各メッシュ内の任意の点でのドーパント濃度をそのメッシュのドーパント濃度とした場合に、ドーパント濃度が、面内中心を含むメッシュのドーパント濃度に対して±20%以内であるメッシュの割合が80%以上である、n型SiC単結晶基板。 - 請求項1~5のいずれか一項に記載のn型SiC単結晶基板と、
前記n型SiC単結晶基板の表面に積層されたSiCエピタキシャル層と、を有する、SiCエピタキシャルウェハ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023086144A JP7435880B2 (ja) | 2023-03-09 | 2023-05-25 | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
JP2024017926A JP2024036652A (ja) | 2023-03-09 | 2024-02-08 | n型SiC単結晶基板、SiCエピタキシャルウェハ及びn型SiC単結晶インゴット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023036661A JP7287588B1 (ja) | 2022-06-02 | 2023-03-09 | n型SiC単結晶基板 |
JP2023086144A JP7435880B2 (ja) | 2023-03-09 | 2023-05-25 | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023036661A Division JP7287588B1 (ja) | 2022-06-02 | 2023-03-09 | n型SiC単結晶基板 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024017926A Division JP2024036652A (ja) | 2023-03-09 | 2024-02-08 | n型SiC単結晶基板、SiCエピタキシャルウェハ及びn型SiC単結晶インゴット |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023178236A JP2023178236A (ja) | 2023-12-14 |
JP7435880B2 true JP7435880B2 (ja) | 2024-02-21 |
Family
ID=89124004
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023086144A Active JP7435880B2 (ja) | 2023-03-09 | 2023-05-25 | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
JP2024017926A Pending JP2024036652A (ja) | 2023-03-09 | 2024-02-08 | n型SiC単結晶基板、SiCエピタキシャルウェハ及びn型SiC単結晶インゴット |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024017926A Pending JP2024036652A (ja) | 2023-03-09 | 2024-02-08 | n型SiC単結晶基板、SiCエピタキシャルウェハ及びn型SiC単結晶インゴット |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7435880B2 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016051975A1 (ja) | 2014-10-01 | 2016-04-07 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板 |
WO2016113924A1 (ja) | 2015-01-13 | 2016-07-21 | 住友電気工業株式会社 | 半導体積層体 |
JP2017065986A (ja) | 2015-09-30 | 2017-04-06 | 新日鐵住金株式会社 | 低抵抗率炭化珪素単結晶基板の製造方法 |
JP6594146B2 (ja) | 2015-09-29 | 2019-10-23 | 昭和電工株式会社 | 炭化珪素単結晶インゴットの製造方法 |
JP6598150B2 (ja) | 2015-07-24 | 2019-10-30 | 昭和電工株式会社 | 単結晶SiC基板の製造方法 |
JP2019189499A (ja) | 2018-04-26 | 2019-10-31 | 昭和電工株式会社 | SiC単結晶成長装置およびSiC単結晶の成長方法 |
JP2020017627A (ja) | 2018-07-25 | 2020-01-30 | 株式会社デンソー | SiCウェハ及びSiCウェハの製造方法 |
WO2021025077A1 (ja) | 2019-08-06 | 2021-02-11 | 株式会社デンソー | SiC基板の製造方法 |
WO2021133626A1 (en) | 2019-12-27 | 2021-07-01 | Cree, Inc. | Large diameter silicon carbide wafers |
-
2023
- 2023-05-25 JP JP2023086144A patent/JP7435880B2/ja active Active
-
2024
- 2024-02-08 JP JP2024017926A patent/JP2024036652A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016051975A1 (ja) | 2014-10-01 | 2016-04-07 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板 |
WO2016113924A1 (ja) | 2015-01-13 | 2016-07-21 | 住友電気工業株式会社 | 半導体積層体 |
JP6598150B2 (ja) | 2015-07-24 | 2019-10-30 | 昭和電工株式会社 | 単結晶SiC基板の製造方法 |
JP6594146B2 (ja) | 2015-09-29 | 2019-10-23 | 昭和電工株式会社 | 炭化珪素単結晶インゴットの製造方法 |
JP2017065986A (ja) | 2015-09-30 | 2017-04-06 | 新日鐵住金株式会社 | 低抵抗率炭化珪素単結晶基板の製造方法 |
JP2019189499A (ja) | 2018-04-26 | 2019-10-31 | 昭和電工株式会社 | SiC単結晶成長装置およびSiC単結晶の成長方法 |
JP2020017627A (ja) | 2018-07-25 | 2020-01-30 | 株式会社デンソー | SiCウェハ及びSiCウェハの製造方法 |
WO2021025077A1 (ja) | 2019-08-06 | 2021-02-11 | 株式会社デンソー | SiC基板の製造方法 |
WO2021133626A1 (en) | 2019-12-27 | 2021-07-01 | Cree, Inc. | Large diameter silicon carbide wafers |
Also Published As
Publication number | Publication date |
---|---|
JP2024036652A (ja) | 2024-03-15 |
JP2023178236A (ja) | 2023-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6584428B2 (ja) | 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板 | |
CN106435733B (zh) | 碳化硅单晶和碳化硅单晶晶片 | |
JP4786223B2 (ja) | エピタキシャル炭化珪素単結晶基板及びその製造方法 | |
JP4830973B2 (ja) | 炭化珪素単結晶の製造方法 | |
KR102607269B1 (ko) | SiC 단결정 기판 | |
KR102616150B1 (ko) | SiC 단결정 기판 | |
JP4850663B2 (ja) | SiC単結晶の製造方法及びSiC単結晶基板の製造方法 | |
JP7435880B2 (ja) | n型SiC単結晶基板及びSiCエピタキシャルウェハ | |
JP7287588B1 (ja) | n型SiC単結晶基板 | |
JP7245586B1 (ja) | n型SiC単結晶基板 | |
JP2018104231A (ja) | SiCウェハの製造方法及びSiCウェハ | |
TWI853592B (zh) | n型碳化矽單結晶基板 | |
JP4937967B2 (ja) | 炭化珪素エピタキシャルウェハの製造方法 | |
TWI851250B (zh) | 碳化矽單結晶基板 | |
JP5991161B2 (ja) | 炭化珪素基板および炭化珪素インゴット、ならびにこれらの製造方法 | |
WO2022110265A1 (zh) | 碳化硅单晶片、晶体及制备方法、半导体器件 | |
JP2018058749A (ja) | 炭化珪素単結晶育成用の種結晶基板及びその製造方法並びに炭化珪素単結晶の製造方法 | |
JP2016188174A (ja) | 炭化珪素基板および炭化珪素インゴット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230525 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230613 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7435880 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |