JP7435367B2 - Organic solvent recovery system - Google Patents

Organic solvent recovery system Download PDF

Info

Publication number
JP7435367B2
JP7435367B2 JP2020144541A JP2020144541A JP7435367B2 JP 7435367 B2 JP7435367 B2 JP 7435367B2 JP 2020144541 A JP2020144541 A JP 2020144541A JP 2020144541 A JP2020144541 A JP 2020144541A JP 7435367 B2 JP7435367 B2 JP 7435367B2
Authority
JP
Japan
Prior art keywords
organic solvent
gas
cooling
flow path
recovery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020144541A
Other languages
Japanese (ja)
Other versions
JP2021104505A5 (en
JP2021104505A (en
Inventor
大樹 河野
勉 杉浦
将博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo MC Corp
Original Assignee
Toyobo MC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020144541A priority Critical patent/JP7435367B2/en
Application filed by Toyobo MC Corp filed Critical Toyobo MC Corp
Priority to CN202080090088.4A priority patent/CN114867543B/en
Priority to PCT/JP2020/047402 priority patent/WO2021132071A1/en
Priority to KR1020227025050A priority patent/KR20220116284A/en
Priority to EP20904424.7A priority patent/EP4082649A4/en
Priority to TW109145451A priority patent/TW202130404A/en
Publication of JP2021104505A publication Critical patent/JP2021104505A/en
Publication of JP2021104505A5 publication Critical patent/JP2021104505A5/ja
Application granted granted Critical
Publication of JP7435367B2 publication Critical patent/JP7435367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、有機溶剤を含有する排ガスから有機溶剤を濃縮および回収する有機溶剤回収システムに関する。 The present invention relates to an organic solvent recovery system for concentrating and recovering organic solvents from exhaust gas containing organic solvents.

従来、有機溶剤を含有する排ガスから有機溶剤を回収する処理システムとして、冷却凝縮装置および吸着素子を使用した濃縮装置を組み合わせたものが知られている。冷却凝縮装置は、有機溶剤を凝縮回収し、排ガス中の有機溶剤濃度を低減させる。吸着素子を使用した濃縮装置は、冷却凝縮装置から排出された有機溶剤濃度が低減された排ガスを吸着素子に接触させて有機溶剤を吸着させて更に排ガス中の有機溶剤濃度を低減させるとともに、有機溶剤を吸着した吸着材に高温のガスを吹き付けて有機溶剤を脱着させて高濃度の有機溶剤を含有する脱着ガスとして排出する。脱着ガスは冷却凝縮装置に返送され、再処理される(特許文献1、2参照)。 BACKGROUND ART Conventionally, as a treatment system for recovering organic solvents from exhaust gas containing organic solvents, a combination of a cooling condensing device and a concentrating device using an adsorption element is known. The cooling condensing device condenses and recovers the organic solvent to reduce the concentration of the organic solvent in the exhaust gas. A concentrator using an adsorption element brings the flue gas discharged from the cooling condensation equipment, which has a reduced concentration of organic solvent, into contact with the adsorption element to adsorb the organic solvent, further reducing the concentration of organic solvent in the flue gas, and High-temperature gas is blown onto the adsorbent that has adsorbed the solvent to desorb the organic solvent and discharge it as a desorption gas containing a high concentration of organic solvent. The desorbed gas is returned to the cooling condensation device and reprocessed (see Patent Documents 1 and 2).

特開2016-101553号公報JP 2016-101553 Publication 特開2017-991号公報JP 2017-991 Publication

生産設備においては、一定量のクリーンガスが補給される。従って、補給ガス分の排ガスが外部環境へ排出される。近年、世界的な排ガス規制に伴い、極低濃度までの有機溶剤の除去が求められており、高度な処理効率が求められる。 Production facilities are supplied with a certain amount of clean gas. Therefore, exhaust gas equivalent to the makeup gas is discharged to the outside environment. In recent years, with global exhaust gas regulations, there has been a need to remove organic solvents down to extremely low concentrations, and a high level of processing efficiency is required.

本発明は上記課題を背景になされたもので、排ガスから有機溶剤をより高効率に回収することが可能な有機溶剤回収システムを提供することを課題とするものである。 The present invention was made in view of the above problems, and an object of the present invention is to provide an organic solvent recovery system that can recover organic solvents from exhaust gas with higher efficiency.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。即ち本発明は、以下の通りである。
1.生産設備から排出される有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、前記有機溶剤を含有する前記排ガスを冷却することで、前記有機溶剤を液化凝縮し、前記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、前記冷却処理ガスを通流させる第一通流経路と、前記第一通流経路から導入された前記冷却処理ガスに含まれる前記有機溶剤を第一吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第一処理ガスとして排出し、高温ガスを導入して前記第一吸着素子から前記有機溶剤を脱着して第一脱着ガスとして排出する第一濃縮装置と、前記第一処理ガスの一部を通流させる第二通流経路と、前記第二通流経路から導入された前記第一処理ガスに含まれる前記有機溶剤を第二吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第二処理ガスとして排出し、高温ガスを導入して前記第二吸着素子から前記有機溶剤を脱着して第二脱着ガスとして排出する第二濃縮装置と、前記第一脱着ガスおよび前記第二脱着ガスを前記冷却凝縮装置に戻す第三通流経路と、を備えた、有機溶剤回収システム。
2.前記冷却凝縮装置は、前記冷却後の前記排ガスを接触させることで凝縮した前記有機溶剤と前記冷却処理ガスとを分離させる網目状構造体と、前記網目状構造体を通過後の前記冷却処理ガスを一定時間貯留させるチャンバーと、をさらに備え、前記第一通流経路は、前記チャンバーの天井部から前記冷却処理ガスを前記第一濃縮装置に導入するように設置されている、上記1に記載の有機溶剤回収システム。
3.前記チャンバーは、前記網目状構造体から排出される前記冷却処理ガスの排気方向と対向するように前記第一通流経路の吸込みを可能にする仕切部を有する、上記2に記載の有機溶剤回収システム。
4.前記冷却凝縮装置は、冷媒との熱交換により前記冷却を行う熱交換器をさらに備える、上記1から上記3のいずれか1つに記載の有機溶剤回収システム。
5.前記第二通流経路から排出される前記第一処理ガスの一部以外である前記第一処理ガスの残部を、前記生産設備に戻す返却経路をさらに備える、上記1から上記4のいずれか1つに記載の有機溶剤回収システム。
6.前記熱交換器は、第一熱交換器と、前記第一熱交換器の前段に設けた第二熱交換器とを含み、前記第二熱交換器は、前記冷却凝縮装置に導入される前記排ガスを、前記第一処理ガスの残部との熱交換により冷却する、上記4または上記5に記載の有機溶剤回収システム。
また、以下の構成を備えてもよい。
1.有機溶剤を含有する排ガスを冷却することで、前記有機溶剤を液化凝縮し、前記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、前記冷却処理ガスの一部を通流させる第一通流経路と、吸着素子を有し、前記第一通流経路から導入された前記冷却処理ガスに含まれる前記有機溶剤を前記吸着素子にて吸着して前記有機溶剤の濃度が更に低減された清浄ガスとして排出し、高温ガスを導入して前記吸着素子から前記有機溶剤を脱着して脱着ガスとして排出する濃縮装置と、前記脱着ガスを前記冷却凝縮装置に導入する第二通流経路と、を備えた有機溶剤回収システムにおいて、前記冷却凝縮装置は、冷却後の前記排ガスを接触させることで凝縮した前記有機溶剤と前記冷却処理ガスとを分離させる網目状構造体と、当該網目状構造体を通過後の前記冷却処理ガスを一定時間貯留させるチャンバーとを備え、前記第一通流経路は、前記チャンバーの天井部から前記冷却処理ガスの一部を前記濃縮装置に導入するように設置されていることを特徴とする有機溶剤回収システム。
2.前記チャンバーは、前記網目状構造体から排出される冷却処理ガスの排気方向と対向するように前記第一通流経路の吸込みを可能にする仕切部を有することを特徴とする上記1に記載の有機溶剤回収システム。
3.前記冷却凝縮装置は、冷媒との熱交換により前記冷却を行う熱交換器を備えることを特徴とする上記1または2に記載の有機溶剤回収システム。
4.前記第二通流経路は、前記脱着部が前記脱着ガスと前記排気ガスとの合流位置より上部に設置されていることを特徴とする上記1から3のいずれか1つに記載の有機溶剤回収システム。
5.前記排ガスは生産設備から排出されるガスであり、前記第一通流経路から排出される前記冷却処理ガスの一部以外である前記冷却処理ガスの残部を、前記生産設備に戻す返却経路を備えていることを特徴とする上記1から4のいずれか1つに記載の有機溶剤回収システム。
6.前記冷却凝縮装置に導入される排ガスを、前記冷却処理ガスの残部との熱交換により冷却する第二熱交換器を、前記第一熱交換器の前段に備えていることを特徴とする上記5に記載の有機溶剤回収システム。
In order to solve the above-mentioned problems, the inventors of the present invention have made extensive studies and have finally completed the present invention. That is, the present invention is as follows.
1. An organic solvent recovery system that recovers the organic solvent from exhaust gas containing the organic solvent discharged from production equipment, the organic solvent is liquefied and condensed by cooling the exhaust gas containing the organic solvent, and the organic solvent is liquefied and condensed. a cooling condensing device that discharges a cooled processing gas with a reduced concentration of an organic solvent; a first flow path through which the cooled processing gas flows; The organic solvent is adsorbed by a first adsorption element and discharged as a first treatment gas in which the concentration of the organic solvent is further reduced, and high-temperature gas is introduced to desorb the organic solvent from the first adsorption element. a first concentrator that discharges the gas as a first desorption gas; a second flow path through which a portion of the first processing gas flows; The organic solvent is adsorbed by a second adsorption element and discharged as a second treated gas in which the concentration of the organic solvent is further reduced, and high-temperature gas is introduced to desorb the organic solvent from the second adsorption element. An organic solvent recovery system comprising: a second concentrating device for discharging the first desorbing gas and the second desorbing gas as a second desorbing gas; and a third flow path for returning the first desorbing gas and the second desorbing gas to the cooling condensing device.
2. The cooling condensing device includes a network structure that separates the condensed organic solvent and the cooling process gas by bringing the cooled exhaust gas into contact with each other, and a network structure that separates the cooling process gas after passing through the network structure. The method according to 1 above, further comprising a chamber for storing the gas for a certain period of time, and the first flow path is installed so as to introduce the cooled processing gas into the first concentrator from the ceiling of the chamber. organic solvent recovery system.
3. The organic solvent recovery according to 2 above, wherein the chamber has a partition portion that allows suction into the first flow path so as to face the exhaust direction of the cooling processing gas discharged from the network structure. system.
4. The organic solvent recovery system according to any one of 1 to 3 above, wherein the cooling condensing device further includes a heat exchanger that performs the cooling by heat exchange with a refrigerant.
5. Any one of 1 to 4 above, further comprising a return path for returning the remainder of the first processing gas other than a part of the first processing gas discharged from the second flow path to the production equipment. Organic solvent recovery system described in .
6. The heat exchanger includes a first heat exchanger and a second heat exchanger provided upstream of the first heat exchanger, and the second heat exchanger includes the 6. The organic solvent recovery system according to 4 or 5 above, wherein the exhaust gas is cooled by heat exchange with the remainder of the first treated gas.
Further, the following configuration may be provided.
1. A part of the cooled gas is passed through a cooling condensing device that cools the exhaust gas containing the organic solvent, liquefies and condenses the organic solvent, and discharges it as a cooled gas with a reduced concentration of the organic solvent. the organic solvent contained in the cooled gas introduced from the first flow path is adsorbed by the adsorption element to further increase the concentration of the organic solvent; a concentrator for discharging the organic solvent as a reduced clean gas and introducing a high-temperature gas to desorb the organic solvent from the adsorption element and discharging it as a desorption gas; and a second flow for introducing the desorption gas into the cooling condensation device. In the organic solvent recovery system, the cooling condensing device includes a network structure that separates the organic solvent condensed by contacting the cooled exhaust gas from the cooled processing gas; a chamber for storing the cooled processing gas for a certain period of time after passing through the shaped structure, and the first flow path is configured to introduce a part of the cooled processing gas into the concentrator from the ceiling of the chamber. An organic solvent recovery system that is installed in
2. 1 above, wherein the chamber has a partition portion that allows suction into the first flow path so as to face the exhaust direction of the cooling process gas discharged from the mesh structure. Organic solvent recovery system.
3. 3. The organic solvent recovery system as described in 1 or 2 above, wherein the cooling condensing device includes a heat exchanger that performs the cooling by heat exchange with a refrigerant.
4. The organic solvent recovery according to any one of 1 to 3 above, wherein the second flow path is such that the desorption section is installed above a position where the desorption gas and the exhaust gas meet. system.
5. The exhaust gas is gas discharged from the production equipment, and includes a return route for returning the remainder of the cooling processing gas other than a part of the cooling processing gas discharged from the first flow path to the production equipment. 5. The organic solvent recovery system according to any one of 1 to 4 above.
6. 5 above, characterized in that a second heat exchanger that cools the exhaust gas introduced into the cooling condensing device by heat exchange with the remainder of the cooling process gas is provided at a stage upstream of the first heat exchanger. The organic solvent recovery system described in .

本発明による有機溶剤回収システムは、上記構成により、高効率に有機溶剤の回収および外部環境への有機溶剤の排出量を削減できる。 With the above configuration, the organic solvent recovery system according to the present invention can highly efficiently recover organic solvents and reduce the amount of organic solvents discharged into the external environment.

本発明の実施の形態における有機溶剤回収システムの構成図の一例である。1 is an example of a configuration diagram of an organic solvent recovery system according to an embodiment of the present invention. 本発明の実施の形態における有機溶剤回収システムの別の構成図の一例である。It is an example of another block diagram of the organic solvent recovery system in embodiment of this invention. 本発明の実施の形態における有機溶剤回収システムのさらに別の構成図の一例である。It is an example of still another block diagram of the organic solvent recovery system in embodiment of this invention.

以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す図の実施の形態においては、同一または対応する部分については、適宜省略し、その説明についても繰り返さないことにする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments shown in the figures below, the same or corresponding parts will be omitted as appropriate, and the description thereof will not be repeated.

図1は、本発明の実施の形態における有機溶剤回収システム1の構成図である。有機溶剤回収システム1は、冷却凝縮装置100、濃縮装置200、第一通流経路300、第二通流経路400とで構成されている。 FIG. 1 is a configuration diagram of an organic solvent recovery system 1 in an embodiment of the present invention. The organic solvent recovery system 1 includes a cooling condensing device 100, a concentrating device 200, a first flow path 300, and a second flow path 400.

冷却凝縮装置100は、冷却部110と分離部120およびチャンバー123を有している。有機溶剤を含有する排ガス(G1)は冷却部110を通過することによって冷却し、それに伴って該有機溶剤を液化凝縮させる。次に該排ガス(G2)は、分離部120を通過することによって、液化凝縮された冷却凝縮液(L1)と有機溶剤濃度の低減された冷却処理ガス(G3)とに分離される。最後にチャンバー123を通じて、冷却処理ガスの一部(吸着入口ガス)(G4)が濃縮装置200へ供給するように分配されて、冷却凝縮装置100から排出される。 The cooling condensing device 100 includes a cooling section 110, a separation section 120, and a chamber 123. The exhaust gas (G1) containing an organic solvent is cooled by passing through the cooling section 110, and the organic solvent is liquefied and condensed accordingly. Next, the exhaust gas (G2) passes through the separation section 120 and is separated into a liquefied and condensed cooled condensate (L1) and a cooled treated gas (G3) with a reduced organic solvent concentration. Finally, through the chamber 123, a portion of the cooling process gas (adsorption inlet gas) (G4) is distributed to be supplied to the concentrator 200 and discharged from the cooling condenser 100.

冷却部110の冷却手段・構成は特に限定しないが、冷却水、冷水、ブラインなどの冷媒と排ガスとの間接的な熱交換によって冷却する第一熱交換器111などがある。冷却温度などの条件も回収対象となる有機溶剤によって適宜決めればよい。 The cooling means and structure of the cooling unit 110 are not particularly limited, but include a first heat exchanger 111 that performs cooling by indirect heat exchange between a refrigerant such as cooling water, cold water, or brine, and exhaust gas. Conditions such as cooling temperature may be determined as appropriate depending on the organic solvent to be recovered.

また、冷却部110は、第一熱交換器111の前に、冷却処理ガスの残部(リターンガス)(G5)と排ガス(G1)との熱交換によって排ガス(G1)を冷却させる第二熱交換器112を設けてもよい。第一熱交換器111に必要な伝面や冷媒量が削減されるからである。 In addition, the cooling unit 110 is provided with a second heat exchanger that cools the exhaust gas (G1) by heat exchange between the remainder of the cooling process gas (return gas) (G5) and the exhaust gas (G1) before the first heat exchanger 111. A container 112 may also be provided. This is because the transmission surface and the amount of refrigerant required for the first heat exchanger 111 are reduced.

分離部120の分離手段・構成は特に限定しないが、デミスター、フィルター、メッシュなどの液滴を接触して捕捉する網目状構造体121などがある。網目状構造体121に捕捉された冷却凝縮液(L1)は、重力によって綿状構造体121下部に配置されたタンク122へ集液され、回収液(L3)として回収される。 The separation means and structure of the separation section 120 are not particularly limited, but include a demister, a filter, a mesh structure 121 that contacts and captures droplets, and the like. The cooled condensate (L1) captured by the network structure 121 is collected by gravity into a tank 122 disposed below the cotton structure 121, and is recovered as a recovery liquid (L3).

チャンバー123は、一定容量の空間を有する構造体である。濃縮装置200へ供給する冷却処理ガスの一部(吸着入口ガス)(G4)と、冷却処理ガスの残部(リターンガス)(G5)に分配される。 Chamber 123 is a structure having a certain volume of space. It is distributed into a part of the cooled process gas (adsorption inlet gas) (G4) to be supplied to the concentrator 200 and the remainder of the cooled process gas (return gas) (G5).

濃縮装置200は、ガスが接触することによって、含有する有機溶剤を吸着し、加熱ガスを接触することによって、吸着した有機溶剤を脱着させる吸着材を含む吸着素子210を有している。また、吸着素子210は、脱着部(脱着ゾーン)211と吸着部(吸着ゾーン)212とを含んでいる。吸着部212では、冷却処理ガスの一部(吸着入口ガス)(G4)が導入されることで、吸着材に冷却処理ガスの一部(吸着入口ガス)(G4)が接触することで、冷却処理ガスの一部(吸着入口ガス)(G4)に含有される有機溶剤が吸着材に吸着され、これにより冷却処理ガスの一部(吸着入口ガス)(G4)が清浄化されて清浄ガス(G6)として排出される。 The concentrator 200 includes an adsorption element 210 that includes an adsorbent that adsorbs the contained organic solvent when it comes into contact with gas, and desorbs the adsorbed organic solvent when it comes into contact with heated gas. Further, the adsorption element 210 includes a desorption section (desorption zone) 211 and an adsorption section (adsorption zone) 212. In the adsorption section 212, a part of the cooling process gas (adsorption inlet gas) (G4) is introduced, and a part of the cooling process gas (adsorption inlet gas) (G4) comes into contact with the adsorbent. The organic solvent contained in a part of the processing gas (adsorption inlet gas) (G4) is adsorbed by the adsorbent, thereby cleaning a part of the cooling processing gas (adsorption inlet gas) (G4) and converting it into a clean gas ( G6).

脱着部211では、吸着材に冷却処理ガスの一部(吸着入口ガス)(G4)よりも高温のガス(G7)が導入されることで、有機溶剤が吸着材から脱着され、これにより有機溶剤を含有する脱着ガス(G8)として排出される。 In the desorption section 211, the organic solvent is desorbed from the adsorbent by introducing a gas (G7) with a higher temperature than a part of the cooling process gas (adsorption inlet gas) (G4) into the adsorbent. is discharged as a desorption gas (G8) containing

吸着素子210に含まれる吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。活性炭と疎水性ゼオライトは、低濃度の有機化合物を吸着、脱着する機能に優れており、古くから吸着材として各種の装置に利用されている。 As the adsorbent contained in the adsorption element 210, activated alumina, silica gel, activated carbon material, and zeolite are widely used, and activated carbon and hydrophobic zeolite are particularly preferably used. Activated carbon and hydrophobic zeolite have excellent ability to adsorb and desorb organic compounds at low concentrations, and have been used as adsorbents in various devices for a long time.

また、本発明の実施形態における濃縮装置の具体的な構成は特に限定しないが、図1に示す通り、回転軸230と、回転軸230の周りに設けられた吸着素子210とを備え、回転軸231周りに吸着素子210を回転させることにより、吸着部212において、冷却処理ガスの一部(吸着入口ガス)(G4)中の有機溶剤を吸着した吸着材が連続的に脱着部211に移動する構成が知られている。 Further, although the specific configuration of the concentrator in the embodiment of the present invention is not particularly limited, as shown in FIG. By rotating the adsorption element 210 around 231, the adsorbent that has adsorbed the organic solvent in a part of the cooling process gas (adsorption inlet gas) (G4) in the adsorption section 212 continuously moves to the desorption section 211. The configuration is known.

本発明の実施形態における濃縮装置200は、図1に示す通り、脱着部211は吸着部212よりも下部に配置された方が好ましい。脱着ガス(G8)中に含まれる有機溶剤の一部が液化凝縮して脱着凝縮液(L2)が発生した場合においても、吸着部212に脱着凝縮液(L2)が付着しにくくなるからである。脱着凝縮液(L2)は脱着部211より下部へ落ち、脱着部の外装の内面などを伝って回収される。より好ましくは、図1に示す通り、脱着部211は下に傾斜をつけた方が良い。脱着凝縮液(L2)がより下へ落ち易くなるためである。 As shown in FIG. 1, in the concentrator 200 according to the embodiment of the present invention, the desorption section 211 is preferably disposed below the adsorption section 212. This is because even if a part of the organic solvent contained in the desorption gas (G8) is liquefied and condensed to generate a desorption condensate (L2), it becomes difficult for the desorption condensate (L2) to adhere to the adsorption section 212. . The desorption condensate (L2) falls below the desorption section 211 and is collected along the inner surface of the exterior of the desorption section. More preferably, as shown in FIG. 1, the attachment/detachment part 211 is sloped downward. This is because the desorption condensate (L2) falls more easily to the bottom.

濃縮装置200は、脱着部211の脱着処理が完了した部分が吸着部212への移行の前に移行するパージ部(図示せず)を有していてもよい。清浄ガス(G6)の一部がパージ部に導入され、パージ部から排出されたパージ部出口ガスが、吸着部212に導入されるような構成であってもよい。清浄ガス(G6)により脱着完了した吸着材をパージすることで、吸着材に残る脱着ガス(G8)が清浄ガス(G6)へ混入することを防ぎ、吸着材を冷却することができるからである。 The concentrator 200 may include a purge section (not shown) to which a portion of the desorption section 211 that has completed the desorption process is transferred to the adsorption section 212 before being transferred to the adsorption section 212 . A configuration may be adopted in which a part of the clean gas (G6) is introduced into the purge section, and the purge section outlet gas discharged from the purge section is introduced into the adsorption section 212. This is because by purging the adsorbent that has completed desorption with the clean gas (G6), it is possible to prevent the desorption gas (G8) remaining in the adsorbent from mixing with the clean gas (G6) and to cool the adsorbent. .

濃縮装置200は、脱着に使用する高温のガス(G7)は、清浄ガス(G6)の一部を再生ヒータ250などの加熱手段を用いて高温状態にしたものが好ましい。吸着部212で有機溶剤含有ガスの処理風量が増えないからである。排ガス(G1)の温度が50~200℃の温度の場合においては、排ガス(G1)の一部を再生ヒータ250などで昇温させて使用した方がより好ましい。高温の排ガス(G1)を脱着に用いることで、再生ヒータ250の使用ユーティリティを削減でき、排ガス(G1)の温度によっては脱着に再生ヒータ250が不要になるからである。また、冷却凝縮装置100へ排ガス(G1)および脱着ガス(G8)を通過させる割合は、排ガス(G1)が0%~50%であり、脱着ガス(G5)が50%~100%が想定される。 In the concentrator 200, the high temperature gas (G7) used for desorption is preferably a part of the clean gas (G6) heated to a high temperature using heating means such as the regeneration heater 250. This is because the processing air volume of the organic solvent-containing gas in the adsorption section 212 does not increase. When the temperature of the exhaust gas (G1) is between 50 and 200° C., it is more preferable to raise the temperature of a part of the exhaust gas (G1) using the regeneration heater 250 or the like. This is because by using the high temperature exhaust gas (G1) for desorption, the utility of the regeneration heater 250 can be reduced, and depending on the temperature of the exhaust gas (G1), the regeneration heater 250 becomes unnecessary for desorption. Furthermore, it is assumed that the proportion of the exhaust gas (G1) and desorption gas (G8) passing through the cooling condensing device 100 is 0% to 50% for the exhaust gas (G1) and 50% to 100% for the desorption gas (G5). Ru.

第一通流経路300は、冷却処理ガスの一部(吸着入口ガス)(G4)をチャンバー123から濃縮装置200へ導入する部位である。第一通流経路300のチャンバー123への接続口は、チャンバー123の天井部が好ましい。分離部120で捕捉しきれなかった僅かな液滴の濃縮装置200への侵入を抑制し、後述する濃縮装置200の吸着素子210の濡れによる性能低下・強度低下などを防ぐためである。さらに好ましくは、冷却処理ガス(G3)の通気方向対して、対向するように冷却処理ガスの一部(吸着入口ガス)(G4)を取り出すようにした方が良い。より液滴の侵入を防ぐことができる。このほか、冷却処理ガスの一部(吸着入口ガス)(G4)の取り出し口に、上記綿状構造体121と類似の液滴侵入防止部材を設けても良いし、液滴を気化させるための加熱器を設けても良い。 The first flow path 300 is a part that introduces a part of the cooling process gas (adsorption inlet gas) (G4) from the chamber 123 to the concentrator 200. The connection port of the first flow path 300 to the chamber 123 is preferably the ceiling of the chamber 123. This is to suppress the intrusion of small droplets that could not be captured by the separation unit 120 into the concentrator 200, and to prevent performance deterioration and strength deterioration due to wetting of the adsorption element 210 of the concentrator 200, which will be described later. More preferably, a part of the cooling processing gas (adsorption inlet gas) (G4) is taken out so as to be opposite to the ventilation direction of the cooling processing gas (G3). Intrusion of droplets can be further prevented. In addition, a droplet intrusion prevention member similar to the above-mentioned cotton-like structure 121 may be provided at the outlet of a part of the cooling process gas (adsorption inlet gas) (G4), A heater may also be provided.

第二通流経路400は、脱着ガス(G8)を冷却凝縮装置100の排ガス(G1)導入部に返送する部位である。第二通流経路400は、脱着部211は、冷却凝縮装置100へ供給される排ガス(G1)の導入部よりもより上部に配置されるように接続されることが好ましい。前記濃縮装置200の脱着ガス(G8)から発生した前記脱着凝縮液(L2)が、冷却凝縮装置100へ移行しやすいからである。さらに好ましくは、冷却凝縮装置100の排ガス(G1)導入部およびタンク122の二か所に通気されるように構成された方が良い。脱着ガス(G8)から発生した前記脱着凝縮液(L2)が直接タンク122へ回収されやすくなるからである。 The second flow path 400 is a part that returns the desorption gas (G8) to the exhaust gas (G1) introduction part of the cooling condensing device 100. It is preferable that the second flow path 400 is connected such that the desorption section 211 is disposed higher than the introduction section of the exhaust gas (G1) supplied to the cooling condensing device 100. This is because the desorption condensate (L2) generated from the desorption gas (G8) of the concentrator 200 easily moves to the cooling condensation device 100. More preferably, it is configured so that the exhaust gas (G1) inlet of the cooling condensing device 100 and the tank 122 are ventilated. This is because the desorption condensate (L2) generated from the desorption gas (G8) is easily collected directly into the tank 122.

本発明の実施形態における有機溶剤回収システム1の濃縮装置200の脱着に使用する高温のガス(G7)は、前述の通り清浄ガス(G6)の一部を再生ヒータ250などの加熱手段を用いて高温状態にしたものが好ましいが、排ガス(G1)の温度が50~200℃の温度の場合においては、排ガス(G1)の一部を再生ヒータ23などで昇温させて使用した方がより好ましい。高温の排ガスを脱着に用いることで、再生ヒータ23の使用ユーティリティを削減でき、排ガス(G1)の温度によっては脱着に再生ヒータ23が不要になるからである。また、冷却回収装置10へ排ガス(G1)および脱着ガス(G5)を通過させる割合は、排ガス(G1)が0%~50%であり、脱着ガス(G5)が50%~100%が想定される。 The high temperature gas (G7) used for desorption in the concentrator 200 of the organic solvent recovery system 1 in the embodiment of the present invention is obtained by converting a part of the clean gas (G6) using a heating means such as the regeneration heater 250 as described above. It is preferable to heat the exhaust gas (G1) to a high temperature, but if the temperature of the exhaust gas (G1) is between 50 and 200°C, it is more preferable to raise the temperature of a part of the exhaust gas (G1) using the regeneration heater 23 or the like. . This is because by using high-temperature exhaust gas for desorption, the utility of the regeneration heater 23 can be reduced, and depending on the temperature of the exhaust gas (G1), the regeneration heater 23 becomes unnecessary for desorption. Furthermore, it is assumed that the proportion of the exhaust gas (G1) and desorption gas (G5) passing through the cooling recovery device 10 is 0% to 50% for the exhaust gas (G1) and 50% to 100% for the desorption gas (G5). Ru.

排ガス(G1)は、生産設備から排出されるガスである場合、冷却処理ガスの残部(リターンガス)(G5)は、生産設備に戻される構成としてもよい。 When the exhaust gas (G1) is a gas discharged from the production equipment, the remainder of the cooling process gas (return gas) (G5) may be returned to the production equipment.

冷却処理ガスの残部(リターンガス)(G5)に含まれる有機溶剤濃度を更に低減したい場合、図2に示すように、冷却処理ガスの残部(リターンガス)(G5)を処理する濃縮装置500を追加導入してもよい。また、清浄ガス(G6)に含まれる有機溶剤濃度を更に低減したい場合、図3に示すように、清浄空気(G6)を処理する濃縮装置600を追加導入してもよい。濃縮装置500や濃縮装置600は、濃縮装置200と同じ構成でも別の構成であってもよい。また、追加導入する濃縮装置数に制限はない。何れの濃縮装置から排出される脱着ガスは、第二通流経路400を経由して、冷却凝縮装置100の排ガス(G1)導入部に返送される。 If it is desired to further reduce the concentration of organic solvent contained in the remainder of the cooling process gas (return gas) (G5), as shown in FIG. It may be additionally introduced. Moreover, if it is desired to further reduce the organic solvent concentration contained in the clean gas (G6), as shown in FIG. 3, a concentrating device 600 for processing the clean air (G6) may be additionally introduced. The concentrator 500 and the concentrator 600 may have the same configuration as the concentrator 200 or a different configuration. Furthermore, there is no limit to the number of additional concentrators to be introduced. The desorption gas discharged from either of the concentrators is returned to the exhaust gas (G1) introduction section of the cooling condensing device 100 via the second flow path 400.

本発明の実施形態では、排ガス(G1)に含有される有機溶剤としては、1℃~50℃の冷却にて液化して回収できる有機溶剤が挙げられる。有機溶剤としては、たとえば、-メチル-2-ピロリドン、-エチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またn-デカンである。これらは例示であり、これらに限定されることはない。含有される有機溶剤は、1種でも複数種でもよい。 In the embodiment of the present invention, the organic solvent contained in the exhaust gas (G1) includes an organic solvent that can be liquefied and recovered by cooling at 1° C. to 50° C. Examples of organic solvents include N -methyl-2-pyrrolidone, N -ethyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and n-decane. These are examples and are not limited to these. The number of organic solvents contained may be one or more.

上記開示した実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 The embodiments disclosed above are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the claims, and includes all changes within the meaning and scope equivalent to the claims.

本発明は、各種工場や研究施設等の生産設備から排出される有機溶剤を含有する排ガスを処理する装置に利用可能である。 INDUSTRIAL APPLICATION This invention can be utilized for the apparatus which processes the exhaust gas containing the organic solvent discharged|emitted from production equipment, such as various factories and a research facility.

1 有機溶剤回収システム、50 排ガス導入経路、60 返還経路、100 冷却凝縮置、110 冷却部、111 第一熱交換器、112 第二熱交換器、120 分離部、121 網目状構造体、122 タンク、123 チャンバー、200 濃縮装置、210 吸着素子、211 脱着部、212 吸着部、230 回転軸、250 再生ヒータ、300 第一第二通流経路、400 第二通流経路、500 濃縮装置、600 濃縮装置、G1 排ガス、G2 冷却後の排ガス、G3 冷却処理ガス、G4 冷却処理ガスの一部、G5 冷却処理ガスの残部、G6 清浄ガス、G7 高温のガス、G8 脱着ガス、L1 冷却凝縮液、L2 脱着凝縮液、L3 回収液。 1 organic solvent recovery system, 50 exhaust gas introduction route, 60 return route, 100 cooling condensation unit, 110 cooling unit, 111 first heat exchanger, 112 second heat exchanger, 120 separation unit, 121 mesh structure, 122 tank , 123 chamber, 200 concentrator, 210 adsorption element, 211 desorption section, 212 adsorption section, 230 rotating shaft, 250 regeneration heater, 300 first and second flow path, 400 second flow path, 500 concentrator, 600 concentration equipment, G1 exhaust gas, G2 exhaust gas after cooling, G3 cooling processing gas, G4 part of cooling processing gas, G5 remainder of cooling processing gas, G6 clean gas, G7 high temperature gas, G8 desorption gas, L1 cooling condensate, L2 Desorption condensate, L3 recovery liquid.

Claims (6)

生産設備から排出される有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、
前記有機溶剤を含有する前記排ガスを冷却することで、前記有機溶剤を液化凝縮し、前記有機溶剤の濃度が低減された冷却処理ガスとして排出する冷却凝縮装置と、
前記冷却処理ガスを通流させる第一通流経路と、
前記第一通流経路から導入された前記冷却処理ガスに含まれる前記有機溶剤を第一吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第一処理ガスとして排出し、高温ガスを導入して前記第一吸着素子から前記有機溶剤を脱着して第一脱着ガスとして排出する第一濃縮装置と、
前記第一処理ガスの一部を通流させる第二通流経路と、
前記第二通流経路から導入された前記第一処理ガスに含まれる前記有機溶剤を第二吸着素子にて吸着して前記有機溶剤の濃度が更に低減された第二処理ガスとして排出し、高温ガスを導入して前記第二吸着素子から前記有機溶剤を脱着して第二脱着ガスとして排出する第二濃縮装置と、
前記第一脱着ガスおよび前記第二脱着ガスを前記冷却凝縮装置に戻す第三通流経路と、を備えた、有機溶剤回収システム。
An organic solvent recovery system that recovers organic solvents from exhaust gas containing organic solvents discharged from production equipment,
A cooling condensation device that liquefies and condenses the organic solvent by cooling the exhaust gas containing the organic solvent, and discharges the organic solvent as a cooled treated gas with a reduced concentration;
a first flow path through which the cooling processing gas flows;
The organic solvent contained in the cooled processing gas introduced from the first flow path is adsorbed by a first adsorption element and discharged as a first processing gas in which the concentration of the organic solvent is further reduced. a first concentration device that introduces a gas to desorb the organic solvent from the first adsorption element and discharge it as a first desorption gas;
a second flow path through which a portion of the first processing gas flows;
The organic solvent contained in the first processing gas introduced from the second flow path is adsorbed by a second adsorption element, and is discharged as a second processing gas in which the concentration of the organic solvent is further reduced. a second concentration device that introduces a gas to desorb the organic solvent from the second adsorption element and discharge it as a second desorption gas;
An organic solvent recovery system comprising: a third flow path for returning the first desorption gas and the second desorption gas to the cooling condensing device.
前記冷却凝縮装置は、前記冷却後の前記排ガスを接触させることで凝縮した前記有機溶剤と前記冷却処理ガスとを分離させる網目状構造体と、前記網目状構造体を通過後の前記冷却処理ガスを一定時間貯留させるチャンバーと、をさらに備え、
前記第一通流経路は、前記チャンバーの天井部から前記冷却処理ガスを前記第一濃縮装置に導入するように設置されている、請求項1に記載の有機溶剤回収システム。
The cooling condensing device includes a network structure that separates the condensed organic solvent and the cooling process gas by bringing the cooled exhaust gas into contact with each other, and a network structure that separates the cooling process gas after passing through the network structure. It further comprises a chamber for storing the water for a certain period of time,
The organic solvent recovery system according to claim 1, wherein the first flow path is installed so as to introduce the cooled processing gas into the first concentrator from the ceiling of the chamber.
前記チャンバーは、前記網目状構造体から排出される前記冷却処理ガスの排気方向と対向するように前記第一通流経路の吸込みを可能にする仕切部を有する、請求項2に記載の有機溶剤回収システム。 The organic solvent according to claim 2, wherein the chamber has a partition that allows suction into the first flow path so as to face the exhaust direction of the cooling processing gas discharged from the network structure. collection system. 前記冷却凝縮装置は、冷媒との熱交換により前記冷却を行う熱交換器をさらに備える、請求項1から請求項3のいずれか1項に記載の有機溶剤回収システム。 The organic solvent recovery system according to any one of claims 1 to 3, wherein the cooling condensing device further includes a heat exchanger that performs the cooling by heat exchange with a refrigerant. 前記第二通流経路から排出される前記第一処理ガスの一部以外である前記第一処理ガスの残部を、前記生産設備に戻す返却経路をさらに備える、請求項1から請求項4のいずれか1項に記載の有機溶剤回収システム。 Any one of claims 1 to 4, further comprising a return path for returning the remainder of the first processing gas other than a part of the first processing gas discharged from the second flow path to the production facility. The organic solvent recovery system according to item 1. 前記熱交換器は、第一熱交換器と、前記第一熱交換器の前段に設けた第二熱交換器とを含み、
前記第二熱交換器は、前記冷却凝縮装置に導入される前記排ガスを、前記第一処理ガスの残部との熱交換により冷却する、請求項4に記載の有機溶剤回収システム。
The heat exchanger includes a first heat exchanger and a second heat exchanger provided upstream of the first heat exchanger,
The organic solvent recovery system according to claim 4 , wherein the second heat exchanger cools the exhaust gas introduced into the cooling condensing device by heat exchange with the remainder of the first treated gas.
JP2020144541A 2019-12-26 2020-08-28 Organic solvent recovery system Active JP7435367B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020144541A JP7435367B2 (en) 2019-12-26 2020-08-28 Organic solvent recovery system
PCT/JP2020/047402 WO2021132071A1 (en) 2019-12-26 2020-12-18 Organic solvent recovery system
KR1020227025050A KR20220116284A (en) 2019-12-26 2020-12-18 Organic Solvent Recovery System
EP20904424.7A EP4082649A4 (en) 2019-12-26 2020-12-18 Organic solvent recovery system
CN202080090088.4A CN114867543B (en) 2019-12-26 2020-12-18 Organic solvent recovery system
TW109145451A TW202130404A (en) 2019-12-26 2020-12-22 Organic solvent recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236744A JP7434891B2 (en) 2019-12-26 2019-12-26 Organic solvent recovery system
JP2020144541A JP7435367B2 (en) 2019-12-26 2020-08-28 Organic solvent recovery system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019236744A Division JP7434891B2 (en) 2019-12-26 2019-12-26 Organic solvent recovery system

Publications (3)

Publication Number Publication Date
JP2021104505A JP2021104505A (en) 2021-07-26
JP2021104505A5 JP2021104505A5 (en) 2022-12-06
JP7435367B2 true JP7435367B2 (en) 2024-02-21

Family

ID=76919556

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019236744A Active JP7434891B2 (en) 2019-12-26 2019-12-26 Organic solvent recovery system
JP2020144541A Active JP7435367B2 (en) 2019-12-26 2020-08-28 Organic solvent recovery system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019236744A Active JP7434891B2 (en) 2019-12-26 2019-12-26 Organic solvent recovery system

Country Status (1)

Country Link
JP (2) JP7434891B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149732A (en) 1999-12-01 2001-06-05 Seibu Giken Co Ltd Gas adsorption device
JP2002186821A (en) 2000-12-19 2002-07-02 Seibu Giken Co Ltd Organic solvent vapor treatment apparatus
JP2007044595A (en) 2005-08-08 2007-02-22 Toyobo Co Ltd System for treating an organic solvent-containing gas
WO2011021637A1 (en) 2009-08-18 2011-02-24 東洋紡績株式会社 Organic solvent recovery system
JP2011062645A (en) 2009-09-17 2011-03-31 Toyobo Co Ltd Organic solvent-containing gas recovery system
JP2012005956A (en) 2010-06-24 2012-01-12 Panasonic Corp Solvent recovery apparatus
JP2012130875A (en) 2010-12-22 2012-07-12 Toho Kako Kensetsu Kk Solvent recovery apparatus
JP2017170427A (en) 2016-03-18 2017-09-28 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Volatile organic compound removal device and volatile organic compound removal method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149732A (en) 1999-12-01 2001-06-05 Seibu Giken Co Ltd Gas adsorption device
JP2002186821A (en) 2000-12-19 2002-07-02 Seibu Giken Co Ltd Organic solvent vapor treatment apparatus
JP2007044595A (en) 2005-08-08 2007-02-22 Toyobo Co Ltd System for treating an organic solvent-containing gas
WO2011021637A1 (en) 2009-08-18 2011-02-24 東洋紡績株式会社 Organic solvent recovery system
JP2011062645A (en) 2009-09-17 2011-03-31 Toyobo Co Ltd Organic solvent-containing gas recovery system
JP2012005956A (en) 2010-06-24 2012-01-12 Panasonic Corp Solvent recovery apparatus
JP2012130875A (en) 2010-12-22 2012-07-12 Toho Kako Kensetsu Kk Solvent recovery apparatus
JP2017170427A (en) 2016-03-18 2017-09-28 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Volatile organic compound removal device and volatile organic compound removal method

Also Published As

Publication number Publication date
JP7434891B2 (en) 2024-02-21
JP2021104485A (en) 2021-07-26
JP2021104505A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US7252703B2 (en) Direct contact liquid air contaminant control system
KR101156890B1 (en) Organic solvent recovery system
KR101926171B1 (en) Apparatus for recovering volatile organic solvent
JP5573354B2 (en) Organic solvent recovery system
WO2021132071A1 (en) Organic solvent recovery system
JP6565357B2 (en) Concentrator and organic solvent recovery system
JPH10128059A (en) Two-stage adsorbing and separating equipment for recovering carbon dioxide from waste combustion gas and two-stage method for adsorbing and separating carbon dioxide
JP2012011343A (en) Apparatus for generating low dew point air
CN212327833U (en) Recovery device and recovery system
RU2097115C1 (en) System for removing carbon dioxide from air
JP7435367B2 (en) Organic solvent recovery system
JP2014000526A (en) Solvent recovery apparatus and method of controlling the same
JP5862278B2 (en) Organic solvent-containing gas treatment system
JP2012166155A (en) Organic solvent recovery system
JP4715970B2 (en) Organic solvent recovery system
JP2009291676A (en) Solvent refining apparatus
JP5760440B2 (en) Organic solvent recovery system
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2012081411A (en) Solvent dehydrator
CN210448618U (en) Zero gas consumption deoiling adsorption drying system of gas
JP6458465B2 (en) Organic solvent recovery system
KR20240023605A (en) Organic Solvent Recovery System
CN110841439A (en) Organic waste gas treatment system and treatment method thereof
JP2001137647A (en) Multistage adsorption treating device for waste gas and method
JPH09122432A (en) Gas separator using pressure swing adsorption process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150