JP7433447B2 - 電動機、駆動装置、圧縮機、及び空気調和機 - Google Patents

電動機、駆動装置、圧縮機、及び空気調和機 Download PDF

Info

Publication number
JP7433447B2
JP7433447B2 JP2022542546A JP2022542546A JP7433447B2 JP 7433447 B2 JP7433447 B2 JP 7433447B2 JP 2022542546 A JP2022542546 A JP 2022542546A JP 2022542546 A JP2022542546 A JP 2022542546A JP 7433447 B2 JP7433447 B2 JP 7433447B2
Authority
JP
Japan
Prior art keywords
coil
phase
coils
slot
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022542546A
Other languages
English (en)
Other versions
JPWO2022034665A5 (ja
JPWO2022034665A1 (ja
Inventor
智希 増子
篤 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022034665A1 publication Critical patent/JPWO2022034665A1/ja
Publication of JPWO2022034665A5 publication Critical patent/JPWO2022034665A5/ja
Application granted granted Critical
Publication of JP7433447B2 publication Critical patent/JP7433447B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/067Windings consisting of complete sections, e.g. coils, waves inserted in parallel to the axis of the slots or inter-polar channels
    • H02K15/068Strippers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本開示は、電動機に関する。
一般に、固定子鉄心に分布巻きで取り付けられた3相コイルを備えた電動機が用いられている(例えば、特許文献1)。3相コイルを備えた電動機では、3相コイルを形成する巻線(固定子巻線とも称する)の巻き数が多い場合、少ない電流(電動機電流とも称する)で電動機を駆動させることができ、インバータ損失を低減することができる。その結果、電動機の効率(電動機効率とも称する)を高めることができる。しかしながら、巻線の巻き数が多い場合、3相コイルにおける誘起電圧が上昇し、電動機の回転速度を上げることができないことがある。一方、巻線の巻き数が少ない場合、3相コイルにおける誘起電圧を低減することができ、電動機の回転速度を上げることができる。
特開平09-154266号公報
しかしながら、従来の技術では、電動機の回転速度を上げた場合、3相コイルの接続状態によっては、3相コイルにおいて誘起電圧の3次高調波成分による循環電流が発生し、電動機の性能が低下することがある。その結果、電動機の効率が低下するという問題がある。
本開示の目的は、電動機の効率を高めることである。
本開示の一態様に係る電動機は、
6×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、2×n個の磁極を形成する3相コイルとを有する固定子と、
永久磁石を有し、前記固定子の内側に配置された回転子と、
前記3相コイルの結線状態を第1の結線状態と前記第1の結線状態とは異なる第2の結線状態との間で切り替える結線切り替え部と
を備え、
前記3相コイルは、前記3相コイルのコイルエンドにおいて2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記6×n個のスロットのうちの2つのスロットに配置されており、
毎極毎相スロット数が1である
本開示の他の態様に係る電動機は、
9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルとを有する固定子と、
永久磁石を有し、前記固定子の内側に配置された回転子と、
前記3相コイルの結線状態を第1の結線状態と前記第1の結線状態とは異なる第2の結線状態との間で切り替える結線切り替え部と
を備え、
前記3相コイルは、前記3相コイルのコイルエンドにおいて3×n個のU相コイル、3×n個のV相コイル、及び3×n個のW相コイルを有し、
前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記9×n個のスロットのうちの2つのスロットに配置されており、
毎極毎相スロット数が3である。
本開示の他の態様に係る駆動装置は、
前記電動機と、
前記結線切り替え部を制御する制御装置と
を備える。
本開示の他の態様に係る圧縮機は、
密閉容器と、
前記密閉容器内に配置された圧縮装置と、
前記圧縮装置を駆動する前記電動機と
を備える。
本開示の他の態様に係る空気調和機は、
前記圧縮機と、
熱交換器と
を備える。
本開示によれば、電動機の効率を高めることができる。
実施の形態1に係る電動機の構造を概略的に示す上面図である。 回転子の構造を概略的に示す断面図である。 固定子の構造を概略的に示す上面図である。 スロット内の3相コイルの配置を示す図である。 コイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 各相において、直列に接続されたコイルの例を示す図である。 各相において、並列に接続されたコイルの例を示す図である。 3相コイルを固定子鉄心内に挿入するための挿入器具の例を示す図である。 3相コイルを固定子鉄心内に挿入する工程の例を示す図である。 3相コイルを固定子鉄心内に挿入する工程の例を示す図である。 駆動装置の構成を示すブロック図である。 駆動装置の構成を示すブロック図である。 Y結線で接続された3相コイルを模式的に示す図である。 デルタ結線で接続された3相コイルを模式的に示す図である。 電動機における線間電圧と回転速度との関係を示すグラフである。 電動機における線間電圧と回転速度との関係を示すグラフである。 電動機のトルクと回転速度との関係を示すグラフである。 電動機効率と回転速度との関係を示すグラフである。 電動機効率と回転速度との関係を示すグラフである。 比較例に係る電動機を示す上面図である。 比較例に係る電動機のコイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 実施の形態3に係る電動機の構造を概略的に示す上面図である。 図22に示される電動機の回転子の構造を概略的に示す断面図である。 図22に示される電動機の固定子の構造を概略的に示す上面図である。 図24に示される固定子のスロット内の3相コイルの配置を示す図である。 図24に示される固定子のコイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 実施の形態4に係る電動機の構造を概略的に示す上面図である。 図27に示される電動機の固定子のコイルエンドにおける3相コイルの配置及びスロット内の3相コイルの配置を模式的に示す図である。 実施の形態5に係る圧縮機の構造を概略的に示す断面図である。 実施の形態6に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、固定子3の中心であり、回転子2の回転中心でもある。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」ともいう。径方向は、回転子2又は固定子3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2又は固定子3の周方向を、単に「周方向」ともいう。
〈電動機1〉
図1は、実施の形態1に係る電動機1の構造を概略的に示す上面図である。
電動機1は、複数の磁極を持つ回転子2と、固定子3と、回転子2に固定されたシャフト4とを有する。電動機1は、例えば、永久磁石同期電動機である。
回転子2は、固定子3の内側に回転可能に配置されている。回転子2と固定子3との間には、エアギャップが存在する。回転子2は、軸線Axを中心として回転する。
図2は、回転子2の構造を概略的に示す断面図である。
回転子2は、回転子鉄心21と、少なくとも1つの永久磁石22とを有する。回転子2は、2×n個(nは1以上の整数)の磁極を持つ。
回転子鉄心21は、複数の磁石挿入孔211と、シャフト4が配置されるシャフト孔212とを有する。回転子鉄心21は、各磁石挿入孔211に連通する空間である少なくとも1つのフラックスバリア部をさらに有してもよい。
本実施の形態では、回転子2は、複数の永久磁石22を有する。各永久磁石22は、各磁石挿入孔211内に配置されている。
1つの永久磁石22が、回転子2の1磁極、すなわち、N極又はS極を形成する。ただし、2以上の永久磁石22が回転子2の1磁極を形成してもよい。
本実施の形態では、xy平面において、回転子2の1磁極を形成する1つの永久磁石22は、真っ直ぐに配置されている。ただし、xy平面において、回転子2の1磁極を形成する1組の永久磁石22が、V字形状を持つように配置されていてもよい。
回転子2の各磁極の中心は、回転子2の各磁極(すなわち、回転子2のN極又はS極)の中心に位置する。回転子2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、回転子2のN極又はS極の役目をする領域を意味する。
〈固定子3〉
図3は、固定子3の構造を概略的に示す上面図である。
図4は、スロット311内の3相コイル32の配置を示す図である。
図5は、コイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図5において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
図3に示されるように、固定子3は、固定子鉄心31と、固定子鉄心31に分布巻きで取り付けられた3相コイル32とを有する。
固定子鉄心31は、環状のヨークと、ヨークから径方向に延在する複数のティースと、3相コイル32が配置される6×n個(nは1以上の整数)のスロット311とを有する。各スロット311を、例えば、第1のスロット、第2のスロット、・・・、第Nのスロットとも称する。図4及び図5に示されるように、6×n個のスロット311の各々は、3相コイル32のうちの1つのコイルが配置される内層と、径方向における内層の外側に設けられており3相コイル32のうちの1つのコイルが配置される外層とを含む。すなわち、図4及び図5に示される例では、各スロット311内の空間は、内層及び外層に分けられている。本実施の形態では、n=3である。したがって、図3から図5に示される例では、固定子鉄心31は、18個のスロット311を有する。
3相コイル32(すなわち、各相のコイル)は、スロット311内に配置されたコイルサイドと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、軸方向における3相コイル32の端部である。
3相コイル32は、各コイルエンド32aにおいて、2×n個のU相コイル32U、2×n個のV相コイル32V、及び2×n個のW相コイル32Wを有する。言い換えると、3相コイル32は、固定子鉄心31上において、2×n個のU相コイル32U、2×n個のV相コイル32V、及び2×n個のW相コイル32Wを有する。すなわち、3相コイル32は、第1相、第2相、及び第3相の3相を持つ。例えば、第1相はU相であり、第2相はV相であり、第3相はW相である。本実施の形態では、3相の各々を、U相、V相、及びW相と称する。図1及び図3に示される各U相コイル32U、各V相コイル32V、及び各W相コイル32Wを、単にコイルとも称する。
本実施の形態では、n=3である。したがって、図1及び図3に示される例では、コイルエンド32aにおいて、3相コイル32は、6個のU相コイル32U、6個のV相コイル32V、及び6個のW相コイル32Wを持っている。ただし、各相のコイルの数は、6個に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図3に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図3に示される構造を持っていればよい。
3相コイル32に電流が流れたとき、3相コイル32は、2×n個の磁極を形成する。本実施の形態では、n=3である。したがって、本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、6磁極を形成する。
図1及び図3に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、2スロットピッチでスロット311内に配置されている。2スロットピッチとは、「2スロット毎」を意味する。すなわち、2スロットピッチとは、1つのコイルが2スロット毎にスロット311に配置されることを意味する。言い換えると、2スロットピッチとは、1つのコイルが1スロットおきにスロット311に配置されることを意味する。したがって、図1及び図3に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、3相コイル32の各コイルは、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
図4及び図5に示されるように、各スロット311には、2つのコイルが配置されている。各コイルは、他の相のコイルと共に各スロット311に配置されている。すなわち、各スロット311には、異なる相の2つのコイルが配置されている。各相のコイルは、6箇所の内層及び6箇所の外層に配置されている。
〈スロット311内のU相コイル32Uの配置〉
スロット311内のU相コイル32Uの配置を以下に具体的に説明する。
2×n個のU相コイル32Uのうちのn個のU相コイル32Uは、スロット311の外層に配置されている。2×n個のU相コイル32Uのうちの他のn個のU相コイル32Uは、スロット311の内層に配置されている。図1に示される例では、3個のU相コイル32Uがスロット311の外層に配置されており、他の3個のU相コイル32Uがスロット311の内層に配置されている。
〈スロット311内のV相コイル32Vの配置〉
スロット311内のV相コイル32Vの配置を以下に具体的に説明する。
V相コイル32Vの一部は、U相コイル32Uが配置されたスロット311の内層に配置されている。V相コイル32Vの他の一部は、W相コイル32Wが配置されたスロット311の外層に配置されている。すなわち、各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の外層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の内層に配置されている。各V相コイル32Vの一部が他の相のコイルが配置されたスロット311の内層に配置されている場合、各V相コイル32Vの他の一部は、他の相のコイルが配置されたスロット311の外層に配置されている。
〈スロット311内のW相コイル32Wの配置〉
スロット311内のW相コイル32Wの配置を以下に具体的に説明する。
2×n個のW相コイル32Wのうちのn個のW相コイル32Wは、スロット311の外層に配置されている。2×n個のW相コイル32Wのうちの他のn個のW相コイル32Wは、スロット311の内層に配置されている。図1に示される例では、3個のW相コイル32Wがスロット311の外層に配置されており、他の3個のW相コイル32Wがスロット311の内層に配置されている。
〈コイルエンド32aにおける3相コイル32の配置〉
スロット311の外層に配置されたn個のU相コイル32Uは、周方向に等間隔に配置されている。スロット311の内層に配置されたn個のU相コイル32Uは、周方向に等間隔に配置されている。2×n個のV相コイル32Vは、周方向に等間隔に配置されている。スロット311の外層に配置されたn個のW相コイル32Wは、周方向に等間隔に配置されている。スロット311の内層に配置されたn個のW相コイル32Wは、周方向に等間隔に配置されている。
〈基本波の巻線係数〉
本実施の形態に係る電動機1では、回転子2の1磁極に対して3つのスロット311が対応しており、各コイルは、2スロットピッチでスロット311に配置されている。したがって、各コイルの基本波の短節巻係数kpは、以下の式で求められる。
kp=sin{P/(Q/S)}×(π/2)
分布巻きの3相コイル32の短節巻係数は、1つのコイルが鎖交できる磁束量の比率を示す係数である。Pを3相コイル32の磁極の数、Qをスロット311の数、Sをスロットピッチ数とすると、本実施の形態では、P=6、Q=18、S=2である。よって、kp=sin{(6/9)×(π/2)}=0.866である。
分布巻きの3相コイル32の分布巻係数kdは、3相コイル32に鎖交する磁束の位相差を補正する係数である。毎極毎相スロット数をqとすると、基本波の分布巻係数kdは、次の式で求められる。
kd={sin(π/6)}/[q×sin{(π/6)/q}]
本実施の形態では、q=1である。よって、kd=1である。
したがって、本実施の形態では、電動機1の基本波の巻線係数kwは、次の式で求められる。
kw=kp×kd=0.866×1=0.866
〈3次の巻線係数〉
本実施の形態に係る電動機1では、回転子2の1磁極に対して3つのスロット311が対応しており、各コイルは、2スロットピッチでスロット311に配置されている。したがって、各コイルの3次の短節巻係数kp3は、以下の式で求められる。
kp3=sin{3×P/(Q/S)}×(π/2)
Pを3相コイル32の磁極の数、Qをスロット311の数、Sをスロットピッチ数とすると、本実施の形態では、P=6、Q=18、S=2である。よって、kp3=sin{(3×6/9)×(π/2)}=0である。
毎極毎相スロット数をqとすると、3次の分布巻係数kdは、次の式で求められる。
kd3={sin(3×π/6)}/[q×sin{(3×π/6)/q}]
本実施の形態では、q=1である。よって、kd3=1である。
したがって、本実施の形態では、電動機1の3次の巻線係数kw3は、次の式で求められる。
kw3=kp3×kd3=0×1=0
電動機の3相コイルがデルタ結線(Δ結線とも称する)で接続されている場合、3相コイルにおいて循環電流が発生し、電動機の性能が低下することがある。通常、循環電流は、各相のコイルにおいて発生する誘起電圧に含まれる3次高調波成分に起因する。本実施の形態では、固定子3が上述の3相コイル32の配置を持つので、各相のコイルにおいて発生する誘起電圧に、3次高調波成分が含まれない。
〈各相におけるコイル接続〉
図6は、各相において、直列に接続されたコイルの例を示す図である。
各相において、固定子3のコイルは、例えば、直列に接続されている。図6に示される例では、3つのU相コイル32Uが直列に接続されており、3つのV相コイル32Vが直列に接続されており、3つのW相コイル32Wが直列に接続されている。
図7は、各相において、並列に接続されたコイルの例を示す図である。
各相において、固定子3のコイルは、例えば、並列に接続されている。図7に示される例では、3つのU相コイル32Uが並列に接続されており、3つのV相コイル32Vが並列に接続されており、3つのW相コイル32Wが並列に接続されている。
〈絶縁部材〉
固定子3は、3相コイル32の各相のコイルを絶縁する絶縁部材を有してもよい。絶縁部材は、例えば、絶縁紙である。
〈挿入器具〉
図8は、3相コイル32を固定子鉄心31内に挿入するための挿入器具9の例を示す図である。
図9及び図10は、3相コイルを固定子鉄心31内に挿入する工程の例を示す図である。
3相コイル32は、例えば、予め作製された固定子鉄心31に挿入器具9で取り付けられる。本実施の形態では、3相コイル32を、分布巻きで固定子鉄心31に取り付ける。図8に示される挿入器具9で3相コイル32を固定子鉄心31に挿入する場合、図9及び図10に示されるように、挿入器具9のブレード91間に3相コイル32を配置し、3相コイル32と共にブレード91を固定子鉄心31の内側に挿入する。次に、3相コイル32を軸方向にスライドさせ、スロット311内に配置する。
〈駆動装置100の構成〉
次に、電動機1を駆動する駆動装置100について説明する。駆動装置100は、例えば、空気調和機(例えば、実施の形態6で説明される冷凍空調装置7)に搭載される。この場合、電動機1は、その空気調和機に搭載され、空気調和機の駆動源として用いられる。
図11及び図12は、駆動装置100の構成を示すブロック図である。図11と図12とでは、3相コイル32の結線状態が互いに異なる。
駆動装置100は、電源101の出力を整流するコンバータ102と、電動機1の3相コイル32に電圧(具体的には、交流電圧)を印加するインバータ103と、3相コイル32の結線状態を第1の結線状態と第2の結線状態との間で切り替える結線切り替え部60と、制御装置50とを有する。結線切り替え部60は、結線切り替え装置とも称する。コンバータ102には、交流(AC)電源である電源101から電力が供給される。
第1の結線状態は、例えば、Y結線(スター結線とも称する)である。第2の結線状態は第1の結線状態と異なる。第1の結線状態がY結線の場合、第2の結線状態は、デルタ結線である。本実施の形態では、結線切り替え部60は、3相コイル32の結線状態をY結線とデルタ結線との間で切り替える。
電動機1は、駆動装置100を有してもよい。電動機1は、駆動装置100の構成要素のうちの一部を有してもよい。例えば、電動機1が結線切り替え部60を有してもよく、結線切り替え部60及び制御装置50の両方を有してもよい。
電源101は、例えば200V(実効電圧)の交流電源である。コンバータ102は、整流回路であり、例えば280Vの直流(DC)電圧を出力する。コンバータ102から出力される電圧を、母線電圧と称する。インバータ103には、コンバータ102から母線電圧が供給され、電動機1の3相コイル32に線間電圧(電動機電圧とも称する)を出力する。インバータ103には、U相コイル32U、V相コイル32V、及びW相コイル32Wにそれぞれ接続された配線104,105,106が接続されている。
U相コイル32Uは、端子31Uを有する。V相コイル32Vは、端子31Vを有する。W相コイル32Wは、端子31Wを有する。
結線切り替え部60は、スイッチ61(U相スイッチとも称する)、スイッチ62(V相スイッチとも称する)、及びスイッチ63(W相スイッチとも称する)を有する。スイッチ61は、U相コイル32Uの端子31Uを、配線105又は中性点33に接続する。スイッチ62は、V相コイル32Vの端子31Vを、配線106又は中性点33に接続する。スイッチ63は、W相コイル32Wの端子31Wを、配線104又は中性点33に接続する。図11に示される例では、スイッチ61,62,63の各々は、リレー接点である。ただし、スイッチ61,62,63の各々は、半導体スイッチでもよい。
配線104は、U相コイル32U及びスイッチ63に電気的に接続されている。配線105は、V相コイル32V及びスイッチ61に電気的に接続されている。配線106は、W相コイル32W及びスイッチ62に電気的に接続されている。
制御装置50は、インバータ103及び結線切り替え部60を制御する。制御装置50は、コンバータ102を制御してもよい。制御装置50には、空気調和機を操作するためのリモコン55からの運転指示信号と、室内温度センサ54が検出した室内温度とが入力される。例えば、制御装置50は、これらの入力情報に基づき、コンバータ102に電圧切り替え信号を出力し、インバータ103にインバータ駆動信号を出力し、結線切り替え部60に結線切り替え信号を出力する。結線切り替え部60が3相コイル32の結線状態の切り替えを行うとき、制御装置50は、切り替えが完了する前に電動機1の回転が一時的に停止するようにインバータ103を制御する。
図11に示した状態では、結線切り替え部60は、3相コイル32の結線状態をY結線に設定している。この場合、スイッチ61は、U相コイル32Uの端子31Uを中性点33に接続しており、スイッチ62は、V相コイル32Vの端子31Vを中性点33に接続しており、スイッチ63は、W相コイル32Wの端子31Wを中性点33に接続している。その結果、図11に示される3相コイル32の結線状態は、Y結線である。
図12では、結線切り替え部60のスイッチ61,62,63は、図11に示される結線切り替え部60のスイッチ61,62,63の状態から、図12に示される状態に切り替えられている。図12に示した状態では、結線切り替え部60は、3相コイル32の結線状態をデルタ結線に設定している。この場合、スイッチ61は、U相コイル32Uの端子31Uを配線105に接続しており、スイッチ62は、V相コイル32Vの端子31Vを配線106に接続しており、スイッチ63は、W相コイル32Wの端子31Wを配線104に接続している。その結果、図12に示される3相コイル32の結線状態は、デルタ結線である。
図11及び図12に示されるように、結線切り替え部60は、スイッチ61,62,63を切り替えることにより、3相コイル32の結線状態を、Y結線とデルタ結線との間で切り替えることができる。
図13は、Y結線で接続された3相コイル32を模式的に示す図である。すなわち、図13は、図11に示される3相コイル32の結線状態を模式的に示す図である。
図14は、デルタ結線で接続された3相コイル32を模式的に示す図である。すなわち、図14は、図12に示される3相コイル32の結線状態を模式的に示す図である。
回転子2に永久磁石22を搭載した電動機1では、回転子2が回転すると、永久磁石22の磁束が固定子3の3相コイル32に鎖交し、3相コイル32に誘起電圧が発生する。誘起電圧は、回転子2の回転速度に比例し、また、3相コイル32の巻き数にも比例する。電動機1の回転速度が大きく、3相コイル32の巻き数が多いほど、誘起電圧は大きくなる。
図15は、電動機1における線間電圧と回転速度との関係を示すグラフである。図15において、回転速度N1は空気調和機(例えば、実施の形態6で説明される冷凍空調装置7)の中間条件に対応し、回転速度N2はその空気調和機の定格条件に対応する。
デルタ結線(Δ結線とも表される)は、3相コイル32の線間電圧(電動機電圧とも称する)をY結線よりも下げる。3相コイル32の結線状態がデルタ結線である場合の3相コイル32の相インピーダンスは、巻き数を同数とすると、3相コイル32の結線状態がY結線である場合の1/√3倍となる。そのため、図15に示されるように、3相コイル32の結線状態がデルタ結線である場合の線間電圧は、回転速度を同じとすると、3相コイル32の結線状態がY結線である場合の線間電圧の1/√3倍となる。
すなわち、3相コイル32をデルタ結線により結線した場合、巻き数をY結線の場合の√3倍にすれば、同じ回転数Nに対して、線間電圧がY結線の場合と等価となり、従ってインバータ103の出力電流もY結線の場合と等価となる。
通常、ティースへの巻き数が数十ターン以上となる電動機では、次のような理由で、デルタ結線よりもY結線を採用することが多い。一つは、デルタ結線はY結線に比べてコイルの巻き数が多いため、製造工程において3相コイルの巻線に要する時間が長くなるという理由である。もう一つは、デルタ結線の場合に循環電流が発生する可能性があるという理由である。
電動機1のマグネットトルクは、誘起電圧と、3相コイル32に流れる電流との積に等しい。すなわち、誘起電圧は、3相コイル32の巻き数を多くするほど高くなる。そのため、3相コイル32の巻き数を多くするほど、必要なマグネットトルクを発生するための電流が少なくて済む。その結果、インバータ103の通電による損失を低減し、電動機1の効率を向上することができる。その一方、誘起電圧の上昇により、誘起電圧に支配される線間電圧が、より低い回転数でインバータ最大出力電圧(すなわちコンバータ102からインバータ103に供給される母線電圧)に達し、回転速度をそれ以上に速くすることができない。
3相コイル32の巻き数を少なくすると、誘起電圧が低下するため、誘起電圧に支配される線間電圧がより高い回転速度までインバータ最大出力電圧に到達せず、高速回転が可能となる。しかしながら、誘起電圧の低下により、必要なマグネットトルクを発生するための電流が増加するため、インバータ103の通電による損失が増加し、電動機1の効率が低下する。
インバータ103のスイッチング周波数の観点では、線間電圧がインバータ最大出力電圧に近い方が、インバータ103のスイッチングのON/OFFデューティーに起因する高調波成分が減少するため、電流の高調波成分に起因する鉄損を低減することができる。
図16は、電動機1における線間電圧と回転速度との関係を示すグラフである。
図16において、回転速度N1は中間条件に対応し、回転速度N2は定格条件に対応する。線間電圧は、インバータ出力電圧の最大値に相当する電圧Vmaxに到達するまで、回転速度に比例する。この場合、線間電圧が電圧Vmaxに到達するまで、最大トルク以下の負荷で電動機1の運転が可能である。
図16に示されるように、線間電圧が電圧Vmaxに到達すると、インバータ103による弱め界磁制御が開始される。弱め界磁制御によって線間電圧が抑えられ、電動機1の回転速度を上げることができる。
図17は、電動機1のトルクと回転速度との関係を示すグラフである。
図17に示されるように、弱め界磁制御の後、回転速度が増加するにつれてトルクが低下する。そのため、要求されるトルクを得るために、回転速度が制限される。
弱め界磁制御では、3相コイル32にd軸位相(すなわち、永久磁石22の磁束を打ち消す向き)の電流を流すことによって、誘起電圧を弱める。この電流を、弱め電流と称する。弱め界磁制御を用いた電動機の運転では、通常の電動機トルクを発生させるための電流に加えて、弱め電流を流す必要があるため、3相コイル32の抵抗に起因する銅損が増加し、インバータ103の通電損失も増加する。
図18及び図19は、電動機効率と回転速度との関係を示すグラフである。
弱め界磁制御をわずかに行った場合、弱め磁束による鉄損の低減が、インバータ103の通電損失を上回ることがある。すなわち、図18に示されるように、電動機効率は回転速度と共に増加し、弱め界磁制御を開始した直後に電動機効率がピークに到達するが、電動機効率がピークに到達した後、電動機効率は回転速度と共に減少する。インバータ効率を含む総合効率は、電動機効率×インバータ効率で表される。この総合効率も図18に示される特性を持つ。
図19において、回転速度N1,N11,N12,及びN2の関係は、N1<N11<N12<N2である。回転速度N12は、Y結線における電動機効率とデルタ結線における電動機効率とが一致する回転速度である。図19に示される例では、回転速度N12以下のレンジは低速レンジであり、回転速度N12より大きいレンジは高速レンジである。
本実施の形態では、誘起電圧が小さい低速レンジにおいて線間電圧がインバータ最大出力電圧に達するように巻き数を調整しているため、図19に示されるように、3相コイル32の結線状態がY結線である場合、回転速度N11で高い電動機効率が得られる。この場合、回転速度N11のとき、線間電圧がインバータ出力電圧の最大値と等しい。
図19に示される例では、回転速度が、回転速度N12よりも大きい場合、Y結線における電動機効率に比べてデルタ結線における電動機効率が高い。したがって、回転子2の回転速度が、回転速度N11よりも大きい回転速度N12に到達した場合、制御装置50は、3相コイル32の結線状態がデルタ結線であるように結線切り替え部60を制御する。結線切り替え部60は、制御装置50の指示に従って3相コイル32の結線状態をデルタ結線に設定する。この場合、3相コイル32の結線状態がY結線であれば、結線切り替え部60は、3相コイル32の結線状態をY結線からデルタ結線に切り替える。一方、3相コイル32の結線状態がすでにデルタ結線であれば、結線切り替え部60は、3相コイル32の結線状態を変更せず、デルタ結線を維持する。したがって、誘起電圧が高い高速レンジでは、3相コイル32の結線状態はデルタ結線である。
ある回転速度において、3相コイル32の結線状態がデルタ結線である場合の線間電圧は、3相コイル32の結線状態がY結線である場合の線間電圧の1/√3倍である。したがって、3相コイル32の結線状態がY結線からデルタ結線に切り替わると、弱め界磁が抑制され、高速レンジにおいて電動機効率が得られ、トルクの低下を抑制することができる。
上述のように、回転子2の回転速度が、回転速度N11から回転速度N12に到達した場合、結線切り替え部60は、3相コイル32の結線状態を、Y結線からデルタ結線に切り替える。その結果、図19において太線で示されるように、低速レンジ(例えば、中間条件)及び高速レンジ(例えば、定格条件)の両方で高い電動機効率を得ることができる。
圧縮機の圧縮効率、圧縮機の電動機の運転効率、熱交換器の熱伝達率などの効率が改善されると、空気調和機のエネルギー消費効率(Coefficient Of Performance:COP)が向上する。その結果、空気調和機のランニングコスト(例えば、消費電力)及びCO2排出量が低減する。
COPは、ある一定の温度条件で運転した場合の性能の評価を示すが、季節に応じた空気調和機の運転状況はCOPに加味されていない。しかしながら、空気調和機の実際の使用時には、外気温度の変化により、冷房または暖房に必要な能力および消費電力が変化する。そこで、実際の使用時に近い状態での評価を行うため、通年エネルギー消費効率(Annual Performance Factor:APF)が省エネルギーの指標として用いられている。APFは、あるモデルケースを定め、年間を通じた総合負荷と総消費電力量を算出することによって求められる。
特に、インバータによって駆動される電動機では、圧縮機の回転数によって能力が変化するため、定格条件だけで実際の使用に近い評価を行うには課題がある。
空気調和機のAPFは、年間の総合負荷に応じた消費電力量を算出することによって求められる。この値が大きいほど省エネルギー性能が高いと評価される。
年間の総合負荷の内訳としては、中間条件の比率(例えば、50%)が最も大きく、次に定格条件の比率(例えば、25%)が大きい。そのため、中間条件及び定格条件において電動機効率を向上させることが、空気調和機の省エネルギー性能の向上に有効である。
APFの評価負荷条件における圧縮機の電動機の回転速度は、空気調和機の能力および熱交換器の性能により変化する。例えば、冷凍能力22.4kWの空気調和機においては、中間条件での回転速度N1が40rpsであり、定格条件での回転速度N2が90rpsである。
〈比較例〉
図20は、比較例に係る電動機1aを示す上面図である。
図21は、比較例に係る電動機1aのコイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図21において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
比較例では、3相コイル32が重ね巻きで固定子鉄心31に取り付けられている。この場合、各コイルエンド32aにおいて、各コイルの片側がスロット311の外層に配置され、そのコイルの他方側が他のスロット311の内層に配置されている。
したがって、3相コイル32を重ね巻きで固定子鉄心31に取り付ける場合、挿入器具(例えば、図8に示される挿入器具9)を用いて、3相コイル32を固定子鉄心31に取り付けることが難しい。そのため、通常、比較例のような重ね巻きで3相コイル32を固定子鉄心31に取り付ける場合、手で3相コイル32を固定子鉄心に取り付ける。この場合、固定子3の生産性が下がる。
通常、各スロットに2つのコイルを配置する場合、各スロット内の2つのコイル間にインダクタンスの差が生じる。この場合、電動機の駆動中に3相コイルに流れる電流のばらつきが相間に生じ、インダクタンスの大きい相に電流が流れにくく、インダクタンスの小さい相に電流が流れやすい。その結果として、トルクリップルが生じる。
各相のコイル群の間にインダクタンスの差が生じている場合、電流がコイル群に均等に流れず、電流の不平衡が生じる。この場合、インダクタンスの小さいコイル群に流れる電流の振幅は大きくなり、電流の位相が進む。インダクタンスの大きいコイル群に流れる電流の振幅は小さくなり、電流の位相が遅れる。その結果、位相がずれた状態で電動機のトルクが出力されるので、各コイル群に流れる電流の振幅のピーク値の和が、相電流の振幅のピーク値の和よりも大きくなるため、コイルの抵抗によって発生する銅損などの損失が増加する。この現象は、各相においてコイルが並列に接続されている場合に顕著に現れる。
〈本実施の形態の利点〉
本実施の形態における固定子3によれば、固定子3が上述の3相コイル32の配置を持つので、3相コイル32におけるインダクタンスのバランスが改善される。したがって、固定子3を有する電動機1におけるトルクリップルの増加及び損失の増加を抑えることができる。その結果、電流の不平衡によるトルクリップルが改善される。
回転子2の回転速度が、回転速度N11から回転速度N12に到達した場合、結線切り替え部60は、3相コイル32の結線状態をデルタ結線に設定する。したがって、弱め界磁が抑制され、高速レンジにおいて高い電動機効率が得られ、トルクの低下を抑制することができる。
3相コイル32の結線状態がY結線のとき、回転子2は、例えば、中間条件に対応する回転速度N1で回転する。3相コイル32の結線状態がデルタ結線のとき、回転子2は、例えば、定格条件に対応する回転速度N2で回転する。すなわち、回転子2が中間条件に対応する回転速度N1で回転するとき、3相コイル32の結線状態はY結線であり、回転子2が定格条件に対応する回転速度N2で回転するとき、3相コイル32の結線状態はデルタ結線である。したがって、低速レンジ(例えば、中間条件)及び高速レンジ(例えば、定格条件)の両方で高い電動機効率を得ることができる。
3相コイル32の結線状態がY結線のとき、回転子2は、回転速度N11で回転してもよい。この場合、図19に示されるように、電動機効率が得られる。
上述のように、本実施の形態によれば、電動機1の効率を高めることができる。
実施の形態2.
実施の形態2では、実施の形態1と異なる構成について説明する。本実施の形態において説明されない構成は、実施の形態1と同じ構成とすることができる。
本実施の形態では、第1の結線状態は、例えば、3相コイル32の各相のコイルが直列に接続された直列接続である。第2の結線状態は第1の結線状態と異なる。第1の結線状態が直列接続の場合、第2の結線状態は、3相コイル32の各相のコイルが並列に接続された並列接続である。すなわち、本実施の形態では、結線切り替え部60は、3相コイル32の結線状態を直列接続と並列接続との間で切り替える。具体的には、制御装置50は、結線切り替え部60を制御し、結線切り替え部60は、制御装置50の指示に従って3相コイル32の結線状態を直列接続と並列接続との間で切り替える。
本実施の形態では、例えば、3相コイル32の結線状態が直列接続のとき、回転子2は、中間条件に対応する回転速度N1で回転し、3相コイル32の結線状態が並列接続のとき、回転子2は、定格条件に対応する回転速度N2で回転する。
本実施の形態では、(N2/N1)>m(mは2以上の整数)を満たす。この場合、回転子2が中間条件に対応する回転速度N1で回転するとき、3相コイル32の結線状態は直列接続であり、回転子2が定格条件に対応する回転速度N2で回転するとき、3相コイル32の結線状態は並列接続である。
例えば、(N2/N1)>m(mは2以上の整数)を満たす場合、回転子2が中間条件に対応する回転速度N1で回転するとき、制御装置50は、3相コイル32の結線状態が直列接続であるように結線切り替え部60を制御する。(N2/N1)>m(mは2以上の整数)を満たす場合、回転子2が定格条件に対応する回転速度N2で回転するとき、制御装置50は、3相コイル32の結線状態が並列接続であるように結線切り替え部60を制御する。上述のように、N1は、中間条件に対応する回転速度であり、N2は、定格条件に対応する回転速度である。
結線切り替え部60は、制御装置50の指示に従って3相コイル32の結線状態を設定する。3相コイル32の結線状態を並列接続に設定する場合、3相コイル32の結線状態が直列接続であれば、結線切り替え部60は、3相コイル32の結線状態を直列接続から並列接続に切り替える。一方、3相コイル32の結線状態がすでに並列接続であれば、結線切り替え部60は、3相コイル32の結線状態を変更せず、並列接続を維持する。
(N2/N1)>m(mは2以上の整数)を満たすとき、制御装置50は、3相コイル32の結線状態がm並列接続であるように結線切り替え部60を制御してもよい。この場合、結線切り替え部60は、制御装置50の指示に従って、3相コイル32の結線状態をm並列接続に設定する。m並列接続とは、3相コイル32の各相のコイルの数がm個であり、各相においてm個のコイルが並列に接続される結線状態である。この場合、第1の結線状態は直列接続であり、第2の結線状態はm並列接続である。
本実施の形態では、m=3である。したがって、電動機1が3<(N2/N1)<4を満たすとき、第2の結線状態は、3並列接続である。この場合、制御装置50は、3相コイル32の結線状態が3並列接続であるように結線切り替え部60を制御するとき、結線切り替え部60は、制御装置50の指示に従って、3相コイル32の結線状態を、図7に示される3並列接続に設定する。
〈実施の形態2の利点〉
本実施の形態における電動機1は、実施の形態1で説明した利点を有する。
本実施の形態における駆動装置100は、実施の形態1で説明した利点を有する。
3相コイル32の結線状態が直列接続のとき、回転子2は、例えば、中間条件に対応する回転速度N1で回転する。3相コイル32の結線状態が並列接続又はm並列接続のとき、回転子2は、例えば、定格条件に対応する回転速度N2で回転する。この場合、低速レンジ(例えば、中間条件)及び高速レンジ(例えば、定格条件)の両方で高い電動機効率を得ることができる。
3相コイル32の各相において、3相コイル32の結線状態が並列接続であるときの線間電圧は、3相コイル32の結線状態が直列接続であるときの線間電圧よりも低い。したがって、例えば、中間条件では、結線切り替え部60は、3相コイル32の結線状態を直列接続に設定する。本実施の形態では、(N2/N1)>m(mは2以上の整数)を満たし、回転子2が中間条件に対応する回転速度N1で回転するとき、3相コイル32の結線状態は直列接続であり、回転子2が定格条件に対応する回転速度N2で回転するとき、3相コイル32の結線状態は並列接続である。その結果、弱め界磁が抑制され、相間のインダクタンスのバランスが改善される。したがって、低速レンジから高速レンジにおいて、電動機1の効率を高めることができる。
3相コイル32の各相において、3相コイル32の結線状態がm並列接続であるときの線間電圧は、3相コイル32の結線状態が直列接続であるときの線間電圧の1/mである。したがって、(N2/N1)>m(mは2以上の整数)を満たすとき、定格条件などの高速レンジでは、結線切り替え部60は、3相コイル32の結線状態をm並列接続に設定することが望ましい。その結果、弱め界磁が抑制され、相間のインダクタンスのバランスが改善される。したがって、低速レンジから高速レンジにおいて、電動機1の効率を高めることができる。
実施の形態3.
図22は、実施の形態3に係る電動機1の構造を概略的に示す上面図である。
図23は、図22に示される電動機1の回転子2の構造を概略的に示す断面図である。
実施の形態3では、実施の形態1及び2と異なる構成について説明する。本実施の形態において説明されない構成は、実施の形態1又は2と同じ構成とすることができる。
〈回転子2〉
本実施の形態では、回転子2は、4×n個(nは1以上の整数)の磁極を持つ。
〈固定子3〉
図24は、図22に示される電動機1の固定子3の構造を概略的に示す上面図である。
図25は、図24に示される固定子3のスロット311内の3相コイル32の配置を示す図である。
図26は、図24に示される固定子3のコイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図25において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
図23に示されるように、固定子3は、固定子鉄心31と、固定子鉄心31に分布巻きで取り付けられた3相コイル32とを有する。
固定子鉄心31は、3相コイル32が配置される9×n個(nは1以上の整数)のスロット311を有する。図25及び図26に示されるように、9×n個のスロット311の各々は、3相コイル32のうちの1つのコイルが配置される内層と、径方向における内層の外側に設けられており3相コイル32のうちの1つのコイルが配置される外層とを含む。すなわち、図25及び図26に示される例では、各スロット311内の空間は、内層及び外層に分けられている。本実施の形態では、n=2である。したがって、図24から図26に示される例では、固定子鉄心31は、18個のスロット311を有する。
3相コイル32(すなわち、各相のコイル)は、スロット311内に配置されたコイルサイドと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、軸方向における3相コイル32の端部である。
3相コイル32は、各コイルエンド32aにおいて、3×n個のU相コイル32U、3×n個のV相コイル32V、及び3×n個のW相コイル32Wを有する(図22)。すなわち、3相コイル32は、第1相、第2相、及び第3相の3相を持つ。例えば、第1相はU相であり、第2相はV相であり、第3相はW相である。本実施の形態では、3相の各々を、U相、V相、及びW相と称する。図22に示される各U相コイル32U、各V相コイル32V、及び各W相コイル32Wを、単にコイルとも称する。
本実施の形態では、n=2である。したがって、図22に示される例では、コイルエンド32aにおいて、3相コイル32は、6個のU相コイル32U、6個のV相コイル32V、及び6個のW相コイル32Wを持っている。ただし、各相のコイルの数は、6個に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図3に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図22に示される構造を持っていればよい。
3相コイル32に電流が流れたとき、3相コイル32は、4×n個の磁極を形成する。本実施の形態では、n=2である。したがって、本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、8磁極を形成する。
〈コイルエンド32aにおけるコイルの配置の概要〉
各コイルエンド32aにおける3相コイル32の配置について以下に説明する。上述のように、3×n個のU相コイル32U、3×n個のV相コイル32V、及び3×n個のW相コイル32Wの各々は、第1から第3のコイルを一組とするn組のコイル群を含む。各コイルエンド32aにおいて、n組のコイル群は、固定子3の周方向に等間隔で配列されている。各相において、1組のコイル群(各コイル群とも称する)は、周方向に連続的に配列された3つのコイルである。言い換えると、各相において、1組のコイル群は、周方向に隣接する3つのコイルである。
各相の各コイルエンド32aにおいて、各コイル群を構成する第1から第3のコイルは、固定子3の周方向にこの順に配列されている。各相の各コイルエンド32aにおいて、各コイル群を構成する第1から第3のコイルは、固定子3の径方向にこの順に配置されている。
各コイルエンド32aにおいて、少なくとも1つの相のうちの第1から第3のコイルのうちの少なくとも2つが、径方向において互いに隣接している。本実施の形態では、各コイルエンド32aにおいて、各相の第1のコイル及び第2のコイルが、径方向において互いに隣接しており、各相の第2のコイル及び第3コイルが、径方向において互いに隣接している。
各相の各コイルエンド32aにおいて、n組のコイル群の各々の第1から第3のコイルが配置される領域は、内側領域、中間領域、及び外側領域に分かれている。内側領域は、固定子鉄心31の中心に最も近い領域であり、外側領域は、固定子鉄心31の中心から最も離れている領域であり、中間領域は、内側領域と外層との間の領域である。本実施の形態では、各コイル群のコイルエンド32aにおいて、第1のコイルは内側領域に配置されており、第2のコイルは中間領域に配置されており、第3のコイルは外側領域に配置されている。すなわち、各コイル群のコイルエンド32aにおいて、第1のコイルは、径方向における第2のコイルの内側に配置されており、第3のコイルは、径方向における第2のコイルの外側に配置されており、第2のコイルは、第1のコイルと第3のコイルとの間に配置されている。
図22及び図24に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、2スロットピッチでスロット311内に配置されている。言い換えると、2スロットピッチとは、1つのコイルが1スロットおきにスロット311に配置されることを意味する。したがって、図22及び図24に示されるように、3相コイル32の各コイルは、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、3相コイル32の各コイルは、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
図24に示されるように、各コイルエンド32aにおいて周方向に隣接する3つのU相コイル32Uを、それぞれ、第1のコイルU1、第2のコイルU2、第3のコイルU3と称する。図24に示されるように、各コイルエンド32aにおいて周方向に隣接する3つのV相コイル32Vを、それぞれ、第1のコイルV1、第2のコイルV2、第3のコイルV3と称する。図24に示されるように、各コイルエンド32aにおいて周方向に隣接する3つのW相コイル32Wを、それぞれ、第1のコイルW1、第2のコイルW2、第3のコイルW3と称する。各第1のコイルU1、各第2のコイルU2、各第3のコイルU3、各第1のコイルV1、各第2のコイルV2、各第3のコイルV3、各第1のコイルW1、各第2のコイルW2、及び各第3のコイルW3を、単にコイルとも称する。
〈U相コイル32U〉
図26に示されるように、6個のU相コイル32Uは、各コイルエンド32aにおいて周方向に隣接する第1から第3のコイルU1,U2,及びU3を一組とする2組のコイル群Ugを含む。言い換えると、6個のU相コイル32Uは2組のコイル群Ugを含み、6個のU相コイル32Uのうちの各コイル群Ugは、各コイルエンド32aにおいて周方向に隣接する第1のコイルU1、第2のコイルU2、及び第3のコイルU3を含む。
各コイルエンド32aにおいて、6個のU相コイル32Uのうちのn組のコイル群Ugは、固定子3の周方向に等間隔で配列されている。各コイルエンド32aにおいて、各コイル群Ugのうちの第1のコイルU1、第2のコイルU2、及び第3のコイルU3は、固定子3の周方向にこの順に配列されている。
本実施の形態では、各コイルエンド32aにおいて、各コイル群Ugのうちの第1のコイルU1、第2のコイルU2、及び第3のコイルU3は、固定子3の径方向にこの順に配列されている。言い換えると、各コイルエンド32aにおいて、各コイル群Ugのうちの第1のコイルU1、第2のコイルU2、及び第3のコイルU3は、固定子3の径方向に固定子鉄心31の内側よりこの順に配列されている。各コイル群Ugのうちの第1のコイルU1、第2のコイルU2、及び第3のコイルU3は、直列に接続されている。各コイル群Ugのうちの第2のコイルU2は、他の2つのコイルU1及びU3とは逆向きに固定子鉄心31に巻かれている。
各コイル群Ugのうちの第1のコイルU1の一部及び第2のコイルU2の一部は、18個のスロット311のうちの1つのスロット311に配置されている。この場合において、各コイル群Ugのうちの第2のコイルU2の他の一部及び第3のコイルU3の一部は、18個のスロット311のうちのもう1つのスロット311に配置されている。
各コイル群Ugのうちの第1のコイルU1の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。各コイル群Ugのうちの第3のコイルU3の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。
例えば、図25及び図26において、第1のコイルU1の一部は第1のコイルU1の第1の部分U1aであり、第1のコイルU1の他の一部は第1のコイルU1の第2の部分U1bであり、第2のコイルU2の一部は第2のコイルU2の第1の部分U2aであり、第2のコイルU2の他の一部は第2のコイルU2の第2の部分U2bであり、第3のコイルU3の一部は第3のコイルU3の第1の部分U3aであり、第3のコイルU3の他の一部は第3のコイルU3の第2の部分U3bである。
ただし、本出願において、第1のコイルU1の一部を第1のコイルU1の第2の部分U1bと読み替えてもよく、第1のコイルU1の他の一部を第1のコイルU1の第1の部分U1aと読み替えてもよく、第2のコイルU2の一部を第2のコイルU2の第2の部分U2bと読み替えてもよく、第2のコイルU2の他の一部を第2のコイルU2の第1の部分U2aと読み替えてもよく、第3のコイルU3の一部を第3のコイルU3の第2の部分U3bと読み替えてもよく、第3のコイルU3の他の一部を第3のコイルU3の第1の部分U3aと読み替えてもよい。
〈V相コイル32V〉
図26に示されるように、6個のV相コイル32Vは、各コイルエンド32aにおいて周方向に隣接する第1から第3のコイルV1,V2,及びV3を一組とする2組のコイル群Vgを含む。言い換えると、6個のV相コイル32Vは2組のコイル群Vgを含み、6個のV相コイル32Vのうちの各コイル群Vgは、各コイルエンド32aにおいて周方向に隣接する第1のコイルV1、第2のコイルV2、及び第3のコイルV3を含む。
各コイルエンド32aにおいて、6個のV相コイル32Vのうちのn組のコイル群Vgは、固定子3の周方向に等間隔で配列されている。各コイルエンド32aにおいて、各コイル群Vgのうちの第1のコイルV1、第2のコイルV2、及び第3のコイルV3は、固定子3の周方向にこの順に配列されている。
本実施の形態では、各コイルエンド32aにおいて、各コイル群Vgのうちの第1のコイルV1、第2のコイルV2、及び第3のコイルV3は、固定子3の径方向にこの順に配列されている。言い換えると、各コイルエンド32aにおいて、各コイル群Vgのうちの第1のコイルV1、第2のコイルV2、及び第3のコイルV3は、固定子3の径方向に固定子鉄心31の内側よりこの順に配列されている。各コイル群Vgのうちの第1のコイルV1、第2のコイルV2、及び第3のコイルV3は、直列に接続されている。各コイル群Vgのうちの第2のコイルV2は、他の2つのコイルV1及びV3とは逆向きに固定子鉄心31に巻かれている。
各コイル群Vgのうちの第1のコイルV1の一部及び第2のコイルV2の一部は、18個のスロット311のうちの1つのスロット311に配置されている。この場合において、各コイル群Vgのうちの第2のコイルV2の他の一部及び第3のコイルV3の一部は、18個のスロット311のうちのもう1つのスロット311に配置されている。
各コイル群Vgのうちの第1のコイルV1の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。各コイル群Vgのうちの第3のコイルV3の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。
例えば、図25及び図26において、第1のコイルV1の一部は第1のコイルV1の第1の部分V1aであり、第1のコイルV1の他の一部は第1のコイルV1の第2の部分V1bであり、第2のコイルV2の一部は第2のコイルV2の第1の部分V2aであり、第2のコイルV2の他の一部は第2のコイルV2の第2の部分V2bであり、第3のコイルV3の一部は第3のコイルV3の第1の部分V3aであり、第3のコイルV3の他の一部は第3のコイルV3の第2の部分V3bである。
ただし、本出願において、第1のコイルV1の一部を第1のコイルV1の第2の部分V1bと読み替えてもよく、第1のコイルV1の他の一部を第1のコイルV1の第1の部分V1aと読み替えてもよく、第2のコイルV2の一部を第2のコイルV2の第2の部分V2bと読み替えてもよく、第2のコイルV2の他の一部を第2のコイルV2の第1の部分V2aと読み替えてもよく、第3のコイルV3の一部を第3のコイルV3の第2の部分V3bと読み替えてもよく、第3のコイルV3の他の一部を第3のコイルV3の第1の部分V3aと読み替えてもよい。
〈W相コイル32W〉
図26に示されるように、6個のW相コイル32Wは、各コイルエンド32aにおいて周方向に隣接する第1から第3のコイルW1,W2,及びW3を一組とする2組のコイル群Wgを含む。言い換えると、6個のW相コイル32Wは2組のコイル群Wgを含み、6個のW相コイル32Wのうちの各コイル群Wgは、各コイルエンド32aにおいて周方向に隣接する第1のコイルW1、第2のコイルW2、及び第3のコイルW3を含む。
各コイルエンド32aにおいて、6個のW相コイル32Wのうちのn組のコイル群Wgは、固定子3の周方向に等間隔で配列されている。各コイルエンド32aにおいて、各コイル群Wgのうちの第1のコイルW1、第2のコイルW2、及び第3のコイルW3は、固定子3の周方向にこの順に配列されている。
本実施の形態では、各コイルエンド32aにおいて、各コイル群Wgのうちの第1のコイルW1、第2のコイルW2、及び第3のコイルW3は、固定子3の径方向にこの順に配列されている。言い換えると、各コイルエンド32aにおいて、各コイル群Wgのうちの第1のコイルW1、第2のコイルW2、及び第3のコイルW3は、固定子3の径方向に固定子鉄心31の内側よりこの順に配列されている。各コイル群Wgのうちの第1のコイルW1、第2のコイルW2、及び第3のコイルW3は、直列に接続されている。各コイル群Wgのうちの第2のコイルW2は、他の2つのコイルW1及びW3とは逆向きに固定子鉄心31に巻かれている。
各コイル群Wgのうちの第1のコイルW1の一部及び第2のコイルW2の一部は、18個のスロット311のうちの1つのスロット311に配置されている。この場合において、各コイル群Wgのうちの第2のコイルW2の他の一部及び第3のコイルW3の一部は、18個のスロット311のうちのもう1つのスロット311に配置されている。
各コイル群Wgのうちの第1のコイルW1の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。各コイル群Wgのうちの第3のコイルW3の他の一部は、他の相のコイルの一部とともに1つのスロット311に配置されている。
例えば、図25及び図26において、第1のコイルW1の一部は第1のコイルW1の第1の部分W1aであり、第1のコイルW1の他の一部は第1のコイルW1の第2の部分W1bであり、第2のコイルW2の一部は第2のコイルW2の第1の部分W2aであり、第2のコイルW2の他の一部は第2のコイルW2の第2の部分W2bであり、第3のコイルW3の一部は第3のコイルW3の第1の部分W3aであり、第3のコイルW3の他の一部は第3のコイルW3の第2の部分W3bである。
ただし、本出願において、第1のコイルW1の一部を第1のコイルW1の第2の部分W1bと読み替えてもよく、第1のコイルW1の他の一部を第1のコイルW1の第1の部分W1aと読み替えてもよく、第2のコイルW2の一部を第2のコイルW2の第2の部分W2bと読み替えてもよく、第2のコイルW2の他の一部を第2のコイルW2の第1の部分W2aと読み替えてもよく、第3のコイルW3の一部を第3のコイルW3の第2の部分W3bと読み替えてもよく、第3のコイルW3の他の一部を第3のコイルW3の第1の部分W3aと読み替えてもよい。
〈スロット311内のコイルの配置の概要〉
図25及び図26に示されるように、3相コイル32の各相のコイルの第1のコイルは、スロット311の内層に配置されている。3相コイル32の各相のコイルの第2のコイルは、スロット311の内層又は外層に配置されている。3相コイル32の各相のコイルの第3のコイルは、スロット311の外層に配置されている。
したがって図25及び図26に示されるように、各相のコイルは、6箇所の外層に配置されており、6箇所の内層に配置されている。各コイル群において、径方向に互いに隣接する2つのコイルは、同じスロット311に配置されている。例えば、各相において、第1のコイルの一部及び第2のコイルの一部が同じスロット311(例えば、第1のスロット311)に配置されており、第2のコイルの他の一部及び第3のコイルの一部が他のスロット(例えば、第2のスロット311)に配置されている。
〈スロット311内のU相コイル32Uの配置〉
スロット311内のU相コイル32Uの配置を以下に具体的に説明する。
U相コイル32Uのうちの各第1のコイルの一部は、U相コイル32Uのうちの第2のコイルが配置されたスロット311の内層に配置されている。U相コイル32Uのうちの各第1のコイルの他の一部は、W相コイル32Wのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、U相コイル32Uのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるW相コイル32Wの第3のコイルの内側に配置されている。
U相コイル32Uのうちの各第2のコイルの一部は、U相コイル32Uのうちの第1のコイルが配置されたスロット311の外層に配置されている。U相コイル32Uのうちの各第2のコイルの他の一部は、U相コイル32Uのうちの第3のコイルが配置されたスロット311の内層に配置されている。
U相コイル32Uのうちの各第3のコイルの一部は、U相コイル32Uのうちの第2のコイルが配置されたスロット311の外層に配置されている。U相コイル32Uのうちの各第3のコイルの他の一部は、V相コイル32Vのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、U相コイル32Uのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるV相コイル32Vの第1のコイルの外側に配置されている。
〈スロット311内のV相コイル32Vの配置〉
スロット311内のV相コイル32Vの配置を以下に具体的に説明する。
V相コイル32Vのうちの各第1のコイルの一部は、V相コイル32Vのうちの第2のコイルが配置されたスロット311の内層に配置されている。V相コイル32Vのうちの各第1のコイルの他の一部は、U相コイル32Uのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、V相コイル32Vのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるU相コイル32Uの第3のコイルの内側に配置されている。
V相コイル32Vのうちの各第2のコイルの一部は、V相コイル32Vのうちの第1のコイルが配置されたスロット311の外層に配置されている。V相コイル32Vのうちの各第2のコイルの他の一部は、V相コイル32Vのうちの第3のコイルが配置されたスロット311の内層に配置されている。
V相コイル32Vのうちの各第3のコイルの一部は、V相コイル32Vのうちの第2のコイルが配置されたスロット311の外層に配置されている。V相コイル32Vのうちの各第3のコイルの他の一部は、W相コイル32Wのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、V相コイル32Vのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるW相コイル32Wの第1のコイルの外側に配置されている。
〈スロット311内のW相コイル32Wの配置〉
スロット311内のW相コイル32Wの配置を以下に具体的に説明する。
W相コイル32Wのうちの各第1のコイルの一部は、W相コイル32Wのうちの第2のコイルが配置されたスロット311の内層に配置されている。W相コイル32Wのうちの各第1のコイルの他の一部は、V相コイル32Vのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、W相コイル32Wのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるV相コイル32Vの第3のコイルの内側に配置されている。
W相コイル32Wのうちの各第2のコイルの一部は、W相コイル32Wのうちの第1のコイルが配置されたスロット311の外層に配置されている。W相コイル32Wのうちの各第2のコイルの他の一部は、W相コイル32Wのうちの第3のコイルが配置されたスロット311の内層に配置されている。
W相コイル32Wのうちの各第3のコイルの一部は、W相コイル32Wのうちの第2のコイルが配置されたスロット311の外層に配置されている。W相コイル32Wのうちの各第3のコイルの他の一部は、U相コイル32Uのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、W相コイル32Wのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるU相コイル32Uの第1のコイルの外側に配置されている。
〈全節巻きの電動機の巻線係数〉
全節巻きの電動機では、回転子の1磁極に対して3つのスロットが対応しており、各コイルは、3スロットピッチでスロットに配置されている。3スロットピッチとは、1つのコイルが2スロットおきにスロット311に配置されることを意味する。3相コイルの磁極の数が6、スロットの数が18、スロットピッチ数が3、毎極毎相スロット数が1の場合、各コイルの基本波の短節巻係数kp、各コイルの基本波の分布巻係数kdは、電動機の基本波の巻線係数kwは、以下の式で求められる。
kp=sin{6/(18/3)}×(π/2)=1
kd={sin(π/6)}/[1×sin{(π/6)/1}]=1
kw=kp×kd=1×1=1
3相コイルの磁極の数が6、スロットの数が18、スロットピッチ数が3、毎極毎相スロット数が1の場合、各コイルの3次の短節巻係数kp3は、以下の式で求められる。
kp3=sin{3×6/(18/3)}×(π/2)=1
毎極毎相スロット数が1の場合、3次の分布巻係数kdは、次の式で求められる。
kd3={sin(3×π/6)}/[1×sin{(3×π/6)/1}]=1
この場合、3次の巻線係数kw3は、次の式で求められる。
kw3=kp3×kd3=1×1=1
したがって、全節巻きの電動機では、3次の巻線係数が1なので、誘起電圧の3次高調波成分による循環電流が3相コイルに発生し、電動機の性能が低下することがある。
〈基本波の巻線係数〉
これに対して、本実施の形態に係る電動機1では、回転子2の1磁極に対して2つのスロット311が対応しており、各コイルは、2スロットピッチでスロット311に配置されている。したがって、各コイルの基本波の短節巻係数kpは、以下の式で求められる。
kp=sin{P/(Q/S)}×(π/2)
Pを3相コイル32の磁極の数、Qをスロット311の数、Sをスロットピッチ数とすると、本実施の形態では、P=8、Q=18、S=2である。よって、kp=sin{(8/9)×(π/2)}=0.985である。
毎極毎相スロット数をqとすると、基本波の分布巻係数kdは、次の式で求められる。
kd={sin(π/6)}/[q×sin{(π/6)/q}]
本実施の形態では、q=3である。よって、kd=0.960である。
したがって、本実施の形態では、電動機1の基本波の巻線係数kwは、次の式で求められる。
kw=kp×kd=0.985×0.960=0.945
〈3次の巻線係数〉
本実施の形態に係る電動機1では、回転子2の1磁極に対して2つのスロット311が対応しており、各コイルは、2スロットピッチでスロット311に配置されている。したがって、各コイルの3次の短節巻係数kp3は、以下の式で求められる。
kp3=sin{3×P/(Q/S)}×(π/2)
Pを3相コイル32の磁極の数、Qをスロット311の数、Sをスロットピッチ数とすると、本実施の形態では、P=8、Q=18、S=2である。よって、kp3=sin{(3×8/9)×(π/2)}=0.866である。
毎極毎相スロット数をqとすると、3次の分布巻係数kdは、次の式で求められる。
kd3={sin(3×π/6)}/[q×sin{(3×π/6)/q}]
本実施の形態では、q=3である。よって、kd3=0.667である。
したがって、本実施の形態では、電動機1の3次の巻線係数kw3は、次の式で求められる。
kw3=kp3×kd3=0.866×0.667=0.578
〈実施の形態3の利点〉
本実施の形態における電動機1は、実施の形態1及び2で説明した利点を有する。
さらに、本実施の形態では、固定子3が上述の3相コイル32の配置を持つので、特に3次の巻線係数が低減され、循環電流を起因とする電動機1の性能の低下を防ぐことができる。その結果、実施の形態1と同様に、低速レンジ(例えば、中間条件)及び高速レンジ(例えば、定格条件)の両方で高い電動機効率を得ることができる。
実施の形態4.
図27は、実施の形態4に係る電動機1の構造を概略的に示す上面図である。
実施の形態4では、実施の形態1、2、及び3と異なる構成について説明する。本実施の形態において説明されない構成は、実施の形態1、2、又は3と同じ構成とすることができる。
〈回転子2〉
実施の形態4における回転子2は、実施の形態3における回転子2と同じである。
〈固定子3〉
図28は、図27に示される電動機1の固定子3のコイルエンド32aにおける3相コイル32の配置及びスロット311内の3相コイル32の配置を模式的に示す図である。図28は、図27に示される固定子3の展開図である。図28において、破線は、コイルエンド32aにおける各相のコイルを示し、鎖線は、各スロット311内の内層と外層との間の境界を示す。
図27及び図28に示される例では、実施の形態1と同様に、固定子鉄心31は、18個のスロット311を有する。
〈コイルエンド32aにおけるコイルの配置〉
各コイルエンド32aにおける3相コイル32の配置について以下に説明する。上述のように、3×n個のU相コイル32U、3×n個のV相コイル32V、及び3×n個のW相コイル32Wの各々は、第1から第3のコイルを一組とするn組のコイル群を含む。本実施の形態では、n=2である。各コイルエンド32aにおいて、n組のコイル群は、固定子3の周方向に等間隔で配列されている。各相において、1組のコイル群(各コイル群とも称する)は、周方向に連続的に配列された3つのコイルである。言い換えると、各相において、1組のコイル群は、周方向に隣接する3つのコイルである。
各コイルエンド32aにおいて、n組のコイル群は、固定子3の周方向に等間隔で配列されている。各相のコイルエンド32aにおいて、各コイル群を構成する第1から第3のコイルは、固定子3の周方向にこの順に2スロットピッチで配列されている。各コイルエンド32aにおいて、少なくとも1つの相のうちの第1から第3のコイルのうちの少なくとも2つが、径方向において互いに隣接している。本実施の形態では、各コイルエンド32aにおいて、各相の第2のコイル及び第3のコイルが、径方向において互いに隣接している。
各相のコイルエンド32aにおいて、各コイル群を構成する第1から第3のコイルのうちの第2のコイルは、固定子3の径方向において第1のコイル及び第3のコイルの外側に配置されており、第1のコイル及び第3のコイルの一方が他方よりも固定子鉄心31の中心に近い。すなわち、各相のコイルエンド32aにおいて、第1のコイル及び第3のコイルの一方が他方よりも軸線Axに近い。具体的には、各相のコイルエンド32aにおいて、第3のコイルよりも第1のコイルの方が固定子鉄心31の中心に近い。
本実施の形態では、各コイル群のコイルエンド32aにおいて、第1のコイルは内側領域に配置されており、第2のコイルは外側領域に配置されており、第3のコイルは中間領域に配置されている。すなわち、各コイル群のコイルエンド32aにおいて、第1のコイルは、径方向における第2のコイルの内側に配置されており、第2のコイルは、径方向における第3のコイルの外側に配置されており、第3のコイルは、第1のコイルと第2のコイルとの間に配置されている。
各第3のコイルは、隣接する他の相の第1のコイルとその他の相の第2のコイルとの間に配置されている。例えば、V相の第3のコイルは、U相の第1のコイルとU相の第2のコイルとの間に配置されている。したがって、各コイル群のコイルエンド32aにおいて、第1のコイルは、第2のコイルから離間している。
〈スロット311内のコイルの配置の概要〉
3相コイル32の各相のコイルの第1のコイルは、スロット311の内層に配置されている。3相コイル32の各相のコイルの第2のコイルは、スロット311の外層に配置されている。3相コイル32の各相のコイルの第3のコイルは、スロット311の内層又は外層に配置されている。
すなわち、各第1のコイルは、スロット311の内層に配置されており、各第2のコイルは、スロット311の外層に配置されている。各第3のコイルの一部は、スロット311の内層に配置されており、各第3のコイルの他の一部は、他のスロット311の外層に配置されている。
したがって、各相のコイルは、スロット311の外層に6箇所配置されており、スロット311の内層に6箇所配置されている。
〈スロット311内のU相コイル32Uの配置〉
スロット311内のU相コイル32Uの配置を以下に具体的に説明する。
U相コイル32Uのうちの各第1のコイルの一部は、U相コイル32Uのうちの第2のコイルが配置されたスロット311の内層に配置されている。U相コイル32Uのうちの各第1のコイルの他の一部は、W相コイル32Wのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、U相コイル32Uのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるW相コイル32Wの第3のコイルの内側に配置されている。
U相コイル32Uのうちの各第2のコイルの一部は、U相コイル32Uのうちの第1のコイルが配置されたスロット311の外層に配置されている。U相コイル32Uのうちの各第2のコイルの他の一部は、U相コイル32Uのうちの第3のコイルが配置されたスロット311の外層に配置されている。
U相コイル32Uのうちの各第3のコイルの一部は、U相コイル32Uのうちの第2のコイルが配置されたスロット311の内層に配置されている。U相コイル32Uのうちの各第3のコイルの他の一部は、V相コイル32Vのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、U相コイル32Uのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるV相コイル32Vの第1のコイルの外側に配置されている。
〈スロット311内のV相コイル32Vの配置〉
スロット311内のV相コイル32Vの配置を以下に具体的に説明する。
V相コイル32Vのうちの各第1のコイルの一部は、V相コイル32Vのうちの第2のコイルが配置されたスロット311の内層に配置されている。V相コイル32Vのうちの各第1のコイルの他の一部は、U相コイル32Uのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、V相コイル32Vのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるU相コイル32Uの第3のコイルの内側に配置されている。
V相コイル32Vのうちの各第2のコイルの一部は、V相コイル32Vのうちの第1のコイルが配置されたスロット311の外層に配置されている。V相コイル32Vのうちの各第2のコイルの他の一部は、V相コイル32Vのうちの第3のコイルが配置されたスロット311の外層に配置されている。
V相コイル32Vのうちの各第3のコイルの一部は、V相コイル32Vのうちの第2のコイルが配置されたスロット311の内層に配置されている。V相コイル32Vのうちの各第3のコイルの他の一部は、W相コイル32Wのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、V相コイル32Vのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるW相コイル32Wの第1のコイルの外側に配置されている。
〈スロット311内のW相コイル32Wの配置〉
スロット311内のW相コイル32Wの配置を以下に具体的に説明する。
W相コイル32Wのうちの各第1のコイルの一部は、W相コイル32Wのうちの第2のコイルが配置されたスロット311の内層に配置されている。W相コイル32Wのうちの各第1のコイルの他の一部は、V相コイル32Vのうちの第3のコイルが配置されたスロット311の内層に配置されている。したがって、W相コイル32Wのうちの各第1のコイルの他の一部は、スロット311内において、径方向におけるV相コイル32Vの第3のコイルの内側に配置されている。
W相コイル32Wのうちの各第2のコイルの一部は、W相コイル32Wのうちの第1のコイルが配置されたスロット311の外層に配置されている。W相コイル32Wのうちの各第2のコイルの他の一部は、W相コイル32Wのうちの第3のコイルが配置されたスロット311の外層に配置されている。
W相コイル32Wのうちの各第3のコイルの一部は、W相コイル32Wのうちの第2のコイルが配置されたスロット311の内層に配置されている。W相コイル32Wのうちの各第3のコイルの他の一部は、U相コイル32Uのうちの第1のコイルが配置されたスロット311の外層に配置されている。したがって、W相コイル32Wのうちの各第3のコイルの他の一部は、スロット311内において、径方向におけるU相コイル32Uの第1のコイルの外側に配置されている。
〈実施の形態4の利点〉
本実施の形態における電動機1は、実施の形態1から3で説明した利点を有する。
実施の形態5.
実施の形態5に係る圧縮機300について説明する。
図29は、圧縮機300の構造を概略的に示す断面図である。
圧縮機300は、電動要素としての電動機1と、ハウジングとしての密閉容器307と、圧縮要素(圧縮装置とも称する)としての圧縮機構305とを有する。本実施の形態では、圧縮機300は、スクロール圧縮機である。ただし、圧縮機300は、スクロール圧縮機に限定されない。圧縮機300は、スクロール圧縮機以外の圧縮機、例えば、ロータリー圧縮機でもよい。
圧縮機300内の電動機1は、実施の形態1で説明した電動機1である。電動機1は、圧縮機構305を駆動する。
圧縮機300は、さらに、シャフト4の下端部(すなわち、圧縮機構305側と反対側の端部)を支持するサブフレーム308を備えている。
圧縮機構305は、密閉容器307内に配置されている。圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト4の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管306が設けられている。この吐出管306は、密閉容器307の圧縮機構305と電動機1との間に設けられた開口部に連通している。
電動機1は、固定子3を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機1の構成は、上述した通りである。密閉容器307には、電動機1に電力を供給するガラス端子309が溶接により固定されている。
電動機1が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管306から吐出される。
圧縮機300は、実施の形態1から4で説明した電動機1を有するので、圧縮機300は、実施の形態1で説明した利点を持つ。
さらに、圧縮機300は実施の形態1から4で説明した電動機1を有するので、圧縮機300の性能を改善することができる。
実施の形態6.
実施の形態5に係る圧縮機300を有する、空気調和機としての冷凍空調装置7について説明する。
図30は、実施の形態6に係る冷凍空調装置7の構成を概略的に示す図である。
冷凍空調装置7は、例えば、冷暖房運転が可能である。図30に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
実施の形態6に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
室外機71は、圧縮機300と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機300によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機300によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機300へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
実施の形態6に係る冷凍空調装置7によれば、実施の形態1から4で説明した電動機1を有するので、冷凍空調装置7は、実施の形態1から4のうちの一つに対応する利点を持つ。
さらに、実施の形態6に係る冷凍空調装置7は、実施の形態5に係る圧縮機300を有するので、冷凍空調装置7の性能を改善することができる。
以上に説明した各実施の形態における特徴及び各変形例における特徴は組み合わせることができる。
1 電動機、 2 回転子、 3 固定子、 4 シャフト、 7 冷凍空調装置、 31 固定子鉄心、 32 3相コイル、 32a コイルエンド、 32U U相コイル、 32V V相コイル、 32W W相コイル、 50 制御装置、 60 結線切り替え部、 71 室外機、 72 室内機、 74 凝縮器、 77 蒸発器、 100 駆動装置、 300 圧縮機、 305 圧縮機構、 307 密閉容器、 311 スロット。

Claims (13)

  1. 6×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、2×n個の磁極を形成する3相コイルとを有する固定子と、
    永久磁石を有し、前記固定子の内側に配置された回転子と、
    前記3相コイルの結線状態を第1の結線状態と前記第1の結線状態とは異なる第2の結線状態との間で切り替える結線切り替え部と
    を備え、
    前記3相コイルは、前記3相コイルのコイルエンドにおいて2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
    前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記6×n個のスロットのうちの2つのスロットに配置されており、
    毎極毎相スロット数が1である
    電動機。
  2. 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルとを有する固定子と、
    永久磁石を有し、前記固定子の内側に配置された回転子と、
    前記3相コイルの結線状態を第1の結線状態と前記第1の結線状態とは異なる第2の結線状態との間で切り替える結線切り替え部と
    を備え、
    前記3相コイルは、前記3相コイルのコイルエンドにおいて3×n個のU相コイル、3×n個のV相コイル、及び3×n個のW相コイルを有し、
    前記3相コイルの各コイルは、前記固定子鉄心の一端側において1スロットおきに前記9×n個のスロットのうちの2つのスロットに配置されており、
    毎極毎相スロット数が3である
    電動機。
  3. 前記3×n個のU相コイル、前記3×n個のV相コイル、及び前記3×n個のW相コイルの各々は、第1から第3のコイルを一組とするn組のコイル群を含み、
    前記9×n個のスロットの各々は、前記3相コイルのうちの1つのコイルが配置される内層と、径方向における前記内層の外側に設けられており前記3相コイルのうちの1つのコイルが配置される外層とを含み、
    前記第1のコイルは、前記内層に配置されており、
    前記第2のコイルは、前記外層に配置されており、
    前記U相コイルの前記各第3のコイルの一部は、前記U相コイルの前記第2のコイルが配置された前記スロットの内層に配置されており、
    前記U相コイルの前記各第3のコイルの他の一部は、前記V相コイルの前記第1のコイルが配置された前記スロットの前記外層に配置されており、
    前記V相コイルの前記各第3のコイルの一部は、前記V相コイルの前記第2のコイルが配置された前記スロットの前記内層に配置されており、
    前記V相コイルの前記各第3のコイルの他の一部は、前記W相コイルの前記第1のコイルが配置された前記スロットの前記外層に配置されており、
    前記W相コイルの前記各第3のコイルの一部は、前記W相コイルの前記第2のコイルが配置された前記スロットの前記内層に配置されており、
    前記W相コイルの前記各第3のコイルの他の一部は、前記U相コイルの前記第1のコイルが配置された前記スロットの前記外層に配置されている
    請求項2に記載の電動機。
  4. 前記3相コイルの前記結線状態が前記第1の結線状態のとき、前記回転子は、空気調和機の中間条件に対応する回転速度で回転し、
    前記3相コイルの前記結線状態が前記第2の結線状態のとき、前記回転子は、前記空気調和機の定格条件に対応する回転速度で回転する
    請求項1から3のいずれか1項に記載の電動機。
  5. 前記回転子が空気調和機の中間条件に対応する回転速度で回転するとき、前記3相コイルの前記結線状態は前記第1の結線状態であり、
    前記回転子が前記空気調和機の定格条件に対応する回転速度で回転するとき、前記3相コイルの前記結線状態は前記第2の結線状態である
    請求項1から3のいずれか1項に記載の電動機。
  6. 前記第1の結線状態はY結線であり、前記第2の結線状態はデルタ結線である請求項1から5のいずれか1項に記載の電動機。
  7. 前記電動機の回転速度が、前記Y結線における前記電動機の電動機効率と前記デルタ結線における前記電動機の電動機効率とが一致する回転速度に到達した場合、前記結線切り替え部は、前記3相コイルの前記結線状態を前記デルタ結線に設定する請求項6に記載の電動機。
  8. 前記第1の結線状態は、前記3相コイルの各相のコイルが直列に接続された直列接続であり、前記第2の結線状態は、前記3相コイルの各相のコイルが並列に接続された並列接続である請求項1から5のいずれか1項に記載の電動機。
  9. 前記第1の結線状態は、前記3相コイルの各相のコイルが直列に接続された直列接続であり、前記第2の結線状態は、前記3相コイルの各相においてm個(mは2以上の整数)のコイルが並列に接続されたm並列接続である請求項1から5のいずれか1項に記載の電動機。
  10. 空気調和機の中間条件に対応する回転速度をN1とし、前記空気調和機の定格条件に対応する回転速度をN2とした場合に、(N2/N1)>m(mは2以上の整数)を満たす請求項9に記載の電動機。
  11. 請求項1から10のいずれか1項に記載の電動機と、
    前記結線切り替え部を制御する制御装置と
    を備えた駆動装置。
  12. 密閉容器と、
    前記密閉容器内に配置された圧縮装置と、
    前記圧縮装置を駆動する請求項1から10のいずれか1項に記載の電動機と
    を備えた圧縮機。
  13. 請求項12に記載の圧縮機と、
    熱交換器と
    を備えた空気調和機。
JP2022542546A 2020-08-13 2020-08-13 電動機、駆動装置、圧縮機、及び空気調和機 Active JP7433447B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030751 WO2022034665A1 (ja) 2020-08-13 2020-08-13 電動機、駆動装置、圧縮機、及び空気調和機

Publications (3)

Publication Number Publication Date
JPWO2022034665A1 JPWO2022034665A1 (ja) 2022-02-17
JPWO2022034665A5 JPWO2022034665A5 (ja) 2022-09-30
JP7433447B2 true JP7433447B2 (ja) 2024-02-19

Family

ID=80247079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022542546A Active JP7433447B2 (ja) 2020-08-13 2020-08-13 電動機、駆動装置、圧縮機、及び空気調和機

Country Status (4)

Country Link
US (1) US20230231456A1 (ja)
JP (1) JP7433447B2 (ja)
CN (1) CN116097549A (ja)
WO (1) WO2022034665A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009714B2 (en) * 2019-12-02 2024-06-11 Mitsubishi Electric Corporation Rotating electric machine stator and rotating electric machine
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device
US20230060549A1 (en) * 2021-08-30 2023-03-02 Abb Schweiz Ag Tapped winding method for extended constant horsepower speed range

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169517A (ja) 1999-12-03 2001-06-22 Sanyo Electric Co Ltd コンデンサ電動機
JP2001238388A (ja) 2000-02-25 2001-08-31 Hitachi Ltd 回転電機の電機子巻線および回転電機
JP2009216324A (ja) 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
JP2010193674A (ja) 2009-02-20 2010-09-02 Denso Corp 5相モータ
WO2015128964A1 (ja) 2014-02-26 2015-09-03 三菱電機株式会社 回転電機
JP2016034192A (ja) 2014-07-31 2016-03-10 株式会社東芝 固定子および回転電機
WO2018078835A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 空気調和機および空気調和機の制御方法
WO2018078849A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 電動機駆動装置及び空気調和機
JP2020108314A (ja) 2018-12-28 2020-07-09 株式会社マキタ 電動工具用の分布巻きモータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328900A (ja) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd 回転電機
WO2009070089A1 (en) * 2007-11-29 2009-06-04 Joensson Ragnar Method and system for controlling an electric ac motor
WO2018207275A1 (ja) * 2017-05-10 2018-11-15 三菱電機株式会社 空気調和機および空気調和機の運転制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169517A (ja) 1999-12-03 2001-06-22 Sanyo Electric Co Ltd コンデンサ電動機
JP2001238388A (ja) 2000-02-25 2001-08-31 Hitachi Ltd 回転電機の電機子巻線および回転電機
JP2009216324A (ja) 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
JP2010193674A (ja) 2009-02-20 2010-09-02 Denso Corp 5相モータ
WO2015128964A1 (ja) 2014-02-26 2015-09-03 三菱電機株式会社 回転電機
JP2016034192A (ja) 2014-07-31 2016-03-10 株式会社東芝 固定子および回転電機
WO2018078835A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 空気調和機および空気調和機の制御方法
WO2018078849A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 電動機駆動装置及び空気調和機
JP2020108314A (ja) 2018-12-28 2020-07-09 株式会社マキタ 電動工具用の分布巻きモータ

Also Published As

Publication number Publication date
WO2022034665A1 (ja) 2022-02-17
CN116097549A (zh) 2023-05-09
US20230231456A1 (en) 2023-07-20
JPWO2022034665A1 (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
JP7433447B2 (ja) 電動機、駆動装置、圧縮機、及び空気調和機
TW565981B (en) Permanent magnet type rotating electrical machine
US20100084935A1 (en) Permanent magnet synchronous motor and drive system
WO2003055045A1 (fr) Machine dynamoelectrique du type a aimants permanents et generateur synchrone du type a aimants permanents utilisant l'energie eolienne
JP5501132B2 (ja) 空気調和機
JP2006246674A (ja) 電動機駆動装置、電動機駆動方法及び圧縮機
JP5588751B2 (ja) 容積形圧縮機
JP2001186787A (ja) 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP4576873B2 (ja) 永久磁石電動機並びにその駆動方法及び製造方法、圧縮機、送風機及び空気調和機
US5793139A (en) Electric motor having stator's salient poles of the stator slightly shifted from salient poles of the rotor
JP2001128395A (ja) 回転電機および圧縮機および回転電機の製造方法
JP7370468B2 (ja) 固定子、電動機、圧縮機、及び空気調和機
WO2019021452A1 (ja) 駆動装置、圧縮機、及び空気調和機、並びに永久磁石埋込型電動機の駆動方法
JP7361805B2 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
JP7292441B2 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
US20230291263A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
JP4595372B2 (ja) 圧縮機、圧縮機駆動制御装置および圧縮機の駆動制御方法
JP7325650B2 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
Tanujaya et al. Design a novel switched reluctance motor for neighborhoods electric vehicle
WO2021181593A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
JPH05276793A (ja) 洗濯機などの非同期電動機の駆動ユニット及び誘導電動機の回転数制御方法
WO2023152891A1 (ja) リラクタンスモータ駆動装置、リラクタンスモータユニット、圧縮機及び空気調和装置
JPH1098859A (ja) 2極4極切換機能を備えたファンモータとこのファンモータの速度切換方法
JP7419501B2 (ja) 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
JP7201952B2 (ja) モータ制御装置、モータ、圧縮機、冷凍装置及び車両

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7433447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150