以下、実施形態による車両制御装置、車両制御システムおよびアプリケーションを、車両としての自動車(より具体的には、4輪自動車)に用いる場合を例に挙げ、添付図面を参照しつつ説明する。
図1ないし図8は、実施形態を示している。図1において、車両1のボディを構成する車体2の下側には、例えば左右の前輪3と左右の後輪4(一方のみ図示)との合計4個の車輪3,4が設けられている。左右の前輪3と車体2との間には、それぞれ前輪側のサスペンション5,5(以下、前輪サスペンション5という)が介装して設けられている。前輪サスペンション5は、懸架ばね6(以下、ばね6という)、および、ばね6と並列に設けられた減衰力調整式緩衝器7(以下、緩衝器7という)を備えている。
左右の後輪4と車体2との間には、それぞれ後輪側のサスペンション8,8(以下、後輪サスペンション8という)が介装して設けられている。後輪サスペンション8は、懸架ばね9(以下、ばね9という)、および、ばね9と並列に設けられた減衰力調整式緩衝器10(以下、緩衝器10という)を備えている。緩衝器7,10は、例えば、減衰力の調整が可能な油圧式のシリンダ装置(ショックアブソーバ)となるセミアクティブダンパにより構成されている。
ここで、緩衝器7,10は、車両1の車体2と車輪3,4との間に設けられた減衰力可変型の減衰力発生装置である。緩衝器7,10は、車両1の姿勢を制御する車体姿勢制御装置に相当する。即ち、緩衝器7,10は、後述するコントローラ21によって発生減衰力の特性(減衰力特性)が可変に制御される。このために、緩衝器7,10には、減衰力特性をハードな特性(硬特性)からソフトな特性(軟特性)に連続的(ないし多段階)に調整するため、減衰力調整バルブおよびソレノイド等からなるアクチュエータ(図示せず)が付設されている。緩衝器7,10は、コントローラ21からアクチュエータへ供給される指令電流(制御信号)に応じて減衰力特性が可変に調整される。
なお、減衰力調整バルブとしては、減衰力発生バルブのパイロット圧を制御する圧力制御方式や通路面積を制御する流量制御方式等、従来から知られている構造を用いることができる。また、緩衝器7,10は、減衰力を連続的(ないし多段階)に調整できればよく、例えば、空圧ダンパや電磁ダンパ、電気粘性流体ダンパ、磁性流体ダンパであってもよい。また、緩衝器7,10は、エアばね(空気ばね)を用いたエアダンパ(エアサス)、前後左右の油圧シリンダを配管で接続した油圧ダンパ(車高調整装置)、左右の車輪の動きに対して力を与えるスタビライザ等であってもよい。さらに、緩衝器7,10は、推力を発生できる液圧式アクチュエータ、電動式アクチュエータまたは気圧式アクチュエータにより構成されるフルアクティブダンパでもよい。
次に、車両1の状態(運動)を検出する各種のセンサ11,12,13,14,15,16,17について、図1に加え図5も参照しつつ説明する。
車両1には、舵角センサ11と、車輪速センサ12と、前後加速度センサ13と、左右加速度センサ14と、ヨーレイトセンサ15と、ブレーキスイッチ16と、マスタシリンダ液圧センサ17とが設けられている。これらの各種センサ11,12,13,14,15,16,17は、車両1に一般的に搭載されているセンサ(スイッチを含む)である。図5に示すように、各種センサ11,12,13,14,15,16,17は、車両1に搭載された多数の電子機器とコントローラ21との間で車載向けの多重通信を行うシリアル通信部としてのCAN18を介して接続されている。なお、各種センサ11,12,13,14,15,16,17は、CAN18を介することなく直接的にコントローラ21に接続してもよい。
舵角センサ11は、例えば車両1のステアリング装置(図示せず)に設けられている。舵角センサ11は、車両1を運転するドライバ(運転者)のステアリング操作によって生じる操舵角(回転角)または車輪(前輪3)の舵角を検出する。舵角センサ11の検出データ(舵角に対応する信号)は、CAN18を介してコントローラ21に出力される。車輪速センサ12は、例えば車輪3,4を支持する車輪支持用ハブユニットに設けられている。車輪速センサ12は、それぞれの車輪3,4に対応して設けられている。車輪速センサ12は、車輪3,4の回転速度を検出する。車輪速センサ12の検出データ(車輪速に対応する信号)は、CAN18を介してコントローラ21に出力される。
前後加速度センサ13および左右加速度センサ14は、例えば車両1のばね上側となる車体2に設けられている。前後加速度センサ13は、車両1(車体2)の前後方向の加速度(減速度、加速度)を検出する。前後加速度センサ13の検出データ(前後加速度に対応する信号)は、CAN18を介してコントローラ21に出力される。左右加速度センサ14は、車両1(車体2)の左右方向の加速度(横加速度)を検出する。左右加速度センサ14の検出データ(左右加速度に対応する信号)は、CAN18を介してコントローラ21に出力される。ヨーレイトセンサ15は、例えば車両1のばね上側となる車体2に設けられている。ヨーレイトセンサ15は、車両1(車体2)の上下方向に延びるヨー軸(鉛直軸)周りの回転角速度であるヨーレイトを検出する。ヨーレイトセンサ15の検出データ(ヨーレイトに対応する信号)は、CAN18を介してコントローラ21に出力される。
ブレーキスイッチ16は、例えば車両1のブレーキペダル(図示せず)に設けられている。ブレーキスイッチ16は、車両1を運転するドライバのブレーキ操作の有無を検出する。ブレーキスイッチ16の検出データ(ブレーキ操作の有無に対応する信号)は、CAN18を介してコントローラ21に出力される。マスタシリンダ液圧センサ17は、例えば車両1のマスタシリンダ(図示せず)に設けられている。マスタシリンダ液圧センサ17は、マスタシリンダのブレーキ液圧を検出する。マスタシリンダ液圧センサ17の検出データ(ブレーキ液圧に対応する信号)は、CAN18を介してコントローラ21に出力される。
次に、緩衝器7,10を制御するコントローラ21について説明する。
車両制御装置としてのコントローラ21は、マイクロコンピュータ、電源回路、駆動回路を含んで構成されており、ECU(Electronic Control Unit)とも呼ばれている。車両姿勢制御用ECU(減衰力発生装置用ECU)であるコントローラ21は、各種センサ11,12,13,14,15,16,17等により検出される車両運動(車体挙動情報、車両運動情報、車両状態情報)に基づいて、緩衝器7,10を制御(減衰力を調整)する。即ち、コントローラ21は、車体挙動情報に基づいて緩衝器7,10の減衰力(発生力)を算出して制御する。
図5に示すように、コントローラ21の入力側には、舵角センサ11、車輪速センサ12、前後加速度センサ13、左右加速度センサ14、ヨーレイトセンサ15、ブレーキスイッチ16、マスタシリンダ液圧センサ17等がCAN18を介して接続されている。コントローラ21の出力側は、各緩衝器7,10のアクチュエータ(例えば、減衰力調整バルブの開弁圧を調整するソレノイド)に接続されている。
コントローラ21は、CPU(演算処理装置)等の演算処理を行うコントロール部21A、および、ROM、RAM、不揮発性メモリ等のメモリからなる記憶部21Bを備えている。記憶部21Bには、各種センサ11,12,13,14,15,16,17等の入力信号から車両状態(車両運動、車両挙動)を演算する処理プログラム、車両状態(車両運動、車両挙動)から緩衝器7,10で発生すべき減衰力を演算する処理プログラム、発生すべき減衰力に対応する制御信号を出力する処理プログラム等が格納されている。
緩衝器7,10の減衰力を演算する制御則としては、例えば、スカイフック制御則、BLQ制御則(双線形最適制御則)またはH∞制御則等を用いることができる。コントローラ21は、例えば、ばね上となる車体2の運動(挙動)を緩衝器7,10の減衰力によって減速させる場合は、緩衝器7,10の減衰力を大きくし、ばね上となる車体2の運動(挙動)を緩衝器7,10の減衰力によって加速させる場合は、緩衝器7,10の減衰力を抑制する。
減衰力可変ダンパである緩衝器7,10は、減衰力を可変させて適切に各車輪3,4の上下動を減衰させることにより、車体2の振動を抑制する働きを持っている。この場合、車体2には、操舵角を検出する舵角センサ11、車体2に作用する前後方向の加速度を検出する前後加速度センサ13、車体2に作用する左右方向の加速度を検出する左右加速度センサ14、および、車体2の旋回運動を検出するヨーレイトセンサ15が取付けられている。さらに、自動車である車両1には、各車輪3,4の回転速度(車輪速)を検出する車輪速センサ12が設けられている。また、車両1には、ブレーキの作動状態を表すブレーキスイッチ信号を出力するブレーキスイッチ16、および、マスタシリンダの液圧を検出するマスタシリンダ液圧センサ17が設けられている。
これら各センサ11,12,13,14,15,16,17は、コントローラ21に接続されている。コントローラ21は、各センサ11,12,13,14,15,16,17等からの情報の入力を受けて、後述する演算処理に基づいて、車体2の挙動、即ち、ピッチ運動、ロール運動、バウンス運動、それぞれの車輪3,4の位置でのばね上上下速度を推定する。また、コントローラ21は、各車輪3,4と車体2との相対速度からダンパ摺動速度(ダンパ相対速度)、ダンパ変位を推定する。そして、コントローラ21は、これらの演算結果に基づいて、制御指令値(減衰力指令値)を算出し、減衰力可変ダンパである緩衝器7,10を制御する。
ところで、従来技術の場合、車両の挙動を車輪速から推定する。このため、車両の挙動を直接的に検出する専用のセンサ(緩衝器用センサ)が車両に設けられた構成と比較した場合に、制御精度が低くなる可能性がある。そこで、実施形態では、車両に持ち込まれたモバイル装置からの加速度情報とジャイロ情報とのうちの少なくとも1つを有する信号を車両の姿勢を制御する車両姿勢制御装置(より具体的には、減衰力発生装置)の制御に用いる。これにより、車両挙動(車両運動)を直接的に検出する専用のセンサが車両に搭載されていなくても、車両の姿勢を制御する車両姿勢制御装置(減衰力発生装置)の制御精度を向上できる。
即ち、実施形態では、図5に示すように、コントローラ21のコントロール部21Aは、車両に持ち込まれたモバイル装置31が有するセンサ31A,31Bが検知した情報を有する入力信号を受信する。コントロール部21Aは、受信したモバイル装置31からの入力信号に応じて、車両の姿勢を制御する緩衝器7,10に制御信号を出力する。この場合、コントロール部21Aは、モバイル装置31の加速度センサ31Aとジャイロセンサ31Bから加速度情報とジャイロ情報の両方を含む入力信号を受信する。コントロール部21Aは、入力信号に応じた制御信号を緩衝器7,10に出力する。即ち、コントロール部21Aは、加速度情報とジャイロ情報の両方に応じて、緩衝器7,10の減衰力を制御する制御信号を出力する。
このために、図6に示すように、コントローラ21(コントロール部21A)は、車両運動推定部としての車両状態推定部22と、車両運動算出部としての車両状態算出部23と、車両運動値選択部としての車両状態値選択部24と、制御指令出力部としての制御ロジック部25とを備えている。車両状態推定部22は、CAN信号のみを用いて車両状態(車両運動、車両挙動)を推定する。即ち、車両状態推定部22は、CAN18に流れる信号を基に、ばね上速度、ダンパ摺動速度、ダンパ変位、車体ロールレイト、車体ピッチレイトを推定する。例えば、車両状態推定部22は、車両1の操舵角、前後加速度、左右加速度、ヨーレイト、各車輪3,4の車輪速、ブレーキ操作の有無、マスタシリンダ液圧に基づいて、ばね上速度、ダンパ摺動速度、ダンパ変位、車体ロールレイト、車体ピッチレイトを推定する。
ばね上速度は、各車輪3,4の位置での車体2の上下速度に対応し、ダンパ摺動速度は、緩衝器7,10の伸縮速度(相対速度)に対応し、ダンパ変位は、緩衝器7,10の伸縮量(変位量)に対応し、車体ロールレイトは、車両1(車体2)の前後方向に延びるロール軸周りの回転角速度に対応し、車体ピッチレイトは、車両1(車体2)の左右方向に延びるピッチ軸周りの回転角速度に対応する。ここで、車両1の車体2と車輪3,4との相対運動である「ダンパ摺動速度」および「ダンパ変位」は、例えば、車両1のロール運動である「車体ロールレイト」とピッチ運動である「車体ピッチレイト」の少なくとも一方と各輪ばね上上下運動量である「ばね上速度」とから推定することができる。
なお、前後加速度、左右加速度、ヨーレイト、車輪速等から車両をモデル化した車両モデル(運動方程式)、カルマンフィルタ等を用いてばね上速度、ダンパ摺動速度、ダンパ変位、車体ロールレイト、車体ピッチレイト等を推定する技術については、前述の特許文献1等の公開公報を含む各種の文献(車両状態の推定に関する文献)に記載されているため、これ以上の説明は省略する。いずれにしても、車両状態推定部22は、車両1の車輪速から車両1の車体2と車輪3,4との相対運動(ダンパ摺動速度、ダンパ変位)を推定する相対運動推定部を有している。車両状態推定部22は、推定した状態値(運動値)、即ち、ばね上速度推定値、ダンパ摺動速度推定値、ダンパ変位推定値、車体ロールレイト推定値、車体ピッチレイト推定値に対応する信号を、車両状態値選択部24に出力する。
車両状態算出部23は、モバイル装置31からのモバイルセンサ信号を用いて車両状態を算出する。即ち、車両状態算出部23は、ばね上(車体2)の任意の位置に取り付けられたモバイル装置31の加速度センサ31Aの加速度信号とジャイロセンサ31Bのジャイロセンサ信号を基に、ばね上速度、車体ロールレイト、車体ピッチレイトを算出する。図1ないし図4に示すように、実施形態では、モバイル装置31は、スマートフォンと呼ばれる携帯端末(携帯情報端末)である。
モバイル装置31は、例えばドライバが所持(所有)しており、ドライバによって車内に持ち込まれる。図2に示すように、モバイル装置31は、例えば、車内のダッシュボード32に固定されたモバイルスタンド33を介して車体2に支持される。この場合、モバイル装置31は、慣性で動かないように(揺れないように)、高剛性のモバイルスタンド33によって支持されている。即ち、モバイル装置31は、ばね上となる車体2と異なる動きをしないように、車体2のダッシュボード32に取付けられている。モバイル装置31は、例えば、図2および図5に示すように、コントローラ21とケーブル34を介して有線接続されている。このために、コントローラ21は、モバイル装置31と有線で接続する連結部21Cを有している。連結部21Cは、例えば、USBコネクタに対応する。
また、モバイル装置31とコントローラ21は、有線接続に限らず、電波で送受信を行う無線PAN、無線LANにより無線接続することもできる。このために、コントローラ21は、モバイル装置31が電波で送信する加速度情報とジャイロ情報のうちの少なくとも一つを有する入力信号を受信する受信部21Dも有している。受信部21Dは、例えば、無線通信用のアンテナユニットに対応する。なお、実施形態では、コントローラ21は、連結部21Cと受信部21Dとの両方を有しているが、少なくとも何れか一方を有していればよい。
モバイル装置31は、加速度センサ31Aおよびジャイロセンサ31Bを備えている。図3に示すように、加速度センサ31Aは、モバイル装置31のx軸、y軸、z軸の3つの方向のそれぞれの加速度を検出する。ジャイロセンサ31Bは、モバイル装置31のロール軸(y軸)、ピッチ軸(x軸)、ヨー軸(z軸)の3つの軸の角速度を検出する。車両状態算出部23には、モバイル装置31からモバイル装置31の3つの軸の加速度と3つの軸の角速度の情報を有する入力信号が入力される。なお、実施形態では、モバイル装置31は、加速度センサ31Aとジャイロセンサ31Bとの両方を有しているが、少なくともいずれか一方を有していればよい。即ち、モバイル装置31は、加速度センサ31Aとジャイロセンサ31Bとの少なくとも一方が搭載されている。また、図面では、加速度センサ31Aとジャイロセンサ31Bとをそれぞれ別々に表しているが、これらを1つのセンサユニットとして構成した慣性測定ユニット(慣性センサ)を用いてもよい。
車両状態算出部23は、モバイル装置31の3つの軸の加速度と3つの軸の角速度の情報に基づいて、ばね上速度、車体ロールレイト、車体ピッチレイトを算出する。車両状態算出部23は、算出した値、即ち、ばね上速度算出値、車体ロールレイト算出値(車体ロールレイト測定値)、車体ピッチレイト算出値(車体ピッチレイト測定値)に対応する信号を、車両状態値選択部24に出力する。車両状態算出部23でのばね上速度、車体ロールレイト、車体ピッチレイトの算出については、後述する。
車両状態値選択部24は、車両状態推定部22の出力値と車両状態算出部23の出力値を、モバイル装置31の装着の有無によって選択を行う。即ち、CAN信号の値から推定した推定値よりも、モバイル装置31のセンサ31A,31Bで直接的に測定・算出した算出値(測定値)の方が、精度に優れる。このため、車両状態値選択部24は、図7に示すように、制御に用いる車両状態値(車両運動値、車両挙動値)を選択する。図7中、「モバイル装置なし」は、モバイル装置31からの入力信号をコントローラ21が受信できない場合に対応する。図7中、「モバイル装置あり」は、モバイル装置31から入力信号をコントローラ21で受信できる場合に対応する。
図7に示すように、車両状態値選択部24は、モバイル装置31なしの場合、車両状態値である「ばね上速度」、「ダンパ摺動速度」、「ダンパ変位」、「車体ロールレイト」、「車体ピッチレイト」は、いずれもCAN信号に基づいて推定された値(推定値)を選択する。即ち、車両状態値選択部24は、車両状態値として、ばね上速度推定値とダンパ摺動速度推定値とダンパ変位推定値と車体ロールレイト推定値と車体ピッチレイト推定値とを選択する。これに対して、車両状態値選択部24は、モバイル装置31ありの場合、「ばね上速度」、「車体ロールレイト」、「車体ピッチレイト」は、モバイル装置31からの入力信号(センサ信号)に基づいて算出された値(算出値または測定値)を選択する。即ち、車両状態値選択部24は、車両状態値として、ばね上速度算出値とダンパ摺動速度推定値とダンパ変位推定値と車体ロールレイト算出値(車体ロールレイト測定値)と車体ピッチレイト算出値(車体ピッチレイト測定値)とを選択する。
車両状態値選択部24は、選択した車両状態値を制御ロジック部25に出力する。制御ロジック部25は、車両状態値選択部24から車両状態値(車両運動値、車両挙動値)が入力される。制御ロジック部25は、車両状態値選択部24の出力(車両状態値)を基に、減衰力発生装置である緩衝器7,10を制御する制御信号を出力する。即ち、制御ロジック部25は、車両状態値選択部24で選択された車両状態値に基づいて、車両1が適切に制御されるダンパ指令値を算出する。制御ロジック部25は、ダンパ指令値に対応する指令電流(制御信号)を緩衝器7,10のアクチュエータ(例えば、減衰力調整バルブの開弁圧を調整するソレノイド)に出力する。
このように、実施形態では、コントローラ21(コントロール部21A)は、「車両状態推定部22(より具体的には、相対運動推定部)により推定された相対運動(ダンパ摺動速度推定値、ダンパ変位推定値)」と「モバイル装置31からの入力信号(加速度情報、ジャイロ情報)」とを用いて、緩衝器7,10に出力する制御信号を求める。この場合、コントローラ21(コントロール部21A)は、車両状態値選択部24でモバイル装置31からの入力信号の受信の有無を判断する。
コントローラ21(コントロール部21A)は、入力信号の受信がない場合、相対運動を含む車両状態推定部22により推定された車両状態(ばね上速度推定値、ダンパ摺動速度推定値、ダンパ変位推定値、車体ロールレイト推定値、車体ピッチレイト推定値)に応じて、制御信号を出力する。これに対して、コントローラ21(コントロール部21A)は、入力信号の受信がある場合、車両状態推定部22により推定された車両状態のパラメータの少なくとも一部(例えば、ばね上速度、車体ロールレイト、車体ピッチレイト)を、入力信号を元に算出した車両状態のパラメータ(ばね上速度算出値、車体ロールレイト算出値、車体ピッチレイト算出値)に置き換えた車両状態に応じて、制御信号を出力する。
一方、車両に持ち込まれるモバイル装置31には、コントローラ21と無線または有線で接続すると共に必要な信号の送受信を行うためのアプリケーション(車両制御アプリケーションソフト)がインストールされている。アプリケーションは、コントローラ21と共に車両制御システムを構成している。アプリケーションは、モバイル装置31の加速度情報とジャイロ情報のうちの少なくとも一つを有する入力信号を出力するようにモバイル装置31を制御する。加速度情報は、モバイル装置31の加速度センサ31Aにより検出されるx軸、y軸、z軸の3つの方向のそれぞれの加速度の情報である。ジャイロ情報は、モバイル装置31のジャイロセンサ31Bにより検出されるロール軸(y軸)、ピッチ軸(x軸)、ヨー軸(z軸)の3つの軸の角速度の情報である。
モバイル装置31のアプリケーションは、モバイル装置31とコントローラ21とを通信し、モバイル装置31とコントローラ21が通信可能かどうか判断する判断部と、モバイル装置31に搭載された加速度センサ31Aとジャイロセンサ31Bが検知した情報をコントローラ21に送信するセンサ情報送信部とを有している。判断部は、コントローラ21と無線またはケーブル34を介して通信可能か否かを判定する。この判断部は、後述の車体取付判断部を含む構成としてもよい。センサ情報送信部は、判断部によりコントローラ21と通信可能と判定された場合に、コントローラ21に加速度情報およびジャイロ情報を送信する。
また、モバイル装置31のアプリケーションは、図4に示すように、モバイル装置31の画面31Cに映されるインターフェイス部31C1を有している。モバイル装置31の画面31Cに表示されるインターフェイス部31C1には、人の操作によって乗り心地または操縦安定性を調整可能な調整部が表示される。即ち、モバイル装置31のアプリケーションは、調整部を有している。この場合、ドライバは、例えば、画面31C中の「ドライブモード(Drive Mode)」の項目を、例えば、「スポーツモード(Sport mode)」から「コンフォートモード」、「ノーマルモード」、「エコモード」等に変更する。これにより、車速感応調整パラメータ、乗り心地調整パラメータ、操縦安定性調整パラメータが変更され、乗り心地および/または操縦安定性を調整することができる。さらに、ドライバは、例えば、画面31C中の各種の制御ゲイン(車速感応調整パラメータ、乗り心地調整パラメータ、操縦安定性調整パラメータ)の数値を個別に変更する(制御チューニングを行う)ことにより、乗り心地および/または操縦安定性を調整することができる。
また、モバイル装置31のアプリケーションは、モバイル装置31が車体2に取り付けられているか判断する車体取付判断部を有している。即ち、モバイル装置31の加速度センサ31Aとジャイロセンサ31Bを車両の姿勢制御用のセンサとして用いるためには、車体2に取付けられている必要がある。例えば、ドライバがモバイル装置31を手で持っている等、モバイル装置31が車体2に固定されていない場合には、モバイル装置31のセンサによって車両1の運動を正しく測定することが難しい。即ち、この場合は、モバイル装置31のセンサ情報によって緩衝器7,10を正しく制御することが困難になる。
このため、モバイル装置31のアプリケーションは、モバイル装置31が車体2に取り付けられているか否かを車体取付判断部で判定する。車体取付判断部は、例えば、モバイルスタンド33の無接点給電装置(ワイヤレス給電)による給電中は、車体2に取付けられていると判断する。また、車体取付判断部は、例えば、モバイル装置31を車体2に取付ける取り付け治具(モバイルスタンド33)にモバイル装置31を装着したときの角度を予め指定しておき、モバイル装置31の加速度センサ31Aから求めたモバイル装置31の角度が指定した角度範囲(取り付け範囲)内にある場合に車体2に取付けられていると判断する。なお、モバイル装置31の判断部、車体取付判断部、センサ情報送信部、調整部、インターフェイス部31C1は、モバイル装置31にインストールされたアプリケーション(車両制御アプリケーション)により実行される処理に対応する。
次に、コントローラ21(コントロール部21A)の車両状態算出部23で行われる処理、即ち、モバイル装置31のセンサ31A,31Bで検出された情報から車体2の状態(挙動)を算出する処理について、図8を参照しつつ説明する。
車両状態算出部23では、ばね上となる車体2の任意の位置に取り付けられたモバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bからの情報(加速度情報、ジャイロ情報)から、ばね上速度、車体ロールレイト、車体ピッチレイトを算出する。図8では、車両1のばね上となる車体2を、剛体の板状に単純化し、ばね上座標系(X軸、Y軸、Z軸)を設定している。そして、車両1のばね上(車体2)に、モバイル装置31が取り付けられている。
モバイル装置31は、内蔵の加速度センサ31Aおよびジャイロセンサ31Bから、車両ばね上の加速度と角速度を測定することができる。モバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bの座標系(x軸、y軸、z軸)と車両1のばね上座標系(X軸、Y軸、Z軸)が一致していない場合でも、座標変換によって車両1の上下方向加速度と車体ロールレイト、車体ピッチレイトを算出できる。座標変換には、事前にモバイル装置31の車体取付位置(搭載位置)および取付角度が必要になる。座標変換が必要ない場合、即ち、モバイル装置31の座標系(x軸、y軸、z軸)とばね上座標系(X軸、Y軸、Z軸)とが一致している場合は、モバイル装置31のセンサ31A,31Bの測定値(例えば、車体ロールレイト測定値、車体ピッチレイト測定値)を用いることができる。
座標変換が必要な場合、座標変換を行うことにより、車両1に持ち込まれたモバイル装置31の位置での「車体ばね上座標系Z軸方向加速度」と「車体ばね上座標系X軸周りのロールレイト」と「車体ばね上座標系Y軸周りのピッチレイト」とが得られる。角速度は、測定位置に無関係であるため、車体ばね上座標系(X軸、Y軸、Z軸)に変換後であれば、ロールレイトとピッチレイトは、車体ばね上座標系のロールレイトとピッチレイトとなる。しかし、緩衝器7,10の制御には、緩衝器7,10が取り付けられているそれぞれの位置(各車輪3,4に対応する位置)のばね上速度が必要となる。このため、車体ばね上座標系に座標変換後のモバイル装置31の位置での車体上下方向加速度は、各車輪3,4の位置の車体上下方向加速度に変換する必要がある。各車輪3,4の位置での車体上下方向加速度(ばね上速度)は、次のように算出する。
モバイル装置31の位置の上下速度に回転運動によって生じる速度を足し合わせることで、各車輪3,4の位置のばね上上下速度を求めることができる。なお、一般走行時の路面入力によって生じるピッチ角やロール角は、最大でも5deg程度であり、角度変化は小さいものとして取り扱う。
具体的な計算方法を説明する。まず、モバイル装置31から得られる3軸(x軸、y軸、z軸)の加速度を、モバイル装置31の取り付け角度を用いて車体ばね上座標系(X軸、Y軸、Z軸)に座標変換する。これにより、モバイル装置31の位置での上下加速度を求めることができる。次に、モバイル装置31の位置での上下加速度を積分し、速度VZmobileを求める。このとき、初期値は0とする。そして、次の数1式、数2式、数3式、数4式を用いて、各車輪3,4の位置(車体2の四隅)のばね上上下速度vZfl,vZfr,vZrl,vZrrを求める。
数1式中、「vZfl」は、左前側の車体2の上下速度(左前輪3の位置での車体2の上下速度)である。数2式中、「vZfr」は、右前側の車体2の上下速度(右前輪3の位置での車体2の上下速度)である。数3式中、「vZrl」は、左後側の車体2の上下速度(左後輪4の位置での車体2の上下速度)である。数4式中、「vZrr」は、右後側の車体2の上下速度(右後輪4の位置での車体2の上下速度)である。また、各式中、「VZmobile」は、車体ばね上座標系に変換したモバイル装置31の位置での上下速度であり、「ωX」は、車体ばね上座標系に変換したロールレイトであり、「ωY」は、車体ばね上座標系に変換したピッチレイトである。また、「lf」は、モバイル装置31から前輪3,3に対応する位置までの前後方向の距離であり、「lb」は、モバイル装置31から後輪4,4に対応する位置までの前後方向の距離であり、「ll」は、モバイル装置31から左前輪3または左後輪4に対応する位置までの左右方向の距離であり、「lr」は、モバイル装置31から右前輪3または右後輪4に対応する位置までの左右方向の距離である。
なお、実施形態では、モバイル装置31の加速度情報とジャイロ情報との両方を用いているが、加速度情報とジャイロ情報とのうちの一方のみを用いてもよい。即ち、加速度情報とジャイロ情報とを組み合わせた方が、制御性能が高くなる。具体的には、加速度情報とジャイロ情報との両方が使える場合、運動学を解くことで、車体2の任意位置での運動を測定(算出)できる。これに対して、加速度情報とジャイロ情報とのいずれか一方のみの場合は、足りない情報を推定によって補うことができる。
また、モバイル装置31は、ばね上の運動を検出するセンサとしてのみ使用する場合は、車体2の重心近くに置くことが好ましい。しかし、例えば、モバイル装置31がスマートフォンの場合、ドライバがモバイル装置31でカーナビアプリを併用することが考えられる。即ち、ドライバがモバイル装置31をカーナビとしても用いるため、モバイル装置31をドライバから見える位置に置くことが考えられる。そこで、モバイル装置31は、車体2の重心近くだけでなく、車内のいずれの位置に置いても利用できるようにすることが好ましい。この場合には、モバイル装置31の車両搭載位置の正確な情報が重要になる。
即ち、モバイル装置31の車両搭載位置(取付位置)の情報は、車両状態(車両運動、車両挙動)を測定または算出するための運動学の計算に必須な情報である。このため、モバイル装置31の置き場所を変えると、その都度、モバイル装置31の搭載位置情報の更新が必要になる。しかし、この搭載位置情報の更新を、その都度、手動で行うことは、面倒である。このため、例えば、モバイル装置31の搭載位置が毎回同じ位置となるように、モバイル装置31の搭載位置を予め特定の位置に指定(決定)しておくと共にこの位置を測定しておくことが好ましい。また、モバイル装置31を車両に持ち込んだときに、モバイル装置31の車両搭載位置を自動的に検出する機能をモバイル装置31に持たせることも好ましい。
実施形態による車両制御装置、車両制御システムおよびアプリケーションは、上述の如き構成を有するもので、次にその作動について説明する。
車両1の走行等に伴って車両1の挙動(状態)が変化すると、その挙動の変化は、車両1に搭載された車輪速センサ12、前後加速度センサ13、左右加速度センサ14、ヨーレイトセンサ15等により検出され、緩衝器7,10を制御するコントローラ21に入力される。また、車両1の挙動(状態)の変化は、車両1に持ち込まれたモバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bにより検出され、コントローラ21に入力される。即ち、コントローラ21は、車両1に搭載された各種センサ11,12,13,14,15,16,17の信号だけでなく、車両1に持ち込まれたモバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bの信号も受信する。コントローラ21は、受信した信号に基づいて緩衝器7,10の減衰力を制御する制御信号を緩衝器7,10に出力する。これにより、車両1に加速度センサおよびジャイロセンサが搭載されていなくても制御精度を向上できる。
即ち、実施形態によれば、コントローラ21(コントロール部21A)は、車両1に持ち込まれたモバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bが検知した情報を有する入力信号に応じて、緩衝器7,10に制御信号を出力する。このため、車両1に持ち込まれたモバイル装置31の加速度センサ31Aおよびジャイロセンサ31Bが検知した情報も用いて、緩衝器7,10を制御することができる。これにより、車両1に姿勢制御専用のセンサ(加速度センサ、ジャイロセンサ)が搭載されていなくても、モバイル装置31により車両の車体(ばね上)の挙動を測定または算出することができ、制御精度を向上できる。この場合、コントローラ21(コントロール部21A)は、車両1のばね上(車体2)の運動を減速させる場合には、緩衝器7,10のダンパ減衰力を大きく発生させするように制御信号を出力することができる。また、コントローラ21(コントロール部21A)は、車両1のばね上の運動を加速させる場合には、緩衝器7,10のダンパ減衰力を抑制するように制御信号を出力することができる。これにより、緩衝器7,10による制振性能を向上でき、車両1の乗り心地を向上できる。
また、実施形態によれば、コントローラ21(コントロール部21A)は、モバイル装置31からの加速度情報とジャイロ情報の両方を基に制御を行うことができる。この場合、モバイル装置31により3次元の運動(3軸の並進運動と回転運動)を測定できるため、モバイル装置31が持ち込まれた位置でのモバイル装置31の運動を測定できることに加えて、車両1の車体2(ばね上)の任意の位置の運動を測定または算出することができる。具体的には、「モバイル装置31の加速度情報およびジャイロ情報」と「車両1内のモバイル装置31の位置」と「モバイル装置31の取付け角度(センサ31A,31Bの角度)」と「車両1の諸元(例えば四輪の位置関係)」とに基づいて、各輪ばね上上下運動(各車輪3,4の位置でのばね上速度)、ロール運動(車両ロールレイト)、ピッチ運動(車両ピッチレイト)を測定または算出することができる。これにより、制振性能のさらなる向上を図ることができる。
実施形態によれば、コントローラ21(コントロール部21A)は、「車両状態推定部22により推定された相対運動」と「モバイル装置31のセンサ31A,31Bが検知した情報を有する入力信号」とを用いて制御信号を求める。即ち、コントローラ21(コントロール部21A)は、車両1の車輪速から推定された相対運動(ダンパ相対速度、ダンパ変位)と、モバイル装置31から受信した入力信号から算出される相対運動以外の車両運動(各輪ばね上上下運動、ロール運動、ピッチ運動)とを用いて制御信号を求める。このため、コントローラ21(コントロール部21A)は、車両状態のうち相対運動以外の運動として、モバイル装置31のセンサ31A,31Bが検知した情報から算出される算出値(または測定値)を用いることができる。このため、相対運動以外の車両状態も推定値を用いる構成と比較して、制振性能を向上できる。
実施形態によれば、コントローラ21(コントロール部21A)は、モバイル装置31からの入力信号の受信がない場合、車両状態推定部22により推定された相対運動を含む車両状態に応じて、制御信号を出力する。このため、モバイル装置31からの入力信号の受信がない場合は、車両状態推定部22で推定された車両状態に応じて制御信号を出力できる。これに対して、入力信号の受信がある場合、コントローラ21(コントロール部21A)は、車両状態推定部22により推定された相対運動(ダンパ相対速度、ダンパ変位)と車両状態算出部23により入力信号を元に算出した車両状態(各輪ばね上上下運動、ロール運動、ピッチ運動)とに応じて、制御信号を出力する。このため、モバイル装置31からの入力信号の受信がある場合は、車両状態推定部22で推定された車両状態のパラメータ(ダンパ相対速度、ダンパ変位)と、入力信号を基に車両状態算出部23で算出した車両状態のパラメータ(各輪ばね上上下運動、ロール運動、ピッチ運動)とに応じて、制御信号を出力できる。
実施形態によれば、加速度情報は、モバイル装置31に対するx軸、y軸、z軸の3つの方向のそれぞれの加速度の情報であり、ジャイロ情報は、モバイル装置31に対するロール軸(y軸)、ピッチ軸(x軸)、ヨー軸(z軸)の3つの軸の角速度の情報である。このため、コントローラ21(コントロール部21A)は、「モバイル装置31の加速度情報およびジャイロ情報」と「車両1内のモバイル装置31の位置」と「モバイル装置31の取付け角度(センサ31A,31Bの角度)」と「車両1の諸元(例えば車輪3、4の位置関係)」とに基づいて、各輪ばね上上下運動(各車輪3,4の位置でのばね上速度)、ロール運動(車両ロールレイト)、ピッチ運動(車両ピッチレイト)を算出(測定)することができる。
実施形態によれば、コントローラ21は、モバイル装置31が電波で送信する入力信号を受信する受信部21Dを有している。このため、コントローラ21は、モバイル装置31からワイヤレスで入力信号を受信することができる。また、コントローラ21は、モバイル装置31と有線で連結する連結部21Cを有している。このため、コントローラ21は、モバイル装置31からケーブル34を介して入力信号を受信することができる。
実施形態によれば、コントローラ21は、モバイル装置31からアプリケーションの処理によって出力された加速度情報および/またはジャイロ情報を有する入力信号に応じて、緩衝器7,10に制御信号を出力する。このため、コントローラ21は、車両1に持ち込まれたモバイル装置31の加速度情報および/またはジャイロ情報も用いて、緩衝器7,10を制御することができる。これにより、車両1に車両姿勢制御専用のセンサ(加速度センサおよび/またはジャイロセンサ)が搭載されていなくても、制御精度を向上できる。
実施形態によれば、モバイル装置31のアプリケーションは、モバイル装置31とコントローラ21とが通信可能なときに、モバイル装置31に搭載されたセンサ31A,31Bが検知した情報をコントローラ21に送信する。このため、コントローラ21は、モバイル装置31に搭載されたセンサ31A,31Bが検知した情報に応じて、車両1の制御を行うことができる。これにより、車両1に車両姿勢制御専用のセンサ(加速度センサおよび/またはジャイロセンサ)が搭載されていなくても、制御精度を向上できる。
実施形態によれば、モバイル装置31には、加速度センサ31Aとジャイロセンサ31Bとの少なくとも一方が搭載されている。そして、モバイル装置31のセンサ情報送信部は、加速度センサ31Aとジャイロセンサ31Bとの少なくとも一方のセンサが検知する情報をコントローラ21に送信する。このため、コントローラ21は、モバイル装置31に搭載された加速度センサ31Aおよび/またはジャイロセンサ31Bが検知した情報に応じて、車両1の制御を行うことができる。
実施形態によれば、モバイル装置31にインストールされたアプリケーションは、人の操作によって乗り心地または操縦安定性を調整可能な調整部を有している。このため、搭乗者(ドライバを含む車両に乗車する人)の好みに応じて、乗り心地または操縦安定性を調整することができる。また、アプリケーションは、モバイル装置31の画面31Cに映されるインターフェイス部31C1を有しており、このインターフェイス部31C1に調整部が表示される。このため、搭乗者は、モバイル装置31の画面を操作することにより、乗り心地または操縦安定性を調整することができる。
なお、実施形態では、車両状態算出部23で算出したばね上速度算出値、車体ロールレイト算出値(車体ロールレイト測定値)、車体ピッチレイト算出値(車体ピッチレイト測定値)に対応する信号を車両状態値選択部24に出力する構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、図9に示す変形例のように、車両状態算出部23で算出したばね上速度算出値、車体ロールレイト算出値(車体ロールレイト測定値)、車体ピッチレイト算出値(車体ピッチレイト測定値)に対応する信号を、車両状態値選択部24と車両状態推定部22との両方に出力する構成としてもよい。
この場合には、車両状態の推定精度をより向上できる。即ち、車両状態推定部22では車両をモデル化し、運動方程式を基に、車両1の運動を推定している。この推定では、最終的な推定結果の前回値を用いて推定を行っている部分がある。変形例では、この最終的な推定結果の一部をモバイル装置31のセンサ信号から算出した値(算出値、測定値)に置き換えすることが可能になる。これにより、車両状態推定部22の推定精度をより向上できる。
実施形態では、車両の姿勢を制御する車両姿勢制御装置として、減衰力発生装置である減衰力調整式緩衝器7,10を用いる場合を例に挙げて説明した。しかし、これに限らず、車両姿勢制御装置は、例えば、車両の制動装置(電動ブレーキ、電動倍力装置、液圧供給装置)、操舵装置(電動ステアリング装置)、駆動装置(エンジン、電動モータ、電動デファレンシャルギヤ装置、トルク制御装置)等、減衰力発生装置以外の各種の車両姿勢制御装置に用いることができる。
実施形態では、モバイル装置31としてスマートフォンを例に挙げて説明した。しかし、これに限らず、モバイル装置は、携帯電話、タブレット端末等、各種の携帯情報端末を用いることができる。また、モバイル装置31のセンサとして、加速度センサ31Aとジャイロセンサ31Bを例に挙げて説明した。しかし、これに限らず、例えば、地磁気センサ等、モバイル装置に搭載された加速度センサまたはジャイロセンサ以外の各種センサ(動きを検出する各種センサ)を用いてもよい。また、加速度センサとジャイロセンサとのうちの何れか一方のみを用いてもよい。
以上説明した実施形態に基づく車両制御装置、車両制御システムおよびアプリケーションとして、例えば下記に述べる態様のものが考えられる。
第1の態様としては、コントロール部を備える車両制御装置であって、前記コントロール部は、車両に持ち込まれたモバイル装置が有するセンサが検知した情報を有する入力信号を受信し、受信した前記入力信号に応じて、車両の姿勢を制御する車両姿勢制御装置に制御信号を出力する。
この第1の態様によれば、コントロール部は、車両に持ち込まれたモバイル装置のセンサが検知した情報を有する入力信号に応じて、車両姿勢制御装置に制御信号を出力する。このため、車両に持ち込まれたモバイル装置のセンサが検知した情報を用いて、車両姿勢制御装置を制御することができる。これにより、車両に専用のセンサが搭載されていなくても、制御精度を向上できる。
第2の態様としては、第1の態様において、前記車両姿勢制御装置は、前記車両の車体と車輪の間に設けられた減衰力可変型の減衰力発生装置であって、前記コントロール部は、前記入力信号に応じた制御信号を前記減衰力発生装置に出力する。
この第2の態様によれば、コントロール部は、車両に持ち込まれたモバイル装置のセンサが検知した情報を有する入力信号に応じた制御信号を、減衰力発生装置に出力する。このため、車両に持ち込まれたモバイル装置のセンサが検知した情報を用いて、減衰力発生装置を制御することができる。即ち、専用のセンサを用いなくても、車両に持ち込まれたモバイル装置により車両の車体(ばね上)の上下挙動を測定または算出することができる。これにより、減衰力発生装置による制振性能を向上でき、車両の乗り心地を向上できる。この場合、コントロール部は、例えば、減衰力発生装置のダンパ減衰力により車両のばね上の運動を減速させる場合には、減衰力発生装置のダンパ減衰力を大きく発生させ、減衰力発生装置のダンパ減衰力により車両のばね上の運動を加速させる場合には、減衰力発生装置のダンパ減衰力を抑制するように制御信号を出力することができる。
第3の態様としては、第2の態様において、前記コントロール部は、前記モバイル装置から加速度情報とジャイロ情報の両方を含む前記入力信号を受信し、前記加速度情報と前記ジャイロ情報の両方に応じて、前記減衰力発生装置の減衰力を制御する制御信号を出力する。
この第3の態様によれば、コントロール部は、モバイル装置からの加速度情報とジャイロ情報の両方を基に制御を行うことができる。この場合、モバイル装置により3次元の運動(3軸の並進運動と回転運動)を測定できるため、モバイル装置が持ち込まれた位置でのモバイル装置の運動を測定できることに加えて、車両の車体(ばね上)の任意の位置の運動を測定または算出することができる。例えば、「モバイル装置の加速度情報およびジャイロ情報」と「車両内のモバイル装置の位置」と「モバイル装置の取付け角度(センサの角度)」と「車両の諸元(例えば四輪の位置関係)」とに基づいて、各輪ばね上上下運動(各輪の位置でのばね上速度)、ロール運動(車両ロールレイト)、ピッチ運動(車両ピッチレイト)を測定または算出することができる。これにより、制振性能のさらなる向上を図ることができる。
第4の態様としては、第2の態様において、前記コントロール部は、車両状態を推定する車両状態推定部を有し、前記車両状態推定部は、前記車両の車輪速から前記車両の車体と車輪との相対運動を推定する相対運動推定部を有し、前記コントロール部は、前記相対運動推定部により推定された前記相対運動と、前記入力信号を用いて前記制御信号を求める。
この第4の態様によれば、コントロール部は、相対運動推定部により推定された相対運動とモバイル装置のセンサが検知した情報を有する入力信号とを用いて制御信号を求める。この場合、コントロール部は、車両の車輪速から相対運動推定部で推定された相対運動(ダンパ相対速度、ダンパ変位)と、モバイル装置から受信した入力信号から算出される相対運動以外の車両状態とを用いて、制御信号を求めることができる。即ち、車両状態のうち相対運動以外の運動(例えば、各輪ばね上上下運動、ロール運動、ピッチ運動)として、モバイル装置のセンサが検知した情報から算出される算出値(または測定値)を用いることができる。このため、相対運動以外の車両状態も推定値を用いる構成と比較して、制振性能を向上できる。
第5の態様としては、第4の態様において、前記コントロール部は、前記入力信号の受信の有無を判断し、前記入力信号の受信がない場合、前記相対運動を含む前記車両状態推定部により推定された車両状態に応じて、前記制御信号を出力する。この第5の態様によれば、コントロール部は、モバイル装置からの入力信号の受信がない場合、推定された車両状態に応じて制御信号を出力できる。
第6の態様としては、第5の態様において、前記コントロール部は、前記入力信号の受信がある場合、前記車両状態推定部により推定された車両状態のパラメータの少なくとも一部を前記入力信号を元に算出した車両状態のパラメータに置き換えた車両状態に応じて、前記制御信号を出力する。この第6の態様によれば、コントロール部は、モバイル装置からの入力信号の受信がある場合、この入力信号を基に算出した車両状態のパラメータ(例えば、各輪ばね上上下運動の算出値、ロール運動の算出値、ピッチ運動の算出値)に置き換えた車両状態に応じて制御信号を出力できる。
第7の態様としては、第3の態様において、前記加速度情報は、前記モバイル装置に対してx軸、y軸、z軸の3つの方向のそれぞれの加速度の情報であり、前記ジャイロ情報は、前記モバイル装置に対してロール軸、ピッチ軸、ヨー軸の3つの軸の角速度の情報である。この第7の態様によれば、コントロール部は、「モバイル装置の加速度情報およびジャイロ情報」と「車両内のモバイル装置の位置」と「モバイル装置の取付け角度(センサの角度)」と「車両の諸元(例えば四輪の位置関係)」とに基づいて、各輪ばね上上下運動(各輪の位置でのばね上速度)、ロール運動(車両ロールレイト)、ピッチ運動(車両ピッチレイト)を算出(測定)することができる。
第8の態様としては、第1の態様において、前記車両制御装置は、前記モバイル装置が電波で送信する加速度情報とジャイロ情報のうちの少なくとも一つを有する入力信号を受信する受信部を有する。この第8の態様によれば、モバイル装置からワイヤレスで入力信号を受信することができる。
第9の態様としては、第1の態様において、前記車両制御装置は、前記モバイル装置と有線で連結する連結部を有する。この第9の態様によれば、モバイル装置から有線で入力信号を受信することができる。
第10の態様としては、車両制御システムであって、車両に持ち込まれるモバイル装置にインストールされ、前記モバイル装置の加速度情報とジャイロ情報のうちの少なくとも一つを有する入力信号を出力するように前記モバイル装置を制御するアプリケーションと、前記入力信号に応じて車両の姿勢を制御する車両姿勢制御装置に制御信号を出力する車両制御装置と、を備える。
この第10の態様によれば、車両制御装置は、モバイル装置からアプリケーションの処理によって出力された加速度情報および/またはジャイロ情報を有する入力信号に応じて、車両姿勢制御装置に制御信号を出力する。このため、車両制御装置は、車両に持ち込まれたモバイル装置の加速度情報および/またはジャイロ情報を用いて、車両姿勢制御装置を制御することができる。これにより、車両に専用のセンサが搭載されていなくても、制御精度を向上できる。
第11の態様としては、モバイル装置にインストールされるアプリケーションであって、前記モバイル装置と車両制御装置とを通信し、前記モバイル装置と前記車両制御装置が通信可能かどうか判断する判断部と、前記モバイル装置に搭載されたセンサが検知した情報を前記車両制御装置に送信するセンサ情報送信部と、を有する。この第11の態様によれば、モバイル装置のアプリケーションは、モバイル装置と車両制御装置とが通信可能なときに、モバイル装置に搭載されたセンサが検知した情報を車両制御装置に送信する。このため、車両制御装置は、モバイル装置に搭載されたセンサが検知した情報に応じて、車両の制御を行うことができる。これにより、車両に専用のセンサが搭載されていなくても、制御精度を向上できる。
第12の態様としては、第11の態様において、前記モバイル装置に搭載されたセンサは、加速度センサまたはジャイロセンサの少なくとも一方であり、前記センサ情報送信部は、前記センサが検知する情報を前記車両制御装置に送信する。この第12の態様によれば、車両制御装置は、モバイル装置に搭載された加速度センサおよび/またはジャイロセンサが検知した情報に応じて、車両の制御を行うことができる。
第13の態様としては、第11の態様において、前記アプリケーションは、人の操作によって乗り心地または操縦安定性を調整可能な調整部を有する。この第13の態様によれば、搭乗者(ドライバを含む車両に乗車する人)の好みに応じて、乗り心地または操縦安定性を調整することができる。
第14の態様としては、第13の態様において、前記アプリケーションは、前記モバイル装置の画面に映されるインターフェイス部を有し、前記調整部は、前記インターフェイス部に表示される。この第14の態様によれば、搭乗者は、モバイル装置の画面を操作することにより、乗り心地または操縦安定性を調整することができる。