JP7431275B2 - ファイバ走査ディスプレイのための多要素リンケージのための方法、システム - Google Patents

ファイバ走査ディスプレイのための多要素リンケージのための方法、システム Download PDF

Info

Publication number
JP7431275B2
JP7431275B2 JP2022082287A JP2022082287A JP7431275B2 JP 7431275 B2 JP7431275 B2 JP 7431275B2 JP 2022082287 A JP2022082287 A JP 2022082287A JP 2022082287 A JP2022082287 A JP 2022082287A JP 7431275 B2 JP7431275 B2 JP 7431275B2
Authority
JP
Japan
Prior art keywords
fiber
base
retaining collar
longitudinal axis
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022082287A
Other languages
English (en)
Other versions
JP2022116102A (ja
Inventor
ティー. ショーウェンゲルト ブライアン
ディー. ワトソン マシュー
デイビッド メルヴィル チャールズ
アンドリュー リー ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2022116102A publication Critical patent/JP2022116102A/ja
Priority to JP2024014030A priority Critical patent/JP2024045384A/ja
Application granted granted Critical
Publication of JP7431275B2 publication Critical patent/JP7431275B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

(関連出願の引用)
本願は、米国仮特許出願第62/438,415号(2016年12月22日出願、名称「Methods and Systems for Fabrication of Shaped Fiber Elements using Laser Ablation」)に対する優先権を主張し、上記出願の開示は、あらゆる目的のためにその全体が参照により本明細書に引用される。
以下の米国出願(本願を含む)は、同時に出願され、他の出願の全開示は、あらゆる目的のためにその全体が参照により本願に引用される:
米国特許出願第15/_号(2017年12月21日出願、名称「METHODS AND SYSTEMS FOR FABRICATION OF SHAPED FIBER ELEMENTS FOR SCANNING FIBER DISPLAYS」、代理人事件番号101782-1060973-002210US)、
米国特許出願第15/_号(2017年12月21日出願、名称「METHODS AND SYSTEMS FOR FABRICATION OF SHAPED FIBER ELEMENTS USING LASER ABLATION」、代理人事件番号101782-1060976-002310US)、および、
米国特許出願第15/_号(2017年12月21日出願、名称「METHODS AND SYSTEMS FOR MULTI-ELEMENT LINKAGE FOR FIBER SCANNING DISPLAY」、代理人事件番号101782-1060978-002410US)。
(発明の背景)
現代のコンピューティングおよびディスプレイ技術は、デジタル的に再現された画像またはその一部が、現実であるように見える様式、またそのように知覚され得る様式で視認者に提示されるいわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進している。仮想現実、すなわち、「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実、すなわち、「AR」シナリオは、典型的には、視認者の周囲の実際の世界の可視化の拡張として、デジタルまたは仮想画像情報の提示を伴う。
これらのディスプレイ技術において成された進歩にもかかわらず、当技術分野において、拡張現実システム、特に、ディスプレイシステムに関連する改良された方法およびシステムの必要がある。
(発明の要約)
本発明は、概して、ファイバ走査投影ディスプレイシステムに関連する方法およびシステムに関する。より具体的には、本発明の実施形態は、平面内で、一組の平面内で、または弧に沿って、走査型ファイバが振動することを可能にする多要素リンケージのための方法およびシステムを提供する。本発明は、コンピュータビジョンおよび画像ディスプレイシステムにおける種々の用途に適用可能である。
本発明のある実施形態によると、電磁結像放射を走査するための多要素ファイバスキャナが、提供される。多要素ファイバスキャナは、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸と平行方向に基部を通過する第1のファイバリンクとを含む。第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合される。多要素ファイバスキャナは、基部に接合され、基部から延びている複数の追加のリンクと、縦軸に沿って基部から所定の距離に配置された保持カラーであって、第1のファイバリンクおよび複数のファイバリンクは、保持カラーに接合される保持カラーとも含む。複数の追加のリンクが、縦軸と実質的に平行な方向に、基部から延びていることができる。動作中、多要素ファイバスキャナは、基部平面と平行な軸に沿って電磁結像放射を走査することができる。
本発明の別の実施形態によると、多要素ファイバスキャナを製作する方法が、提供される。方法は、クラッディング領域と、ファイバコアとを有する光ファイバケーブルを提供することと、レーザビームを光ファイバケーブルのクラッディング領域の内側の一連の所定の場所に集束させることとを含む。方法は、複数の損傷部位を所定の場所に作成することと、光ファイバケーブルをエッチング溶液にさらすことと、複数の損傷部位を優先的にエッチングし、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸に沿って基部から所定の距離に配置された保持カラーと、基部平面を通過し、保持カラーに接合されるファイバコアを含む第1のファイバリンクと、基部に接合される基部から保持カラーまで延び、保持カラーに接合される複数の追加のリンクとを形成することとも含む。
例として、方法は、複数の損傷部位を所定の場所に作成する間、光ファイバケーブルを縦軸の周囲で回転させることをさらに含むことができる。さらに、複数の損傷部位を所定の場所に作成することは、クラッディング領域を通してファイバコアに向かって通過する複数の半径方向ビアを含み得る格子細工の損傷部位を形成することを含むことができる。一実装では、複数の損傷部位を所定の場所に作成することは、最初に、複数の損傷部位の第1の部分をファイバコアに隣接して作成することと、続いて、複数の損傷部位の第2の部分をクラッディング領域の周縁に隣接して作成することとを含む。ファイバクラッディングおよびファイバコアに加え、光ファイバケーブルは、クラッディング領域内に配置される複数の犠牲領域を含むことができる。複数の犠牲領域は、空気空洞であることができるか、またはクラッディング領域より高いエッチング率を有する材料を含むことができる。
本発明の具体的実施形態によると、多要素ファイバスキャナを製作する方法が、提供される。方法は、少なくとも、1つのファイバ導波管と、ファイバ支持体と、犠牲材料とのための構造前駆体を含むプリフォームを製作することと、プリフォームを延伸して、ファイバ構造を形成することとを含む。方法は、ファイバ構造をエッチング溶液にさらすことと、犠牲材料を優先的にエッチングし、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸に沿って基部から所定の距離に配置された保持カラーと、基部平面を通過し、保持カラーに接合される少なくとも1つのファイバ導波管を含む第1のファイバリンクと、基部に接合され、基部から保持カラーまで延び、保持カラーに接合される複数のファイバ支持体とを形成することとも含む。
本発明の別の具体的実施形態によると、多要素ファイバスキャナを動作させる方法が、提供される。方法は、電磁放射源を提供することと、電磁放射を源から第1のファイバリンクに通すこととを含む。第1のファイバリンクは、基部平面と基部平面に直交する縦軸とを有する基部を通過する。方法は、縦軸に沿って基部から所定の距離に配置された保持カラーを支持することも含む。複数の追加のリンクが、基部および保持カラーを接合する。方法は、基部を基部平面内で平行移動させることと、保持カラーを基部平面と平行な一組の平面内で平行移動させることと、電磁放射を1つ以上の軸において走査することとをさらに含む。
本発明の特定の実施形態によると、電磁結像放射を走査するための多要素ファイバスキャナが、提供される。多要素ファイバスキャナは、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸と平行方向に基部を通過する第1のファイバリンクとを含む。第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合される。多要素ファイバスキャナは、基部に接合され、縦軸に沿って基部から延びている複数の作動要素と、縦軸に沿って基部から所定の距離に配置された保持カラーとも含む。複数の作動要素は、第1のファイバリンクを包囲するように並べられることができる。第1のファイバリンクおよび複数の作動要素は、保持カラーに接合される。動作中、第1のファイバリンクは、基部平面と平行な軸に沿って電磁結像放射を走査するように動作可能である。
本発明の別の特定の実施形態によると、多軸ファイバスキャナを動作させる方法が、提供される。方法は、電磁放射源を提供することと、電磁放射を源から第1のファイバリンクに通すこととを含む。第1のファイバリンクは、基部平面と基部平面に直交する縦軸とを有する基部を通過する。方法は、縦軸に沿って基部から所定の距離に配置された保持カラーを支持することも含む。複数の圧電アクチュエータが、基部および保持カラーを接合する。複数の圧電アクチュエータのうちの第1の圧電アクチュエータは、基部の片側を保持カラーの片側に接合する。複数の圧電アクチュエータのうちの第2の圧電アクチュエータは、基部の反対側を保持カラーの反対側に接合する。第1の圧電アクチュエータおよび第2の圧電アクチュエータは、走査平面内にある。方法は、複数の圧電アクチュエータのうちの第1の圧電アクチュエータを作動させ、基部の片側から保持カラーの片側までの距離を減少させることと、複数の圧電アクチュエータのうちの第2の圧電アクチュエータを作動させ、基部の反対側から保持カラーの反対側までの距離を増加させることと、第1のファイバリンクを走査平面内で走査することとをさらに含む。本明細書に説明されるように、方法は、圧電アクチュエータの第1のものを交互に作動させ、基部と保持カラーとの間の片側における距離を減少または増加させながら、同期して、圧電アクチュエータの第2のものを交互に作動させ、基部と保持カラーとの間の第2の側における距離を減少または増加させることを含むことができる。
本発明の別の実施形態によると、電磁結像放射を走査するための多要素ファイバスキャナが、提供される。多要素ファイバスキャナは、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸と平行方向に基部を通過する第1のファイバリンクとを含む。第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合される。多要素ファイバスキャナは、基部に接合され、基部から延びている複数の運動作動リンクも含む。複数の運動作動リンクの各々は、基部に近接する第1の圧電要素と、基部から遠位の場所において第1の圧電要素に結合される第2の圧電要素とを含む。多要素ファイバスキャナは、縦軸に沿って基部から所定の距離に配置された保持カラーをさらに含む。第1のファイバリンクおよび複数の運動作動リンクの各々の第2の圧電要素は、保持カラーに接合される。動作中、第1の圧電要素は、第2の圧電要素が拡張/収縮するとき、収縮/拡張する。
本発明のさらに別の実施形態によると、電磁結像放射を走査するための多要素ファイバスキャナが、提供される。多要素ファイバスキャナは、基部平面を画定する支持表面と、支持表面に対向する搭載表面と、基部平面に直交する縦軸とを有する基部と、基部の支持表面に結合される複数の運動アクチュエータとを含む。多要素ファイバスキャナは、搭載表面に結合される多リンクファイバ構造も含む。多リンクファイバ構造は、ファイバ基部と、縦軸と平行方向にファイバ基部を通過するファイバリンクとを含む。ファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合される。多リンクファイバ構造は、ファイバ基部に接合され、縦軸に沿ってファイバ基部から延びている複数の運動作動要素(例えば、圧電アクチュエータ)と、縦軸に沿ってファイバ基部から所定の距離に配置された保持カラーとも含む。ファイバリンクおよび複数の運動作動要素は、保持カラーに接合される。
本明細書は、例えば、以下の項目も提供する。
(項目1)
電磁結像放射を走査するための多要素ファイバスキャナであって、前記多要素ファイバスキャナは、
基部平面と前記基部平面に直交する縦軸とを有する基部と、
前記縦軸と平行方向に前記基部を通過している第1のファイバリンクであって、前記第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合されている、第1のファイバリンクと、
前記基部に接合され、前記基部から延びている複数の追加のリンクと、
前記縦軸に沿って前記基部から所定の距離に配置された保持カラーと
を備え、
前記第1のファイバリンクおよび前記複数の追加のリンクは、前記保持カラーに接合されている、多要素ファイバスキャナ。
(項目2)
前記第1のファイバリンクは、前記縦軸と平行方向に前記保持カラーを通過している、項目1に記載の多要素ファイバスキャナ。
(項目3)
前記基部に機械的に結合され、前記基部を前記基部平面内で平行移動させるように動作可能である圧電アクチュエータをさらに備えている、項目1に記載の多要素ファイバスキャナ。
(項目4)
前記保持カラーは、前記基部平面と平行な一組の平面内で平行移動するように動作可能である、項目3に記載の多要素ファイバスキャナ。
(項目5)
前記複数の追加のリンクのうちの1つ以上のものは、前記縦軸と平行に前記基部を通過し、前記少なくとも1つの電磁放射源に動作可能に結合されている、項目1に記載の多要素ファイバスキャナ。
(項目6)
前記複数の追加のリンクは、前記第1のファイバリンクを包囲するように並べられている、項目1に記載の多要素ファイバスキャナ。
(項目7)
前記複数の追加のリンクは、前記縦軸と平行方向に前記基部から延びている、項目1に記載の多要素ファイバスキャナ。
(項目8)
前記複数の追加のリンクは、前記第1のファイバリンクに向かって傾斜させられた角度で前記基部から延びている、項目1に記載の多要素ファイバスキャナ。
(項目9)
前記保持カラーは、湾曲弧に沿って平行移動するように動作可能である、項目8に記載の多要素ファイバスキャナ。
(項目10)
前記第1のファイバリンクは、前記電磁結像放射を焦点に向かって放出するように動作可能である、項目8に記載の多要素ファイバスキャナ。
(項目11)
多要素ファイバスキャナを動作させる方法であって、前記方法は、
電磁放射源を提供することと、
電磁放射を前記電磁放射源から第1のファイバリンクに通すことであって、前記第1のファイバリンクは、基部平面と前記基部平面に直交する縦軸とを有する基部を通過している、ことと、
前記縦軸に沿って前記基部から所定の距離に配置された保持カラーを支持することであって、複数の追加のリンクが、前記基部と前記保持カラーとを接合する、ことと、
前記基部を前記基部平面内で平行移動させることと、
前記保持カラーを前記基部平面と平行な一組の平面内で平行移動させることと、
前記電磁放射を1つ以上の軸において走査することと
を含む、方法。
(項目12)
前記基部を前記基部平面内で平行移動させることは、前記基部を第1の方向に作動させることと、前記基部を前記第1の方向に直交する第2の方向に作動させることとを含む、項目11に記載の方法。
(項目13)
前記保持カラーを前記基部平面と平行な前記一組の平面内で平行移動させることは、前記複数の追加のリンクを傾斜させることを含む、項目11に記載の方法。
(項目14)
前記複数の追加のリンクのうちの1つ以上のものは、前記基部を通過し、前記方法は、前記電磁放射を前記電磁放射源から前記複数の追加のリンクのうちの1つ以上のものに通すことをさらに含む、項目11に記載の方法。
(項目15)
前記電磁放射は、強度を変調される、項目11に記載の方法。
(項目16)
電磁結像放射を走査するための多要素ファイバスキャナであって、前記多要素ファイバスキャナは、
基部平面と前記基部平面に直交する縦軸とを有する基部と、
前記縦軸と平行方向に前記基部を通過している第1のファイバリンクであって、前記第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合されている、第1のファイバリンクと、
前記基部に接合され、前記縦軸に沿って前記基部から延びている複数の作動要素と、
前記縦軸に沿って前記基部から所定の距離に配置された保持カラーと
を備え、
前記第1のファイバリンクおよび前記複数の作動要素は、前記保持カラーに接合されている、多要素ファイバスキャナ。
(項目17)
前記第1のファイバリンクは、前記縦軸と平行方向に前記保持カラーを通過している、項目16に記載の多要素ファイバスキャナ。
(項目18)
前記複数の作動要素は、複数の圧電管スタックを備えている、項目16に記載の多要素ファイバスキャナ。
(項目19)
前記複数の作動要素は、前記第1のファイバリンクの第1の側に位置付けられ、収縮/拡張するように動作可能である第1の圧電要素と、前記第1の側に対向する前記第1のファイバリンクの第2の側に位置付けられ、前記第1の圧電要素とは反対に拡張/収縮するように動作可能である第2の圧電要素とを備えている、項目16に記載の多要素ファイバスキャナ。
(項目20)
前記複数の作動要素は、前記第1のファイバリンクの第3の側に位置付けられ、収縮/拡張するように動作可能である第3の圧電要素と、前記第3の側に対向する前記第1のファイバリンクの第4の側に位置付けられ、前記第3の圧電要素とは反対に拡張/収縮するように動作可能である第4の圧電要素とをさらに備えている、項目16に記載の多要素ファイバスキャナ。
多数の利点が、従来の技法に優る本発明の方法によって達成される。例えば、本発明の実施形態は、実質的に平面様式において、光ファイバ支持体を走査し、それによって、既知のプロファイルを有する画像野を提供する方法およびシステムを提供する。本発明のこれらおよび他の実施形態は、その利点および特徴の多くとともに、下記の文章および添付の図と併せてより詳細に説明される。
図1は、本発明のある実施形態による、多要素ファイバスキャナを図示する簡略化された斜視図である。 図2は、本発明のある実施形態による、多要素ファイバスキャナのための2つの走査位置を図示する簡略化された図面である。 図3は、本発明のある実施形態による、傾斜させられたリンクを伴う多要素ファイバスキャナを図示する簡略化された図面である。 図4は、本発明のある実施形態による、ファイバ走査システムの要素を図示する簡略化された図面である。 図5は、本発明のある実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。 図6は、本発明の別の実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。 図7は、本発明のある実施形態による、多要素ファイバスキャナを動作させる方法を図示する簡略化されたフローチャートである。 図8Aは、本発明のある実施形態による、多軸ファイバスキャナを図示する簡略化された斜視図である。 図8Bは、本発明のある実施形態による、多軸ファイバスキャナを動作させる方法を図示する簡略化されたフローチャートである。 図9Aは、本発明のある実施形態による、多区分運動作動要素を図示する簡略化された側面図である。 図9Bは、本発明のある実施形態による、図9Aに図示される多区分運動作動要素の振動運動を図示する簡略化された側面図である。 図9Cは、本発明のある実施形態による、図9Aに図示される多要素運動作動要素を伴う多要素ファイバスキャナを図示する簡略化された側面図である。 図9Dは、本発明のある実施形態による、圧電運動アクチュエータの簡略化された斜視図である。 図9Eは、本発明のある実施形態による、多要素運動アクチュエータを図示する簡略化された端面図である。 図9Fは、本発明のある実施形態による、多区分運動作動構造を図示する簡略化された側面図である。 図10は、本発明のある実施形態による、電磁結像放射を走査するための多要素ファイバスキャナである。 図11は、本発明のある実施形態による、光ファイバケーブルおよびレーザアブレーションビームの簡略化された側面図である。 図12は、本発明のある実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。
(具体的実施形態の詳細な説明)
本発明の実施形態は、ファイバ走査投影ディスプレイシステムに関連する方法およびシステムに関する。より具体的には、本発明の実施形態は、走査型ファイバが、平面において、または弧に沿って振動することを可能にする多要素リンケージのための方法およびシステムを提供する。本発明は、コンピュータビジョンおよび画像ディスプレイシステムにおける種々の用途に適用可能である。
図1は、本発明のある実施形態による、多要素ファイバスキャナを図示する簡略化された斜視図である。多要素ファイバスキャナ100は、電磁結像放射を走査し、それによって、ディスプレイシステムの要素を形成するために使用されることができる。多要素ファイバスキャナは、基部110を含み、それは、アクチュエータ基部とも称され得る。基部は、基部平面に配置され、基部平面に直交する縦軸112によって特徴付けられることができる。
多要素ファイバスキャナは、縦軸112に沿って基部110から所定の距離Dに配置された保持カラー130も含む。いくつかの実施形態では、保持カラー130は、基部と平行であり、縦軸に直交する。基部110と保持カラー130との間の領域は、柱区分と称され得る。
第1のファイバリンク114は、導波管とも称され得、縦軸と平行方向に基部を通過する。第1のファイバリンク114は、変調された光が、第1のファイバリンクに通され得る一方、ファイバ先端の遠位端が、画像を生成するために機械的に走査され、それが、次いで、ディスプレイシステムを通して結合され得るように、少なくとも1つの電磁放射源(図示せず)に動作可能に結合される。第1のファイバリンクは、基部を通過する場所において、基部に固定されることができるか、または基部平面において自由に移動し得る。第1のファイバリンクは、保持カラーを通過し、保持カラーを通過する場所において、保持カラーに固定されることができるか、または保持カラーの平面において自由に移動し、および/または縦軸と平行方向(すなわち、軸方向)に自由に移動し得る。いくつかの実施形態では、第1のファイバリンクは、縦軸と平行方向に、保持カラーを通過する。
代替実施形態では、第1のファイバリンクは、ファイバ延伸プロセス以外のプロセスを使用して、例えば、微小電気機械的システム(MEMS)または微小光電気機械的システム(MOEMS)微小加工プロセスを使用して製作され得る別の光学導波管構造と置換されることができる。したがって、付加製造を使用して製作される成型部品および光学導波管も、本発明の範囲内に含まれる(例えば、カンチレバー式構造、チャネル導波管等)。これらの光学導波管構造は、シリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素、それらの組み合わせ等を含む種々の材料から製作されることができる。
第1のファイバリンクに加え、複数の追加のリンク116が、基部から延びている。これらの追加リンクは、ガラス材料から製作されることができ、一端で基部に、他端で保持カラーに接合される。その結果、保持カラーは、追加のリンクに機械的に接合される。保持カラーが配置される平面は、保持カラーがこの平面の組を通して移動するとき、保持カラーが振動するであろうため、運動平面の組のうちの1つと見なされ得る。図1に図示される実施形態では、複数の追加のリンクは、第1のファイバリンクを包囲するように並べられるが、これは、本発明によって要求されない。他の実施形態では、追加リンクの各々の数および位置は、特定の用途の必要に応じて修正される。さらに、図1に図示される複数の追加のリンクは、縦軸と平行方向に、基部から延びているが、これは、図3に関連してより完全に説明されるように、本発明によって要求されない。
追加のリンクは、単に、機械的機能性を提供することができるか、または光学機能性も提供することができる。例として、追加のリンクは、拡張および収縮し、運動作動を提供し得る圧電要素と置換されることができる。これらの実施形態では、複数の追加のリンクのうちの1つ以上のものは、少なくとも1つの電磁放射源または他の電磁放射源に動作可能に結合され、縦軸と平行に基部を通過し、かつ保持カラーを通過することができる。これらの実施形態では、変調された光は、光学機能性を提供するファイバリンクの全てを通して送達されることができる。追加のリンクは、種々の様式において、種々の材料を使用して、製作されることができることを理解されたい。いくつかの実施形態は、光ファイバから製作されるガラスリンクの観点から説明されるが、本発明は、この材料または製造方法に限定されず、他の材料および製作プロセスも、追加のリンクに関連して使用されることができる。
複数のコアファイバスキャナは、複数のピクセルに関連付けられた源のアレイを提供し、源のアレイは、源の数の関数としての乗算分解能を伴う表示される画像を生成するために走査されることができる。いくつかの実施形態では、1組の追加のリンクは、機械的支持のために使用され、別の組は、追加の光源として使用され、第1のファイバリンクを補完する。したがって、本発明の実施形態は、単一ファイバコアおよび機械的支持(例えば、複数の周辺支持)、複数のファイバコアおよび機械的支持、ならびに光学および機械的機能性の両方を提供する複数のファイバコアを伴う実装を含む。機械的支持は、第1のファイバコアに類似するガラス、または圧電材料、金属、セラミック、ポリマー等を含む十分な柔軟性および堅さを伴う他の好適な材料から作製されることができる。当業者は、多くの変形例、修正、および代替を認識するであろう。
代替実施形態では、異なる縦方向位置で終端する複数のファイバコアが、本明細書に説明されるファイバスキャナと併せて実装されることができる。本実施形態では、ファイバコアの各々に関連付けられた深度平面は、異なる信号を異なる深度に提供するように変動させられることができる。
図1を参照すると、多要素ファイバスキャナは、基部110に機械的に結合された圧電アクチュエータ105も含むことができる。圧電アクチュエータは、例えば、側方方向107に沿って、または図の平面の内外を指す横断方向において、基部を基部平面内で平行移動させるように動作可能である。例として、圧電アクチュエータ105は、基部とも称され得、必要に応じて、収縮および拡張し、所望の振動を基部内に生成し得る複数の圧電要素を含み得る。基部が側方に平行移動させられる実施形態では、第1のファイバリンクは、図の平面において、側方に走査され、電磁結像放射が、基部平面と平行な軸に沿って走査される。第1のファイバリンクから放出される光線115は、光ファイバ114から出る光として図示される。
追加のリンクは、基部平面および保持カラーの平面の両方において、互いに機械的に結合さているので、例えば、圧電アクチュエータ105を使用した、基部平面における基部の運動は、保持カラーの平面と平行な平面の組において、追加のリンクの上部および保持カラーの運動をもたらすであろう。
図2は、本発明のある実施形態による、多要素ファイバスキャナのための2つの走査位置を図示する簡略化された図面である。図2に図示されるように、基部平面における基部110の運動は、保持カラー130の運動を水平に(およびいくつかの実装では、垂直に)もたらすであろう。保持カラーの2つの位置は、例示的運動範囲の端部を図示するように示される。保持カラーが基部の直上にある中心位置では、保持カラーは、図示される位置を上回る垂直距離だけ基部から分離されるであろう。しかしながら、小角度(例えば、数度未満の角度)に対して、基部と保持カラーとの間の距離の変動は、わずかであり、基部平面と平行な実質的に単一平面(運動平面と称され得る)内における保持カラーの運動をもたらす。追加のファイバリンクが、追加のリンクの上部と保持カラーの機械的結合により基部の運動に応答して傾斜および/または曲がるとき、保持カラーは、基部平面と平行なままである。図2に図示される剪断運動は、光学視点から望ましい。なぜなら、第1のファイバリンクに関連付けられた画像野が、種々の光学構成において有用である実質的に平坦であるか、または所定の様式において湾曲されることができるからである。追加のファイバリンクは、図2に図示されるので、本発明の実施形態は、追加のリンクのための他の材料および構造を利用することができる。例として、MEMS構造が、本発明の実施形態において固有の利点を提供するために利用されることができる。したがって、追加のリンク、リンケージ等の言及は、限定ではないが、シリコンフレキシャを含むMEMS構造を含むと理解されたい。
図3は、本発明のある実施形態による、傾斜させられたリンクを伴う多要素ファイバスキャナを図示する簡略化された図面である。図3を参照すると、基部110が、提供され、それに対して、ファイバリンク310および312が、機械的に取り付けられる。電磁放射源330(例えば、ダイオードレーザまたは発光ダイオード)が、第1のファイバリンク114に光学的に結合される。図3に図示される実施形態では、ファイバリンク312が、電磁放射源331に光学的に結合される。したがって、実装に応じて、複数の追加のリンクのうちの1つ以上のものが、縦軸と実質的に平行な方向に基部を通過することができ、1つ以上の電磁放射源に動作可能に結合されることができる。両ファイバリンクが第1のファイバリンク114に向かって傾斜させられるように、ファイバリンク310は、基部から角度θで延び、ファイバリンク312は、基部から対向角度-θで延びている。ファイバリンク310および312は、保持カラー130に機械的に結合される。第1のファイバリンク114は、保持カラーに固定されることができるか、または保持カラー内にスライド嵌めを有することができる。
ファイバリンク310および312内に存在する傾斜により、小さい角度、例えば、約数度未満の角度に対して、保持カラー130(その結果、ファイバ先端)の運動は、ファイバリンクから延びている線の交差点Rと一致する中心を有する弧320を辿るであろう。言い換えると、弧320の曲率半径は、rと等しい。したがって、保持カラーは、この構成では、湾曲弧(湾曲振動区分とも称され得る)に沿って平行移動する。保持カラーが振動するとき、第1のファイバリンク114からの光は、弧の中心における交差点R(焦点と称され得る)に向かって放出される。したがって、放射ファイバが凸面画像野を通して移動するいくつかのシステムと比較して、本発明の実施形態は、放射ファイバを弧320等の凹面画像野を通して移動させる。大きい角度では、ファイバ先端は、弧320から外れ得、そのような外れは、光学設計の修正によって補償されることができる。当業者は、多くの変形例、修正、および代替を認識するであろう。
ある実施形態では、第1のファイバリンク114に加え、ファイバリンク310および312の各々は、光学信号を搬送し、この例では、3つのファイバコアの各々が、ビームを放出することを可能にし、その全ては、焦点に向かわせられる。この構造の製作は、第1の材料の柱体の形態におけるファイバリンクの構造前駆体を含むプリフォームから開始することができ、第1の材料の柱体は、より容易にエッチングされる第2の材料のより大きい柱体に埋め込まれている。この構造を製作するために、2ステッププロセスが、使用されることができ、第1の熱延伸プロセスが、外側または周辺ファイバコアが中心ファイバコアに向かって傾斜させられるように、プリフォームをテーパ状様式で延伸するために使用されることができる。後続レーザアブレーション/選択的エッチングプロセスが、次いで、第2の材料を柱領域から除去するために使用されることができる。代替として、図3に示される実施形態は、別々のコンポーネントから組み立てられることができる。
ファイバリンク114、310、および312は、光ファイバを含むことができる。それらは、熱延伸等の当業者に公知の方法を使用して製作されることができる。ある実施形態では、保持カラー130および/または基部110は、ファイバリンクのための貫通孔を伴うシリコン、シリカ、または金属ディスクを含む。ファイバリンクは、接着剤、水ガラス、フリットガラス、または金属接合を使用して、保持カラーまたは基部に結合されることができる。フリットガラスが、プリフォーム(例えば、トロイダル形であり、周囲ファイバを包囲する)として接続部に適用され、一貫した製作を促進し得る。金等の金属が、例えば、蒸発プロセスを使用して、ファイバ、保持カラー、および/または基部上に堆積され得る。変形可能微小バンプ構造が、表面のうちの1つに適用され、機械的圧力下の金属間接合を促進し得る。代替として、金属/金属接合は、熱を使用して形成され得る。ある実施形態では、ファイバが、保持カラーを通して挿入され、それに接合され、続いて、一体として研削および研磨され、光学導波管の同一平面終端を確実にする。
光学視点から、図3に図示される実施形態は、従来の技法を使用して利用可能ではない利点を提供する。図4は、本発明のある実施形態による、ファイバ走査システムの要素を図示する簡略化された図面である。図4に図示されるように、投影システムは、第1のファイバリンク415に光学的に結合される電磁放射源421(例えば、ダイオードレーザ)と、第1のファイバリンクからの光が向かわせられるボールレンズ410とを含む。ボールレンズ410は、図3に図示される交差点または焦点Rに近似的に位置付けられることができ、コンパクトな光学システムを使用しながら、大きい視野を対象範囲することができる。ボールレンズは、ファイバからの光をディスプレイシステムの接眼レンズの中に結像し得る。ボールレンズに加え、光学システムの他の入射瞳も、焦点として利用されることができる。第1のファイバリンクおよび保持カラーが、弧405を通して掃引すると、第1のファイバリンクによって放出される光は、ボールレンズまたは入射瞳に全ての振動位置420、422、および424から向かわせられる。ボールレンズ410に向かったファイバ先端の傾斜は、運動範囲の端部に向かって移動させられるにつれて、ファイバ先端が中心から離れて傾斜させられる場合、そうでなければ要求されるであろうものほどコストがかからない光学要素の使用を可能にする。
多要素ファイバスキャナの構造は、「Methods and Systems for Fabrication of Shaped Fiber Elements Using Laser Ablation」と題され、2016年12月22日に出願された、米国仮特許出願第62/438,408号(本開示は、参照することによって本明細書に組み込まれる)に説明されるレーザアブレーションおよびレーザ彫設技法の使用に適している。例として、多コアファイバプリフォームから開始し、プリフォームは、延伸され、ファイバを形成し得、レーザアブレーションおよびエッチングが、材料を柱区分から除去し、所望のファイバリンクを残すために使用されることができる。基部および/または保持プレートが、元の延伸されたファイバからのガラスから形成され得る。
図11は、本発明のある実施形態による、光ファイバケーブルおよびレーザアブレーションビームの簡略化された側面図である。レーザビームが、提供され、レンズ1110に向かって伝搬し、それは、レーザビームを光ファイバ1125のクラッディング1115の内側の焦点スポット1120に集束させる。焦点スポットにレーザビームを集束させることは、焦点スポットにおける損傷部位の作成をもたらす。ファイバコアと整列させられるファイバの縦軸に沿って、ファイバを回転させることによって、一連の損傷部位が、所与の半径方向距離に作成されることができる。
レーザビームおよび関連付けられた光学要素の移動は、図11に図示され、レーザビームが縦方向に第2の場所に移動させられるにつれて、第2の焦点スポット1130がファイバの表面からより離れた距離に形成されるようになる。縦軸の周囲におけるファイバの回転に応じて、一連の損傷部位が、焦点スポット1120に関連付けられた一連の損傷部位のファイバコアからより小さい半径方向距離を有するように作成される。第3の縦方向位置も、図11に図示され、第3の焦点スポット1140を形成する。このプロセスを使用して、本実施形態ではテーパ状の破線プロファイルによって図示される一連の損傷部位1150が、実質的に連続して作成される。
いくつかの実施形態では、レンズは、集束スポットの位置を調節するために移動させられる一方、他の実施形態では、レンズの焦点力が、調節されることができ、したがって、集束スポットが移動する間、レンズは、実質的に同じ位置のままである。用語「実質的に」の使用は、焦点力変化が、多くの場合、レンズ(例えば、カメラズームレンズ)の内側の移動要素から生じるので使用される。
下で説明されるように、エッチングプロセスが、一連の損傷部位に沿って優先的にエッチングし、図11に図示される実施形態におけるテーパ状ファイバプロファイルを形成し、一連の損傷部位より大きい半径方向距離におけるファイバクラッディングの部分を分離するために使用されることができる。
いくつかの実施形態では、光が、ファイバの中にファイバコアに向かって伝搬するにつれて、ファイバは、図の中に延びている方向において、円筒形レンズとしての機能を果たす。図の平面では、ファイバは、どんな集束効果も導入しない。ファイバによって導入される円筒形レンズ効果は、一連の損傷部位1150が作成される焦点のサイズに悪影響を及ぼし得る。故に、非点収差レンズが、光学経路内に組み込まれることができ、それに沿って、レーザビームは、伝搬する。例として、円筒形レンズが、非点収差レンズとして使用され、補正を図の中に延びている平面に導入し、ファイバによる集束を補償し得る。いくつかの実装では、非点収差レンズおよび/またはレンズ1110は、非点収差導入および/または焦点距離の量が、システムの動作中、調節され得るように、可変光学パラメータを有する。
いくつかの実施形態では、別個のレンズが、単一レンズの中に組み合わせられることができ、それは、レーザ光をファイバの中に集束させることと、非点収差事前補正を提供し、ファイバ内に生じる円筒形集束を補償することの両方を行う複数の要素の複合レンズであり得る。
図12は、本発明のある実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。図12に関連して説明される方法は、基部と、保持カラーと、ファイバコアおよびファイバクラッディングを含む第1のファイバリンクと、基部を保持カラーに結合する複数の追加のリンクとを有する多要素ファイバスキャナを含む本明細書に説明される種々の構造の製作に適用可能である。方法1200は、光ファイバケーブルを提供すること(1210)と、レーザビームを光ファイバケーブルの内側の所定の場所に集束させること(1212)と、損傷部位を所定の場所に作成すること(1214)とを含む。
方法は、レーザビームを光ファイバケーブルの内側の一連の追加の所定の場所に集束させること(1216)と、複数の追加の損傷部位を追加の所定の場所に作成すること(1218)とを含む。別の実施形態では、損傷部位および追加の損傷部位は、図1、3、8A、および10に図示されるように、導波管要素と、機械的支持要素とを含む多要素構造を画定する。機械的支持要素は、基部と、保持カラーと、基部と保持カラーとの間に結合される機械的支持体とを含むことができる。ある実施形態では、損傷部位および追加の損傷部位は、縦方向距離の関数としてファイバ放射先端に向かって減少直径を有し、それによって、テーパ状ファイバを生成する、テーパ状プロファイルを画定する。
方法は、光ファイバケーブルをエッチング溶液にさらすこと(1220)と、損傷部位および複数の追加の損傷部位を優先的にエッチングすること(1222)と、光ファイバケーブルの一部を分離し、多要素ファイバスキャナの要素を解放すること(1224)とをさらに含む。優先的エッチングプロセス後、構造の一部は、ファイバコアおよびファイバクラッディングならびに機械的構造を有する1つ以上のファイバ要素等の導波管要素を含むことができる。
本発明のある実施形態によると、レーザビームが焦点/損傷部位および複数の追加の損傷部位に伝搬するにつれたファイバによる光の集束は、レーザビームがファイバを通して伝搬するにつれて生じる集束と等しくかつ反対の集束の量を導入する非点収差レンズを使用することによって補償される。損傷部位は、ファイバクラッディング内の可変深度、すなわち、ファイバのコアからの可変距離に位置付けられるであろうため、補正レンズは、いくつかの実装では、レーザがファイバのクラッディング内の異なる半径方向距離を通してトラバースするにつれて調節されることができる。
いくつかの実施形態では、複数の追加の損傷部位を追加の所定の場所に作成することは、格子細工の損傷部位を光ファイバケーブルのクラッディング内に形成することを含むことができる。例えば、いくつかの実施形態では、複数の半径方向ビアが、クラッディング領域を通してファイバコアに向かって通過することができる。レーザビームの焦点は、最初に、複数の追加の損傷部位の第1の部分が、ファイバコアに隣接して(すなわち、ファイバコアから短い半径方向距離に)作成され、続いて、複数の追加の損傷部位の第2の部分が、ファイバコアからより遠い距離(すなわち、クラッディング領域の直径までのより長い半径方向距離)に作成され得るように制御されることができる。本技法は、無損傷材料を提供し、それを通して、レーザビームが伝搬し、ビーム品質における低下を低減させ、または防止する。
ファイバコアは、縦軸によって特徴付けられ、方法は、ファイバを縦軸の周囲で回転させながら、複数の追加の損傷部位が追加の所定の場所に作成されることを含むことができる。図11は、光ファイバケーブルを実質的に同種材料として図示するが、光ファイバケーブルは、クラッディング領域と、クラッディング領域内に配置される複数の犠牲領域とを含むことができる。複数の犠牲領域は、クラッディング領域より高いエッチング率を有する材料を含むことができるか、またはそれを通してエッチング液が流動し得る空気空洞であり得る。
図12に図示される具体的ステップは、本発明のある実施形態による、多要素ファイバスキャナを製作する特定の方法を提供することを理解されたい。他のステップのシーケンスも、代替実施形態に従って実施され得る。例えば、本発明の代替実施形態は、上記に概略されたステップを異なる順序で実施し得る。さらに、図12に図示される個々のステップは、個々のステップの必要に応じて種々のシーケンスで実施され得る複数のサブステップを含み得る。さらに、追加のステップが、特定の用途に応じて、追加または除去され得る。当業者は、多くの変形例、修正、および代替を認識するであろう。
図5は、本発明のある実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。多要素ファイバスキャナを製作する方法500は、クラッディング領域と、ファイバコアとを有する光ファイバケーブルを提供すること(510)と、レーザビームを光ファイバケーブルのクラッディング領域の内側の一連の所定の場所に集束させること(512)と、複数の損傷部位を所定の場所に作成すること(514)とを含む。複数の損傷部位を所定の場所に作成することは、格子細工の損傷部位、クラッディング領域を通してファイバコアに向かって通過する複数の半径方向ビア等を形成することを含むことができる。一実装では、複数の損傷部位を所定の場所に作成するプロセスは、最初に、複数の損傷部位の第1の部分をファイバコアに隣接して作成し、続いて、複数の損傷部位の第2の部分をクラッディング領域の周縁に隣接する作成することによって、実施されることができる。
方法は、光ファイバケーブルをエッチング溶液にさらすこと(516)と、複数の損傷部位を優先的にエッチング(518)し、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸に沿って基部から所定の距離に配置された保持カラーと、基部平面を通過し、保持カラーに接合されるファイバコアを含む第1のファイバリンクと、基部に接合され、基部から保持カラーまで延び、保持カラーに接合される複数の追加のファイバリンクとを形成することとも含む。
本発明のある実施形態によると、方法は、複数の損傷部位を所定の場所に作成するプロセスの間、光ファイバケーブルを縦軸の周囲で回転させることも含むことができる。いくつかの実装では、光ファイバケーブルは、クラッディング領域より高いエッチング率を有する材料を使用して作製され、犠牲材料が優先的に除去されることを可能にするクラッディング領域内に配置される複数の犠牲領域を含むように、製作されることができる。犠牲領域は、代替として、空気空洞または犠牲材料および空気空洞の組み合わせを含むことができる。
図6は、本発明の別の実施形態による、多要素ファイバスキャナを製作する方法を図示する簡略化されたフローチャートである。多要素ファイバスキャナを製作する方法600は、少なくとも1つのファイバ導波管と、ファイバ支持体と、犠牲材料とを含むプリフォームを製作すること(610)と、プリフォームを延伸して、ファイバ構造を形成すること(612)とを含む。
ファイバ引っ張りプロセスでは、ファイバプリフォームは、第1のファイバリンクおよび複数の追加のリンクまたは他の機械的支持を画定するために利用される材料より低いエッチング抵抗を伴う材料を含み得る犠牲領域を含むことができる。例として、第1のファイバリンクおよび複数の追加のリンクは、エッチング、例えば、硫酸または他の好適なエッチング液によるエッチング耐性であることができる一方、それらのエッチング抵抗を低下させるようにドープまたは別様に提供され得る犠牲領域(ドーパントならびにエッチング液の濃度およびタイプに依存するエッチング率を有する)は、硫酸によってエッチングされることができる。種々の実施形態では、ドーパントは、フッ素、フッ化物、ゲルマニウム、ホウ素、リン、ガリウム、インジウム、ヒ素、およびアンチモンのうちの1つ以上のものを含むことができる。いくつかの実施形態では、ファイバリンクおよび/または複数の追加のリンクのエッチング率は、ガラス(例えば、ナトリウム/ホウ素/リン含有量)の純度ならびにガラスが焼鈍されているかどうかに依存し得る。
方法は、ファイバ構造をエッチング溶液にさらすこと(614)と、犠牲材料を優先的にエッチング(616)し、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸に沿って基部から所定の距離に配置された保持カラーと、基部平面を通過し、保持カラーに接合される少なくとも1つのファイバ導波管を含む第1のファイバリンクと、基部に接合され、基部から保持カラーまで延び、保持カラーに接合される複数のファイバ支持体とを形成することとを含む。
基部および保持カラーは、優先的犠牲エッチングプロセス中のエッチングプロセスの間、マスクされ、それらを保護することができる。材料は、その光学性質に加え、その機械的性質のために選択されることができる。したがって、いくつかの実施形態では、基部および保持カラーは、エッチングに対するそれらの影響の受けやすさを低減させるために、レーザ損傷処置から除外されることができる。
図7は、本発明のある実施形態による、多要素ファイバスキャナを動作させる方法を図示する簡略化されたフローチャートである。下で説明されるように、アクチュエータ基部が、基部平面において側方に平行移動させられると、保持カラーは、振動するにつれて、平面の組において、側方に平行移動する。小角度に対して、ファイバ先端は、実質的に単一平面において振動し、それは、平坦画像野を提供する。いくつかの実施形態では、ファイバ先端は、平面の組において振動しながら、ファイバ先端を縦方向向きに維持する。多要素ファイバスキャナを動作させる方法700は、電磁放射源を提供すること(710)と、電磁放射を源から第1のファイバリンクに通すこと(712)とを含む。第1のファイバリンクは、基部平面と基部平面に直交する縦軸とを有する基部を通過する。
方法は、縦軸に沿って基部から所定の距離に配置された保持カラーを支持すること(714)も含む。複数の追加のリンクが、いくつかの実施形態では、基部および保持カラーを接合する。複数の追加のリンクのうちの1つ以上のものは、基部を通過することができる。この場合、方法は、電磁放射を源(または別の源)から複数の追加のリンクのうちの1つ以上のものに通すことを含むことができる。電磁放射は、強度を変調され、画像を提示することができる。
方法は、基部を基部平面内で平行移動させること(716)と、保持カラーを基部平面と平行な一組の平面内で平行移動させること(718)と、電磁放射を1つ以上の軸において走査すること(720)とをさらに含む。保持カラーの運動を考えると、本発明は、小角度に対して、保持カラーの実質的に平面内にある運動を含む。したがって、これらの例に対して、保持カラーが側方に振動すると、運動範囲の端部において、小量だけ元の平面から外に縦方向に移動し得る。例として、保持カラーの元の位置からの垂直外れは、いくつかの実施形態では、ミクロン~ミリメートルの範囲内、例えば、500μmまたはそれを上回り得る。振動の角度および運動範囲が増加すると、保持カラーが側方および縦方向の両方に移動するので、保持カラーの運動は、基部平面と平行な平面の組によって画定され、垂直変動を含む。本明細書に説明されるように、保持カラーは、基部平面と平行な平面において移動するので、ファイバ先端は、運動中、縦方向に向けられ、光学結像システムの設計に関連する利点を提供する。
ある実施形態では、基部を基部平面内で平行移動させることは、基部を第1の方向に作動させ、基部を第1の方向に直交する第2の方向に作動させ、2次元運動を提供することによって実施される。保持カラーを基部平面と平行な一組の平面内で平行移動させることは、複数の追加のリンクを傾斜させることを含むことができる。
図8Aは、本発明のある実施形態による、多軸ファイバスキャナを図示する簡略化された斜視図である。多要素ファイバスキャナは、電磁結像放射を走査するために使用されることができる。多要素ファイバスキャナ800は、基部平面と基部平面に直交する縦軸とを有する基部110を含む。多要素ファイバスキャナは、縦軸と平行方向に基部を通過する第1のファイバリンク114も含む。第1のファイバリンクは、基部110の下方の場所において、少なくとも1つの電磁放射源(図示せず)に動作可能に結合される。
加えて、多要素ファイバスキャナは、基部110に接合され、縦軸に沿って、例えば、縦軸と平行に基部から延びている複数の作動要素810を含む。複数の作動要素は、独立して、拡張812および収縮814することができる。図8Aに図示されるような対向作動要素810の使用は、2つの方向(例えば、x-軸およびy-軸(両方とも縦軸に直交する)に沿う)における第1のファイバリンクの独立走査を可能にし、それによって、第1のファイバリンクからの光は、x-軸およびy-軸と平行かつ縦軸(すなわち、z-軸)と垂直なアレイを画定するピクセルに向かわせられることができる。
複数の作動要素は、複数の圧電管スタックを使用して製作されることができ、第1のファイバリンクを包囲するように並べられることができる。圧電管スタックに関連する追加の説明は、図9A-9Fに関連して提供される。保持カラーに対する基部の機械的制約に加え、作動要素810は、基部と、縦軸に沿って基部から所定の距離に配置された保持カラー130との間の距離を制御するために使用されることができる。第1のファイバリンクおよび複数の作動要素は、保持カラーに接合される。第1のファイバリンクは、縦軸と平行方向に、保持カラーを通過する。
図8Aを参照すると、作動要素は、第1のファイバリンクの第1の側に位置付けられ、収縮/拡張するように動作可能である第1の圧電要素と、第1の側に対向する第1のファイバリンクの第2の側に位置付けられ、第1の圧電要素とは反対に拡張/収縮するように動作可能である第2の圧電要素とを含むことができる。これらの運動は、第1の圧電要素と第2の圧電要素とを接続する線に直交する第1の軸の周囲の保持カラーの傾斜をもたらすであろう。さらに、第3の圧電要素は、第1のファイバリンクの第3の側に位置付けられ、収縮/拡張するように動作可能であることができる。この第3の圧電要素は、第3の側に対向する第1のファイバリンクの第4の側に位置付けられ、第3の圧電要素とは反対に拡張/収縮するように動作可能である第4の圧電要素と対にされる。第3および第4の圧電要素の運動は、第3の圧電要素と第4の圧電要素とを接続する線に直交する第2の軸の周囲の保持カラーの傾斜をもたらすであろう。
上記に説明されるような作動要素を使用して、多要素ファイバスキャナを動作させると、第1のファイバリンクは、走査され、電磁放射点を基部平面と平行な軸に沿って移動させることができる。本実施形態では、走査機能性は、例えば、サーボ要素(例えば、ピストン)として機能する圧電アクチュエータとともに、機械的支持体の中に構築される。
作動要素は、図8Aに図示される実施形態では、円筒形として図示されるが、この特定の形状は、本発明によって要求されず、長方形、正方形、六角形等を含む他の断面も、本発明の範囲内に含まれる。作動要素の断面は、作動要素の長さに沿って均一または非均一であり得る。
図8Bは、本発明のある実施形態による、多軸ファイバスキャナを動作させる方法を図示する簡略化されたフローチャートである。多要素ファイバスキャナを動作させる方法850は、電磁放射源を提供すること(860)と、電磁放射を源から第1のファイバリンクに通すこと(862)とを含む。第1のファイバリンクは、基部平面を有する基部を通して、基部平面に直交する縦軸に沿って通過する。方法は、縦軸に沿って基部から所定の距離に配置された保持カラーを支持すること(864)も含む。複数の圧電アクチュエータが、基部と保持カラーとを接合する。図8Aに図示されるように、複数の圧電アクチュエータのうちの第1の圧電アクチュエータは、基部の片側を保持カラーの片側に接合し、複数の圧電アクチュエータのうちの第2の圧電アクチュエータは、基部の反対側を保持カラーの反対側に接合する。第1の圧電アクチュエータおよび第2の圧電アクチュエータは、走査平面内にある。いくつかの実施形態では、走査平面は、中心導波管/ファイバを含み得るが、2つの他のアクチュエータを用いても、ファイバの先端は、2つの対向圧電アクチュエータおよび中心導波管/ファイバの残り位置を含む平面に制限されないこともある。故に、1つの動作モードは、第1の対の対向アクチュエータをファイバの共振周波数で駆動し、残りの(例えば、2つの)対向アクチュエータを垂直走査周波数に関連付けられ得るより低い周波数で駆動することである。さらに別の動作モードでは、螺旋走査パターンが、利用される。
方法は、複数の圧電アクチュエータのうちの第1の圧電アクチュエータを作動させ、基部の片側から保持カラーの片側までの距離を減少させること(866)と、複数の圧電アクチュエータのうちの第2の圧電アクチュエータを作動させ、基部の反対側から保持カラーの反対側までの距離を増加させること(868)とをさらに含む。これらの作動に応答して、方法は、第1のファイバリンクが走査平面において走査されることを可能にする(870)。
図9Aは、本発明のある実施形態による、多区分運動作動要素を図示する簡略化された側面図である。図9Aに図示されるように、多区分要素905は、第2の圧電要素912に結合される第1の圧電要素910を含む。多区分要素905は、いくつかの圧電要素がスタックされ、要素を形成するので、圧電管スタックと称され得る。いくつかの実施形態では、第1の圧電要素910は、基部に近接し、第2の圧電要素912は、基部から遠位の場所に位置付けられる。圧電要素の各々は、収縮または拡張可能であり、図9Aに図示されるように、圧電要素は、下側区分が収縮/拡張する一方、上側区分が拡張/収縮するように動作されることができる。いくつかの実施形態では、各圧電要素は、各管の片側が収縮され得る一方、他側が拡張されるように、複数のセクタ(例えば、4つのセクタ)を含む。この動作モードは、図9Bに図示されるように、振動運動を生成するであろう。
図9Bは、本発明のある実施形態による、図9Aに図示される多区分運動作動要素の振動運動を図示する簡略化された側面図である。第1の圧電要素910が収縮するとき(920)、第2の圧電要素912は、拡張し(922)、多区分運動作動要素にシグモイド形状をとらせる。振動の次の段階では、第1の圧電要素910が拡張するとき(924)、第2の圧電要素912は、収縮し(926)、多区分運動作動要素に、第1のシグモイド形状を鏡映する第2のシグモイド形状をとらせる。区分を構成する圧電要素を交互に拡張/収縮させることによって、多区分要素は、図9Bによって図示されるように振動し、交互様式において、図示される形状および水平鏡像を形成する。
図9Cは、本発明のある実施形態による、図9Aに図示される多要素運動作動要素を伴う多要素ファイバスキャナを図示する簡略化された側面図である。図9Cに図示されるように、基部110を保持カラー130に結合する多区分運動要素905の使用は、作動要素の底部および上部が、それぞれ、基部および保持カラーに接合する場所において、曲がり量を低減させる。これらの点における低減させられた曲がりにより、応力は、低減させられ、寿命および信頼性は、改良されることができる。図9Cに図示されるように、保持カラー130と基部110との間の垂直距離(縦方向に沿って測定される)は、保持カラーが中心位置から側方方向に水平に移動するにつれて減少する。保持カラー130の小振動に対して、保持カラーの運動は、実質的に平面であろう。保持カラーが中心から離れるように側方に移動するにつれて、縦方向高さは、減少し得るが、運動は、基部平面と平行な平面内にあり、保持カラーの向きは、基部と実質的に平行なままである。保持カラーが、移動するにつれて基部平面と平行なままであるので、ファイバ940の先端は、縦方向に沿って向けられたままである。保持カラーの側方(および縦方向)運動に関連付けられた像面湾曲は、光学システムを設計することにおいて考慮され、それが走査されているようにファイバの画像を生成することができる。運動範囲の端部に向かって側方に移動するにつれて、ファイバ先端が中心から離れるように傾斜するファイバスキャナは、ファイバからの画像光を効率的に収集するために、より大きい開口数の光学システムを余儀なくする。より大きい開口数要件は、概して、より大きい、より複雑、かつよりコストがかかる光学システムにつながる。光学システムのサイズは、拡張現実眼鏡の中に統合されるべき光学システムのために、重要な考慮点である。対照的に、本発明の実施形態は、保持カラーが運動範囲全体を通して基部平面と平行であるので、ファイバ先端を縦方向向きに維持する。先端が、運動範囲の端部で傾斜するにつれて、光は、急峻な角度で放出され得、それは、高レベルの像面湾曲および急峻な角度を補正する必要性の結果、より複雑かつ高価なレンズ設計をもたらし得る。本発明の実施形態を使用することは、走査するファイバが複雑性を大幅に簡略化するようなファイバ先端方向を維持し、レンズのコストを維持する。当業者は、多くの変形例、修正、および代替を認識するであろう。
図9Dは、本発明のある実施形態による、圧電運動アクチュエータの簡略化された斜視図である。図9Dに図示される圧電運動アクチュエータ955は、円筒形ケーシング内に配置される4つの作動入力(+X、-X、+Y、および-Y)を含む。光ファイバケーブルが、オリフィス957を通過し、4つの作動入力の作動によって、光ファイバケーブルは、2次元で走査されることができる。図9Dでは、+X作動入力の縮小および-X作動入力の拡張は、圧電運動アクチュエータを+X軸に向かって傾斜させる。図9Dに図示される運動は、2次元である(すなわち、x-軸およびy-軸によって画定された平面に沿って)が、実施形態は、z-軸に沿って収縮/拡張するように、全4つの作動入力を一体として拡張または収縮させることもできる。したがって、本発明の実施形態は、x-方向およびy-方向における両運動のみならず、z-方向において圧縮/拡張する円筒形アクチュエータの使用も提供する。
図9Dに図示される円筒形運動アクチュエータに加え、本発明の範囲は、他の幾何学形状が運動アクチュエータのために利用される実装を含む。例として、ある実施形態では、運動アクチュエータは、多要素運動アクチュエータとして互いに連動する複数の対向運動作動要素(例えば、圧電要素)を含む。図9Eは、本発明のある実施形態による、多要素運動アクチュエータを図示する簡略化された端面図である。図9Eに図示される図は、縦軸と整列させられる。図9Eに図示されるように、光ファイバケーブル960の片側に位置付けられる第1の運動作動要素962および光ファイバケーブルの反対側に位置付けられる第2の運動作動要素964は、連動して収縮/拡張し、光ファイバケーブルを水平平面において移動させることができる。光ファイバケーブル960の第3の側に位置付けられる第3の運動作動要素966および光ファイバケーブルの反対側に位置付けられる第4の運動作動要素968は、連動して収縮/拡張し、光ファイバケーブルを垂直平面において移動させることができる。全4つの運動作動要素の作動によって、ファイバは、投影ディスプレイにおいて使用するために、必要に応じて、2次元において走査されることができる。図9Eに図示される実施形態は、圧電質量を低減させることによって、より軽量のシステムを提供することができる。図9Eに図示される長方形幾何学形状に加え、六角形、三角形等を含む他の幾何学形状も、本発明の範囲内に含まれる。
典型的には、作動入力は、入力間の所定の位相関係、例えば、90°異なる位相、180°異なる位相等を用いて駆動される。例として、図9Dに図示される運動を達成するために、+X作動入力の縮小および-X作動入力の拡張は、互いに対して180°異なる位相の信号によってこれらの作動入力を駆動することによって遂行されることができる。図9Aおよび9Cを参照すると、第1の圧電要素910は、図9Dに図示されるように駆動され、第1の要素を+X方向に向かって曲げることができる。並行して、第2の圧電要素912は、反対様式、すなわち、+X作動入力の拡張および-X作動入力の縮小において駆動され、第2の要素を-X方向に向かって曲げることができる。その結果、図9Bに図示される運動は、これらの圧電要素の連動作動によって達成されることができる。したがって、各要素の作動入力間の位相関係および種々の要素間の位相関係は、所望の運動を達成するために制御される。
図9Fは、本発明のある実施形態による、多区分運動作動構造を図示する簡略化された側面図である。図9Fに図示されるように、圧電構造979は、図9Aに図示される多区分要素に類似する2つの圧電要素を含む。圧電構造979は、本実施形態では、2つの圧電要素(圧電運動アクチュエータとも称される)が、スタックされ、構造を形成するので、圧電管スタックと称され得る。圧電構造979の下側部分は、固定基部に取り付けられ、構造の上部が電極駆動電圧に応答して移動することを可能にする。図9A、9D、および9Fを比較すると、図9Dに図示される単一圧電要素は、第2の圧電要素と一緒にスタックされ、図9Aおよび9Fに図示される管スタックを形成するであろう。明確性の目的のために、圧電要素の外側表面上の作動入力(図9D参照)は、省略され、作動入力に接続される電極が、図示される。圧電要素の内部は、金属化され、接地に接続される。本明細書に説明されるように、4つの位相が、圧電要素の外側表面の周囲に互いに対して90°向きに配置される作動入力に適用される。
管スタックが、図9Fに関連して議論されるが、本発明の実施形態は、多圧電要素実装に限定されない。いくつかの実施形態では、下側区分および上側区分を有するモノリシック多区分圧電要素が、モノリシック圧電管から製作されるように利用されることができる。代替実施形態によると、変調された光を伴う光ファイバが、圧電構造979を通過することができる。したがって、これらの圧電構造は、機械的機能性のためだけではなく、光送達のためにも同様に有用である。
信号生成器970は、電極973および975に接続され、電極973および975は、順に、対応する作動入力(例えば、図9Dでは、+Yおよび-Y)に接続される出力を提供する。信号生成器970は、第1の90°位相調整器971および第2の90°位相調整器972に接続され、それらは、電極974および976に接続され、電極974および976は、順に、対応する作動入力(例えば、図9Dでは、+Xおよび-X)に接続される。したがって、信号生成器は、位相調整器と連動して、互いに対して90°異なる位相の4位相を提供する。
第1および第2の圧電要素の交差点980で、電極は、電極の位置を180°シフトさせる渦巻構造を形成する。この渦巻構造は、S-曲線の変曲点に対応する交差点980において、圧電駆動電極の180°交替を可能にする。故に、例えば、領域977内の作動入力(すなわち、第1の圧電要素の左側)と接触する電極974は、領域978内の作動入力(すなわち、第2の圧電要素の右側)と接触するようにシフトする。同様の電極位置180°シフトも、他の電極に対して生じ、第1の圧電要素の右/左または正面/背面側に接触する電極が、第2の圧電要素の左/右または背面/正面側に接触することももたらす。例として、第1の圧電要素のための電極間の位相シフトは、電極973のための0°(すなわち、正面作動入力)、電極974のための90°(左作動入力)、電極975のための180°(すなわち、背面作動入力)、および電極976のための270°(すなわち、右作動入力)として画定されることができる。
動作時、電場が、圧電要素の外側表面上の作動入力から圧電要素の内側表面上の共通接地電極に半径方向に印加される。左/右および正面/背面作動入力は、180°異なる位相の電極によって駆動されるので、圧電要素の左/正面側は、縮小し、圧電要素の右/背面側は、拡張する。図9Fに図示される実施形態では、交差点980における渦巻構造の存在は、2つの圧電要素上の対向作動入力が同一様式で応答する結果をもたらす。例えば、第1の圧電要素上の+X作動入力および第2の圧電要素上の-X作動入力は、同一電極(例えば、電極974)に接続されるので、それらは、連動して、収縮/拡張の両方を行うであろう。故に、図9Bに図示されるように、S-曲線動作が、電極974上に存在する電圧に応答して、領域977が収縮し、領域978が収縮する場合、図9Fに図示される電極駆動構成から生じる。圧電要素の反対側上の電極は、180°異なる位相であるので、領域対向領域977および978の拡張は、S-曲線動作に寄与するであろう。
各作動入力の4つの作動入力に適用される電圧が、時間の関数として変動させられるにつれて、第2の圧電要素の自由端981は、縦方向と垂直な平面(すなわち、z-方向)にある円形を掃引することができる。
再び、図8Aおよび図9A-9Fを参照すると、いくつかの実施形態では、ファイバリンクのうちの1つ以上のものは、運動作動リンクと置換され、例えば、図9Aに図示される多区分運動作動要素を組み込むことができる。故に、本発明の実施形態は、電磁結像放射を走査するための多要素ファイバスキャナを提供する。多要素ファイバスキャナは、基部平面と基部平面に直交する縦軸とを有する基部と、縦軸と平行方向に基部を通過する第1のファイバリンクとを含む。第1のファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合される。
多要素ファイバスキャナは、基部に接合され、基部から延びている複数の運動作動リンクも含む。複数の運動作動リンクの各々は、基部に近接する第1の圧電要素と、基部から遠位の場所において第1の圧電要素に結合される第2の圧電要素とを含む。多要素ファイバスキャナは、縦軸に沿って基部から所定の距離に配置された保持カラーをさらに含む。第1のファイバリンクおよび複数の運動作動リンクの各々の第2の圧電要素は、保持カラーに接合される。
図10は、本発明のある実施形態による、電磁結像放射を走査するための多要素ファイバスキャナである。多要素ファイバスキャナ1000は、電磁結像放射を走査するディスプレイ内で使用されることができ、多要素ファイバスキャナ1000は、基部平面を画定する支持表面1011(基部1005の下側表面)と、支持表面1011に対向する搭載表面1007と、基部平面に直交する縦軸とを有する基部1005を含む。多要素ファイバスキャナは、基部1005の支持表面1011に結合される複数の運動アクチュエータ1009も含む。
多リンクファイバ構造は、搭載表面1007に結合される。多リンクファイバ構造は、基部110に類似し得るファイバ基部1010と、縦軸と平行方向にファイバ基部1010を通過するファイバリンク1014とを含む。ファイバリンク1014は、少なくとも1つの電磁放射源(図示せず)からファイバリンク1014の遠位(図10の視点内の上部)端に動作可能に結合される。
多リンクファイバ構造は、ファイバ基部1010に接合され、縦軸に沿って、ファイバ基部1010から延びている複数の運動作動要素1040(例えば、圧電作動要素)と、縦軸に沿ってファイバ基部から所定の距離に配置された保持カラー1030とも含む。ファイバリンク1014および複数の運動作動要素1040は、保持カラー1030に接合される。
ある実施形態では、複数の運動作動要素1040のうちの1つ以上のものは、電磁放射源に結合される追加のリンクと置換される。さらに、同一または異なる電磁放射源に結合される追加のリンクの数は、多ピクセルディスプレイのための複数のピクセルを同時に出力するために利用されることができる。
複数の運動アクチュエータ1009を使用した基部1005の作動は、基部1005の軸の周囲の基部の傾斜をもたらすピストンとしての機能を果たす。傾斜は、単一軸の周囲または複数の軸の周囲で行われることができる。いくつかの実施形態では、基部の傾斜および保持カラーを傾斜させるための運動作動要素の作動は、ファイバリンクの移動、例えば、振動の制御を提供し、ファイバリンクから放出される光をディスプレイ画面に向かわせる。
いくつかの構成では、保持カラーの平行移動および/または傾斜は、第1の方向におけるファイバリンクの走査を提供することができ、基部の傾斜は、第1の方向に直交し得る第2の方向におけるファイバリンクの走査を提供することができる。ある実施形態では、第1の方向は、高速方向(ラスタ走査ディスプレイの水平走査に類似する)であり、第2の方向は、低速方向(ラスタ走査ディスプレイの垂直走査率に類似する)である。例として、保持カラーは、横方向に振動され得、基部は、側方方向に傾斜させられ得る。基部の傾斜に加え、基部は、運動アクチュエータの全ての拡張/収縮によって、連動して、縦方向に平行移動させられることができる。
本明細書に説明される例および実施形態が、例証的目的のためだけのものであり、それに照らして、種々の修正または変更が、当業者に示唆され、本願の精神および権限ならびに添付の請求項の範囲内に含まれるべきであることも理解されたい。

Claims (19)

  1. 電磁結像放射を走査するための多要素ファイバスキャナであって、前記多要素ファイバスキャナは、
    搭載平面と前記搭載平面に直交する縦軸とを画定する搭載表面と、
    前記搭載表面を支持する一組の作動要素と、
    前記搭載表面に結合される基部と、
    前記縦軸と平行方向に前記基部および前記搭載表面を通過しているファイバリンクであって、前記ファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合されている、ファイバリンクと、
    前記基部に接合され、前記基部から延びている複数の追加のリンクと、
    前記縦軸に沿って前記基部から所定の距離に配置された保持カラーと
    を備え、
    前記ファイバリンクおよび前記複数の追加のリンクは、前記保持カラーに接合されており、
    前記一組の作動要素の作動は、前記基部の傾斜をもたらす、多要素ファイバスキャナ。
  2. 前記一組の作動要素は、
    前記搭載表面の第1の角の近位に位置付けられる第1の圧電管と、
    前記搭載表面の第2の角の近位に位置付けられる第2の圧電管と、
    前記搭載表面の第3の角の近位に位置付けられる第3の圧電管と、
    前記搭載表面の第4の角の近位に位置付けられる第4の圧電管と
    を含む、請求項1に記載の多要素ファイバスキャナ。
  3. 前記第1の圧電管および前記第2の圧電管は、並行して収縮することにより、前記縦軸に直交する側方方向における前記ファイバリンクの運動を開始させるように動作可能である、請求項2に記載の多要素ファイバスキャナ。
  4. 前記第1の圧電管および前記第3の圧電管は、並行して収縮することにより、前記側方方向に直交する横断方向における前記ファイバリンクの運動を開始させるように動作可能である、請求項3に記載の多要素ファイバスキャナ。
  5. 前記ファイバリンクは、前記縦軸と平行方向に前記保持カラーを通過する、請求項1に記載の多要素ファイバスキャナ。
  6. 前記複数の追加のリンクは、追加のファイバリンクを含む、請求項1に記載の多要素ファイバスキャナ。
  7. 前記複数の追加のリンクは、前記ファイバリンクを包囲するように並べられている、請求項1に記載の多要素ファイバスキャナ。
  8. 前記複数の追加のリンクは、前記縦軸と平行方向に前記基部から延びている、請求項1に記載の多要素ファイバスキャナ。
  9. 前記複数の追加のリンクは、前記ファイバリンクに向かって傾斜させられた角度で前記基部から延びている、請求項1に記載の多要素ファイバスキャナ。
  10. 前記保持カラーは、湾曲弧に沿って平行移動するように動作可能である、請求項9に記載の多要素ファイバスキャナ。
  11. 電磁結像放射を走査するための多要素ファイバスキャナであって、前記多要素ファイバスキャナは、
    搭載平面と前記搭載平面に直交する縦軸とを画定する搭載表面と、
    前記搭載表面を支持する一組の作動要素と、
    前記搭載表面に結合される基部と、
    前記縦軸と平行方向に前記基部および前記搭載表面を通過しているファイバリンクであって、前記ファイバリンクは、少なくとも1つの電磁放射源に動作可能に結合されている、ファイバリンクと、
    前記基部に接合され、前記基部から延びている複数の追加のリンクと、
    前記縦軸に沿って前記基部から所定の距離に配置された保持カラーと
    を備え、
    前記ファイバリンクおよび前記複数の追加のリンクは、前記保持カラーに接合されており、
    前記一組の作動要素は、
    前記搭載表面の第1の角の近位に位置付けられる第1の圧電管と、
    前記搭載表面の第2の角の近位に位置付けられる第2の圧電管と、
    前記搭載表面の第3の角の近位に位置付けられる第3の圧電管と、
    前記搭載表面の第4の角の近位に位置付けられる第4の圧電管と
    を含む、多要素ファイバスキャナ。
  12. 前記第1の圧電管および前記第2の圧電管は、並行して収縮することにより、前記縦軸に直交する側方方向における前記ファイバリンクの運動を開始させるように動作可能である、請求項11に記載の多要素ファイバスキャナ。
  13. 前記第1の圧電管および前記第3の圧電管は、並行して収縮することにより、前記側方方向に直交する横断方向における前記ファイバリンクの運動を開始させるように動作可能である、請求項12に記載の多要素ファイバスキャナ。
  14. 前記ファイバリンクは、前記縦軸と平行方向に前記保持カラーを通過する、請求項11に記載の多要素ファイバスキャナ。
  15. 前記複数の追加のリンクは、追加のファイバリンクを含む、請求項11に記載の多要素ファイバスキャナ。
  16. 前記複数の追加のリンクは、前記ファイバリンクを包囲するように並べられている、請求項11に記載の多要素ファイバスキャナ。
  17. 前記複数の追加のリンクは、前記縦軸と平行方向に前記基部から延びている、請求項11に記載の多要素ファイバスキャナ。
  18. 前記複数の追加のリンクは、前記ファイバリンクに向かって傾斜させられた角度で前記基部から延びている、請求項11に記載の多要素ファイバスキャナ。
  19. 前記保持カラーは、湾曲弧に沿って平行移動するように動作可能である、請求項18に記載の多要素ファイバスキャナ。
JP2022082287A 2016-12-22 2022-05-19 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム Active JP7431275B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024014030A JP2024045384A (ja) 2016-12-22 2024-02-01 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662438415P 2016-12-22 2016-12-22
US62/438,415 2016-12-22
JP2019533603A JP7078627B2 (ja) 2016-12-22 2017-12-21 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム
PCT/US2017/067982 WO2018119285A1 (en) 2016-12-22 2017-12-21 Methods and systems for multi-element linkage for fiber scanning display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019533603A Division JP7078627B2 (ja) 2016-12-22 2017-12-21 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024014030A Division JP2024045384A (ja) 2016-12-22 2024-02-01 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Publications (2)

Publication Number Publication Date
JP2022116102A JP2022116102A (ja) 2022-08-09
JP7431275B2 true JP7431275B2 (ja) 2024-02-14

Family

ID=62628035

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019533603A Active JP7078627B2 (ja) 2016-12-22 2017-12-21 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム
JP2022082287A Active JP7431275B2 (ja) 2016-12-22 2022-05-19 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム
JP2024014030A Pending JP2024045384A (ja) 2016-12-22 2024-02-01 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019533603A Active JP7078627B2 (ja) 2016-12-22 2017-12-21 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024014030A Pending JP2024045384A (ja) 2016-12-22 2024-02-01 ファイバ走査ディスプレイのための多要素リンケージのための方法、システム

Country Status (9)

Country Link
US (4) US10437048B2 (ja)
EP (2) EP3559633B1 (ja)
JP (3) JP7078627B2 (ja)
KR (2) KR20230127379A (ja)
CN (2) CN110100169B (ja)
AU (1) AU2017382889B2 (ja)
CA (1) CA3046231A1 (ja)
IL (1) IL267397B (ja)
WO (1) WO2018119285A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018119271A1 (en) 2016-12-22 2018-06-28 Magic Leap, Inc. Methods and systems for fabrication of shaped fiber elements using laser ablation
KR20230127379A (ko) * 2016-12-22 2023-08-31 매직 립, 인코포레이티드 섬유 스캐닝 디스플레이에 대한 다중-엘리먼트 링키지를 위한 방법들 및 시스템들
US10254483B2 (en) 2016-12-22 2019-04-09 Magic Leap, Inc. Shaped fiber elements for scanning fiber displays
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
CN111751923B (zh) * 2019-03-29 2023-03-10 成都理想境界科技有限公司 一种光纤及扫描光成像显示装置
CN110308551B (zh) * 2019-08-02 2021-03-02 南京邮电大学 一种可电控的液体光学调相器
CN114206250A (zh) * 2019-08-05 2022-03-18 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) 使横向定位和强度变化的激光光纤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174744A (ja) 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP2008100057A (ja) 2006-09-28 2008-05-01 Jenlab Gmbh レーザー内視鏡検査における高解像度の顕微鏡画像又は切断のための方法及び装置
WO2014002556A1 (ja) 2012-06-28 2014-01-03 オリンパスメディカルシステムズ株式会社 走査型内視鏡および走査型内視鏡の製造方法
JP2016009012A (ja) 2014-06-23 2016-01-18 オリンパス株式会社 光走査用アクチュエータ、光走査装置、及び光走査用アクチュエータの製造方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936463A1 (de) * 1979-09-10 1981-03-19 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum erzeugen bewegter lichtstrahlengaenge
US5665954A (en) * 1988-10-21 1997-09-09 Symbol Technologies, Inc. Electro-optical scanner module having dual electro-magnetic coils
US5416876A (en) * 1994-01-28 1995-05-16 Hughes Training, Inc. Fiber optic ribbon subminiature display for head/helmet mounted display
US5739624A (en) * 1995-03-02 1998-04-14 Lucent Technologies Inc. Micropositioning devices, using single-crystal piezoelectric bodies, having at least two spatial degrees of freedom
JP3202646B2 (ja) * 1997-04-09 2001-08-27 セイコーインスツルメンツ株式会社 走査型プローブ顕微鏡
US6739624B2 (en) * 1997-10-16 2004-05-25 Magna International Inc. Frame assembly for a motor vehicle
US6663560B2 (en) 1999-12-17 2003-12-16 Digital Optical Imaging Corporation Methods and apparatus for imaging using a light guide bundle and a spatial light modulator
AU2099501A (en) * 1999-12-17 2001-06-25 Digital Optical Imaging Corporation Methods and apparatus for imaging using a light guide bundle and a spatial lightmodulator
US6975898B2 (en) * 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
US7555333B2 (en) * 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US6845190B1 (en) * 2000-11-27 2005-01-18 University Of Washington Control of an optical fiber scanner
US6961486B2 (en) * 2001-06-01 2005-11-01 Agilent Technologies, Inc. Non-blocking mechanical fiber optic matrix switch
US6738539B2 (en) * 2001-10-03 2004-05-18 Continuum Photonics Beam-steering optical switching apparatus
US7521257B2 (en) * 2003-02-11 2009-04-21 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Reno Chemical sensor with oscillating cantilevered probe and mechanical stop
US7298938B2 (en) * 2004-10-01 2007-11-20 University Of Washington Configuration memory for a scanning beam device
US7395967B2 (en) * 2005-07-21 2008-07-08 University Of Washington Methods and systems for counterbalancing a scanning beam device
US7312879B2 (en) * 2005-08-23 2007-12-25 University Of Washington Distance determination in a scanned beam image capture device
WO2007067163A1 (en) * 2005-11-23 2007-06-14 University Of Washington Scanning beam with variable sequential framing using interrupted scanning resonance
US20080058629A1 (en) * 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
US20080221388A1 (en) * 2007-03-09 2008-09-11 University Of Washington Side viewing optical fiber endoscope
US8437587B2 (en) * 2007-07-25 2013-05-07 University Of Washington Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator
US7522813B1 (en) * 2007-10-04 2009-04-21 University Of Washington Reducing distortion in scanning fiber devices
US8957484B2 (en) * 2008-02-29 2015-02-17 University Of Washington Piezoelectric substrate, fabrication and related methods
US8757812B2 (en) * 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber
JP2010060800A (ja) * 2008-09-03 2010-03-18 Brother Ind Ltd 画像表示装置
WO2010061704A1 (ja) 2008-11-26 2010-06-03 電気化学工業株式会社 組成物吐出装置
JP2010162090A (ja) * 2009-01-13 2010-07-29 Hoya Corp 光走査型内視鏡
US8503837B2 (en) * 2011-03-01 2013-08-06 The United States Of America As Represented By The Secretary Of The Army Compact fiber optic positioner with wide frequency bandwidth
US9522860B2 (en) * 2011-03-07 2016-12-20 Exxonmobil Chemical Patents Inc. Method and apparatus for managing hydrate formation in the processing of a hydrocarbon stream
US9757038B2 (en) * 2011-05-31 2017-09-12 Vanderbilt University Optical coherence tomography probe
US9201240B2 (en) * 2011-09-30 2015-12-01 The Commonwealth Of Australia As Represented By The Department Of Industry Positioning system
TWI442692B (zh) * 2012-03-05 2014-06-21 Academia Sinica 壓電致動裝置
IL293789B2 (en) * 2013-01-15 2023-08-01 Magic Leap Inc A system for scanning electromagnetic imaging radiation
KR102067759B1 (ko) * 2013-02-15 2020-01-17 삼성전자주식회사 파이버 스캐닝 프로젝터
KR101482704B1 (ko) * 2013-03-22 2015-01-15 한국과학기술원 광섬유 비공진 스캐닝 방식의 내시현미경 프로브
US9874749B2 (en) * 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
EP3086703B1 (en) * 2013-12-27 2021-03-10 University Of Washington Through Its Center For Commercialization Adaptive control of a fiber scanner with piezoelectric sensing
US10901240B2 (en) * 2016-02-04 2021-01-26 Massachusetts Institute Of Technology Electro-Optic beam controller and method
KR20230127379A (ko) * 2016-12-22 2023-08-31 매직 립, 인코포레이티드 섬유 스캐닝 디스플레이에 대한 다중-엘리먼트 링키지를 위한 방법들 및 시스템들
US10254483B2 (en) * 2016-12-22 2019-04-09 Magic Leap, Inc. Shaped fiber elements for scanning fiber displays
WO2018119271A1 (en) * 2016-12-22 2018-06-28 Magic Leap, Inc. Methods and systems for fabrication of shaped fiber elements using laser ablation
US9952350B1 (en) * 2017-04-24 2018-04-24 Baker Hughes, A Ge Company, Llc Oscillating path length spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174744A (ja) 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP2008100057A (ja) 2006-09-28 2008-05-01 Jenlab Gmbh レーザー内視鏡検査における高解像度の顕微鏡画像又は切断のための方法及び装置
WO2014002556A1 (ja) 2012-06-28 2014-01-03 オリンパスメディカルシステムズ株式会社 走査型内視鏡および走査型内視鏡の製造方法
CN103781397A (zh) 2012-06-28 2014-05-07 奥林巴斯医疗株式会社 扫描型内窥镜和扫描型内窥镜的制造方法
JP2016009012A (ja) 2014-06-23 2016-01-18 オリンパス株式会社 光走査用アクチュエータ、光走査装置、及び光走査用アクチュエータの製造方法

Also Published As

Publication number Publication date
US20200393670A1 (en) 2020-12-17
US20210356737A1 (en) 2021-11-18
AU2017382889A1 (en) 2019-06-20
WO2018119285A1 (en) 2018-06-28
KR20230127379A (ko) 2023-08-31
AU2017382889B2 (en) 2022-03-31
EP3559633B1 (en) 2023-09-13
US20190369388A1 (en) 2019-12-05
EP4270086A3 (en) 2024-04-17
KR20190099463A (ko) 2019-08-27
JP2024045384A (ja) 2024-04-02
US11487106B2 (en) 2022-11-01
JP2022116102A (ja) 2022-08-09
CN110100169A (zh) 2019-08-06
US11054636B2 (en) 2021-07-06
US20180180874A1 (en) 2018-06-28
IL267397B (en) 2022-09-01
US10437048B2 (en) 2019-10-08
CN110100169B (zh) 2022-05-31
JP7078627B2 (ja) 2022-05-31
IL267397A (en) 2019-08-29
US10732404B2 (en) 2020-08-04
EP3559633A4 (en) 2019-12-25
CN114967113A (zh) 2022-08-30
CA3046231A1 (en) 2018-06-28
KR102573220B1 (ko) 2023-08-30
EP3559633A1 (en) 2019-10-30
EP4270086A2 (en) 2023-11-01
JP2020502584A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP7431275B2 (ja) ファイバ走査ディスプレイのための多要素リンケージのための方法、システム
US6959130B2 (en) Optical beam scanning system for compact image display or image acquisition
JP2020503548A (ja) 走査ファイバディスプレイのための成形ファイバ要素の製作のための方法およびシステム
KR102562171B1 (ko) 레이저 삭마를 사용하여 형상화된 섬유 엘리먼트들의 제조를 위한 방법들 및 시스템들
KR102390952B1 (ko) 광섬유 이미징 시스템들에서 사용하기 위한 기계적 조인트
KR20060087564A (ko) 다중모드 접속용 광섬유로 이루어진 섬유 렌즈
CN110850588A (zh) 一种光纤扫描器
WO2019195390A1 (en) Waveguide display with cantilevered light scanner
JP6578191B2 (ja) 光モジュール及び光モジュールの製造方法
CN112147776B (zh) 一种光纤悬臂结构及光纤扫描装置
KR102191673B1 (ko) 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240201

R150 Certificate of patent or registration of utility model

Ref document number: 7431275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150