JP7415685B2 - Analysis method for ore samples - Google Patents

Analysis method for ore samples Download PDF

Info

Publication number
JP7415685B2
JP7415685B2 JP2020041399A JP2020041399A JP7415685B2 JP 7415685 B2 JP7415685 B2 JP 7415685B2 JP 2020041399 A JP2020041399 A JP 2020041399A JP 2020041399 A JP2020041399 A JP 2020041399A JP 7415685 B2 JP7415685 B2 JP 7415685B2
Authority
JP
Japan
Prior art keywords
ore
ore sample
sample
ray intensity
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020041399A
Other languages
Japanese (ja)
Other versions
JP2020165963A (en
Inventor
隆太 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2020165963A publication Critical patent/JP2020165963A/en
Application granted granted Critical
Publication of JP7415685B2 publication Critical patent/JP7415685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、蛍光X線分析(X-ray fluorescence analysis;XRF)装置を用いて、原料鉱石からサンプリングされた鉱石試料における分析対象元素の濃度を分析する方法に関する。 The present invention relates to a method for analyzing the concentration of an analyte element in an ore sample sampled from raw ore using an X-ray fluorescence analysis (XRF) device.

蛍光X線分析法は原料鉱石からサンプリングされた鉱石試料に1次X線を照射し、鉱石試料に含まれる分析対象元素から二次的に発生する二次X線(本発明において、「二次X線」とは、分析対象元素から二次的に発生する「蛍光X線」のことを意味している。)を用いて、当該分析対象元素の定性・定量分析を行う分析法である。当該蛍光X線分析法は、湿式分析法や誘導結合プラズマ発光分光分析(ICP分析)法等と比較すると、短時間で分析結果を得ることが可能である。この為、分析コストの削減および分析結果の迅速な工程へのフィードバックを目的として、各種の工程の品質管理法として広く利用されている。 In the fluorescent X-ray analysis method, an ore sample sampled from a raw ore is irradiated with primary X-rays. This is an analysis method that performs qualitative and quantitative analysis of the target element using X-rays ("X-rays" refers to "fluorescent X-rays" that are secondarily generated from the target element). The fluorescent X-ray analysis method can obtain analysis results in a short time when compared with a wet analysis method, an inductively coupled plasma optical emission spectrometry (ICP analysis) method, and the like. For this reason, it is widely used as a quality control method in various processes for the purpose of reducing analysis costs and quickly feeding back analysis results to processes.

尚、本発明において分析対象である鉱石試料とは、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石からサンプリングされた鉱石試料の意味である。従って、当該鉱石試料が、出来るだけ互いに離れた範囲からサンプリングされた場合であっても、分析対象元素の濃度は当該鉱石試料間にて差異があるものの、当該鉱石試料のマトリックス部分の元素組成は当該鉱石試料間において実質的に同一と考えられるものである。 In the present invention, the ore sample to be analyzed refers to an ore sample sampled from a raw material ore existing in, for example, an ore quarry, a vein of a predetermined ore, or the like. Therefore, even if the ore samples are sampled from areas as far apart as possible, although the concentration of the target element will differ between the ore samples, the elemental composition of the matrix of the ore sample will be These ore samples are considered to be substantially the same.

特許第4629158号公報Patent No. 4629158 特開平10-82749号公報Japanese Patent Application Publication No. 10-82749

中井泉、「蛍光X線の分析実際 第2版」、朝倉書店、2016年7月10日、第1刷Izumi Nakai, “Fluorescent X-ray analysis practice 2nd edition”, Asakura Shoten, July 10, 2016, 1st printing 新井智也他、「けい光X線分析の手引」、株式会社リガク、1982年9月、初版Tomoya Arai et al., "Guide to Fluorescence X-ray Analysis", Rigaku Co., Ltd., September 1982, first edition.

蛍光X線分析法により、例えば原料鉱石からサンプリングされた鉱石試料に含まれる分析対象元素の定量分析を行う際は、一般的に、前処理として当該鉱石試料の乾燥、粉砕、そして当該乾燥および粉砕後のプレスやガラスビードの作製といった操作が実施される。これは、分析の正確さや精度を担保する上で重要な操作であると考えられている為である(非特許文献1参照)。 When performing quantitative analysis of target elements contained in an ore sample sampled from a raw ore using fluorescent X-ray analysis, the ore sample is generally dried and pulverized as a pretreatment, and then the drying and pulverization are performed. Subsequent operations such as pressing and glass bead production are performed. This is because it is considered to be an important operation in ensuring accuracy and accuracy of analysis (see Non-Patent Document 1).

本発明者らの検討によると、当該前処理操作の中でも乾燥に費やす時間は長く、数時間から半日程度を要し律速段階となる。一方、工程の操業管理における鉱石試料分析においては、一般的に分析試料数が多く、且つ試料を迅速に分析することが重要である。この結果、本発明者らは、蛍光X線分析操作においても、より迅速な測定が求められることに想到した。 According to studies by the present inventors, the time spent on drying is long among the pretreatment operations, and takes from several hours to about half a day, and is the rate-limiting step. On the other hand, in ore sample analysis for process operation management, it is generally important to analyze a large number of samples and to analyze the samples quickly. As a result, the present inventors realized that faster measurement is required also in fluorescent X-ray analysis operations.

一方、試料を乾燥することなく、水分を含んだままの状態で測定する場合は、分析対象元素の二次X線強度の低下などが起こる。この結果、前記前処理を施した試料で作成した検量線を用いて測定しても正しい分析値を得ることが困難である。そこで、変動する成分に応じて強度が変わる散乱強度補正が一般に行われる(特許文献1、2参照)。
また、変動する成分として有機物を多く含む汚泥分析等においては、有機物の除去は水分のように容易ではない。このような場合の補正方法が非特許文献1、2に記載されている。
On the other hand, if the sample is measured without drying and still contains moisture, the secondary X-ray intensity of the element to be analyzed may decrease. As a result, it is difficult to obtain correct analytical values even when performing measurements using a calibration curve prepared using the pretreated sample. Therefore, scattering intensity correction is generally performed in which the intensity changes depending on the changing component (see Patent Documents 1 and 2).
Furthermore, in sludge analysis that contains a large amount of organic matter as a variable component, it is not as easy to remove the organic matter as with water. Correction methods for such cases are described in Non-Patent Documents 1 and 2.

本発明者らは、上述した特許文献1、2および非特許文献1、2に記載の補正手段を、分析対象試料である鉱石試料に適用出来るのではないかと考えた。
しかしながら、本発明者らは、鉱石試料のうちでも塊状であったり、粘土状であったりして流動性が悪い試料については、分析値の誤差が大きくなるという課題も知見した。
The present inventors thought that the correction means described in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 described above could be applied to the ore sample that is the sample to be analyzed.
However, the present inventors have also found that among ore samples, samples that are lumpy or clay-like and have poor fluidity have a large error in analytical values.

本発明者らは上述の課題を解決する為、研究を行った。その結果、鉱石試料が塊状であったり、粘土状であったりして流動性が悪い試料である場合、当該流動性が悪い試料を蛍光X線分析装置の試料測定容器に充填しても密に充填することが出来ず、当該試料測定容器壁との間に空隙が生じる為、1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難となっていることを知見した。そして、当該1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難であるという事態が、上述した分析値の誤差が大きくなるという課題の原因であることに想到した。 The present inventors conducted research to solve the above problems. As a result, if the ore sample is lumpy or clay-like and has poor fluidity, even if the sample with poor fluidity is packed into the sample measurement container of the X-ray fluorescence analyzer, it will not be densely packed. It was found that it was difficult to obtain a smooth measurement surface for the sample to be irradiated with primary X-rays because it could not be filled and a gap was created between the sample measurement container and the wall. . Then, we came to the conclusion that the difficulty in obtaining a smooth measurement surface of the sample to be irradiated with the primary X-rays is the cause of the problem of increased error in the analysis values mentioned above.

本発明者らは、分析操作の迅速性や簡便性を損なうことなく、1次X線の照射を受ける為の試料の平滑な測定面を得る為の手段について研究を行った。そして、鉱石試料に適切な前処理を施し、当該試料の流動性を高めた後に当該試料を測定容器内へ充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来るという着想を得た。 The present inventors conducted research on means for obtaining a smooth measurement surface of a sample to be irradiated with primary X-rays without impairing the speed and simplicity of analysis operations. Then, by applying appropriate pretreatment to the ore sample to increase the fluidity of the sample and then filling the sample into the measurement container, it is possible to densely fill the measurement container, and the primary X-ray The idea was that it would be possible to obtain a smooth measurement surface for the sample to be irradiated.

当該着想に基づき本発明者らは、測定容器内へ試料を充填する前の段階において、当該鉱石試料を乾燥するか、または、適量の純水を添加し混合することによって、当該試料の流動性を高めた後、当該試料を測定容器内に充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来た。 Based on this idea, the present inventors improved the fluidity of the ore sample by drying the ore sample or adding and mixing an appropriate amount of pure water before filling the sample into the measurement container. By filling the sample into the measurement container after increasing the Ta.

しかしながら、上述したように鉱石試料を乾燥するのは長時間を要する。他方、鉱石試料へ純水を添加し混合することによって、当該試料より散乱X線が発生し、鉱石試料の二次X線強度の低下などが起こる。この結果、例えば、当該前処理を施した試料で作成した検量線を用いて測定を行ったとしても、正しい分析値を得ることが出来ないことが懸念された。 However, as mentioned above, it takes a long time to dry the ore sample. On the other hand, by adding and mixing pure water to an ore sample, scattered X-rays are generated from the sample, resulting in a decrease in the secondary X-ray intensity of the ore sample. As a result, there was a concern that, for example, even if measurements were performed using a calibration curve prepared using a sample subjected to the pretreatment, correct analytical values could not be obtained.

本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法、および、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法を提供することである。 The present invention was made under the above-mentioned circumstances, and an object of the present invention is to quickly determine the concentration of an analyte element contained in a water-containing ore sample using X-ray fluorescence analysis. , an analysis method that can be easily analyzed, and using this analysis method, the concentration of the target element contained in a lump or clay-like ore sample can be quickly and easily determined using fluorescent X-ray analysis. The objective is to provide an analysis method that allows for analysis.

ここで、本発明者らはさらに研究を行い、原料鉱石の複数個所から鉱石試料をサンプリングして一次鉱石試料を得、当該一次鉱石試料を分割して二次鉱石試料を調製し、当該二次鉱石試料から0質量%を含む所定の水分率を有する三次鉱石試料を調製し、当該三次鉱石試料のそれぞれへ一次X線を照射し、当該それぞれの三次鉱石試料から発生する前記分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定した。そして、同一の前記一次鉱石試料に由来する前記複数の各三次鉱石試料において、分析対象元素の二次X線強度の値をコンプトン散乱X線強度の値で除した値を補正X線強度と定義した。すると、各三次鉱石試料の水分率と補正X線強度との間には、直線回帰式にて表すことが出来る関係があるとの知見を得た。 Here, the present inventors conducted further research, obtained a primary ore sample by sampling ore samples from multiple locations of the raw ore, divided the primary ore sample to prepare a secondary ore sample, and A tertiary ore sample having a predetermined moisture content including 0% by mass is prepared from an ore sample, and each of the tertiary ore samples is irradiated with primary X-rays to obtain a The secondary X-ray intensity and the Compton scattered X-ray intensity were measured. Then, in each of the plurality of tertiary ore samples derived from the same primary ore sample, the value obtained by dividing the value of the secondary X-ray intensity of the element to be analyzed by the value of the Compton scattered X-ray intensity is defined as the corrected X-ray intensity. did. As a result, it was found that there is a relationship between the moisture content of each tertiary ore sample and the corrected X-ray intensity that can be expressed by a linear regression equation.

当該知見より、上述した所定量の水分が添加された鉱石試料において補正X線強度を算出する一方、コンプトン散乱X線強度の値から当該鉱石試料の水分量を求め、得られた補正X線強度の値と水分量の値とから、水分率0%における補正X線強度を算出出来ることに想到した。
そして、三次鉱石試料における、分析対象元素の濃度と補正X線強度の値との関係を求めておけば、所定量の水分が添加されて平滑な試料面を有する鉱石試料によって分析対象元素の濃度を求めることが出来ることに想到したものである。
Based on this knowledge, while calculating the corrected X-ray intensity for the ore sample to which a predetermined amount of water has been added, the water content of the ore sample is determined from the value of the Compton scattered X-ray intensity, and the obtained corrected X-ray intensity We have come up with the idea that the corrected X-ray intensity at a moisture content of 0% can be calculated from the value of and the moisture content.
By determining the relationship between the concentration of the element to be analyzed and the value of the corrected X-ray intensity in the tertiary ore sample, it is possible to determine the concentration of the element to be analyzed by using an ore sample with a predetermined amount of water added and a smooth sample surface. The idea was that it was possible to find the

即ち、上述の課題を解決する第1の発明は、
鉱石試料に含有される分析対象元素の濃度を定量する分析方法であって、
原料鉱石の所定箇所より鉱石試料をサンプリングし、所定の方法に拠り分析対象元素の濃度を定量する第1の工程と、
前記サンプリングされた鉱石試料の水分を0質量%まで乾燥した後、分割し、所定量の水分を添加し、水分率0質量%を含む既知量であって異なる水分率を有する複数の第一の鉱石試料を調製する第2の工程と、
前記複数の第一の鉱石試料のそれぞれへ一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第3の工程と、
前記複数の第一の鉱石試料において、水分率と、コンプトン散乱X線強度との関係を示す第一の直線回帰式を算出する第4の工程と、
前記複数の第一の鉱石試料において、水分率と、分析対象元素の二次X線強度をコンプトン散乱X線強度で除して得られた補正X線強度との関係を示す第二の直線回帰式を算出し、当該第二の直線回帰式の傾きの値を求める第5の工程と、
前記原料鉱石の前回の所定箇所とは異なる箇所より第二の鉱石試料をサンプリングし、前記第1から第5の工程と同様の操作を実施し、第二の鉱石試料において水分率と、補正X線強度との関係を示す第二の直線回帰式を算出し、当該第二の直線回帰式の傾きの値を求める第6の工程と、
前記原料鉱石の前回の所定箇所とは異なる箇所より第二の鉱石試料をサンプリングし、前記第6の工程を1回以上繰り返して実施する第7の工程と、
前記第1の工程で得られた、それぞれの鉱石試料における分析対象元素の濃度の値と、前記第5から第7の工程で得られた、それぞれの鉱石試料における第二の直線回帰式の傾きの値との関係を示す第三の直線回帰式を算出する第8の工程と、
前記原料鉱石の新たな所定箇所より第三の鉱石試料をサンプリングし、所定量の水分を添加した後、一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第9の工程を実施した後、さらに、第三の鉱石試料へ所定量の水分を添加した後、一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第10の工程を実施し、第三の鉱石試料の第9および第10の工程におけるコンプトン散乱X線強度の値を第一の直線回帰式に代入して水分率を算出し、また、コンプトン散乱X線強度の値と二次X線強度の値とから補正X線強度の値を算出する第11の工程と、
前記第11の工程で得られた、第三の鉱石試料の第9および第10の工程における水分率と補正X線強度の値とから、第三の鉱石試料における水分率と、補正X線強度との関係を示す第四の1次式の傾きの値を算出し、当該傾きの値を、前記第三の直線回帰式の傾きの値へ代入して分析対象元素の濃度を算出することを特徴とする鉱石試料の分析方法である。
第2の発明は、
前記第6の工程を、前記原料鉱石の前記所定箇所とは異なる新たな箇所よりサンプリングした第二の鉱石試料を用いて、少なくとも2回以上実施して、第三の直線回帰式を算出することを特徴とする第1の発明に記載の鉱石試料の分析方法である。
第3の発明は、
前記第一および/または第二の鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法である。
第4の発明は、
前記第一および/または第二の鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法である。
第5の発明は、
前記第2、第9、第10の工程において、鉱石試料へ所定量の水分を添加する際、当該鉱石試料がスラリー化する以上の水分量であって、且つ、添加する水分量の総量は、乾燥した当該鉱石試料の50質量%以下となる水分量を添加することを特徴とする第1から第4の発明のいずれかに記載の鉱石試料の分析方法である。
That is, the first invention that solves the above problems is:
An analytical method for quantifying the concentration of an analysis target element contained in an ore sample, the method comprising:
A first step of sampling an ore sample from a predetermined location of the raw ore and quantifying the concentration of the analysis target element according to a predetermined method;
After drying the water content of the sampled ore sample to 0% by mass, it is divided, a predetermined amount of water is added, and a plurality of first samples having a known amount and different moisture content including 0% by mass water content are divided. a second step of preparing an ore sample;
a third step of irradiating each of the plurality of first ore samples with primary X-rays and measuring the generated secondary X-ray intensity of the analysis target element and Compton scattered X-ray intensity;
a fourth step of calculating a first linear regression equation representing the relationship between moisture content and Compton scattered X-ray intensity in the plurality of first ore samples;
A second linear regression showing the relationship between the moisture content and the corrected X-ray intensity obtained by dividing the secondary X-ray intensity of the analysis target element by the Compton scattered X-ray intensity in the plurality of first ore samples. a fifth step of calculating the equation and determining the slope value of the second linear regression equation;
A second ore sample is sampled from a location different from the previous predetermined location of the raw material ore, and the same operations as the first to fifth steps are performed to determine the moisture content and correction X in the second ore sample. A sixth step of calculating a second linear regression equation showing the relationship with the line intensity and determining the slope value of the second linear regression equation;
a seventh step of sampling a second ore sample from a location different from the previous predetermined location of the raw material ore, and repeating the sixth step one or more times ;
The concentration value of the analysis target element in each ore sample obtained in the first step and the slope of the second linear regression equation in each ore sample obtained in the fifth to seventh steps. an eighth step of calculating a third linear regression equation showing the relationship with the value of
A third ore sample is sampled from a new predetermined location of the raw material ore, and after adding a predetermined amount of water, it is irradiated with primary X-rays, and the secondary X-ray intensity of the generated analysis target element and Compton scattering X-ray are measured. After carrying out the ninth step of measuring the radiation intensity, a predetermined amount of water is added to the third ore sample, and the primary X-ray is irradiated to measure the secondary X-ray intensity of the generated element to be analyzed. and the Compton scattered X-ray intensity, and substituted the values of the Compton scattered X-ray intensity in the ninth and tenth steps of the third ore sample into the first linear regression equation. an eleventh step of calculating the moisture content by calculating the moisture content, and calculating the corrected X-ray intensity value from the Compton scattered X-ray intensity value and the secondary X-ray intensity value;
From the values of moisture content and corrected X-ray intensity in the ninth and tenth steps of the third ore sample obtained in the eleventh step, determine the moisture content and corrected X-ray intensity in the third ore sample. Calculate the slope value of the fourth linear equation showing the relationship between This is a characteristic method for analyzing ore samples.
The second invention is
Calculating a third linear regression formula by performing the sixth step at least twice using a second ore sample sampled from a new location different from the predetermined location of the raw material ore. A method for analyzing an ore sample according to the first invention, characterized in that:
The third invention is
When the first and/or second ore samples have a lumpy form and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After imparting fluidity to the first and/or second ore sample by adding and mixing pure water to obtain a smooth measurement surface, the ore sample according to the first or second invention is prepared. This is a method for analyzing ore samples, which is characterized by applying the above analysis method and quantifying the concentration of the element to be analyzed.
The fourth invention is
When the first and/or second ore sample has a clay-like morphology and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After adding and mixing pure water to the first and/or second ore sample to impart fluidity and obtain a smooth measurement surface, the ore sample according to the first or second invention is prepared. This is a method for analyzing ore samples, which is characterized by applying an analysis method and quantifying the concentration of an element to be analyzed.
The fifth invention is
In the second, ninth, and tenth steps, when adding a predetermined amount of water to the ore sample, the amount of water is more than the amount that turns the ore sample into a slurry, and the total amount of water to be added is: The method for analyzing an ore sample according to any one of the first to fourth inventions, characterized in that a moisture content is added to the dry ore sample to be 50% by mass or less.

本発明によれば、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。そして、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。 According to the present invention, the concentration of an analysis target element contained in a water-containing ore sample could be quickly and easily analyzed using fluorescent X-ray analysis. Using this analysis method, it was possible to quickly and easily analyze the concentration of the target element contained in a lump-like or clay-like ore sample using fluorescent X-ray analysis.

本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図である。1 is a process diagram showing an outline of a sample preparation process in a sample preparation method for fluorescent X-ray analysis according to an embodiment of the present invention. 塊状を有する鉱石試料の外観の一例である。This is an example of the appearance of a lumpy ore sample. 図2に示す鉱石試料を測定容器における測定面側から見た外観の一例である。3 is an example of the appearance of the ore sample shown in FIG. 2 when viewed from the measurement surface side of the measurement container. 図2に示す鉱石試料へ流動性を付与した後の外観の一例である。This is an example of the appearance after imparting fluidity to the ore sample shown in FIG. 2. 図4に示す鉱石試料を測定容器における測定面側から見た外観の一例である。5 is an example of the appearance of the ore sample shown in FIG. 4 viewed from the measurement surface side of the measurement container. 鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をY軸にとって、両者の関係を示したグラフである。It is a graph showing the relationship between the moisture content of an ore sample on the X-axis and the fluorescent X-ray intensity of an analysis target element contained in the ore sample on the Y-axis. 鉱石試料の水分率をX軸にとり、当該鉱石試料からのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。It is a graph showing the relationship between the moisture content of an ore sample on the X axis and the Compton scattered X-ray intensity from the ore sample on the Y axis. 鉱石試料の水分率をX軸にとり、当該鉱石試料からの補正X線強度の値をY軸にとって、両者の関係を示したグラフである。It is a graph showing the relationship between the moisture content of an ore sample on the X axis and the corrected X-ray intensity value from the ore sample on the Y axis.

本発明を実施するための形態について、まず、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法について「1.鉱石試料に含有される分析対象元素の定量方法」にて説明する。
そして、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法について「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明する。
Regarding the mode for carrying out the present invention, first, we will explain the analysis method that can quickly and easily analyze the concentration of an analysis target element contained in a water-containing ore sample using X-ray fluorescence analysis. .Method for quantifying target elements contained in ore samples”.
The analysis method described in 2. . Method for analyzing the concentration of the target element contained in an ore sample".

1.鉱石試料に含有される分析対象元素の定量方法
本発明に係る鉱石試料に含有される分析対象元素の定量方法について、(1)原料鉱石から鉱石試料をサンプリングする工程、(2)所定量の水分率を有する鉱石試料を調製する工程、(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程、の順に説明する。
1. Method for quantifying elements to be analyzed contained in an ore sample Regarding the method for quantifying elements to be analyzed contained in an ore sample according to the present invention, (1) a step of sampling an ore sample from a raw ore, (2) a predetermined amount of water. (3) determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed.

(1)原料鉱石から鉱石試料をサンプリングする工程
原料鉱石において、鉱石試料のサンプリングを行う点数について特に制限はないが、複数であることが好ましく、例えば4点であることが好ましい。複数点数のサンプリングを行う際は、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する(本発明において「第一の鉱物試料」と記載する場合がある。)。原料鉱石からサンプリングされた当該第一の鉱石試料を本発明では、一次鉱石試料とする。例えば、第一の鉱石試料の一次鉱石試料として4点のサンプリングを実施するのであれば、原料鉱石の東、西、南、北の各地点から、一次鉱石試料A、B、C、Dを採取することが考えられる(尚、サンプリング数は、適宜、設定可能である)。
一方、一次鉱石試料A、B、C、Dを採取した鉱石の領域から、適時、新規の一次鉱石試料E、F、G・・・(本発明において「第二の鉱物試料」と記載する場合がある。)が採取される。
当該第一および第二の鉱物試料における一次鉱石試料A、B、C、D、E、F、G・・・は概ね類似の元素組成を有するが、定量分析の対象となる分析対象元素においては、それぞれ異なった濃度を有していると考えられる。
(1) Step of sampling an ore sample from the raw ore There is no particular restriction on the number of ore samples to be sampled in the raw ore, but it is preferably a plurality of points, for example, four points. When sampling a plurality of points, the ore samples are sampled from ranges as far away from each other as possible (this may be referred to as "first mineral sample" in the present invention). In the present invention, the first ore sample sampled from the raw material ore is referred to as a primary ore sample. For example, if sampling is performed at four points as the primary ore sample of the first ore sample, primary ore samples A, B, C, and D are collected from each point on the east, west, south, and north of the raw ore. (Note that the number of samplings can be set as appropriate).
On the other hand, from the ore area where the primary ore samples A, B, C, D were collected, new primary ore samples E, F, G... (in the case of "second mineral sample" in the present invention) ) is collected.
The primary ore samples A, B, C, D, E, F, G, etc. in the first and second mineral samples have generally similar elemental compositions, but in terms of the elements to be analyzed that are the subject of quantitative analysis. , it is thought that each has a different concentration.

(2)所定量の水分率を有する鉱石試料を調製する工程
前記第一の鉱物試料における一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする。そして、水分率0質量%となった一次鉱石試料A、B、C、Dのそれぞれを、好ましくは3個以上に分割して二次鉱石試料を得る。
尚、この一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする操作は、長時間を要する操作ではある。しかし後述する第一および第二の直線回帰式を求めた後の、鉱石試料E、F、G・・・においては、当該乾燥操作は不要となる。
(2) Step of preparing an ore sample having a predetermined amount of moisture content The primary ore samples A, B, C, and D in the first mineral sample are dried to have a moisture content of 0% by mass. Then, each of the primary ore samples A, B, C, and D whose moisture content is 0% by mass is preferably divided into three or more pieces to obtain secondary ore samples.
Note that the operation of drying the primary ore samples A, B, C, and D to reduce the moisture content to 0% by mass is an operation that requires a long time. However, the drying operation is not necessary for ore samples E, F, G, . . . after obtaining the first and second linear regression equations, which will be described later.

次に、前記所定個に分割した二次鉱石試料のそれぞれへ、純水を添加しない、または、所定量の純水を添加して、水分率0質量%を含む所定の水分率を有する三次鉱石試料を調製した。
具体的には、例えば上述した分割した二次鉱石試料から、水分率0質量%である三次鉱石試料Awet0%、Bwet0%、Cwet0%、Dwet0%、から、例えば、水分率50質量%である三次鉱石試料Awet50%、Bwet50%、Cwet50%、Dwet50%までの範囲で、複数段階(例えば8段階)の水分率を有する三次鉱石試料を調製した。
Next, pure water is not added to each of the secondary ore samples divided into predetermined pieces, or a predetermined amount of pure water is added to obtain a tertiary ore having a predetermined moisture content including a moisture content of 0% by mass. Samples were prepared.
Specifically, for example, from the above-mentioned divided secondary ore samples, from the tertiary ore samples Awet0%, Bwet0%, Cwet0%, Dwet0% with a moisture content of 0% by mass, for example, tertiary ore samples with a moisture content of 50% by mass. Ore Samples Tertiary ore samples having multiple levels of moisture content (for example, 8 levels) were prepared, ranging from 50% Awet, 50% Bwet, 50% Cwet, and 50% Dwet.

(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程
ここで、水分率0質量%の第一の鉱物試料における三次鉱石試料Awet0%~Dwet0%に含有される分析対象元素の濃度を、所定の分析方法によって定量する。具体的には、ICP分析、湿式化学分析、蛍光X線分析等が考えられる。
(3) Step of determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed. Here, the tertiary ore sample Awet0% to Dwet0% in the first mineral sample with a moisture content of 0% by mass. The concentration of the target element contained in the sample is quantified by a predetermined analysis method. Specifically, ICP analysis, wet chemical analysis, fluorescent X-ray analysis, etc. can be considered.

次に、蛍光X線分析装置を用いて、水分率0質量%である三次鉱石試料Awet0%、Bwet0%、Cwet0%、Dwet0%、から、水分率50質量%である三次鉱石試料Awet50%、Bwet50%、Cwet50%、Dwet50%の範囲で、8段階の水分率を有する三次鉱石試料のそれぞれに一次X線を照射し、それぞれの三次鉱石試料に含有される分析対象元素から発生する二次(蛍光)X線強度と、それぞれの三次鉱石試料から発生するコンプトン散乱X線強度とを測定した。 Next, using a fluorescent X-ray analyzer, tertiary ore samples Awet0%, Bwet0%, Cwet0%, Dwet0% with a moisture content of 0% by mass are selected from tertiary ore samples Awet50%, Bwet50 with a moisture content of 50% by mass. %, Cwet 50%, Dwet 50%, each of the tertiary ore samples with eight levels of moisture content is irradiated with primary X-rays, and the secondary (fluorescence) generated from the analysis target element contained in each tertiary ore sample is ) The X-ray intensity and the Compton scattered X-ray intensity generated from each tertiary ore sample were measured.

そして、同一の一次鉱石試料に由来する前記複数の三次鉱石試料、即ち、一次鉱石試料Aに由来する三次鉱石試料Awet0%~Awet50%、一次鉱石試料Bに由来する三次鉱石試料Bwet0%~Bwet50%、一次鉱石試料Cに由来する三次鉱石試料Cwet0%~Cwet50%、一次鉱石試料Dに由来する三次鉱石試料Dwet0%~Dwet50%の各試料に係る前記二次X線強度の値を、コンプトン散乱X線強度の値で除することにより、各試料に係る補正X線強度を算出した。その結果、各試料に係る補正X線強度と水分率との関係を見出した。 The plurality of tertiary ore samples derived from the same primary ore sample, that is, the tertiary ore samples Awet0% to Awet50% derived from the primary ore sample A, and the tertiary ore samples Bwet0% to Bwet50% derived from the primary ore sample B. , a tertiary ore sample Cwet0% to Cwet50% derived from the primary ore sample C, and a tertiary ore sample Dwet0% to Dwet50% derived from the primary ore sample D are calculated using the Compton scattering X The corrected X-ray intensity for each sample was calculated by dividing by the value of the line intensity. As a result, we found a relationship between corrected X-ray intensity and moisture content for each sample.

即ち、第一の鉱物試料における一次鉱石試料A、B、C、Dからの、二次X線強度とコンプトン散乱X線強度とを用いて、これらの一次鉱石試料に含有される分析対象元素の濃度を算出出来る直線回帰式を導出することが出来た。そして、一次鉱石試料A、B、C、Dが採取された領域から、一次鉱石試料Eに続いて、適時、新規に採取される第二の鉱物試料における一次鉱石試料F、G・・・、に対しても当該分析対象元素の濃度を算出する直線回帰式を適用することで、これらの第二の鉱物試料における一次鉱石試料に含有される分析対象元素の濃度を容易に算出することが出来た。
以下、当該鉱石試料に含有される分析対象元素の濃度を容易に算出する方法について、〈1〉鉱石試料の水分率と補正X線強度との関係、〈2〉鉱石試料に含有される分析対象元素の濃度の算出、の順に詳細に説明する。
That is, using the secondary X-ray intensities and Compton scattered X-ray intensities from primary ore samples A, B, C, and D in the first mineral sample, the analysis target elements contained in these primary ore samples are determined. We were able to derive a linear regression equation that can calculate the concentration. Then, from the area where the primary ore samples A, B, C, and D were collected, following the primary ore sample E, the primary ore samples F, G, etc. in the second mineral sample are newly collected at a timely manner. By applying a linear regression formula to calculate the concentration of the target element to be analyzed, it is possible to easily calculate the concentration of the target element contained in the primary ore sample in these second mineral samples. Ta.
The following describes how to easily calculate the concentration of the analyte element contained in the ore sample, 1) the relationship between the moisture content of the ore sample and the corrected X-ray intensity, and 2) the analyte contained in the ore sample. Calculation of element concentration will be explained in detail in this order.

〈1〉鉱石試料の水分率と補正X線強度との関係
本発明者らは、第一の鉱物試料における三次鉱石試料に含有される分析対象元素の二次(蛍光)X線強度の値をコンプトン散乱X線強度の値で除した値を補正X線強度と定義した。すると、各三次鉱石試料の水分率と補正X線強度との間には、直線回帰式(本発明において「第二の直線回帰式」と記載する場合がある。)にて近似出来る関係があるとの知見を得た。そして当該知見より、上述した所定量の水分が添加された第一の鉱石試料において補正X線強度を算出する一方、コンプトン散乱X線強度の値から当該鉱石試料の水分量を求め、得られた補正X線強度の値と水分量の値とから、水分率0%における補正X線強度を算出出来ることに想到した。
尚、第二の直線回帰式は、例えば最小二乗法を用いて求めることが出来る。以下で説明する第一の直線回帰式および第三の直線回帰式も同様である。
以下、第一の鉱石試料の水分率と補正X線強度との関係について説明する。
<1> Relationship between moisture content of ore sample and corrected X-ray intensity The value divided by the Compton scattered X-ray intensity value was defined as the corrected X-ray intensity. Then, there is a relationship between the moisture content of each tertiary ore sample and the corrected X-ray intensity that can be approximated by a linear regression equation (sometimes referred to as "second linear regression equation" in the present invention). We obtained the following knowledge. Based on this knowledge, while calculating the corrected X-ray intensity for the first ore sample to which a predetermined amount of water was added, the water content of the ore sample was determined from the Compton scattered X-ray intensity value. We have come up with the idea that the corrected X-ray intensity at a moisture content of 0% can be calculated from the corrected X-ray intensity value and the moisture content value.
Note that the second linear regression equation can be determined using, for example, the least squares method. The same applies to the first linear regression equation and the third linear regression equation described below.
The relationship between the moisture content of the first ore sample and the corrected X-ray intensity will be explained below.

図6は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aに含有される分析対象元素の蛍光X線強度をY軸にとって、両者の関係を示したグラフである。
図6より、第一の鉱石試料Aに含有される分析対象元素の蛍光X線強度は、当該鉱石試料Aの水分率が高くなると、低下する傾向があることが判明した。
尚、鉱石試料Aの性状は、水分率0~20質量%において粉末状、30質量%において塊状、40~50質量%においてスラリー状であった。そして、○で囲った水分率30質量%の試料は、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことによる、蛍光X線強度低下の結果であると考えられる。
FIG. 6 is a graph showing the relationship between the moisture content of the first ore sample A on the X axis and the fluorescent X-ray intensity of the analysis target element contained in the ore sample A on the Y axis.
From FIG. 6, it was found that the fluorescent X-ray intensity of the analysis target element contained in the first ore sample A tends to decrease as the moisture content of the ore sample A increases.
The properties of ore sample A were powdery at a moisture content of 0 to 20% by mass, lumpy at 30% by mass, and slurry at a moisture content of 40 to 50% by mass. For the sample with a moisture content of 30% by mass, circled with a circle, in addition to the decrease in fluorescent X-ray intensity due to moisture, the sample becomes clumpy, resulting in a sparse measurement surface and a small X-ray irradiation area. This is considered to be the result of a decrease in fluorescent X-ray intensity due to

図7は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aからのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。
図7より、第一の鉱石試料Aに含有される分析対象元素からのコンプトン散乱X線強度は、当該鉱石試料の水分率が高くなると、上昇する傾向があり、各三次鉱石試料の水分率とコンプトン散乱X線強度との間には、直線回帰式(本発明において「第一の直線回帰式」と記載する場合がある。)にて近似出来る関係があるとの知見を得た。
これは、コンプトン散乱X線強度が、X線の質量吸収係数が小さい物質において大きくなることに起因していると考えられ、図7の結果は、鉱石試料の水分率の増加が反映した結果だと考えられる。
また、○で囲った鉱石試料A(水分率30質量%)は、図6においても説明したように、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことによる、コンプトン散乱X線強度低下の結果であると考えられる。そこで、塊状となった鉱石試料A(水分率30質量%)のデータは用いずに、第一の直線回帰式を求めた。
FIG. 7 is a graph showing the relationship between the moisture content of the first ore sample A on the X axis and the Compton scattered X-ray intensity from the ore sample A on the Y axis.
From FIG. 7, the Compton scattered X-ray intensity from the analysis target element contained in the first ore sample A tends to increase as the moisture content of the ore sample increases, and It has been found that there is a relationship that can be approximated by a linear regression equation (sometimes referred to as the "first linear regression equation" in the present invention) between the Compton scattered X-ray intensity and the Compton scattered X-ray intensity.
This is thought to be due to the fact that the Compton scattered X-ray intensity increases in substances with a small X-ray mass absorption coefficient, and the results shown in Figure 7 reflect the increase in the moisture content of the ore sample. it is conceivable that.
In addition, as explained in Fig. 6, for ore sample A (water content 30 mass%) circled with a circle, in addition to the decrease in fluorescent X-ray intensity due to moisture, the measurement surface becomes rough due to the sample becoming lumpy. This is considered to be the result of a decrease in the Compton scattered X-ray intensity due to the smaller X-ray irradiation area. Therefore, the first linear regression equation was determined without using the data of the lumpy ore sample A (moisture content: 30% by mass).

そして、一次鉱石試料A~Dより導かれた4種の第一の直線回帰式は、実質的に同一である第一の直線回帰式となる。これは、コンプトン散乱X線強度が一次鉱石試料の水分率に起因すること、および、一次鉱石試料A~Dのマトリックス部分の元素組成は実質的に同一あることによると考えられる。この第一の直線回帰式における実質的な同一性は、この後に採取される一次鉱石試料Eや、それ以降の一次鉱石試料F、G・・・においても同様であると考えられる。
従って、一次鉱石試料E以降の一次鉱石試料においては、コンプトン散乱X線強度の値と第一の直線回帰式とから、当該一次鉱石試料の水分率を算出することが出来る。
The four types of first linear regression equations derived from the primary ore samples A to D are substantially the same first linear regression equation. This is considered to be because the Compton scattered X-ray intensity is caused by the moisture content of the primary ore sample, and the elemental compositions of the matrix portions of the primary ore samples A to D are substantially the same. The substantial identity in this first linear regression equation is considered to be the same in the primary ore sample E collected thereafter, and in the subsequent primary ore samples F, G, . . . .
Therefore, in the primary ore samples after primary ore sample E, the moisture content of the primary ore samples can be calculated from the Compton scattered X-ray intensity value and the first linear regression equation.

図8は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aに含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、両者の関係を示したグラフである。
第一の鉱石試料Aの水分率の値と補正X線強度の値とは、第二の直線回帰式で表せる関係を有していることが判明した。
但し、○で囲った鉱石試料A(水分率30質量%)は、他の水分率を有する試料に比べて若干関係の近似性が劣ることも判明した。これは、図6、7においても説明したように、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になって平滑でなくなり、X線照射面積が小さくなったことによると考えられる。そこで、塊状となった鉱石試料A(水分率30質量%)のデータは用いずに、第二の直線回帰式を求めた。
Figure 8 shows the value of the corrected X-ray intensity obtained by dividing the fluorescent X-ray intensity of the target element contained in the ore sample A by the Compton scattered X-ray intensity, with the moisture content of the first ore sample A taken as the X-axis. This is a graph showing the relationship between the two on the Y axis.
It was found that the moisture content value and the corrected X-ray intensity value of the first ore sample A had a relationship that could be expressed by the second linear regression equation.
However, it was also found that ore sample A (moisture content 30 mass %), circled with a circle, has a slightly poorer approximation of the relationship than samples having other moisture content. As explained in Figures 6 and 7, this is because, in addition to the decrease in fluorescent X-ray intensity due to moisture, the sample becomes clumpy, making the measurement surface sparse and no longer smooth, resulting in a small X-ray irradiation area. This is probably due to what happened. Therefore, a second linear regression equation was determined without using the data of the lumpy ore sample A (moisture content: 30% by mass).

〈2〉鉱石試料に含有される分析対象元素の濃度の算出
上述した第一の鉱石試料Aの水分率と当該鉱石試料の補正X線強度との間における、第二の直線回帰式で表せる関係は、第一の鉱石試料B~Dにおいても確認出来た。そこで、塊状となった鉱石試料B~D(水分率30質量%)のデータは用いずに、第二の直線回帰式を求めた。
<2> Calculation of the concentration of the analysis target element contained in the ore sample The relationship between the moisture content of the first ore sample A and the corrected X-ray intensity of the ore sample described above, which can be expressed by the second linear regression equation was also confirmed in the first ore samples B to D. Therefore, a second linear regression equation was determined without using the data of the lumpy ore samples B to D (moisture content 30% by mass).

本発明者らは、第一の鉱石試料A~D各々の試料に係る第二の直線回帰式を検討したところ、これらの直線回帰式の傾きの値と、第一の鉱石試料A~D各々における分析対象元素の濃度の値との間には、第三の直線回帰式で近似出来る関係があることを知見した。 The present inventors investigated the second linear regression equations for each of the first ore samples A to D, and found that the slope values of these linear regression equations and the values for each of the first ore samples A to D It was found that there is a relationship that can be approximated by the third linear regression equation between the concentration of the target element and the concentration of the element to be analyzed.

そして、当該知見より、第一の鉱石試料A~Dが存在する領域から採取された、第二の鉱石試料E、F、G・・・における、水分率の値と補正X線強度との値の関係を示す1次式(本発明において「第四の1次式」と記載する場合がある。)を求め、第四の1次式の傾きの値を上述した第三の直線回帰式に代入すれば、第二の鉱石試料E、F、G・・・に含有される分析対象元素の濃度は容易に算出出来ることに想到した。 Based on this knowledge, the values of the moisture content and corrected X-ray intensity of the second ore samples E, F, G, etc. collected from the area where the first ore samples A to D exist. A linear equation (sometimes referred to as a "fourth linear equation" in the present invention) showing the relationship between By substituting the values, we have come up with the idea that the concentrations of the elements to be analyzed contained in the second ore samples E, F, G, . . . can be easily calculated.

具体的には、スラリー状になる水分率を有する第二の鉱石試料E、F、G・・・へ1次X線を照射し、当該鉱石試料E、F、G・・・に含有される分析対象元素の蛍光X線強度と、コンプトン散乱X線強度とを測定する。そしてコンプトン散乱X線強度から第一の直線回帰式を用いて水分率を求め、分析対象元素の蛍光X線強度の値をコンプトン散乱X線強度の値で除して、補正X線強度を算出した。
そして、算出された第二の鉱石試料E、F、G・・・の水分率の値と補正X線強度、および、上述したX切片の値とから、第二の鉱石試料E、F、G・・・に係る第四の1次式を算出し傾きの値を求める。得られた傾きの値を第三の直線回帰式に代入することで、第二の鉱石試料E、F、G・・・に含有される分析対象元素の濃度は容易に算出出来た。
Specifically, primary X-rays are irradiated to second ore samples E, F, G... having a water content that becomes a slurry, and the content contained in the ore samples E, F, G... The fluorescent X-ray intensity and Compton scattered X-ray intensity of the element to be analyzed are measured. The moisture content is then determined from the Compton scattered X-ray intensity using the first linear regression formula, and the corrected X-ray intensity is calculated by dividing the fluorescent X-ray intensity value of the element to be analyzed by the Compton scattered X-ray intensity value. did.
Then, from the calculated moisture content values of the second ore samples E, F, G..., the corrected X-ray intensity, and the above-mentioned X-intercept values, the second ore samples E, F, G... . . . The fourth linear equation is calculated and the value of the slope is determined. By substituting the obtained slope value into the third linear regression equation, the concentration of the analysis target element contained in the second ore samples E, F, G, . . . could be easily calculated.

この結果、第二の鉱石試料E、F、G・・・においては乾燥工程を経ることなく、迅速且つ容易に含有される分析対象元素の濃度を求めることが出来た。即ち、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。 As a result, it was possible to quickly and easily determine the concentration of the analyzed element contained in the second ore samples E, F, G, etc. without going through a drying process. That is, it was possible to quickly and easily analyze the concentration of an element to be analyzed contained in a water-containing ore sample using fluorescent X-ray analysis.

2.鉱石試料に含有される分析対象元素の濃度を分析する方法
原料鉱石から鉱石試料をサンプリングし、当該鉱石試料に含有される分析対象元素の濃度を、迅速、簡便に、精度よく分析する方法について、図面を参照しながら説明する。
図1は、本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図であり、(1)試料分取工程、(2)流動性の確認工程、(3)純水添加混合工程、(4)測定容器内への充填工程、(5)二次X線およびコンプトン散乱X線の測定と分析結果の算出工程、の各工程を有する。以下、各工程毎に説明する。
2. A method for analyzing the concentration of an analysis target element contained in an ore sample A method for sampling an ore sample from raw ore and quickly, easily, and accurately analyzing the concentration of an analysis target element contained in the ore sample. This will be explained with reference to the drawings.
FIG. 1 is a process diagram showing an outline of the sample preparation process in a sample preparation method for fluorescent X-ray analysis according to an embodiment of the present invention, including (1) sample separation step, (2) fluidity confirmation step. , (3) a step of adding and mixing pure water, (4) a step of filling the measurement container, and (5) a step of measuring secondary X-rays and Compton scattered X-rays and calculating the analysis results. Each step will be explained below.

(1)試料分取工程
本発明が対象とする鉱石試料は、原料鉱石からサンプリングされたものである。原料鉱石から、例えば鉱石試料A~Dをサンプリングする際は、上述したように、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する。一方、鉱石試料A、B、C、Dを採取した鉱石の領域から、適時、鉱石試料E、F、G・・・を採取する。
(1) Sample separation process The ore sample targeted by the present invention is sampled from raw ore. When sampling ore samples A to D, for example, from raw ore, the ore samples are sampled from ranges as far away from each other as possible, as described above. On the other hand, ore samples E, F, G, etc. are collected at appropriate times from the ore area where ore samples A, B, C, and D were collected.

(2)流動性の確認工程
前記分取した適量の鉱石試料の形態や流動性を確認する。
例えば、当該鉱石試料を測定容器内に移入し、当該測定容器を振ったり、容器の壁をたたいたりするなどして、鉱石試料を密に充填することを試みた後、当該測定容器の底面に張られたフィルム面において、平滑な測定面を得ることが出来ているか確認することも好ましい。
この結果、当該鉱石試料の形態が、例えば図2に示すように塊状、または粘土状であって、測定容器内に充填した際、例えば図3に示すように前記フィルム面において鉱石試料との間に多数の空隙が存在したりして、平滑な測定面を得ることが困難と考えられるときは、次の純水添加混合工程に進む。
(2) Fluidity confirmation process The form and fluidity of the appropriate amount of ore sample collected above is confirmed.
For example, after transferring the ore sample into a measurement container and attempting to densely pack the ore sample by shaking the measurement container or tapping the container wall, the bottom of the measurement container It is also preferable to check whether a smooth measurement surface can be obtained on the film surface stretched over the surface of the film.
As a result, the shape of the ore sample is lump-like or clay-like as shown in FIG. 2, and when it is filled into the measurement container, there is a gap between the ore sample and the ore sample on the film surface as shown in FIG. If it is considered difficult to obtain a smooth measurement surface due to the presence of many voids in the sample, proceed to the next pure water addition and mixing step.

(3)純水添加混合工程
鉱石試料を、例えばプラスチック製の密閉可能な容器に移入する。そして、当該鉱石試料中に塊があれば、これをスパチュラ等で解砕する。その後、試料質量に対して例えば5質量%程度の純水を添加し容器を密閉後、当該容器を上下に振る等によって攪拌する。当該攪拌後、容器の蓋を開け、当該容器を動かしながら、鉱石試料の塊が認められないことを目視で確認する。一方、塊が認められた場合は、再度、純水を例えば5質量%追加で加え攪拌を続ける。
(3) Pure water addition and mixing process The ore sample is transferred into a sealable container made of plastic, for example. If there are any lumps in the ore sample, they are crushed using a spatula or the like. Thereafter, for example, about 5% by mass of pure water is added to the sample mass, the container is sealed, and the container is stirred by shaking the container up and down. After stirring, open the lid of the container and visually confirm that no lumps of ore sample are observed while moving the container. On the other hand, if lumps are observed, add pure water, for example, 5% by mass, and continue stirring.

鉱石試料によっては、容器の上下攪拌だけでは塊の解砕が困難な場合がある。このような場合は、容器内にボールミル粉砕用のボールを加えて攪拌を続ける。このとき、ボールの材質としては、測定対象元素に含まれない元素で構成されていることが好ましい。 Depending on the ore sample, it may be difficult to break up the lumps simply by stirring the container up and down. In such a case, add a ball for ball milling into the container and continue stirring. At this time, the ball is preferably made of an element that is not included in the elements to be measured.

含まれる塊の解砕が終わった鉱石試料の状態の一例を図4に示す。当該塊の解砕が終わった鉱石試料を測定容器に移入し、底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることが図5より確認できた。 FIG. 4 shows an example of the state of an ore sample after the contained lumps have been crushed. The ore sample whose lumps have been crushed is transferred to the measurement container, and it is confirmed from Figure 5 that no air bubbles or spaces are observed on the film surface stretched on the bottom, and a smooth measurement surface can be obtained. did it.

しかしながら、鉱石試料への純水の過剰添加等により、試料の流動性が高すぎこととなった場合、粗大な粒子と微細な粒子が相分離を起こすため、分析値の誤差要因となり得る。そこで鉱石試料への純水添加量の総量は、乾燥した鉱物試料の50質量%以下とすることが好ましいと考えられる。
そして鉱石試料の流動性の目安としては、降伏応力が50Pa以上200Pa以下の範囲を示す状態が好ましいと考えられる。
However, if the fluidity of the sample becomes too high due to excessive addition of pure water to the ore sample, phase separation occurs between coarse particles and fine particles, which can cause errors in analytical values. Therefore, it is considered preferable that the total amount of pure water added to the ore sample is 50% by mass or less of the dried mineral sample.
As a guideline for the fluidity of an ore sample, it is considered preferable that the yield stress be in the range of 50 Pa or more and 200 Pa or less.

(4)測定容器内への充填工程
適宜な流動性を付与された鉱石試料を測定容器内へ充填する。当該測定容器の底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることを確認する。
もし、鉱石試料の流動性不足により平滑な測定面を得ることが出来ていない場合は、「(3)純水添加混合工程」へ戻って、鉱石試料への純水添加、混合を再度実施する。
(4) Filling process into the measurement container The ore sample imparted with appropriate fluidity is filled into the measurement container. Confirm that no air bubbles or spaces are observed on the film surface stretched on the bottom of the measurement container, and that a smooth measurement surface can be obtained.
If it is not possible to obtain a smooth measurement surface due to insufficient fluidity of the ore sample, return to "(3) Pure water addition and mixing step" and add pure water to the ore sample and mix again. .

(5)二次X線およびコンプトン散乱X線の測定と分析結果の算出工程
蛍光X線分析装置を用い、鉱石試料A~Dからの二次X線強度とコンプトン散乱X線強度の値とを測定し、「1.鉱石試料に含有される分析対象元素の定量方法、(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程、〈2〉鉱石試料に含有される分析対象元素の濃度の算出」欄にて説明したように、水分率を変化させた鉱物試料の補正X線強度とコンプトン散乱X線強度とから第一の直線回帰式を求める。
次に、鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、第二の直線回帰式を求める。
(5) Process of measuring secondary X-rays and Compton scattered X-rays and calculating analysis results Using a fluorescent X-ray analyzer, the values of the secondary X-ray intensities and Compton scattered X-ray intensities from ore samples A to D are calculated. 1. Quantification method of the analysis target element contained in the ore sample, (3) Step of determining the relationship between the concentration of the analysis target element and the corrected X-ray intensity generated from the analysis target element, <2> As explained in the section ``Calculating the concentration of the target element contained in an ore sample'', the first linear regression equation is calculated from the corrected X-ray intensity and Compton scattered X-ray intensity of the mineral sample with varying moisture content. demand.
Next, the moisture content of the ore sample is taken as the X-axis, and the corrected X-ray intensity value obtained by dividing the fluorescent X-ray intensity of the target element contained in the ore sample by the Compton scattered X-ray intensity is taken as the second Find the linear regression equation.

そして、予め、所定の分析方法によって定量していた三次鉱石試料Awet0%~Dwet0%に含有される分析対象元素の濃度と、鉱石試料A~Dに係る第二の直線回帰式における傾きの値とから、分析対象元素の濃度と第二の直線回帰式における傾きの値との関係を示す第三の直線回帰式を算出する。
一方、鉱石試料E、F、G・・・の二次X線強度とコンプトン散乱X線強度とから、補正X線強度と水分率を算出する。そして、鉱石試料E、F、G・・・の各々へ、さらに水分を添加し、再度、補正X線強度と水分率を算出する。
Then, the concentration of the element to be analyzed contained in the tertiary ore samples Awet0% to Dwet0%, which had been quantified in advance by a predetermined analysis method, and the value of the slope in the second linear regression equation for ore samples A to D. From this, a third linear regression equation is calculated that indicates the relationship between the concentration of the element to be analyzed and the slope value in the second linear regression equation.
On the other hand, corrected X-ray intensities and moisture percentages are calculated from the secondary X-ray intensities and Compton scattered X-ray intensities of ore samples E, F, G, . . . Then, water is further added to each of the ore samples E, F, G, . . . , and the corrected X-ray intensity and moisture content are calculated again.

次に、当該2点の補正X線強度と水分率との値を、上述した鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとったグラフへプロットする。そして、鉱石試料E、F、G・・・の各々において、当該2つのプロット点を結ぶ第四の1次式の傾きの値を算出する。
鉱石試料E、F、G・・・の各々に係る第四の1次式の傾きの値を第三の直線回帰式に代入することにより、鉱石試料E、F、G・・・の各々に含有される分析対象元素の濃度を算出する。
Next, the values of the corrected X-ray intensity and moisture content at the two points are taken as the above-mentioned moisture content of the ore sample on the X-axis, and the fluorescent X-ray intensity of the target element contained in the ore sample is determined by The value of the corrected X-ray intensity divided by the line intensity is plotted on a graph on the Y axis. Then, for each of the ore samples E, F, G, . . . , the slope value of the fourth linear equation connecting the two plot points is calculated.
By substituting the slope value of the fourth linear equation for each of ore samples E, F, G... into the third linear regression equation, Calculate the concentration of the contained element to be analyzed.

(6)まとめ
以上、説明した(1)~(5)の工程を、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石において実施し、一旦、第一および第二の直線回帰式を求めた後は、当該一の鉱石採掘場や、鉱石の一の鉱脈等から新たに採取された鉱石試料が、塊状であったり粘土状であったりしても、蛍光X線分析装置を用いて、迅速、簡便に分析対象元素の濃度を精度よく分析することが出来た。
(6) Summary The steps (1) to (5) explained above are carried out on the raw material ore existing in, for example, one ore quarry, one vein of predetermined ore, etc., and once the After calculating the second linear regression equation, even if the ore sample newly collected from the first ore quarry or the first ore vein is lumpy or clay-like, the fluorescence Using a line analyzer, we were able to quickly and easily analyze the concentration of the target element with high accuracy.

(実施例1)
〈試料の調製〉
非鉄金属鉱山の原料鉱石の、互いに離れた範囲の4箇所から、A、B、C、D4種の鉱石試料をサンプリングした。当該鉱石試料はいずれも塊状を有しており、水分率は30質量%であった。当該塊状を有する鉱石試料A(水分率30質量%)の外観を図2に示す。
当該塊状を有する鉱石試料Aを測定容器内に充填した際、当該測定容器底部のフィルム面より見た外観を図3に示す。図3から解るように、フィルムと鉱石試料との間に多数の空隙が存在した。
(Example 1)
<Sample preparation>
Four types of ore samples, A, B, C, and D, were sampled from four separate locations of raw ore from a non-ferrous metal mine. All of the ore samples had a lumpy shape, and the moisture content was 30% by mass. FIG. 2 shows the appearance of ore sample A (moisture content: 30% by mass) having a lumpy shape.
FIG. 3 shows the external appearance seen from the film surface at the bottom of the measurement container when the ore sample A having the lump shape was filled into the measurement container. As can be seen from Figure 3, there were many voids between the film and the ore sample.

そこで、[実施の形態]欄の「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明したように、鉱石試料中の水分率を調整した。
具体的には、まず鉱石試料Aを乾燥して鉱石試料A(水分率0質量%)とした。次に、鉱石試料A(水分率0質量%)を8分割して、それぞれをプラスチック製の密閉可能な容器へ入れ、そのまま、または、所定量の純水を添加し、容器を密閉後に当該容器を上下に振って攪拌した。そして、鉱石試料A(水分率0質量%)、鉱石試料A(水分率5質量%)、鉱石試料A(水分率10質量%)、鉱石試料A(水分率15質量%)、鉱石試料A(水分率20質量%)、鉱石試料A(水分率30質量%)、鉱石試料A(水分率40質量%)、鉱石試料A(水分率50質量%)を調製した。
攪拌後に当該容器の蓋を開け、当該容器を動かしながら鉱石試料の塊が認められるかを目視で確認したところ、鉱石試料A(水分率30質量%)に塊が認められた。他の鉱石試料には塊が認められなかった。
Therefore, as explained in "2. Method of analyzing the concentration of an analysis target element contained in an ore sample" in the [Embodiment] section, the moisture content in the ore sample was adjusted.
Specifically, ore sample A was first dried to obtain ore sample A (moisture content: 0% by mass). Next, ore sample A (moisture content: 0 mass%) is divided into 8 parts and each is placed in a sealable plastic container, either as is or after adding a predetermined amount of pure water and sealing the container. It was stirred by shaking it up and down. Then, ore sample A (moisture content 0 mass%), ore sample A (moisture content 5 mass%), ore sample A (moisture content 10 mass%), ore sample A (moisture content 15 mass%), ore sample A ( (moisture content: 20% by mass), ore sample A (water content: 30% by mass), ore sample A (water content: 40% by mass), and ore sample A (water content: 50% by mass).
After stirring, the lid of the container was opened and the container was moved to visually check whether lumps of the ore sample were observed. As a result, lumps were observed in ore sample A (water content 30% by mass). No lumps were observed in other ore samples.

〈二次X線とコンプトン散乱X線との測定〉
鉱石試料A(水分率0質量%~50質量%)の平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。
水分率をX軸に、Niの二次X線の強度をY軸にとったグラフを図6に、水分率をX軸に、コンプトン散乱X線強度をY軸にとったグラフを図7に示す。
図7のグラフより、水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式を最小二乗法により求めたところ式1が得られた。

Y=-0.0685X+2.0184・・・・(式1)

次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。そして、水分率の値をX軸に、算出されたNiの補正X線強度をY軸にとったグラフを図8に示す。水分率と補正X線強度の値との関係を示す第二の直線回帰式を最小二乗法により求めたところ、Niに関しては式2が得られた。式2より第二の直線回帰式の傾きの値を求めた。尚、式1、式2を求める際、塊状となった鉱物試料A(水分率30質量%)のデータは用いなかった。また、X線管としては、ロジウムターゲットX線管を用いた。

Y=-0.2477X+18.777・・・・(式2)
<Measurement of secondary X-rays and Compton scattered X-rays>
The smooth measurement surface of ore sample A (moisture content 0 to 50 mass%) is irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, the element to be analyzed, and Compton scattered X-rays are measured. The strength was measured.
Figure 6 shows a graph with moisture content on the X-axis and Ni secondary X-ray intensity on the Y-axis, and Figure 7 shows a graph with moisture content on the X-axis and Compton scattered X-ray intensity on the Y-axis. show.
From the graph of FIG. 7, a first linear regression equation representing the relationship between the moisture content and the Compton scattered X-ray intensity was determined by the least squares method, and Equation 1 was obtained.

Y=-0.0685X+2.0184...(Formula 1)

Next, the corrected X-ray intensity was calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value. FIG. 8 shows a graph in which the moisture content value is plotted on the X-axis and the calculated corrected X-ray intensity of Ni is plotted on the Y-axis. When a second linear regression equation representing the relationship between the moisture content and the corrected X-ray intensity value was determined by the least squares method, equation 2 was obtained for Ni. The slope value of the second linear regression equation was determined from Equation 2. Note that when calculating Equations 1 and 2, the data of the mineral sample A (moisture content 30% by mass), which was in the form of a lump, was not used. Moreover, a rhodium target X-ray tube was used as the X-ray tube.

Y=-0.2477X+18.777...(Formula 2)

以上説明した鉱石試料Aに対する操作を鉱石試料B~Dに対しても行った。
第一の直線回帰式は、鉱石試料A~Dにおいて実質的に一致した。また、鉱石試料A~Dのそれぞれにおいて、Niに関する第二の直線回帰式を求めた。そして、鉱石試料A~DのNiに関する第二の直線回帰式の傾きの値を求めた。
The above-described operation for ore sample A was also performed for ore samples B to D.
The first linear regression equation was substantially consistent for ore samples AD. In addition, a second linear regression equation regarding Ni was determined for each of the ore samples A to D. Then, the slope value of the second linear regression equation regarding Ni for ore samples A to D was determined.

そして、予め、鉱石試料A~D(水分率0質量%)からXRFにより求めておいたNi濃度と、鉱石試料A~DのNiに関する第二の直線回帰式の傾きの値との関係を示す第三の直線回帰式を、最小二乗法を用いて求めた。 The relationship between the Ni concentration determined in advance by XRF from ore samples A to D (moisture content 0 mass %) and the slope value of the second linear regression equation regarding Ni for ore samples A to D is shown. A third linear regression equation was determined using the least squares method.

次に、鉱石試料Eをサンプリングした。当該鉱石試料も塊状を有していたので1回目の純水を添加し、測定容器底部のフィルム面と鉱石試料との間には空隙が存在しない状態とした。そして鉱石試料Eの平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。そして、測定されたコンプトン散乱X線強度へ式1で示す第一の直線回帰式を適用して、純水を添加した鉱石試料Eの水分率を算出した。次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。算出された鉱石試料Eの水分率と補正X線強度とが示す点を、上述した図8に示すグラフにプロットした(1回目)。 Next, ore sample E was sampled. Since the ore sample also had a lumpy shape, pure water was added for the first time so that there were no voids between the film surface at the bottom of the measurement container and the ore sample. The smooth measurement surface of ore sample E was then irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, which is the element to be analyzed, and the Compton scattered X-ray intensity were measured. Then, by applying the first linear regression equation shown in Equation 1 to the measured Compton scattered X-ray intensity, the moisture content of the ore sample E to which pure water was added was calculated. Next, the corrected X-ray intensity was calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value. The points indicated by the calculated moisture content and corrected X-ray intensity of ore sample E were plotted on the graph shown in FIG. 8 described above (first time).

次に、上述した純水を添加した鉱石試料Eへ2回目の純水を添加した。このとき、合計2回の純水添加量が、鉱石試料Eの重量の50質量%を超えないように注意した。そして、1回目の純水を添加した際と同様の操作を行って、算出された鉱石試料Eの水分率と補正X線強度とが示す点を、上述した図8に示すグラフにプロットした(2回目)。
そして、1回目および2回目のプロットを結ぶ一次式を求め、当該一次式の傾きの値を求めた。そして、当該一次式の傾きの値と第三の直線回帰式とから、鉱石試料EにおけるNi濃度を求めた。
Next, a second amount of pure water was added to the ore sample E to which the above-mentioned pure water had been added. At this time, care was taken so that the total amount of pure water added twice did not exceed 50% by mass of the weight of ore sample E. Then, the same operation as when adding pure water for the first time was performed, and the points indicated by the calculated moisture content and corrected X-ray intensity of ore sample E were plotted on the graph shown in FIG. 8 mentioned above ( 2nd time).
Then, a linear equation connecting the first and second plots was determined, and the slope value of the linear equation was determined. Then, the Ni concentration in the ore sample E was determined from the slope value of the linear equation and the third linear regression equation.

以下、鉱石試料中のAl、Siについても、上述したNiの場合と同様の測定と操作を行って、鉱石試料EにおけるAl、Siの濃度を求めた。 Hereinafter, the same measurements and operations as in the case of Ni described above were performed for Al and Si in the ore sample, and the concentrations of Al and Si in the ore sample E were determined.

尚、実施例1において使用した蛍光X線装置は、Malvern Panalytical社製のAxios Advanced 4kWである。 The fluorescent X-ray device used in Example 1 is Axios Advanced 4kW manufactured by Malvern Panalytical.

尚、本実施例の効果を確認する為に、敢えて鉱石試料Eを乾燥して鉱石試料E(水分率0質量%)を作製した。そして、鉱石試料E(水分率0質量%)におけるNi、Al、Siの濃度をXRFにより求めた。
そして、本発明に係る分析方法で求めた鉱石試料EのNi、Al、Siの濃度と、XRFにより求めた鉱石試料E(水分率0質量%)におけるNi、Al、Siの濃度とを比較したところ、その差は10%未満であった。即ち、鉱石試料Eを乾燥することなく、逆に純水を2回添加した鉱石試料Eから測定した二次X線強度と、コンプトン散乱X線強度とから、鉱石試料EのNi濃度の値を精度良く求めることが出来た。この結果、本発明に係る水分率補正方法が有効であることが理解できる。従って、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが理解できる。
In addition, in order to confirm the effect of this example, ore sample E was intentionally dried to produce ore sample E (moisture content: 0% by mass). Then, the concentrations of Ni, Al, and Si in ore sample E (moisture content 0 mass %) were determined by XRF.
Then, the concentrations of Ni, Al, and Si in ore sample E determined by the analysis method according to the present invention were compared with the concentrations of Ni, Al, and Si in ore sample E (moisture content 0 mass %) determined by XRF. However, the difference was less than 10%. That is, the value of the Ni concentration in ore sample E can be determined from the secondary X-ray intensity measured from ore sample E, which was obtained by adding pure water twice without drying ore sample E, and from the Compton scattered X-ray intensity. I was able to find it with good accuracy. As a result, it can be seen that the moisture content correction method according to the present invention is effective. Therefore, the concentration of the target element contained in an ore sample containing water can be quickly and easily analyzed using fluorescent X-ray analysis. It will be understood that the concentration of an element can be quickly and easily analyzed using fluorescent X-ray analysis.

Claims (5)

鉱石試料に含有される分析対象元素の濃度を定量する分析方法であって、
原料鉱石の所定箇所より鉱石試料をサンプリングし、所定の方法に拠り分析対象元素の濃度を定量する第1の工程と、
前記サンプリングされた鉱石試料の水分を0質量%まで乾燥した後、分割し、所定量の水分を添加し、水分率0質量%を含む既知量であって異なる水分率を有する複数の第一の鉱石試料を調製する第2の工程と、
前記複数の第一の鉱石試料のそれぞれへ一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第3の工程と、
前記複数の第一の鉱石試料において、水分率と、コンプトン散乱X線強度との関係を示す第一の直線回帰式を算出する第4の工程と、
前記複数の第一の鉱石試料において、水分率と、分析対象元素の二次X線強度をコンプトン散乱X線強度で除して得られた補正X線強度との関係を示す第二の直線回帰式を算出し、当該第二の直線回帰式の傾きの値を求める第5の工程と、
前記原料鉱石の前回の所定箇所とは異なる箇所より第二の鉱石試料をサンプリングし、前記第1から第5の工程と同様の操作を実施し、第二の鉱石試料において水分率と、補正X線強度との関係を示す第二の直線回帰式を算出し、当該第二の直線回帰式の傾きの値を求める第6の工程と、
前記原料鉱石の前回の所定箇所とは異なる箇所より第二の鉱石試料をサンプリングし、前記第6の工程を1回以上繰り返して実施する第7の工程と、
前記第1の工程で得られた、それぞれの鉱石試料における分析対象元素の濃度の値と、前記第5から第7の工程で得られた、それぞれの鉱石試料における第二の直線回帰式の傾きの値との関係を示す第三の直線回帰式を算出する第8の工程と、
前記原料鉱石の新たな所定箇所より第三の鉱石試料をサンプリングし、所定量の水分を添加した後、一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第9の工程を実施した後、さらに、第三の鉱石試料へ所定量の水分を添加した後、一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定する第10の工程を実施し、第三の鉱石試料の第9および第10の工程におけるコンプトン散乱X線強度の値を第一の直線回帰式に代入して水分率を算出し、また、コンプトン散乱X線強度の値と二次X線強度の値とから補正X線強度の値を算出する第11の工程と、
前記第11の工程で得られた、第三の鉱石試料の第9および第10の工程における水分率と補正X線強度の値とから、第三の鉱石試料における水分率と、補正X線強度との関係を示す第四の1次式の傾きの値を算出し、当該傾きの値を、前記第三の直線回帰式の傾きの値へ代入して分析対象元素の濃度を算出することを特徴とする鉱石試料の分析方法。
An analytical method for quantifying the concentration of an analysis target element contained in an ore sample, the method comprising:
A first step of sampling an ore sample from a predetermined location of the raw ore and quantifying the concentration of the analysis target element according to a predetermined method;
After drying the water content of the sampled ore sample to 0% by mass, it is divided, a predetermined amount of water is added, and a plurality of first samples having a known amount and different moisture content including 0% by mass water content are divided. a second step of preparing an ore sample;
a third step of irradiating each of the plurality of first ore samples with primary X-rays and measuring the generated secondary X-ray intensity of the analysis target element and Compton scattered X-ray intensity;
a fourth step of calculating a first linear regression equation representing the relationship between moisture content and Compton scattered X-ray intensity in the plurality of first ore samples;
A second linear regression showing the relationship between the moisture content and the corrected X-ray intensity obtained by dividing the secondary X-ray intensity of the analysis target element by the Compton scattered X-ray intensity in the plurality of first ore samples. a fifth step of calculating the equation and determining the slope value of the second linear regression equation;
A second ore sample is sampled from a location different from the previous predetermined location of the raw material ore, and the same operations as the first to fifth steps are performed to determine the moisture content and correction X in the second ore sample. A sixth step of calculating a second linear regression equation showing the relationship with the line intensity and determining the slope value of the second linear regression equation;
a seventh step of sampling a second ore sample from a location different from the previous predetermined location of the raw material ore, and repeating the sixth step one or more times ;
The concentration value of the analysis target element in each ore sample obtained in the first step and the slope of the second linear regression equation in each ore sample obtained in the fifth to seventh steps. an eighth step of calculating a third linear regression equation showing the relationship with the value of
A third ore sample is sampled from a new predetermined location of the raw material ore, and after adding a predetermined amount of water, it is irradiated with primary X-rays, and the secondary X-ray intensity of the generated analysis target element and Compton scattering X-ray are measured. After carrying out the ninth step of measuring the radiation intensity, a predetermined amount of water is added to the third ore sample, and the primary X-ray is irradiated to measure the secondary X-ray intensity of the generated element to be analyzed. and the Compton scattered X-ray intensity, and substituted the values of the Compton scattered X-ray intensity in the ninth and tenth steps of the third ore sample into the first linear regression equation. an eleventh step of calculating the moisture content by calculating the moisture content, and calculating the corrected X-ray intensity value from the Compton scattered X-ray intensity value and the secondary X-ray intensity value;
From the values of moisture content and corrected X-ray intensity in the ninth and tenth steps of the third ore sample obtained in the eleventh step , determine the moisture content and corrected X-ray intensity in the third ore sample. Calculate the slope value of the fourth linear equation showing the relationship between A method for analyzing characteristic ore samples.
前記第6の工程を、前記原料鉱石の前記所定箇所とは異なる新たな箇所よりサンプリングした第二の鉱石試料を用いて、少なくとも2回以上実施して、第三の直線回帰式を算出することを特徴とする請求項1に記載の鉱石試料の分析方法。 Calculating a third linear regression equation by performing the sixth step at least twice using a second ore sample sampled from a new location different from the predetermined location of the raw material ore. The method for analyzing an ore sample according to claim 1, characterized in that: 前記第一および/または第二の鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、請求項1または2に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法。
When the first and/or second ore samples have a lumpy form and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
Analysis of the ore sample according to claim 1 or 2, after adding and mixing pure water to the first and/or second ore sample to impart fluidity and obtain a smooth measurement surface. A method for analyzing an ore sample, characterized by applying the method and quantifying the concentration of an element to be analyzed.
前記第一および/または第二の鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱石試料へ純水を添加して混合することで流動性を付与
し、平滑な測定面を得た後、請求項1または2に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法。
When the first and/or second ore sample has a clay-like morphology and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
The method for analyzing an ore sample according to claim 1 or 2, wherein pure water is added to the first and/or second ore sample and mixed to impart fluidity and obtain a smooth measurement surface. An analysis method for ore samples characterized by applying the method to quantify the concentration of an element to be analyzed.
前記第2、第9、第10の工程において、鉱石試料へ所定量の水分を添加する際、当該鉱石試料がスラリー化する以上の水分量であって、且つ、添加する水分量の総量は乾燥した当該鉱石試料の50質量%以下となる水分量を添加することを特徴とする請求項1から4のいずれかに記載の鉱石試料の分析方法。 In the second, ninth, and tenth steps, when adding a predetermined amount of water to the ore sample, the amount of water is more than the amount that turns the ore sample into a slurry, and the total amount of water to be added is : 5. The method for analyzing an ore sample according to claim 1, further comprising adding a water content that is 50% by mass or less of the dried ore sample.
JP2020041399A 2019-03-27 2020-03-10 Analysis method for ore samples Active JP7415685B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059868 2019-03-27
JP2019059868 2019-03-27

Publications (2)

Publication Number Publication Date
JP2020165963A JP2020165963A (en) 2020-10-08
JP7415685B2 true JP7415685B2 (en) 2024-01-17

Family

ID=72714418

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020040918A Active JP7424118B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020040917A Active JP7400558B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020041399A Active JP7415685B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2020040918A Active JP7424118B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020040917A Active JP7400558B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Country Status (1)

Country Link
JP (3) JP7424118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424118B2 (en) * 2019-03-27 2024-01-30 住友金属鉱山株式会社 Analysis method for ore samples
CN117169264B (en) * 2023-09-04 2024-07-09 上海有色金属工业技术监测中心有限公司 Method for measuring content of lithium element in lithium-boron alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138660A (en) 2004-11-10 2006-06-01 Canon Inc Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
JP2017058362A (en) 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059403B2 (en) * 1996-07-18 2000-07-04 理学電機工業株式会社 X-ray analysis method and apparatus
JPH08334481A (en) * 1996-07-25 1996-12-17 Shimadzu Corp X-ray fluorescent analysis
US6130931A (en) * 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
JP3981053B2 (en) * 2003-07-28 2007-09-26 日本アイ.テイー.エス株式会社 Soil analysis method and fluorescent X-ray soil analysis apparatus used therefor
JP5337832B2 (en) * 2010-06-29 2013-11-06 株式会社リガク X-ray analysis method and apparatus
JP6760019B2 (en) * 2015-12-17 2020-09-23 住友金属鉱山株式会社 Sample preparation method for X-ray fluorescence analysis
TWI693195B (en) * 2015-12-25 2020-05-11 日商堺化學工業股份有限公司 LOW α-RAYS BARIUM SULFATE PARTICLES, USE OF THE SAME, AND METHOD FOR PRODUCING THE SAME
CN105738394A (en) * 2016-03-01 2016-07-06 中国地质科学院矿产综合利用研究所 X-ray fluorescence spectrum analysis method for primary and secondary components in rubidium ore
JP6905228B2 (en) * 2016-10-07 2021-07-21 株式会社リガク Sample analysis method
JP7424118B2 (en) * 2019-03-27 2024-01-30 住友金属鉱山株式会社 Analysis method for ore samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138660A (en) 2004-11-10 2006-06-01 Canon Inc Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
JP2017058362A (en) 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method

Also Published As

Publication number Publication date
JP2020165963A (en) 2020-10-08
JP2020165962A (en) 2020-10-08
JP7424118B2 (en) 2024-01-30
JP2020165961A (en) 2020-10-08
JP7400558B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP7415685B2 (en) Analysis method for ore samples
Madsen et al. Quantitative phase analysis
Pashkova et al. Analytical approaches for determination of bromine in sediment core samples by X-ray fluorescence spectrometry
Kubala-Kukuś et al. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis
Viani et al. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography
Dogan et al. Elemental analysis of trace elements in fly ash sample of Yatağan thermal power plants using EDXRF
CN112415034A (en) XRF (X-ray fluorescence) measurement and analysis method of solid waste
JP6566202B2 (en) Coal standard sample and trace element analysis method in coal
CN104267054A (en) Method for analyzing main elements in geological sample by utilizing X-fluorescence spectrum
Vanhoof et al. 2023 atomic spectrometry update–a review of advances in X-ray fluorescence spectrometry and its special applications
JP5337832B2 (en) X-ray analysis method and apparatus
CN101825588B (en) Method for measuring contents of As and Sn elements in iron ore by adopting X-ray fluorescence spectrum melting method
CN105938112B (en) Quantitative X-ray analysis-ratio correction
RU2372611C1 (en) Method of x-ray fluorescence analysis of materials
JP6674142B2 (en) Inspection method of fine aggregate containing copper slag
Tickner et al. Characterisation of coal and minerals using Compton profile analysis
Shan et al. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets
Hamidatou et al. Major, minor and trace elements in four kinds of cement powder using INAA and k 0-standardization methods
Goraieb et al. Characterization of Portland cements by X‐ray spectrometry allied to chemometrics
CN106970100A (en) The method that the analysis of applied energy dispersive x-ray fluorescence determines calcium content in limestone deposit
Feret Breakthrough in analysis of electrolytic bath using Rietveld-XRD method
JP2004184123A (en) Fluorometric x-ray analyzing method
Kaufhold et al. Comparison of the traditional Enslin-Neff method and the modified Dieng method for measuring water-uptake capacity
JP3739839B2 (en) Method for measuring CaO assimilation rate of sintered ore and sintering method
JP2007245624A (en) Method for measuring unit amount of water for fresh concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150