JP2020165961A - Ore sample analysis method - Google Patents

Ore sample analysis method Download PDF

Info

Publication number
JP2020165961A
JP2020165961A JP2020040917A JP2020040917A JP2020165961A JP 2020165961 A JP2020165961 A JP 2020165961A JP 2020040917 A JP2020040917 A JP 2020040917A JP 2020040917 A JP2020040917 A JP 2020040917A JP 2020165961 A JP2020165961 A JP 2020165961A
Authority
JP
Japan
Prior art keywords
ore
ore sample
ray intensity
sample
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020040917A
Other languages
Japanese (ja)
Other versions
JP7400558B2 (en
Inventor
隆太 蓮野
Ryuta Hasuno
隆太 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2020165961A publication Critical patent/JP2020165961A/en
Application granted granted Critical
Publication of JP7400558B2 publication Critical patent/JP7400558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

To provide an analysis method for quickly and simply analyzing the concentration of an analysis object element in an ore sample.SOLUTION: An analysis method includes irradiating an ore sample having a known amount of moisture percentage with a primary X-ray and finding, using the secondary X-ray intensity of an analysis object element to be generated and Compton scattered X-ray intensity, a first linear regression formula that indicates relationship between the moisture percentage and the Compton scattered X-ray intensity and a second linear regression formula that indicates relationship between the moisture percentage and corrected X-ray intensity obtained by dividing the secondary X-ray intensity of the analysis object element by the Compton scattered X-ray intensity. A newly sampled ore sample is irradiated with a primary X-ray, the secondary X-ray intensity of analysis object element and Compton scattered X-ray intensity are measured, and the concentration of the analysis object element in the new ore sample is obtained from these intensities and the first and second linear regression formulas.SELECTED DRAWING: Figure 8

Description

本発明は、蛍光X線分析(X−ray fluorescence analysis;XRF)装置を用いて、原料鉱石からサンプリングされた鉱石試料における分析対象元素の濃度を分析する方法に関する。 The present invention relates to a method for analyzing the concentration of an element to be analyzed in an ore sample sampled from a raw material ore using a fluorescent X-ray fluorescence analysis (XRF) apparatus.

蛍光X線分析法は原料鉱石からサンプリングされた鉱石試料に1次X線を照射し、鉱石試料に含まれる分析対象元素から二次的に発生する二次X線(本発明において、「二次X線」とは、分析対象元素から二次的に発生する「蛍光X線」のことを意味している。)を用いて、当該分析対象元素の定性・定量分析を行う分析法である。当該蛍光X線分析法は、湿式分析法や誘導結合プラズマ発光分光分析(ICP分析)法等と比較すると、短時間で分析結果を得ることが可能である。この為、分析コストの削減および分析結果の迅速な工程へのフィードバックを目的として、各種の工程の品質管理法として広く利用されている。 In the fluorescent X-ray analysis method, a primary X-ray is applied to an ore sample sampled from a raw material ore, and a secondary X-ray (in the present invention, "secondary") generated secondarily from an analysis target element contained in the ore sample. "X-rays" means "fluorescent X-rays" secondarily generated from the analysis target element), and is an analysis method for performing qualitative and quantitative analysis of the analysis target element. The fluorescent X-ray analysis method can obtain analysis results in a short time as compared with a wet analysis method, an inductively coupled plasma emission spectroscopic analysis (ICP analysis) method, or the like. Therefore, it is widely used as a quality control method for various processes for the purpose of reducing analysis costs and feeding back analysis results to processes quickly.

尚、本発明において分析対象である鉱石試料とは、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石からサンプリングされた鉱石試料の意味である。従って、当該鉱石試料が、出来るだけ互いに離れた範囲からサンプリングされた場合であっても、分析対象元素の濃度は当該鉱石試料間にて差異があるものの、当該鉱石試料のマトリックス部分の元素組成は当該鉱石試料間において実質的に同一と考えられるものである。 The ore sample to be analyzed in the present invention means, for example, an ore sample sampled from a raw material ore existing in one ore mining site, one vein of a predetermined ore, or the like. Therefore, even when the ore samples are sampled from as far apart as possible, the element composition of the matrix portion of the ore sample is different, although the concentration of the element to be analyzed differs between the ore samples. It is considered to be substantially the same among the ore samples.

特許第4629158号公報Japanese Patent No. 4629158 特開平10−82749号公報JP-A-10-82749

中井泉、「蛍光X線の分析実際 第2版」、朝倉書店、2016年7月10日、第1刷Izumi Nakai, "X-ray fluorescence analysis practice 2nd edition", Asakura Shoten, July 10, 2016, 1st print 新井智也他、「けい光X線分析の手引」、株式会社リガク、1982年9月、初版Tomoya Arai et al., "Guide for Keiko X-ray Analysis", Rigaku Corporation, September 1982, First Edition

蛍光X線分析法により、例えば原料鉱石からサンプリングされた鉱石試料に含まれる分析対象元素の定量分析を行う際は、一般的に、前処理として当該鉱石試料の乾燥、粉砕、そして当該乾燥および粉砕後のプレスやガラスビードの作製といった操作が実施される。これは、分析の正確さや精度を担保する上で重要な操作であると考えられている為である(非特許文献1参照)。 When quantitative analysis of an element to be analyzed contained in an ore sample sampled from a raw material ore is performed by a fluorescent X-ray analysis method, generally, the ore sample is dried, pulverized, and dried and pulverized as a pretreatment. Operations such as subsequent pressing and fabrication of glass beads are performed. This is because it is considered to be an important operation for ensuring the accuracy and accuracy of analysis (see Non-Patent Document 1).

本発明者らの検討によると、当該前処理操作の中でも乾燥に費やす時間は長く、数時間から半日程度を要し律速段階となる。一方、工程の操業管理における鉱石試料分析においては、一般的に分析試料数が多く、且つ試料を迅速に分析することが重要である。この結果、本発明者らは、蛍光X線分析操作においても、より迅速な測定が求められることに想到した。 According to the study by the present inventors, the time spent for drying is long even in the pretreatment operation, and it takes several hours to half a day to reach the rate-determining step. On the other hand, in the ore sample analysis in the operation control of the process, it is generally important to analyze a large number of samples and to analyze the samples quickly. As a result, the present inventors have come to the conclusion that more rapid measurement is required even in the fluorescent X-ray analysis operation.

一方、試料を乾燥することなく、水分を含んだままの状態で測定する場合は、分析対象元素の二次X線強度の低下などが起こる。この結果、前記前処理を施した試料で作成した検量線を用いて測定しても正しい分析値を得ることが困難である。そこで、変動する成分に応じて強度が変わる散乱強度補正が一般に行われる(特許文献1、2参照)。
また、変動する成分として有機物を多く含む汚泥分析等においては、有機物の除去は水分のように容易ではない。このような場合の補正方法が非特許文献1、2に記載されている。
On the other hand, when the measurement is performed in a state where the sample is not dried and contains water, the secondary X-ray intensity of the element to be analyzed is lowered. As a result, it is difficult to obtain a correct analytical value even if the measurement is performed using the calibration curve prepared from the sample subjected to the pretreatment. Therefore, scattering intensity correction in which the intensity changes according to the fluctuating component is generally performed (see Patent Documents 1 and 2).
Further, in sludge analysis or the like containing a large amount of organic matter as a fluctuating component, removal of organic matter is not as easy as water. The correction method in such a case is described in Non-Patent Documents 1 and 2.

本発明者らは、上述した特許文献1、2および非特許文献1、2に記載の補正手段を、分析対象試料である鉱石試料に適用出来るのではないかと考えた。
しかしながら、本発明者らは、鉱石試料のうちでも塊状であったり、粘土状であったりして流動性が悪い試料については、分析値の誤差が大きくなるという課題も知見した。
The present inventors considered that the correction means described in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 described above could be applied to an ore sample as an analysis target sample.
However, the present inventors have also found that among the ore samples, the error of the analytical value becomes large for the sample having poor fluidity such as lumpy or clay-like.

本発明者らは上述の課題を解決する為、研究を行った。その結果、鉱石試料が塊状であったり、粘土状であったりして流動性が悪い試料である場合、当該流動性が悪い試料を蛍光X線分析装置の試料測定容器に充填しても密に充填することが出来ず、当該試料測定容器壁との間に空隙が生じる為、1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難となっていることを知見した。そして、当該1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難であるという事態が、上述した分析値の誤差が大きくなるという課題の原因であることに想到した。 The present inventors conducted research in order to solve the above-mentioned problems. As a result, when the ore sample is lumpy or clay-like and has poor fluidity, even if the sample having poor fluidity is filled in the sample measurement container of the fluorescent X-ray analyzer, it is densely packed. It was found that it was difficult to obtain a smooth measurement surface of the sample for receiving primary X-ray irradiation because it could not be filled and a gap was created between the sample and the measurement container wall. .. Then, it was conceived that the situation that it is difficult to obtain a smooth measurement surface of the sample for receiving the irradiation of the primary X-ray is the cause of the problem that the error of the analysis value described above becomes large.

本発明者らは、分析操作の迅速性や簡便性を損なうことなく、1次X線の照射を受ける為の試料の平滑な測定面を得る為の手段について研究を行った。そして、鉱石試料に適切な前処理を施し、当該試料の流動性を高めた後に当該試料を測定容器内へ充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来るという着想を得た。 The present inventors have studied a means for obtaining a smooth measurement surface of a sample for receiving primary X-ray irradiation without impairing the speed and convenience of the analysis operation. Then, an appropriate pretreatment is applied to the ore sample to increase the fluidity of the sample, and then the sample is filled in the measuring container to realize a dense filling in the measuring container and to realize the primary X-ray. I got the idea that it is possible to obtain a smooth measurement surface of the sample to be irradiated.

当該着想に基づき本発明者らは、測定容器内へ試料を充填する前の段階において、当該鉱石試料を乾燥するか、または、適量の純水を添加し混合することによって、当該試料の流動性を高めた後、当該試料を測定容器内に充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来た。 Based on this idea, the present inventors dry the ore sample or add an appropriate amount of pure water and mix the sample before filling the measurement container with the fluidity of the sample. By filling the measurement container with the sample after increasing the temperature, it is possible to realize a dense filling in the measurement container and obtain a smooth measurement surface of the sample for receiving primary X-ray irradiation. It was.

しかしながら、上述したように鉱石試料を乾燥するのは長時間を要する。他方、鉱石試料へ純水を添加し混合することによって、当該試料より散乱X線が発生し、鉱石試料の二次X線強度の低下などが起こる。この結果、例えば、当該前処理を施した試料で作成した検量線を用いて測定を行ったとしても、正しい分析値を得ることが出来ないことが懸念された。 However, as described above, it takes a long time to dry the ore sample. On the other hand, by adding pure water to the ore sample and mixing it, scattered X-rays are generated from the sample, and the secondary X-ray intensity of the ore sample is lowered. As a result, for example, there is a concern that a correct analytical value cannot be obtained even if the measurement is performed using the calibration curve prepared for the sample subjected to the pretreatment.

本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法、および、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法を提供することである。 The present invention has been made under the above-mentioned circumstances, and the problem to be solved is to rapidly determine the concentration of the analysis target element contained in the ore sample containing water by using a fluorescent X-ray analysis method. An analysis method that can be easily analyzed, and the concentration of the analysis target element contained in the ore sample that is in the form of a lump or clay using the analysis method can be quickly and easily determined by using the fluorescent X-ray analysis method. It is to provide an analysis method that can be analyzed.

ここで、本発明者らはさらに研究を行い、原料鉱石の複数個所から鉱石試料をサンプリングして一次鉱石試料を得、当該一次鉱石試料を分割して二次鉱石試料を調製し、当該二次鉱石試料から0質量%を含む所定の水分率を有する三次鉱石試料を調製し、当該三次鉱石試料のそれぞれへ一次X線を照射し、当該それぞれの三次鉱石試料から発生する前記分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定した。そして、同一の前記一次鉱石試料に由来する前記複数の各三次鉱石試料において、分析対象元素の二次X線強度の値をコンプトン散乱X線強度の値で除した値を補正X線強度と定義した。すると、各三次鉱石試料の水分率と補正X線強度との間には、1次式にて表すことの出来る関係があるとの知見を得た。 Here, the present inventors further conducted research, sampled ore samples from a plurality of raw material ores to obtain a primary ore sample, divided the primary ore sample to prepare a secondary ore sample, and prepared the secondary ore sample. A tertiary ore sample having a predetermined water content containing 0% by mass is prepared from the ore sample, each of the tertiary ore samples is irradiated with primary X-rays, and the second element to be analyzed generated from each of the tertiary ore samples. The next X-ray intensity and the Compton scattered X-ray intensity were measured. Then, in each of the plurality of tertiary ore samples derived from the same primary ore sample, the value obtained by dividing the secondary X-ray intensity value of the analysis target element by the Compton scattered X-ray intensity value is defined as the corrected X-ray intensity. did. Then, it was found that there is a relationship that can be expressed by a linear equation between the water content of each tertiary ore sample and the corrected X-ray intensity.

当該知見より、上述した所定量の水分が添加された鉱石試料において補正X線強度を算出する一方、コンプトン散乱X線強度の値から当該鉱石試料の水分量を求め、得られた補正X線強度の値と水分量の値とから、水分率0%における補正X線強度を算出出来ることに想到した。
そして、三次鉱石試料における、分析対象元素の濃度と補正X線強度の値との関係を求めておけば、所定量の水分が添加されて平滑な試料面を有する鉱石試料によって分析対象元素の濃度を求めることが出来ることに想到したものである。
Based on this finding, the corrected X-ray intensity was calculated for the ore sample to which the above-mentioned predetermined amount of water was added, while the water content of the ore sample was obtained from the value of the Compton scattered X-ray intensity, and the obtained corrected X-ray intensity was obtained. I came up with the idea that the corrected X-ray intensity at a moisture content of 0% can be calculated from the value of and the value of the water content.
Then, if the relationship between the concentration of the element to be analyzed and the value of the corrected X-ray intensity in the tertiary ore sample is obtained, the concentration of the element to be analyzed is determined by the ore sample having a smooth sample surface to which a predetermined amount of water is added. I came up with the idea of being able to ask for.

即ち、上述の課題を解決する第1の発明は、
鉱石試料に含有される分析対象元素の濃度を定量する分析方法であって、
原料鉱石よりサンプリングされた第一の鉱石試料から、水分率0質量%を含む既知量の水分率を有する複数の鉱石試料を調製し、調製された複数の鉱石試料のそれぞれへ一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、
水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式と、
水分率と、分析対象元素の二次X線強度をコンプトン散乱X線強度で除して得られた補正X線強度との関係を示す第二の直線回帰式とを求め、第二の直線回帰式を外挿して補正X線強度の値が0となる点を求めておき、
原料鉱石より新規にサンプリングされた第二の鉱石試料に対して一次X線を照射し、第二の鉱石試料から発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、第二の鉱石試料のコンプトン散乱X線強度と第一の直線回帰式とから第二の鉱石試料の水分率を求め、第二の鉱石試料の分析対象元素の二次X線強度をコンプトン散乱X線強度で除して第二の鉱石試料の補正X線強度を求め、
前記第二の直線回帰式において補正X線強度の値が0となる点と、第二の鉱石試料における水分率の値と補正X線強度の値とを示す点とを結ぶ第三の1次式を求め、
第三の1次式を外挿して、第二の鉱石試料の水分率の値が0質量%となる点における補正X線強度を、第二の鉱石試料の水分率0質量%のときの補正X線強度とし、予め求めておいた鉱石試料における分析対象元素の濃度と、水分率0質量%のときの補正X線強度との関係から、第二の鉱石試料における分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法である。
第2の発明は、
原料鉱石の複数個所から、前記第一の鉱石試料として鉱石試料をサンプリングし、サンプリングされた複数の第一の鉱石試料のそれぞれにおいて、発生する分析対象元素の二次X線強度とコンプトン散乱X線強度とを測定して第二の直線回帰式を求め、複数の第二の直線回帰式において補正X線強度の値が0となる点の平均値を求めることを特徴とする第1の発明に記載の鉱石試料の分析方法である。
第3の発明は、
前記第一および/または第二の鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法である。
第4の発明は、
前記第一および/または第二の鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法である。
第5の発明は、
前記第一および/または第二の鉱石試料への純水添加量の総量が、前記鉱石試料の50質量%以下であることを特徴とする第3または第4の発明に記載の鉱石試料の分析方法である。
That is, the first invention that solves the above-mentioned problems is
It is an analysis method for quantifying the concentration of the element to be analyzed contained in the ore sample.
From the first ore sample sampled from the raw material ore, a plurality of ore samples having a known amount of water content including 0% by mass of the water content are prepared, and each of the prepared ore samples is irradiated with primary X-rays. Then, the secondary X-ray intensity of the element to be analyzed and the Compton scattered X-ray intensity are measured.
The first linear regression equation showing the relationship between the water content and the Compton scattered X-ray intensity,
A second linear regression equation showing the relationship between the water content and the corrected X-ray intensity obtained by dividing the secondary X-ray intensity of the element to be analyzed by the Compton scattered X-ray intensity was obtained, and the second linear regression was performed. Extrapolate the equation to find the point where the value of the corrected X-ray intensity becomes 0.
The second ore sample newly sampled from the raw material ore is irradiated with primary X-rays, and the secondary X-ray intensity of the analysis target element generated from the second ore sample and the Compton scattered X-ray intensity are measured. Then, the water content of the second ore sample is obtained from the Compton scattered X-ray intensity of the second ore sample and the first linear regression equation, and the secondary X-ray intensity of the analysis target element of the second ore sample is Compton. Divide by the scattered X-ray intensity to obtain the corrected X-ray intensity of the second ore sample.
A third primary connecting a point where the corrected X-ray intensity value is 0 in the second linear regression equation and a point indicating the water content value and the corrected X-ray intensity value in the second ore sample. Find the formula,
By extrapolating the third linear equation, the corrected X-ray intensity at the point where the water content of the second ore sample is 0% by mass is corrected when the water content of the second ore sample is 0% by mass. The concentration of the element to be analyzed in the second ore sample is quantified from the relationship between the concentration of the element to be analyzed in the ore sample obtained in advance and the corrected X-ray intensity when the water content is 0% by mass. It is an analysis method of an ore sample characterized by the above.
The second invention is
An ore sample is sampled as the first ore sample from a plurality of raw material ores, and the secondary X-ray intensity and Compton scattered X-ray of the analysis target element generated in each of the sampled first ore samples. The first invention is characterized in that the intensity is measured to obtain a second linear regression equation, and the average value of points at which the corrected X-ray intensity value becomes 0 in a plurality of second linear regression equations is obtained. The method for analyzing an ore sample described.
The third invention is
When the morphology of the first and / or second ore sample is massive and it is difficult to obtain a smooth measurement surface to be irradiated with primary X-rays.
Pure water is added to and mixed with the first and / or second ore samples to impart fluidity, and after obtaining a smooth measurement surface, the ore sample according to the first or second invention. This is an ore sample analysis method characterized by quantifying the concentration of an element to be analyzed by applying the analysis method of.
The fourth invention is
When the morphology of the first and / or second ore sample is clayey and it is difficult to obtain a smooth measurement surface to be irradiated with primary X-rays.
After adding pure water to the first and / or second ore sample and mixing it to impart fluidity and obtain a smooth measurement surface, the ore sample according to the first or second invention. It is an analysis method of an ore sample characterized by applying an analysis method and quantifying the concentration of an element to be analyzed.
The fifth invention is
Analysis of the ore sample according to the third or fourth invention, wherein the total amount of pure water added to the first and / or second ore sample is 50% by mass or less of the ore sample. The method.

本発明によれば、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。そして、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。 According to the present invention, the concentration of the element to be analyzed contained in the ore sample containing water could be analyzed quickly and easily by using the fluorescent X-ray analysis method. Then, using the analysis method, the concentration of the analysis target element contained in the ore sample in the form of a lump or clay could be quickly and easily analyzed by using the fluorescent X-ray analysis method.

本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図である。It is a process drawing which shows the outline of the sample preparation process in the sample preparation method for fluorescent X-ray analysis which concerns on one Embodiment of this invention. 塊状を有する鉱石試料の外観の一例である。This is an example of the appearance of a lumpy ore sample. 図2に示す鉱石試料を測定容器における測定面側から見た外観の一例である。This is an example of the appearance of the ore sample shown in FIG. 2 as viewed from the measurement surface side of the measurement container. 図2に示す鉱石試料へ流動性を付与した後の外観の一例である。This is an example of the appearance after imparting fluidity to the ore sample shown in FIG. 図4に示す鉱石試料を測定容器における測定面側から見た外観の一例である。This is an example of the appearance of the ore sample shown in FIG. 4 as viewed from the measurement surface side of the measurement container. 鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をY軸にとって、両者の関係を示したグラフである。It is a graph which showed the relationship between the moisture content of the ore sample on the X-axis, and the fluorescent X-ray intensity of the element to be analyzed contained in the ore sample on the Y-axis. 鉱石試料の水分率をX軸にとり、当該鉱石試料からのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。It is a graph which showed the relationship between the moisture content of an ore sample on the X-axis, and the Compton scattered X-ray intensity from the ore sample on the Y-axis. 鉱石試料の水分率をX軸にとり、当該鉱石試料からの補正X線強度の値をY軸にとって、両者の関係を示したグラフである。It is a graph which shows the relationship between the moisture content of an ore sample on the X-axis, and the value of the corrected X-ray intensity from the ore sample on the Y-axis.

本発明を実施するための形態について、まず、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法について「1.鉱石試料に含有される分析対象元素の定量方法」にて説明する。
そして、当該分析方法を用いて、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来る分析方法について「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明する。
Regarding the embodiment for carrying out the present invention, first, regarding an analysis method capable of quickly and easily analyzing the concentration of an element to be analyzed contained in an ore sample containing water by using a fluorescent X-ray analysis method, "1. Quantification method of elements to be analyzed contained in ore samples ”.
Then, using the analysis method, the concentration of the element to be analyzed contained in the ore sample in the form of a lump or clay can be quickly and easily analyzed by using the fluorescent X-ray analysis method. A method for analyzing the concentration of the element to be analyzed contained in the ore sample ”.

1.鉱石試料に含有される分析対象元素の定量方法
本発明に係る鉱石試料に含有される分析対象元素の定量方法について、(1)原料鉱石から鉱石試料をサンプリングする工程、(2)所定量の水分率を有する鉱石試料を調製する工程、(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程、の順に説明する。
1. 1. Method for quantifying the element to be analyzed contained in the ore sample Regarding the method for quantifying the element to be analyzed contained in the ore sample according to the present invention, (1) a step of sampling the ore sample from the raw material ore, (2) a predetermined amount of water The steps of preparing an ore sample having a ratio and (3) determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed will be described in this order.

(1)原料鉱石から鉱石試料をサンプリングする工程
原料鉱石において、鉱石試料のサンプリングを行う点数について特に制限はないが、複数であることが好ましく、例えば4点であることが好ましい。複数点数のサンプリングを行う際は、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する(本発明において「第一の鉱物試料」と記載する場合がある。)。原料鉱石からサンプリングされた当該第一の鉱石試料を本発明では、一次鉱石試料とする。例えば、第一の鉱石試料の一次鉱石試料として4点のサンプリングを実施するのであれば、原料鉱石の東、西、南、北の各地点から、一次鉱石試料A、B、C、Dを採取することが考えられる(尚、サンプリング数は、適宜、設定可能である)。
一方、一次鉱石試料A、B、C、Dを採取した鉱石の領域から、適時、新規の一次鉱石試料E、F、G・・・(本発明において「第二の鉱物試料」と記載する場合がある。)が採取される。
当該第一および第二の鉱物試料における一次鉱石試料A、B、C、D、E、F、G・・・は概ね類似の元素組成を有するが、定量分析の対象となる分析対象元素においては、それぞれ異なった濃度を有していると考えられる。
(1) Step of sampling an ore sample from a raw material ore In the raw material ore, the number of points for sampling the ore sample is not particularly limited, but is preferably a plurality of points, for example, 4 points. When sampling a plurality of points, the ore sample is sampled from a range as far as possible from each other (may be referred to as "first mineral sample" in the present invention). In the present invention, the first ore sample sampled from the raw material ore is used as the primary ore sample. For example, if four points are sampled as the primary ore sample of the first ore sample, the primary ore samples A, B, C, and D are collected from the east, west, south, and north points of the raw material ore. (Note that the number of samples can be set as appropriate).
On the other hand, when the new primary ore samples E, F, G ... (In the present invention, described as "second mineral sample"" from the region of the ore from which the primary ore samples A, B, C and D are collected, in a timely manner. There is.) Is collected.
The primary ore samples A, B, C, D, E, F, G ... In the first and second mineral samples have substantially similar element compositions, but the analysis target elements to be quantitatively analyzed are , Each is considered to have a different concentration.

(2)所定量の水分率を有する鉱石試料を調製する工程
前記第一の鉱物試料における一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする。そして、水分率0質量%となった一次鉱石試料A、B、C、Dのそれぞれを、好ましくは3個以上に分割して二次鉱石試料を得る。
尚、この一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする操作は、長時間を要する操作ではある。しかし後述する第一および第二の直線回帰式を求めた後の、鉱石試料E、F、G・・・においては、当該乾燥操作は不要となる。
(2) Step of preparing an ore sample having a predetermined amount of water content The primary ore samples A, B, C and D in the first mineral sample are dried to set the water content to 0% by mass. Then, each of the primary ore samples A, B, C, and D having a water content of 0% by mass is preferably divided into three or more to obtain a secondary ore sample.
The operation of drying the primary ore samples A, B, C, and D to set the water content to 0% by mass is an operation that requires a long time. However, the drying operation is not required for the ore samples E, F, G ... After obtaining the first and second linear regression equations described later.

次に、前記所定個に分割した二次鉱石試料のそれぞれへ、純水を添加しない、または、所定量の純水を添加して、水分率0質量%を含む所定の水分率を有する三次鉱石試料を調製した。
具体的には、例えば上述した分割した二次鉱石試料から、水分率0質量%である三次鉱石試料Awet0%、Bwet0%、Cwet0%、Dwet0%、から、例えば、水分率50質量%である三次鉱石試料Awet50%、Bwet50%、Cwet50%、Dwet50%までの範囲で、複数段階(例えば8段階)の水分率を有する三次鉱石試料を調製した。
Next, no pure water is added to each of the secondary ore samples divided into the predetermined pieces, or a predetermined amount of pure water is added to the tertiary ore having a predetermined water content including 0% by mass of the water content. A sample was prepared.
Specifically, for example, from the above-mentioned divided secondary ore sample, the tertiary ore sample Awet0%, Bwet0%, Cwet0%, Dwet0% having a water content of 0% by mass, for example, the tertiary ore sample having a water content of 50% by mass. Ore sample A tertiary ore sample having a water content of a plurality of stages (for example, 8 stages) was prepared in the range of Awet 50%, Bwet 50%, Cwet 50%, and Dwet 50%.

(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程
ここで、水分率0質量%の第一の鉱物試料における三次鉱石試料Awet0%〜Dwet0%に含有される分析対象元素の濃度を、所定の分析方法によって定量する。具体的には、ICP分析、湿式化学分析、蛍光X線分析等が考えられる。
(3) Step for determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed Here, the tertiary ore sample Awet 0% to Dwet 0% in the first mineral sample having a moisture content of 0% by mass. The concentration of the element to be analyzed contained in is quantified by a predetermined analysis method. Specifically, ICP analysis, wet chemical analysis, fluorescent X-ray analysis and the like can be considered.

次に、蛍光X線分析装置を用いて、水分率0質量%である三次鉱石試料Awet0%、Bwet0%、Cwet0%、Dwet0%、から、水分率50質量%である三次鉱石試料Awet50%、Bwet50%、Cwet50%、Dwet50%の範囲で、8段階の水分率を有する三次鉱石試料のそれぞれに一次X線を照射し、それぞれの三次鉱石試料に含有される分析対象元素から発生する二次(蛍光)X線強度と、それぞれの三次鉱石試料から発生するコンプトン散乱X線強度とを測定した。 Next, using a fluorescent X-ray analyzer, the tertiary ore samples Awet 0%, Bwet 0%, Cwet 0%, Dwet 0% having a water content of 0% by mass, and the tertiary ore samples Awet 50% and Bwet 50 having a water content of 50% by mass. In the range of%, Cwet50%, and Dwet50%, each of the tertiary ore samples having eight levels of water content is irradiated with primary X-rays, and the secondary (fluorescence) generated from the analysis target element contained in each tertiary ore sample is irradiated. ) The X-ray intensity and the Compton scattered X-ray intensity generated from each tertiary ore sample were measured.

そして、一次鉱石試料A〜Dより導かれた4種の第一の直線回帰式は、実質的に同一である第一の直線回帰式となる。これは、コンプトン散乱X線強度が一次鉱石試料の水分率に起因すること、および、一次鉱石試料A〜Dのマトリックス部分の元素組成は実質的に同一あることによると考えられる。この第一の直線回帰式における実質的な同一性は、この後に採取される一次鉱石試料Eや、それ以降の一次鉱石試料F、G・・・においても同様であると考えられる。
従って、一次鉱石試料E以降の一次鉱石試料においては、コンプトン散乱X線強度の値と第一の直線回帰式とから、当該一次鉱石試料の水分率を算出することが出来る。
Then, the four types of first linear regression equations derived from the primary ore samples A to D are the first linear regression equations that are substantially the same. It is considered that this is because the Compton scattered X-ray intensity is due to the water content of the primary ore sample, and the elemental composition of the matrix portion of the primary ore samples A to D is substantially the same. Substantial identity in this first linear regression equation is considered to be the same for the primary ore sample E collected thereafter and the subsequent primary ore samples F, G ...
Therefore, in the primary ore sample after the primary ore sample E, the water content of the primary ore sample can be calculated from the value of the Compton scattered X-ray intensity and the first linear regression equation.

そして、同一の一次鉱石試料に由来する前記複数の三次鉱石試料、即ち、一次鉱石試料Aに由来する三次鉱石試料Awet0%〜Awet50%、一次鉱石試料Bに由来する三次鉱石試料Bwet0%〜Bwet50%、一次鉱石試料Cに由来する三次鉱石試料Cwet0%〜Cwet50%、一次鉱石試料Dに由来する三次鉱石試料Dwet0%〜Dwet50%の各試料に係る前記二次X線強度の値を、コンプトン散乱X線強度の値で除することにより、各試料に係る補正X線強度を算出した。その結果、各試料に係る補正X線強度と水分率との関係を見出した。 Then, the plurality of tertiary ore samples derived from the same primary ore sample, that is, the tertiary ore sample Awet 0% to Awet 50% derived from the primary ore sample A, and the tertiary ore sample Bwet 0% to Bwet 50% derived from the primary ore sample B. , The value of the secondary X-ray intensity related to each sample of the tertiary ore sample Cwet 0% to Cwet 50% derived from the primary ore sample C and the tertiary ore sample Dwet 0% to Dwet 50% derived from the primary ore sample D is obtained by compton scattering X. The corrected X-ray intensity for each sample was calculated by dividing by the value of the line intensity. As a result, the relationship between the corrected X-ray intensity and the water content of each sample was found.

即ち、第一の鉱物試料における一次鉱石試料A、B、C、Dからの、二次X線強度とコンプトン散乱X線強度とを用いて、これらの一次鉱石試料に含有される分析対象元素の濃度を算出出来る直線回帰式を導出することが出来た。そして、一次鉱石試料A、B、C、Dが採取された領域から、一次鉱石試料Eに続いて、適時、新規に採取される第二の鉱物試料における一次鉱石試料F、G・・・、に対しても当該分析対象元素の濃度を算出する直線回帰式を適用することで、これらの第二の鉱物試料における一次鉱石試料に含有される分析対象元素の濃度を容易に算出することが出来た。
以下、当該鉱石試料に含有される分析対象元素の濃度を容易に算出する方法について、〈1〉鉱石試料の水分率と補正X線強度との関係、〈2〉鉱石試料に含有される分析対象元素の濃度の算出、の順に詳細に説明する。
That is, using the secondary X-ray intensity and the Compton scattered X-ray intensity from the primary ore samples A, B, C, and D in the first mineral sample, the analysis target element contained in these primary ore samples We were able to derive a linear regression equation that can calculate the concentration. Then, from the region where the primary ore samples A, B, C, and D were collected, the primary ore samples F, G ..., In the second mineral sample newly collected in a timely manner following the primary ore sample E, ... By applying the linear regression equation for calculating the concentration of the element to be analyzed, the concentration of the element to be analyzed contained in the primary ore sample in these second mineral samples can be easily calculated. It was.
Hereinafter, regarding a method for easily calculating the concentration of the analysis target element contained in the ore sample, <1> the relationship between the water content of the ore sample and the corrected X-ray intensity, and <2> the analysis target contained in the ore sample. The calculation of the element concentration will be described in detail in this order.

〈1〉鉱石試料の水分率と補正X線強度との関係
本発明者らは、第一の鉱物試料における三次鉱石試料に含有される分析対象元素の二次(蛍光)X線強度の値をコンプトン散乱X線強度の値で除した値を補正X線強度と定義した。すると、各三次鉱石試料の水分率と補正X線強度との間には、直線回帰式(本発明において「第二の直線回帰式」と記載する場合がある。)にて近似出来る関係があるとの知見を得た。そして当該知見より、上述した所定量の水分が添加された第一の鉱石試料において補正X線強度を算出する一方、コンプトン散乱X線強度の値から当該鉱石試料の水分量を求め、得られた補正X線強度の値と水分量の値とから、水分率0%における補正X線強度を算出出来ることに想到した。
尚、第二の直線回帰式は、例えば最小二乗法を用いて求めることが出来る。以下で説明する第一の直線回帰式も同様である。
以下、第一の鉱石試料の水分率と補正X線強度との関係について説明する。
<1> Relationship between the water content of the ore sample and the corrected X-ray intensity The present inventors set the value of the secondary (fluorescent) X-ray intensity of the analysis target element contained in the tertiary ore sample in the first mineral sample. The value divided by the value of Compton scattered X-ray intensity was defined as the corrected X-ray intensity. Then, there is a relationship between the water content of each tertiary ore sample and the corrected X-ray intensity that can be approximated by a linear regression equation (may be described as a "second linear regression equation" in the present invention). I got the finding. Then, from the above-mentioned findings, the corrected X-ray intensity was calculated for the first ore sample to which the above-mentioned predetermined amount of water was added, while the water content of the ore sample was obtained from the value of the Compton scattered X-ray intensity. We came up with the idea that the corrected X-ray intensity at a moisture content of 0% can be calculated from the value of the corrected X-ray intensity and the value of the water content.
The second linear regression equation can be obtained by using, for example, the least squares method. The same applies to the first linear regression equation described below.
Hereinafter, the relationship between the water content of the first ore sample and the corrected X-ray intensity will be described.

図6は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aに含有される分析対象元素の蛍光X線強度をY軸にとって、両者の関係を示したグラフである。
図6より、第一の鉱石試料Aに含有される分析対象元素の蛍光X線強度は、当該鉱石試料Aの水分率が高くなると、低下する傾向があることが判明した。
尚、鉱石試料Aの性状は、水分率0〜20質量%において粉末状、30質量%において塊状、40〜50質量%においてスラリー状であった。そして、○で囲った水分率30質量%の試料は、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことによる、蛍光X線強度低下の結果であると考えられる。
FIG. 6 is a graph showing the relationship between the first ore sample A with the moisture content on the X-axis and the fluorescent X-ray intensity of the analysis target element contained in the ore sample A on the Y-axis.
From FIG. 6, it was found that the fluorescent X-ray intensity of the element to be analyzed contained in the first ore sample A tends to decrease as the water content of the ore sample A increases.
The properties of the ore sample A were powdery at a water content of 0 to 20% by mass, lumpy at 30% by mass, and slurry at 40 to 50% by mass. Then, in the sample with a moisture content of 30% by mass circled, the measurement surface became sparse and the X-ray irradiation area became smaller due to the lumpiness of the sample in addition to the decrease in fluorescence X-ray intensity due to moisture. It is considered that this is the result of the decrease in fluorescent X-ray intensity.

図7は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aからのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。
図7より、第一の鉱石試料Aに含有される分析対象元素からのコンプトン散乱X線強度は、当該鉱石試料の水分率が高くなると、上昇する傾向があり、各三次鉱石試料の水分率とコンプトン散乱X線強度との間には、直線回帰式(本発明において「第一の直線回帰式」と記載する場合がある。)にて近似出来る関係があるとの知見を得た。
これは、コンプトン散乱X線強度が、X線の質量吸収係数が小さい物質において大きくなることに起因していると考えられ、図7の結果は、鉱石試料の水分率の増加が反映した結果だと考えられる。
また、○で囲った鉱物試料A(水分率30質量%)は、図6においても説明したように、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことによる、コンプトン散乱X線強度低下の結果であると考えられる。そこで、塊状となった鉱物試料A(水分率30質量%)のデータは用いずに、第一の直線回帰式を求めた。
FIG. 7 is a graph showing the relationship between the first ore sample A with the moisture content on the X-axis and the Compton scattered X-ray intensity from the ore sample A on the Y-axis.
From FIG. 7, the Compton scattered X-ray intensity from the analysis target element contained in the first ore sample A tends to increase as the water content of the ore sample increases, and the water content of each tertiary ore sample and the water content of each tertiary ore sample. It was found that there is a relationship that can be approximated by the Compton scattered X-ray intensity by a linear regression equation (may be referred to as "first linear regression equation" in the present invention).
This is thought to be due to the fact that the Compton scattered X-ray intensity increases in substances with a small X-ray mass absorption coefficient, and the results in FIG. 7 reflect the increase in the water content of the ore sample. it is conceivable that.
Further, as described in FIG. 6, the measurement surface of the mineral sample A (moisture content: 30% by mass) circled is sparse due to the lumpiness of the sample in addition to the decrease in fluorescent X-ray intensity due to moisture. This is considered to be the result of the decrease in Compton scattered X-ray intensity due to the reduction in the X-ray irradiation area. Therefore, the first linear regression equation was obtained without using the data of the lumpy mineral sample A (moisture content: 30% by mass).

そして、一次鉱石試料A〜Dより導かれた4種の第一の直線回帰式は、実質的に同一である第一の直線回帰式となる。これは、コンプトン散乱X線強度が一次鉱石試料の水分率に起因すること、および、一次鉱石試料A〜Dのマトリックス部分の元素組成は実質的に同一あることによると考えられる。この第一の直線回帰式における実質的な同一性は、この後に採取される一次鉱石試料Eや、それ以降の一次鉱石試料F、G・・・においても同様であると考えられる。
従って、一次鉱石試料E以降の一次鉱石試料においては、コンプトン散乱X線強度の値と第一の直線回帰式とから、当該一次鉱石試料の水分率を算出することが出来る。
Then, the four types of first linear regression equations derived from the primary ore samples A to D are the first linear regression equations that are substantially the same. It is considered that this is because the Compton scattered X-ray intensity is due to the water content of the primary ore sample, and the elemental composition of the matrix portion of the primary ore samples A to D is substantially the same. Substantial identity in this first linear regression equation is considered to be the same for the primary ore sample E collected thereafter and the subsequent primary ore samples F, G ...
Therefore, in the primary ore sample after the primary ore sample E, the water content of the primary ore sample can be calculated from the value of the Compton scattered X-ray intensity and the first linear regression equation.

図8は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aに含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、両者の関係を示したグラフである。
第一の鉱石試料Aの水分率の値と補正X線強度の値とは、第二の直線回帰式で表せる関係を有していることが判明した。
但し、○で囲った鉱物試料A(水分率30質量%)は、他の水分率を有する試料に比べて若干関係の近似性が劣ることも判明した。これは、図6、7においても説明したように、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になって平滑でなくなり、X線照射面積が小さくなったことによると考えられる。そこで、塊状となった鉱物試料A(水分率30質量%)のデータは用いずに、第二の直線回帰式を求めた。
FIG. 8 shows the value of the corrected X-ray intensity obtained by taking the moisture content of the first ore sample A on the X-axis and dividing the fluorescent X-ray intensity of the analysis target element contained in the ore sample A by the Compton scattered X-ray intensity. It is a graph showing the relationship between the two for the Y-axis.
It was found that the value of the water content of the first ore sample A and the value of the corrected X-ray intensity have a relationship that can be expressed by the second linear regression equation.
However, it was also found that the mineral sample A (moisture content: 30% by mass) circled with a circle is slightly inferior in the closeness of the relationship to the samples having other moisture content. This is because, as described in FIGS. 6 and 7, in addition to the decrease in fluorescent X-ray intensity due to moisture, the sample becomes lumpy, so that the measurement surface becomes sparse and not smooth, and the X-ray irradiation area is small. It is probable that it became. Therefore, the second linear regression equation was obtained without using the data of the agglomerated mineral sample A (moisture content: 30% by mass).

〈2〉鉱石試料に含有される分析対象元素の濃度の算出
上述した第一の鉱石試料Aの水分率と当該鉱石試料の補正X線強度との間における、第二の直線回帰式で表せる関係は、第一の鉱石試料B〜Dにおいても確認出来た。そこで、塊状となった鉱物試料B〜D(水分率30質量%)のデータは用いずに、第二の直線回帰式を求めた。
当該知見より、所定量の水分率を有する第一の鉱石試料A〜Dにおいて、当該水分率の値と補正X線強度との値へ、鉱石試料A〜Dの各々の試料に係る第二の直線回帰式を適用すれば、水分率0%における補正後強度を計算することが出来ることに想到した。
<2> Calculation of the concentration of the element to be analyzed contained in the ore sample The relationship that can be expressed by the second linear regression equation between the water content of the first ore sample A described above and the corrected X-ray intensity of the ore sample. Was also confirmed in the first ore samples B to D. Therefore, the second linear regression equation was obtained without using the data of the agglomerated mineral samples B to D (moisture content: 30% by mass).
Based on this finding, in the first ore samples A to D having a predetermined amount of water content, the value of the water content and the corrected X-ray intensity are changed to the second value of each of the ore samples A to D. We came up with the idea that the corrected strength at a moisture content of 0% can be calculated by applying the linear regression equation.

本発明者らは、第一の鉱石試料A〜D各々の試料に係る第二の直線回帰式を検討したところ、これらの直線回帰式を外挿して補正X線強度の値が0になる点(X切片)において、水分率の値がほぼ同一であることを知見した。 When the present inventors examined the second linear regression equations for each of the first ore samples A to D, the point that the value of the corrected X-ray intensity becomes 0 by extrapolating these linear regression equations. In (X section), it was found that the values of water content were almost the same.

そして、当該知見より、第一の鉱石試料A〜Dが存在する領域から採取された、第二の鉱石試料E、F、G・・・の水分率と補正X線強度が測定値と、上述した補正X線強度の値が0になる点(X切片)の値とから、水分率0%における鉱石試料E、F、G・・・の補正X線強度を計算することが出来ることに想到した。当該水分率0%における鉱石試料E、F、G・・・の補正X線強度が判明すれば、第二の鉱石試料E、F、G・・・に含有される分析対象元素の濃度は容易に算出出来る。
また、第一の鉱石試料A〜D各々の試料に係る第二の直線回帰式における補正X線強度の値が0になる点(X切片)の値に、若干のズレがある場合は、これらの平均値を用いることが好ましい。
Then, from the above-mentioned findings, the water content and the corrected X-ray intensity of the second ore samples E, F, G ... Collected from the region where the first ore samples A to D exist are the measured values and the above-mentioned. It was conceived that the corrected X-ray intensity of the ore samples E, F, G ... At a moisture content of 0% can be calculated from the value of the point (X section) where the corrected X-ray intensity value becomes 0. did. If the corrected X-ray intensity of the ore samples E, F, G ... At the moisture content of 0% is known, the concentration of the element to be analyzed contained in the second ore sample E, F, G ... Is easy. Can be calculated.
In addition, if there is a slight deviation in the value of the point (X-intercept) where the value of the corrected X-ray intensity in the second linear regression equation for each of the first ore samples A to D becomes 0, these It is preferable to use the average value of.

具体的には、スラリー状になる水分率を有する第二の鉱石試料E、F、G・・・へ1次X線を照射し、当該鉱石試料E、F、G・・・に含有される分析対象元素の蛍光X線強度と、コンプトン散乱X線強度とを測定する。そしてコンプトン散乱X線強度から第一の直線回帰式を用いて水分率を求め、分析対象元素の蛍光X線強度の値をコンプトン散乱X線強度の値で除して、補正X線強度を算出した。
そして、算出された第二の鉱石試料E、F、G・・・の水分率の値と補正X線強度、および、上述したX切片の値とから、第二の鉱石試料E、F、G・・・に係る1次式を算出し(本発明において「第三の1次式」と記載する場合がある。)、当該第三の1次式を外挿して水分率が0質量%となる点(Y切片)における補正X線強度の値を求めることで、水分率0%における第二の鉱石試料E、F、G・・・の補正X線強度が判明した。
Specifically, the second ore samples E, F, G ... Having a water content in the form of a slurry are irradiated with primary X-rays and contained in the ore samples E, F, G ... The fluorescent X-ray intensity of the element to be analyzed and the Compton scattered X-ray intensity are measured. Then, the moisture content is obtained from the Compton scattered X-ray intensity using the first linear regression equation, and the value of the fluorescent X-ray intensity of the element to be analyzed is divided by the value of the Compton scattered X-ray intensity to calculate the corrected X-ray intensity. did.
Then, from the calculated values of the water content of the second ore samples E, F, G ..., the corrected X-ray intensity, and the value of the X-intercept described above, the second ore samples E, F, G ... ... (In the present invention, it may be described as a "third linear equation"), and the third linear equation is extrapolated so that the water content is 0% by mass. By obtaining the value of the corrected X-ray intensity at the point (Y-intercept), the corrected X-ray intensity of the second ore samples E, F, G ... At a moisture content of 0% was found.

以下、同様に、第一の鉱石試料A、B、C、Dを採取した領域から、第二の鉱石試料Eに続いて、適時、新規に採取される第二の鉱石試料F、G、H・・・・・、においても、第二の鉱石試料Eと同様の測定、および、各々の第二の鉱石試料における第三の1次式を適用することにより、含有される分析対象元素の濃度は容易に算出出来た。
この結果、第二の鉱石試料E、F、G・・・においては乾燥工程を経ることなく、迅速且つ容易に含有される分析対象元素の濃度を求めることが出来た。即ち、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来た。
Hereinafter, similarly, from the region where the first ore samples A, B, C, and D are collected, the second ore samples F, G, and H are newly collected in a timely manner following the second ore sample E. In ..., the concentration of the element to be analyzed contained by the same measurement as that of the second ore sample E and by applying the third linear equation in each second ore sample. Was easy to calculate.
As a result, it was possible to quickly and easily determine the concentration of the element to be analyzed contained in the second ore samples E, F, G ... Without going through the drying step. That is, the concentration of the element to be analyzed contained in the ore sample containing water could be analyzed quickly and easily by using the fluorescent X-ray analysis method.

2.鉱石試料に含有される分析対象元素の濃度を分析する方法
原料鉱石から鉱石試料をサンプリングし、当該鉱石試料に含有される分析対象元素の濃度を、迅速、簡便に、精度よく分析する方法について、図面を参照しながら説明する。
図1は、本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図であり、(1)試料分取工程、(2)流動性の確認工程、(3)純水添加混合工程、(4)測定容器内への充填工程、(5)二次X線およびコンプトン散乱X線の測定と分析結果の算出工程、の各工程を有する。以下、各工程毎に説明する。
2. Method of analyzing the concentration of the element to be analyzed contained in the ore sample A method of sampling the ore sample from the raw material ore and analyzing the concentration of the element to be analyzed contained in the ore sample quickly, easily and accurately. This will be described with reference to the drawings.
FIG. 1 is a process diagram showing an outline of a sample preparation process in the sample preparation method for fluorescent X-ray analysis according to an embodiment of the present invention, and is a process diagram of (1) sample preparation step and (2) fluidity confirmation step. , (3) Pure water addition and mixing step, (4) Filling step into the measuring container, (5) Measurement of secondary X-ray and Compton scattered X-ray and calculation step of analysis result. Hereinafter, each step will be described.

(1)試料分取工程
本発明が対象とする鉱石試料は、原料鉱石からサンプリングされたものである。原料鉱石から、例えば鉱石試料A〜Dをサンプリングする際は、上述したように、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する。一方、鉱石試料A、B、C、Dを採取した鉱石の領域から、適時、鉱石試料E、F、G・・・を採取する。
(1) Sample preparation process The ore sample targeted by the present invention is sampled from the raw material ore. When sampling ore samples A to D from the raw material ore, for example, the ore samples are sampled from a range as far as possible from each other as described above. On the other hand, ore samples E, F, G ... Are timely collected from the ore region from which the ore samples A, B, C and D have been collected.

(2)流動性の確認工程
前記分取した適量の鉱石試料の形態や流動性を確認する。
例えば、当該鉱石試料を測定容器内に移入し、当該測定容器を振ったり、容器の壁をたたいたりするなどして、鉱石試料を密に充填することを試みた後、当該測定容器の底面に張られたフィルム面において、平滑な測定面を得ることが出来ているか確認することも好ましい。
この結果、当該鉱石試料の形態が、例えば図2に示すように塊状、または粘土状であって、測定容器内に充填した際、例えば図3に示すように前記フィルム面において鉱石試料との間に多数の空隙が存在したりして、平滑な測定面を得ることが困難と考えられるときは、次の純水添加混合工程に進む。
(2) Flowability confirmation step The morphology and fluidity of the separated appropriate amount of ore sample are confirmed.
For example, the ore sample is transferred into the measuring container, the measuring container is shaken, or the wall of the container is struck to try to densely fill the ore sample, and then the bottom surface of the measuring container is used. It is also preferable to confirm whether a smooth measurement surface can be obtained on the film surface stretched on the surface.
As a result, the morphology of the ore sample is, for example, lumpy or clay-like as shown in FIG. 2, and when filled in the measuring container, for example, as shown in FIG. 3, between the ore sample and the ore sample. If it is considered difficult to obtain a smooth measurement surface due to the presence of a large number of voids in the clay, the process proceeds to the next pure water addition and mixing step.

(3)純水添加混合工程
鉱石試料を、例えばプラスチック製の密閉可能な容器に移入する。そして、当該鉱石試料中に塊があれば、これをスパチュラ等で解砕する。その後、試料質量に対して例えば5質量%程度の純水を添加し容器を密閉後、当該容器を上下に振る等によって攪拌する。当該攪拌後、容器の蓋を開け、当該容器を動かしながら、鉱石試料の塊が認められないことを目視で確認する。一方、塊が認められた場合は、再度、純水を例えば5質量%追加で加え攪拌を続ける。
(3) Pure water addition and mixing step The ore sample is transferred into, for example, a plastic container that can be sealed. Then, if there is a lump in the ore sample, it is crushed with a spatula or the like. Then, for example, about 5% by mass of pure water is added to the sample mass to seal the container, and then the container is stirred by shaking it up and down. After the stirring, the lid of the container is opened, and while moving the container, it is visually confirmed that no lump of ore sample is observed. On the other hand, if lumps are observed, pure water is added again, for example, by adding 5% by mass, and stirring is continued.

鉱石試料によっては、容器の上下攪拌だけでは塊の解砕が困難な場合がある。このような場合は、容器内にボールミル粉砕用のボールを加えて攪拌を続ける。このとき、ボールの材質としては、測定対象元素に含まれない元素で構成されていることが好ましい。 Depending on the ore sample, it may be difficult to crush the lump only by stirring the container up and down. In such a case, a ball for crushing the ball mill is added into the container and stirring is continued. At this time, the material of the ball is preferably composed of an element not included in the element to be measured.

含まれる塊の解砕が終わった鉱石試料の状態の一例を図4に示す。当該塊の解砕が終わった鉱石試料を測定容器に移入し、底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることが図5より確認できた。 FIG. 4 shows an example of the state of the ore sample in which the contained mass has been crushed. It was confirmed from FIG. 5 that the ore sample after crushing the mass was transferred to the measuring container, and no bubbles or spaces were observed on the film surface stretched on the bottom surface, and a smooth measuring surface could be obtained. did it.

しかしながら、鉱石試料への純水の過剰添加等により、試料の流動性が高すぎこととなった場合、粗大な粒子と微細な粒子が相分離を起こすため、分析値の誤差要因となり得る。そこで鉱石試料への純水添加量の総量は、乾燥した鉱石試料の50質量%以下とすることが好ましいと考えられる。
そして鉱石試料の流動性の目安としては、降伏応力が50Pa以上200Pa以下の範囲を示す状態が好ましいと考えられる。
However, if the fluidity of the sample becomes too high due to excessive addition of pure water to the ore sample, coarse particles and fine particles undergo phase separation, which may cause an error in the analytical value. Therefore, it is considered preferable that the total amount of pure water added to the ore sample is 50% by mass or less of the dried ore sample.
As a guideline for the fluidity of the ore sample, it is considered preferable that the yield stress is in the range of 50 Pa or more and 200 Pa or less.

(4)測定容器内への充填工程
適宜な流動性を付与された鉱石試料を測定容器内へ充填する。当該測定容器の底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることを確認する。
もし、鉱石試料の流動性不足により平滑な測定面を得ることが出来ていない場合は、「(3)純水添加混合工程」へ戻って、鉱石試料への純水添加、混合を再度実施する。
(4) Filling step into the measuring container The ore sample to which appropriate fluidity is given is filled into the measuring container. It is confirmed that no air bubbles or spaces are observed on the film surface stretched on the bottom surface of the measuring container, and a smooth measuring surface can be obtained.
If a smooth measurement surface cannot be obtained due to insufficient fluidity of the ore sample, return to "(3) Pure water addition and mixing step" and perform pure water addition and mixing to the ore sample again. ..

(5)二次X線およびコンプトン散乱X線の測定と分析結果の算出工程
蛍光X線分析装置を用い、鉱石試料A〜Dからの二次X線強度とコンプトン散乱X線強度の値とを測定し、当該測定結果から、「1.鉱石試料に含有される分析対象元素の定量方法、(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程、〈2〉鉱石試料に含有される分析対象元素の濃度の算出」にて説明したように、第一の直線回帰式を求める。
次に、鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、第二の直線回帰式を求める。そして第二の直線回帰式を外挿して、補正X線強度の値が0となる点(X切片)における水分率の値を算出する。
一方、鉱石試料E、F、G・・・の二次X線強度とコンプトン散乱X線強度とから、補正X線強度と水分率を算出する。そして、当該補正X線強度と水分率との値を、上述した鉱石試料の水分率をX軸にとり、当該鉱石試料に含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、両者の関係を示したグラフにプロットし、上述したX切片と当該プロット点を結ぶ第三の1次式において水分率が0となる点(Y切片)の値を算出する。当該Y切片の値は、鉱石試料E、F、G・・・の水分率0%における補正X線強度と考えられるので、この値から、鉱石試料に含有される分析対象元素の濃度を算出する。
(5) Measurement of secondary X-rays and Compton scattered X-rays and calculation of analysis results Using a fluorescent X-ray analyzer, the secondary X-ray intensity from ore samples A to D and the value of Compton scattered X-ray intensity are measured. The measurement is performed, and from the measurement result, "1. Quantification method of the analysis target element contained in the ore sample, (3) the relationship between the concentration of the analysis target element and the corrected X-ray intensity generated from the analysis target element is obtained. As explained in the step, <2> Calculation of the concentration of the element to be analyzed contained in the ore sample, "the first linear regression equation is obtained.
Next, the moisture content of the ore sample is taken on the X-axis, and the value of the corrected X-ray intensity obtained by dividing the fluorescent X-ray intensity of the analysis target element contained in the ore sample by the Compton scattered X-ray intensity is taken as the second axis. Find the linear regression equation of. Then, the second linear regression equation is extrapolated to calculate the value of the water content at the point (X-intercept) where the value of the corrected X-ray intensity becomes 0.
On the other hand, the corrected X-ray intensity and the water content are calculated from the secondary X-ray intensity of the ore samples E, F, G ... And the Compton scattered X-ray intensity. Then, the values of the corrected X-ray intensity and the moisture content are taken with the moisture content of the above-mentioned ore sample as the X-axis, and the fluorescent X-ray intensity of the analysis target element contained in the ore sample is divided by the Compton scattered X-ray intensity. The value of the corrected X-ray intensity is plotted on a graph showing the relationship between the two on the Y-axis, and the point at which the water content becomes 0 in the third linear equation connecting the above-mentioned X-intercept and the plot point (Y-intercept). ) Is calculated. Since the value of the Y-intercept is considered to be the corrected X-ray intensity at the moisture content of 0% of the ore samples E, F, G ..., the concentration of the analysis target element contained in the ore sample is calculated from this value. ..

(6)まとめ
以上、説明した(1)〜(5)の工程を、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石において実施し、一旦、第一および第二の直線回帰式を求めた後は、当該一の鉱石採掘場や、鉱石の一の鉱脈等から新たに採取された鉱石試料が、塊状であったり粘土状であったりしても、蛍光X線分析装置を用いて、迅速、簡便に分析対象元素の濃度を精度よく分析することが出来た。
(6) Summary The steps (1) to (5) described above are carried out in the raw material ore existing in, for example, one ore mining site, one vein of a predetermined ore, etc., and once, the first and first steps are carried out. After obtaining the two linear regression equations, even if the ore sample newly collected from the one ore mine or one vein of the ore is lumpy or clay-like, fluorescent X Using a line analyzer, we were able to quickly and easily analyze the concentration of the element to be analyzed with high accuracy.

(実施例1)
〈試料の調製〉
非鉄金属鉱山の原料鉱石の、互いに離れた範囲の4箇所から、A、B、C、D4種の鉱石試料をサンプリングした。当該鉱石試料はいずれも塊状を有しており、水分率は30質量%であった。当該塊状を有する鉱石試料A(水分率30質量%)の外観を図2に示す。
当該塊状を有する鉱石試料Aを測定容器内に充填した際、当該測定容器底部のフィルム面より見た外観を図3に示す。図3から解るように、フィルムと鉱石試料との間に多数の空隙が存在した。
(Example 1)
<Preparation of sample>
Four types of ore samples A, B, C, and D were sampled from four locations in the raw material ore of the non-ferrous metal mine, which were separated from each other. All of the ore samples were lumpy and had a water content of 30% by mass. The appearance of the ore sample A (moisture content: 30% by mass) having the lump shape is shown in FIG.
FIG. 3 shows the appearance of the ore sample A having a lump shape as seen from the film surface at the bottom of the measuring container when the measuring container is filled. As can be seen from FIG. 3, there were many voids between the film and the ore sample.

そこで、[実施の形態]欄の「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明したように、鉱石試料中の水分率を調整した。
具体的には、まず鉱石試料Aを乾燥して鉱石試料A(水分率0質量%)とした。次に、鉱石試料A(水分率0質量%)を8分割して、それぞれをプラスチック製の密閉可能な容器へ入れ、そのまま、または、所定量の純水を添加し、容器を密閉後に当該容器を上下に振って攪拌した。そして、鉱石試料A(水分率0質量%)、鉱石試料A(水分率5質量%)、鉱石試料A(水分率10質量%)、鉱石試料A(水分率15質量%)、鉱石試料A(水分率20質量%)、鉱石試料A(水分率30質量%)、鉱石試料A(水分率40質量%)、鉱石試料A(水分率50質量%)を調製した。
攪拌後に当該容器の蓋を開け、当該容器を動かしながら鉱石試料の塊が認められるかを目視で確認したところ、鉱石試料A(水分率30質量%)に塊が認められた。他の鉱石試料には塊が認められなかった。
Therefore, as described in "2. Method for analyzing the concentration of the element to be analyzed contained in the ore sample" in the [Embodiment] column, the water content in the ore sample was adjusted.
Specifically, first, the ore sample A was dried to obtain the ore sample A (moisture content: 0% by mass). Next, the ore sample A (moisture content 0% by mass) is divided into eight parts, each of which is placed in a plastic sealable container, and the container is sealed as it is or a predetermined amount of pure water is added to the container. Was shaken up and down to stir. Then, ore sample A (moisture content 0% by mass), ore sample A (moisture content 5% by mass), ore sample A (moisture content 10% by mass), ore sample A (moisture content 15% by mass), ore sample A (moisture content 15% by mass). Moisture content 20% by mass), ore sample A (moisture content 30% by mass), ore sample A (moisture content 40% by mass), ore sample A (moisture content 50% by mass) were prepared.
After stirring, the lid of the container was opened, and while moving the container, it was visually confirmed whether ore lumps were observed. As a result, lumps were observed in the ore sample A (moisture content: 30% by mass). No lumps were found in the other ore samples.

これらの鉱石試料Aを、それぞれ蛍光X線分析装置の試料測定容器内に充填した。このときの、鉱石試料A(水分率40質量%)の外観を図4に、測定容器における測定面側から見た外観を図5に示す。図5から解るように、フィルムと鉱石試料との間には空隙が存在せず、平滑な測定面を得ることが出来ていることが確認出来た。
尚、当該純水添加後の鉱石試料の測定容器への充填が完了したら、迅速に二次X線とコンプトン散乱X線との測定を開始した。攪拌が終わった鉱石試料を長時間静置すると、粗大な粒子と微細な粒子との相分離が進行し、分析値の誤差要因となり得るからである。
Each of these ore samples A was filled in the sample measurement container of the fluorescent X-ray analyzer. The appearance of the ore sample A (moisture content: 40% by mass) at this time is shown in FIG. 4, and the appearance of the ore sample A as seen from the measurement surface side is shown in FIG. As can be seen from FIG. 5, it was confirmed that there were no voids between the film and the ore sample, and a smooth measurement surface could be obtained.
When the filling of the ore sample after the addition of pure water into the measuring container was completed, the measurement of the secondary X-ray and the Compton scattered X-ray was started promptly. This is because if the ore sample after stirring is allowed to stand for a long time, phase separation between coarse particles and fine particles progresses, which may cause an error in the analytical value.

〈二次X線とコンプトン散乱X線との測定〉
鉱石試料A(水分率0質量%〜50質量%)の平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。
水分率をX軸に、Niの二次X線の強度をY軸にとったグラフを図6に、水分率をX軸に、コンプトン散乱X線強度をY軸にとったグラフを図7に示す。
図7のグラフより、水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式を最小二乗法により求めたところ式1が得られた。

Y=−0.0685X+2.0184・・・・(式1)

次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。そして、水分率の値をX軸に、算出されたNiの補正X線強度をY軸にとったグラフを図8に示す。水分率と補正X線強度の値との関係を示す第二の直線回帰式を最小二乗法により求めたところ、Niに関しては式2が得られた。尚、式1、式2を求める際、塊状となった鉱物試料A(水分率30質量%)のデータは用いなかった。また、X線管としては、ロジウムターゲットX線管を用いた。

Y=−0.2477X+18.777・・・・(式2)
<Measurement of secondary X-rays and Compton scattered X-rays>
The smooth measurement surface of the ore sample A (moisture content 0% by mass to 50% by mass) is irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, which is the element to be analyzed, and Compton scattered X-rays. The intensity and was measured.
FIG. 6 shows a graph with the moisture content on the X-axis and the intensity of Ni secondary X-rays on the Y-axis, and FIG. 7 shows a graph with the Compton scattered X-ray intensity on the Y-axis. Shown.
From the graph of FIG. 7, when the first linear regression equation showing the relationship between the water content and the Compton scattered X-ray intensity was obtained by the least squares method, Equation 1 was obtained.

Y = -0.0685X + 2.0184 ... (Equation 1)

Next, the corrected X-ray intensity was calculated by dividing the value of the intensity of the secondary X-ray by the value of the Compton scattered X-ray intensity. FIG. 8 shows a graph in which the value of the water content is taken on the X-axis and the calculated corrected X-ray intensity of Ni is taken on the Y-axis. When the second linear regression equation showing the relationship between the water content and the value of the corrected X-ray intensity was obtained by the least squares method, Equation 2 was obtained for Ni. When formulas 1 and 2 were obtained, the data of the lumpy mineral sample A (moisture content: 30% by mass) was not used. A rhodium target X-ray tube was used as the X-ray tube.

Y = -0.2477X + 18.777 ... (Equation 2)

以上説明した鉱石試料Aに対する操作を鉱石試料B〜Dに対しても行った。
第一の直線回帰式は、鉱石試料A〜Dにおいて実質的に一致した。また、鉱石試料A〜Dのそれぞれにおいて、Niに関する第二の直線回帰式を求めた。そして、鉱石試料A〜DのNiに関する第二の直線回帰式のX切片の値として75.8を得た。
The operation for the ore sample A described above was also performed for the ore samples B to D.
The first linear regression equation was substantially consistent with ore samples A through D. In addition, the second linear regression equation for Ni was obtained for each of the ore samples A to D. Then, 75.8 was obtained as the value of the X-intercept of the second linear regression equation for Ni of the ore samples A to D.

次に、鉱石試料Eをサンプリングした。当該鉱石試料も塊状を有していたので純水を添加し、測定容器底部のフィルム面と鉱石試料との間には空隙が存在しない状態とした。そして鉱石試料Eの平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。そして、測定されたコンプトン散乱X線強度へ式1で示す第一の直線回帰式を適用して、純水を添加した鉱石試料Eの水分率を算出した。次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。算出された鉱石試料Eの水分率と補正X線強度とが示す点を、上述した図8に示すグラフにプロットし、上述したX切片と当該プロット点とを通る直線の1次式を求め、当該1次式を外挿してY切片の値を得た。そして当該Y切片の値として、鉱石試料Eの水分率0質量におけるNiの補正X線強度を得た。 Next, the ore sample E was sampled. Since the ore sample also had a lump, pure water was added so that there were no voids between the film surface at the bottom of the measuring container and the ore sample. Then, the smooth measurement surface of the ore sample E was irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, which is the element to be analyzed, and the intensity of Compton scattered X-rays were measured. Then, the first linear regression equation represented by Equation 1 was applied to the measured Compton scattered X-ray intensity to calculate the water content of the ore sample E to which pure water was added. Next, the corrected X-ray intensity was calculated by dividing the value of the intensity of the secondary X-ray by the value of the Compton scattered X-ray intensity. The points indicated by the calculated water content of the ore sample E and the corrected X-ray intensity are plotted on the graph shown in FIG. 8 described above, and the linear equation of the straight line passing through the above-mentioned X-intercept and the plotted points is obtained. The linear equation was extrapolated to obtain the value of the Y-intercept. Then, as the value of the Y-intercept, the corrected X-ray intensity of Ni at the moisture content of 0 mass of the ore sample E was obtained.

そして、当該Niの補正X線強度へ、水分率0質量%におけるコンプトンX線強度を乗じて、鉱石試料Eに係る水分率0質量%におけるNiの二次X線強度の値を求め、当該結果を表1の水分率補正後強度欄に示した。 Then, the corrected X-ray intensity of Ni is multiplied by the Compton X-ray intensity at 0% by mass of the moisture content to obtain the value of the secondary X-ray intensity of Ni at 0 mass% of the moisture content of the ore sample E. Is shown in the strength column after moisture content correction in Table 1.

以下、鉱石試料中のAl、Siについても、上述したNiの場合と同様の測定と操作を行って、鉱石試料Eの水分率0質量におけるAl、Siの二次X線強度の値を求めた。
そして、当該補正X線強度へ水分率0質量%におけるコンプトンX線強度を乗じて、鉱石試料Eにおける水分率0質量%における、Al、Siについての二次X線強度の値を求め、当該結果を表1の水分率補正後強度欄に示した。
Hereinafter, with respect to Al and Si in the ore sample, the same measurements and operations as in the case of Ni described above were carried out to obtain the values of the secondary X-ray intensities of Al and Si at the moisture content of 0 mass of the ore sample E. ..
Then, the corrected X-ray intensity is multiplied by the Compton X-ray intensity at a moisture content of 0% by mass to obtain the secondary X-ray intensity values for Al and Si at a moisture content of 0% by mass in the ore sample E, and the result is obtained. Is shown in the strength column after moisture content correction in Table 1.

尚、実施例1および後述する比較例1において使用した蛍光X線装置は、Malvern Panalytical社製のAxios Advanced 4kWである。 The fluorescent X-ray apparatus used in Example 1 and Comparative Example 1 described later is Axios Advanced 4 kW manufactured by Malvern Panasonic.

尚、表1において、基準強度(水分率0質量%)とは、本実施例の効果を確認する為に、敢えて鉱石試料Eを乾燥して作製した乾燥済みの鉱石試料E(水分率0質量%)からの分析対象元素(Ni、Al、Si)に係る二次X線強度(バックグラウンド補正後)であり、実測強度とは鉱石試料E(塊が認められなかった状態:水分率40質量%)からの分析対象元素(Ni、Al、Si)に係る二次X線強度である。
また、基準値との相対差とは、式3の値である。

相対差(%)=[基準強度(水分率0質量%)−水分率補正後強度]/基準強度(水分率0質量%)・・・・(式3)
In Table 1, the reference strength (moisture content 0% by mass) is the dried ore sample E (moisture content 0 mass%) prepared by intentionally drying the ore sample E in order to confirm the effect of this embodiment. %) Is the secondary X-ray intensity (after background correction) related to the analysis target element (Ni, Al, Si), and the measured intensity is the ore sample E (state in which no lump is observed: moisture content 40 mass). %) Is the secondary X-ray intensity related to the analysis target element (Ni, Al, Si).
The relative difference from the reference value is the value of Equation 3.

Relative difference (%) = [Reference strength (moisture content 0% by mass) -moisture content corrected strength] / Reference strength (moisture content 0% by mass) ... (Equation 3)

表1の結果より、水分率補正後強度と基準強度(水分率0質量%)との差は、Ni、Al、Siのいずれの元素においても相対差で10%未満であった。即ち、鉱石試料Eを乾燥することなく、逆に純水を添加した鉱石試料Eから測定した二次X線強度と、コンプトン散乱X線強度とから、水分率0質量%における鉱石試料Eの補正X線強度の値を精度良く求めることが出来た。この結果、本発明に係る水分率補正方法が有効であることが理解できる。従って、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが理解できる。 From the results in Table 1, the difference between the strength after water content correction and the reference strength (moisture content 0% by mass) was less than 10% as a relative difference for any of the elements Ni, Al, and Si. That is, the correction of the ore sample E at a moisture content of 0% by mass from the secondary X-ray intensity measured from the ore sample E to which pure water was added without drying the ore sample E and the Compton scattered X-ray intensity. The value of X-ray intensity could be obtained with high accuracy. As a result, it can be understood that the moisture content correction method according to the present invention is effective. Therefore, the concentration of the analysis target element contained in the ore sample containing water can be quickly and easily analyzed by using the fluorescent X-ray analysis method, and the analysis target contained in the ore sample in the form of a lump or clay. It can be understood that the concentration of the element is analyzed quickly and easily by using the fluorescent X-ray analysis method.

(比較例1)
実施例1で使用した塊状を有する鉱石試料(水分率30質量%)へ純水を添加することなく、そのまま測定容器内に充填した。その際、上述したように、フィルムと鉱石試料との間に多数の空隙が存在した(図3参照)。
当該測定容器を蛍光X線測定装置へ入れ、試料中のNi、Al、Siから発生する二次X線の強度を測定した以外は、実施例1と同様の操作と測定を行った。
当該結果を表2に示す。
(Comparative Example 1)
The lumpy ore sample (moisture content: 30% by mass) used in Example 1 was filled in the measuring container as it was without adding pure water. At that time, as described above, a large number of voids were present between the film and the ore sample (see FIG. 3).
The same operation and measurement as in Example 1 were performed except that the measuring container was placed in a fluorescent X-ray measuring device and the intensity of secondary X-rays generated from Ni, Al, and Si in the sample was measured.
The results are shown in Table 2.

表2の結果より、水分率補正後強度と基準強度(水分率0質量%)との相対差は、10〜32%と大きく、誤差の大きな測定となったことが理解できる。
From the results in Table 2, it can be understood that the relative difference between the strength after water content correction and the reference strength (moisture content 0% by mass) is as large as 10 to 32%, and the measurement has a large error.

Claims (5)

鉱石試料に含有される分析対象元素の濃度を定量する分析方法であって、
原料鉱石よりサンプリングされた第一の鉱石試料から、水分率0質量%を含む既知量の水分率を有する複数の鉱石試料を調製し、調製された複数の鉱石試料のそれぞれへ一次X線を照射し、発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、
水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式と、
水分率と、分析対象元素の二次X線強度をコンプトン散乱X線強度で除して得られた補正X線強度との関係を示す第二の直線回帰式とを求め、第二の直線回帰式を外挿して補正X線強度の値が0となる点を求めておき、
原料鉱石より新規にサンプリングされた第二の鉱石試料に対して一次X線を照射し、第二の鉱石試料から発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、第二の鉱石試料のコンプトン散乱X線強度と第一の直線回帰式とから第二の鉱石試料の水分率を求め、第二の鉱石試料の分析対象元素の二次X線強度をコンプトン散乱X線強度で除して第二の鉱石試料の補正X線強度を求め、
前記第二の直線回帰式において補正X線強度の値が0となる点と、第二の鉱石試料における水分率の値と補正X線強度の値とを示す点とを結ぶ第三の1次式を求め、
第三の1次式を外挿して、第二の鉱石試料の水分率の値が0質量%となる点における補正X線強度を、第二の鉱石試料の水分率0質量%のときの補正X線強度とし、予め求めておいた鉱石試料における分析対象元素の濃度と、水分率0質量%のときの補正X線強度との関係から、第二の鉱石試料における分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法。
It is an analysis method for quantifying the concentration of the element to be analyzed contained in the ore sample.
From the first ore sample sampled from the raw material ore, a plurality of ore samples having a known amount of water content including 0% by mass of the water content are prepared, and each of the prepared ore samples is irradiated with primary X-rays. Then, the secondary X-ray intensity of the element to be analyzed and the Compton scattered X-ray intensity are measured.
The first linear regression equation showing the relationship between the water content and the Compton scattered X-ray intensity,
A second linear regression equation showing the relationship between the water content and the corrected X-ray intensity obtained by dividing the secondary X-ray intensity of the element to be analyzed by the Compton scattered X-ray intensity was obtained, and the second linear regression was performed. Extrapolate the equation to find the point where the value of the corrected X-ray intensity becomes 0.
The second ore sample newly sampled from the raw material ore is irradiated with primary X-rays, and the secondary X-ray intensity of the analysis target element generated from the second ore sample and the Compton scattered X-ray intensity are measured. Then, the water content of the second ore sample is obtained from the Compton scattered X-ray intensity of the second ore sample and the first linear regression equation, and the secondary X-ray intensity of the analysis target element of the second ore sample is Compton. Divide by the scattered X-ray intensity to obtain the corrected X-ray intensity of the second ore sample.
A third primary connecting a point where the corrected X-ray intensity value is 0 in the second linear regression equation and a point indicating the water content value and the corrected X-ray intensity value in the second ore sample. Find the formula,
By extrapolating the third linear equation, the corrected X-ray intensity at the point where the water content of the second ore sample is 0% by mass is corrected when the water content of the second ore sample is 0% by mass. The concentration of the element to be analyzed in the second ore sample is quantified from the relationship between the concentration of the element to be analyzed in the ore sample obtained in advance and the corrected X-ray intensity when the water content is 0% by mass. A method for analyzing an ore sample, which comprises performing.
原料鉱石の複数個所から、前記第一の鉱石試料として鉱石試料をサンプリングし、サンプリングされた複数の第一の鉱石試料のそれぞれにおいて、発生する分析対象元素の二次X線強度とコンプトン散乱X線強度とを測定して第二の直線回帰式を求め、複数の第二の直線回帰式において補正X線強度の値が0となる点の平均値を求めることを特徴とする請求項1に記載の鉱石試料の分析方法。 An ore sample is sampled as the first ore sample from a plurality of raw material ores, and the secondary X-ray intensity and Compton scattered X-ray of the analysis target element generated in each of the sampled first ore samples. The first aspect of claim 1, wherein the intensity is measured to obtain a second linear regression equation, and the average value of points at which the corrected X-ray intensity value becomes 0 in a plurality of second linear regression equations is obtained. Method of analyzing ore samples. 前記第一および/または第二の鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、請求項1または2に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法。
When the morphology of the first and / or second ore sample is massive and it is difficult to obtain a smooth measurement surface to be irradiated with primary X-rays.
Analysis of the ore sample according to claim 1 or 2 after imparting fluidity by adding pure water to the first and / or second ore sample and mixing them to obtain a smooth measurement surface. A method for analyzing an ore sample, which comprises applying the method and quantifying the concentration of an element to be analyzed.
前記第一および/または第二の鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記第一および/または第二の鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、請求項1または2に記載の鉱石試料の分析方法を適用し、分析対象元素の濃度を定量することを特徴とする鉱石試料の分析方法。
When the morphology of the first and / or second ore sample is clayey and it is difficult to obtain a smooth measurement surface to be irradiated with primary X-rays.
The method for analyzing an ore sample according to claim 1 or 2, after imparting fluidity by adding pure water to the first and / or second ore samples and mixing them to obtain a smooth measurement surface. A method for analyzing an ore sample, which comprises applying and quantifying the concentration of an element to be analyzed.
前記第一および/または第二の鉱石試料への純水添加量の総量が、前記鉱石試料の50質量%以下であることを特徴とする請求項3または4に記載の鉱石試料の分析方法。
The method for analyzing an ore sample according to claim 3 or 4, wherein the total amount of pure water added to the first and / or second ore sample is 50% by mass or less of the ore sample.
JP2020040917A 2019-03-27 2020-03-10 Analysis method for ore samples Active JP7400558B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059868 2019-03-27
JP2019059868 2019-03-27

Publications (2)

Publication Number Publication Date
JP2020165961A true JP2020165961A (en) 2020-10-08
JP7400558B2 JP7400558B2 (en) 2023-12-19

Family

ID=72714418

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020040918A Active JP7424118B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020040917A Active JP7400558B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020041399A Active JP7415685B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020040918A Active JP7424118B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020041399A Active JP7415685B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Country Status (1)

Country Link
JP (3) JP7424118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117169264A (en) * 2023-09-04 2023-12-05 上海有色金属工业技术监测中心有限公司 Method for measuring content of lithium element in lithium-boron alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424118B2 (en) * 2019-03-27 2024-01-30 住友金属鉱山株式会社 Analysis method for ore samples

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130931A (en) * 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
CN105738394A (en) * 2016-03-01 2016-07-06 中国地质科学院矿产综合利用研究所 X-ray fluorescence spectrum analysis method for primary and secondary components in rubidium ore
JP2020165962A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059403B2 (en) * 1996-07-18 2000-07-04 理学電機工業株式会社 X-ray analysis method and apparatus
JPH08334481A (en) * 1996-07-25 1996-12-17 Shimadzu Corp X-ray fluorescent analysis
JP3981053B2 (en) * 2003-07-28 2007-09-26 日本アイ.テイー.エス株式会社 Soil analysis method and fluorescent X-ray soil analysis apparatus used therefor
JP2006138660A (en) * 2004-11-10 2006-06-01 Canon Inc Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
JP5337832B2 (en) * 2010-06-29 2013-11-06 株式会社リガク X-ray analysis method and apparatus
JP6583158B2 (en) * 2015-09-15 2019-10-02 住友金属鉱山株式会社 Sample preparation method for fluorescent X-ray analysis
JP6760019B2 (en) * 2015-12-17 2020-09-23 住友金属鉱山株式会社 Sample preparation method for X-ray fluorescence analysis
TWI693195B (en) * 2015-12-25 2020-05-11 日商堺化學工業股份有限公司 LOW α-RAYS BARIUM SULFATE PARTICLES, USE OF THE SAME, AND METHOD FOR PRODUCING THE SAME
JP6905228B2 (en) * 2016-10-07 2021-07-21 株式会社リガク Sample analysis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130931A (en) * 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
CN105738394A (en) * 2016-03-01 2016-07-06 中国地质科学院矿产综合利用研究所 X-ray fluorescence spectrum analysis method for primary and secondary components in rubidium ore
JP2020165962A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method
JP2020165963A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KELSEY E. YOUNG ET AL.: "A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations", APPLIED GEOCHEMISTRY, vol. 72, JPN6023035482, September 2016 (2016-09-01), pages 77 - 87, ISSN: 0005190346 *
片岡 由行: "蛍光X線分析におけるファンダメンタルパラメータ法とその応用", X線分析の進歩, vol. 第50号, JPN6023035481, 31 March 2019 (2019-03-31), pages 33 - 48, ISSN: 0005190347 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117169264A (en) * 2023-09-04 2023-12-05 上海有色金属工业技术监测中心有限公司 Method for measuring content of lithium element in lithium-boron alloy

Also Published As

Publication number Publication date
JP2020165963A (en) 2020-10-08
JP2020165962A (en) 2020-10-08
JP7415685B2 (en) 2024-01-17
JP7424118B2 (en) 2024-01-30
JP7400558B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP2020165961A (en) Ore sample analysis method
Gazulla et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength‐dispersive X‐ray fluorescence (WD‐XRF)
JP6760019B2 (en) Sample preparation method for X-ray fluorescence analysis
Havukainen et al. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples
JP6760018B2 (en) Evaluation method using a sample for fluorescent X-ray analysis
Viani et al. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography
Marguí et al. Sample preparation for X-ray fluorescence analysis
Sharanov et al. Total reflection X-ray fluorescence analysis of solid metallurgical samples
Sharanov et al. Quantification of elements in copper–zinc ores at micro-and macro-levels by total reflection X-ray fluorescence and inductively coupled plasma atomic emission spectrometry
Kumar et al. Measurement of metallic iron in steel making slags
Bielecka et al. X-ray diffraction and elemental analysis of medical and environmental samples
Gao et al. Microstructure evolution of chalcopyrite agglomerates during leaching–A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM)
Tian et al. Determination of tungsten in tantalum–tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques
JP2018044829A (en) Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition
JP2009031072A (en) Impurity concentration analysis method of siliceous powder
JP6674142B2 (en) Inspection method of fine aggregate containing copper slag
CN107688036A (en) The assay method of coal ash chemical composition
CN106970100A (en) The method that the analysis of applied energy dispersive x-ray fluorescence determines calcium content in limestone deposit
Gomez et al. Quantitative analysis of aluminum dross by the Rietveld method
Mzyk et al. Special tablets containing cellulose binder and Sr internal standard for simplifying X-ray fluorescence analysis of powder samples
Coufalík et al. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry
JP3739839B2 (en) Method for measuring CaO assimilation rate of sintered ore and sintering method
Demir et al. Effect on particle size to emitted X-ray intensity in pellet cement sample analyzed with WDXRF spectrometer
CN111270069A (en) Molybdenum concentrate production process
AU2007216909B2 (en) Copper X-ray flux composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150