JP7424118B2 - Analysis method for ore samples - Google Patents

Analysis method for ore samples Download PDF

Info

Publication number
JP7424118B2
JP7424118B2 JP2020040918A JP2020040918A JP7424118B2 JP 7424118 B2 JP7424118 B2 JP 7424118B2 JP 2020040918 A JP2020040918 A JP 2020040918A JP 2020040918 A JP2020040918 A JP 2020040918A JP 7424118 B2 JP7424118 B2 JP 7424118B2
Authority
JP
Japan
Prior art keywords
ore
ray intensity
ore sample
sample
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040918A
Other languages
Japanese (ja)
Other versions
JP2020165962A (en
Inventor
隆太 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2020165962A publication Critical patent/JP2020165962A/en
Application granted granted Critical
Publication of JP7424118B2 publication Critical patent/JP7424118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、蛍光X線分析(X-ray fluorescence analysis;XRF)装置を用いて、原料鉱石からサンプリングされた鉱石試料における分析対象元素を分析する方法に関する。 The present invention relates to a method for analyzing target elements in an ore sample sampled from raw ore using an X-ray fluorescence analysis (XRF) device.

蛍光X線分析法は原料鉱石からサンプリングされた鉱石試料に1次X線を照射し、鉱石試料に含まれる分析対象元素から二次的に発生する二次X線(本発明において、「二次X線」とは、分析対象元素から二次的に発生する「蛍光X線」のことを意味している。)を用いて、当該分析対象元素の定性・定量分析を行う分析法である。当該蛍光X線分析法は、湿式分析法や誘導結合プラズマ発光分光分析(ICP分析)法等と比較すると、短時間で分析結果を得ることが可能である。この為、分析コストの削減および分析結果の迅速な工程へのフィードバックを目的として、各種の工程の品質管理法として広く利用されている。 In the fluorescent X-ray analysis method, an ore sample sampled from a raw ore is irradiated with primary X-rays. This is an analysis method that performs qualitative and quantitative analysis of the target element using X-rays ("X-rays" refers to "fluorescent X-rays" that are secondarily generated from the target element). The fluorescent X-ray analysis method can obtain analysis results in a short time when compared with a wet analysis method, an inductively coupled plasma optical emission spectrometry (ICP analysis) method, and the like. For this reason, it is widely used as a quality control method in various processes for the purpose of reducing analysis costs and quickly feeding back analysis results to processes.

尚、本発明において分析対象である鉱石試料とは、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石からサンプリングされた鉱石試料の意味である。従って、当該鉱石試料が、出来るだけ互いに離れた範囲からサンプリングされた場合であっても、分析対象元素の濃度は当該鉱石試料間にて差異があるものの、当該鉱石試料のマトリックス部分の元素組成は当該鉱石試料間において実質的に同一と考えられるものである。 In the present invention, the ore sample to be analyzed refers to an ore sample sampled from a raw material ore existing in, for example, an ore quarry, a vein of a predetermined ore, or the like. Therefore, even if the ore samples are sampled from areas as far apart as possible, although the concentration of the target element will differ between the ore samples, the elemental composition of the matrix of the ore sample will be These ore samples are considered to be substantially the same.

特許第4629158号公報Patent No. 4629158 特開平10-82749号公報Japanese Patent Application Publication No. 10-82749

中井泉、「蛍光X線の分析実際 第2版」、朝倉書店、2016年7月10日、第1刷Izumi Nakai, “Fluorescent X-ray analysis practice 2nd edition”, Asakura Shoten, July 10, 2016, 1st printing 新井智也他、「けい光X線分析の手引」、株式会社リガク、1982年9月、初版Tomoya Arai et al., "Guide to Fluorescence X-ray Analysis", Rigaku Co., Ltd., September 1982, first edition.

蛍光X線分析法により、例えば原料鉱石からサンプリングされた鉱石試料に含まれる分析対象元素の定量分析を行う際は、一般的に、前処理として当該鉱石試料の乾燥、粉砕、そして当該乾燥および粉砕後のプレスやガラスビードの作製といった操作が実施される。これは、分析の正確さや精度を担保する上で重要な操作であると考えられている為である(非特許文献1)。 When performing quantitative analysis of target elements contained in an ore sample sampled from a raw ore using fluorescent X-ray analysis, the ore sample is generally dried and pulverized as a pretreatment, and then the drying and pulverization are performed. Subsequent operations such as pressing and glass bead production are performed. This is because it is considered to be an important operation in ensuring accuracy and accuracy of analysis (Non-Patent Document 1).

本発明者らの検討によると、当該前処理操作の中でも乾燥に費やす時間は長く、数時間から半日程度を要し律速段階となる。一方、工程の操業管理における鉱石試料分析においては、一般的に分析試料数が多く、且つ試料を迅速に分析することが重要である。この結果、本発明者らは、蛍光X線分析操作においても、より迅速な測定が求められることに想到した。 According to studies by the present inventors, the time spent on drying is long among the pretreatment operations, and takes from several hours to about half a day, and is the rate-limiting step. On the other hand, in ore sample analysis for process operation management, it is generally important to analyze a large number of samples and to analyze the samples quickly. As a result, the present inventors realized that faster measurement is required also in fluorescent X-ray analysis operations.

一方、試料を乾燥することなく、水分を含んだままの状態で測定する場合は、分析対象元素の二次X線強度の低下などが起こる。この結果、前記前処理を施した試料で作成した検量線を用いて測定しても正しい分析値を得ることが困難である。そこで、変動する成分に応じて強度が変わる散乱強度補正が一般に行われる(特許文献1、特許文献2)。
また、変動する成分として有機物を多く含む汚泥分析等においては、有機物の除去は水分のように容易ではない。このような場合の補正方法が非特許文献1、2に記載されている。
On the other hand, if the sample is measured without drying and still contains moisture, the secondary X-ray intensity of the element to be analyzed may decrease. As a result, it is difficult to obtain correct analytical values even when performing measurements using a calibration curve prepared using the pretreated sample. Therefore, scattering intensity correction is generally performed in which the intensity changes depending on the changing component (Patent Document 1, Patent Document 2).
Furthermore, in sludge analysis that contains a large amount of organic matter as a variable component, it is not as easy to remove the organic matter as with water. Correction methods for such cases are described in Non-Patent Documents 1 and 2.

本発明者らは、上述した特許文献1、2および非特許文献1、2に記載の補正手段を、分析対象試料である鉱石試料に適用出来のではないかと考えた。
しかしながら、本発明者らは、鉱石試料のうちでも塊状であったり、粘土状であったりして流動性が悪い試料については、分析値の誤差が大きくなるという課題も知見した。
The present inventors thought that the correction means described in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 described above could be applied to the ore sample that is the sample to be analyzed.
However, the present inventors have also found that among ore samples, samples that are lumpy or clay-like and have poor fluidity have a large error in analytical values.

本発明者らは上述の課題を解決する為、研究を行った。その結果、鉱石試料が塊状であったり、粘土状であったりして流動性が悪い試料である場合、当該流動性が悪い試料を蛍光X線分析装置の試料測定容器に充填しても密に充填することが出来ず、当該試料測定容器壁との間に空隙が生じる為、1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難となっていることを知見した。そして、当該1次X線の照射を受ける為の試料の平滑な測定面を得ることが困難であるという事態が、上述した分析値の誤差が大きくなるという課題の原因であることに想到した。 The present inventors conducted research to solve the above problems. As a result, if the ore sample is lumpy or clay-like and has poor fluidity, even if the sample with poor fluidity is packed into the sample measurement container of the X-ray fluorescence analyzer, it will not be densely packed. It was found that it was difficult to obtain a smooth measurement surface for the sample to be irradiated with primary X-rays because it could not be filled and a gap was created between the sample measurement container and the wall. . Then, we came to the conclusion that the difficulty in obtaining a smooth measurement surface of the sample to be irradiated with the primary X-rays is the cause of the problem of increased error in the analysis values mentioned above.

本発明者らは、分析操作の迅速性や簡便性を損なうことなく、1次X線の照射を受ける為の試料の平滑な測定面を得る為の手段について研究を行った。そして、鉱石試料に適切な前処理を施し、当該試料の流動性を高めた後に当該試料を測定容器内へ充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来るという着想を得た。 The present inventors conducted research on means for obtaining a smooth measurement surface of a sample to be irradiated with primary X-rays without impairing the speed and simplicity of analysis operations. Then, by applying appropriate pretreatment to the ore sample to increase the fluidity of the sample and then filling the sample into the measurement container, it is possible to densely fill the measurement container, and the primary X-ray The idea was that it would be possible to obtain a smooth measurement surface for the sample to be irradiated.

当該着想に基づき本発明者らは、測定容器内へ試料を充填する前の段階において、当該鉱石試料を乾燥するか、または、適量の純水を添加し混合することによって、当該試料の流動性を高めた後、当該試料を測定容器内に充填することで、測定容器内への密な充填を実現し、1次X線の照射を受ける為の試料の平滑な測定面を得ることが出来た。 Based on this idea, the present inventors improved the fluidity of the ore sample by drying the ore sample or adding and mixing an appropriate amount of pure water before filling the sample into the measurement container. By filling the sample into the measurement container after increasing the Ta.

しかしながら、上述したように鉱石試料を乾燥するのは長時間を要する。他方、鉱石試料へ純水を添加し混合することによって、当該試料より散乱X線が発生し、鉱石試料の二次X線強度の低下などが起こる。この結果、例えば、当該前処理を施した試料で作成した検量線を用いて測定を行ったとしても、正しい分析値を得ることが出来ないことが懸念された。 However, as mentioned above, it takes a long time to dry the ore sample. On the other hand, by adding and mixing pure water to an ore sample, scattered X-rays are generated from the sample, resulting in a decrease in the secondary X-ray intensity of the ore sample. As a result, there was a concern that, for example, even if measurements were performed using a calibration curve prepared using a sample subjected to the pretreatment, correct analytical values could not be obtained.

本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、鉱石試料の水分率に拘わらず、当該鉱石試料に含有される分析対象元素の濃度を、迅速、簡便に、精度よく分析することが出来る分析方法を提供することである。 The present invention was made under the above-mentioned circumstances, and the problem to be solved is to quickly determine the concentration of an element to be analyzed contained in an ore sample, regardless of the moisture content of the ore sample. It is an object of the present invention to provide an analysis method that allows analysis to be carried out easily and with high precision.

ここで、本発明者らはさらに研究を行い、原料鉱石の複数個所から鉱石試料をサンプリングして一次鉱石試料を得、当該一次鉱石試料を分割して二次鉱石試料を調製し、当該二次鉱石試料から0質量%を含む所定の水分率を有する三次鉱石試料を調製し、当該三次鉱石試料のそれぞれへ一次X線を照射し、当該それぞれの三次鉱石試料から発生する前記分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、同一の前記一次鉱石試料に由来する前記複数の三次鉱石試料において、前記二次X線強度の値を前記コンプトン散乱X線強度の値で除して補正X線強度を算出する一方、0質量%を含む所定の水分率を有する三次鉱石試料の分析対象元素の濃度を求め、当該分析対象元素の濃度と補正X線強度との関係を求める構成に想到した。
当該構成によれば、鉱石試料の水分率に拘わらず、当該鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法によって、迅速、簡便に、精度よく分析することが出来ることを知見し、本発明を完成した。
Here, the present inventors conducted further research, obtained a primary ore sample by sampling ore samples from multiple locations of the raw ore, divided the primary ore sample to prepare a secondary ore sample, and A tertiary ore sample having a predetermined moisture content including 0% by mass is prepared from an ore sample, and each of the tertiary ore samples is irradiated with primary X-rays to obtain a The secondary X-ray intensity and the Compton scattered X-ray intensity are measured, and the value of the secondary X-ray intensity is calculated as the value of the Compton scattered X-ray intensity in the plurality of tertiary ore samples derived from the same primary ore sample. While calculating the corrected X-ray intensity by dividing by We came up with a configuration that requires the following.
According to this configuration, regardless of the moisture content of the ore sample, the concentration of the target element contained in the ore sample can be analyzed quickly, simply, and with high accuracy by X-ray fluorescence analysis. They discovered this and completed the present invention.

即ち、上述の課題を解決する第1の発明は、
鉱石試料に含有される分析対象元素を分析する方法であって、
原料鉱石の複数個所から鉱石試料をサンプリングする工程と、
前記サンプリングされた複数の鉱石試料のそれぞれを識別して一次鉱石試料とし、水分率を0質量%まで乾燥する工程と、
前記乾燥させた一次鉱石試料のそれぞれを所定個数に分割して、前記識別されたそれぞれの一次鉱石試料に由来する二次鉱石試料とし、同一の前記一次鉱石試料に由来する前記二次鉱石試料のそれぞれへ、純水を添加しない、または、所定量の純水を添加して、水分率0質量%を含む所定の水分率を有する三次鉱石試料を得る工程と、
水分率が0質量%の前記三次鉱石試料について前記分析対象元素の濃度を、所定の分析方法を用いて定量分析する工程と、
前記水分率が0質量%の前記三次鉱石試料および前記所定の水分率を有する三次鉱石試料のそれぞれへ一次X線を照射し、当該それぞれの三次鉱石試料から発生する前記分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、同一の前記一次鉱石試料に由来する前記複数の三次鉱石試料において、前記二次X線強度の値を前記コンプトン散乱X線強度の値で除して補正X線強度を算出する工程と、
前記補正X線強度と、前記鉱石試料に含有される分析対象元素の濃度との関係を求める工程と、
前記原料鉱石から新規にサンプリングされた、任意の水分率を有する新規な鉱石試料に対して、一次X線を照射し、当該新規な鉱石試料から発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、当該二次X線強度の値を当該コンプトン散乱X線強度の値で除して補正X線強度を算出する工程と、
算出された前記補正X線強度を前記関係に適用して、前記新規な鉱石試料における分析対象元素の濃度を算出する工程とを有する、ことを特徴とする鉱石試料の分析方法である。
第2の発明は、
前記補正X線強度と、前記新規な鉱石試料に含有される分析対象元素の濃度との関係を求めるとは、
前記0質量%を含む所定の水分率を有する三次鉱石試料のコンプトン散乱X線強度に基づいて、鉱石試料における、水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式を求める工程と、
前記三次鉱石試料における、水分率と前記三次鉱石試料の補正X線強度との関係を示す第二の直線回帰式を求め、第二の直線回帰式を外挿して前記補正X線強度の値が0となる点を求める工程と、
所定の水分率を有する前記新規な鉱石試料において、前記二次X線強度の値を前記コンプトン散乱X線強度の値で除して補正X線強度を算出し、さらに、前記コンプトン散乱X線強度の値を第一の直線回帰式へ代入して水分率を算出する工程と、
前記補正X線強度の値が0となる点と、前記新規な鉱石試料に係る補正X線強度の値と水分率の値とをプロットした点とを結ぶ1次式を求め、当該1次式を外挿して水分率が0%のときの補正X線強度を求め、前記新規な鉱石試料の水分率0%における補正X線強度とする工程と、
前記新規な鉱石試料の水分率0%における補正X線強度から、前記新規な鉱石試料における分析対象元素の濃度を算出する工程とを有する、ことを特徴とする第1の発明に記載の鉱石試料の分析方法である。
第3の発明は、
前記鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の蛍光X線分析方法を適用し、分析対象元素の濃度を求めることを特徴とする鉱石試料の分析方法である。
第4の発明は、
前記鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、第1または第2の発明に記載の蛍光X線分析方法を適用し、分析対象元素の濃度を求めることを特徴とする鉱石試料の分析方法である。
第5の発明は、
前記鉱石試料への純水添加量の総量が、前記鉱石試料の50質量%以下であることを特徴とする第3または第4の発明に記載の蛍光X線分析方法である。
That is, the first invention that solves the above problems is:
A method for analyzing target elements contained in an ore sample, the method comprising:
a process of sampling ore samples from multiple locations of the raw ore;
identifying each of the plurality of sampled ore samples as a primary ore sample, and drying the sample to a moisture content of 0% by mass;
Each of the dried primary ore samples is divided into a predetermined number of secondary ore samples derived from each of the identified primary ore samples, and each of the secondary ore samples derived from the same primary ore sample is divided into a predetermined number of pieces. A step of not adding pure water or adding a predetermined amount of pure water to each to obtain a tertiary ore sample having a predetermined moisture content including a moisture content of 0% by mass;
Quantitatively analyzing the concentration of the analysis target element for the tertiary ore sample with a moisture content of 0% by mass using a predetermined analysis method;
The tertiary ore sample with the moisture content of 0 mass % and the tertiary ore sample with the predetermined moisture content are each irradiated with primary X-rays, and the secondary X-rays of the analysis target element generated from each of the tertiary ore samples are ray intensity and Compton scattered X-ray intensity are measured, and in the plurality of tertiary ore samples derived from the same primary ore sample, the value of the secondary X-ray intensity is divided by the value of the Compton scattered X-ray intensity. calculating the corrected X-ray intensity;
determining the relationship between the corrected X-ray intensity and the concentration of the analysis target element contained in the ore sample;
A new ore sample newly sampled from the raw material ore and having an arbitrary moisture content is irradiated with primary X-rays, and the secondary X-ray intensity of the analysis target element generated from the new ore sample is determined. and calculating a corrected X-ray intensity by measuring the Compton scattered X-ray intensity and dividing the value of the secondary X-ray intensity by the value of the Compton scattered X-ray intensity;
A method for analyzing an ore sample, comprising the step of applying the calculated corrected X-ray intensity to the relationship to calculate the concentration of the element to be analyzed in the new ore sample.
The second invention is
Determining the relationship between the corrected X-ray intensity and the concentration of the analysis target element contained in the new ore sample means:
Based on the Compton scattered X-ray intensity of the tertiary ore sample having a predetermined moisture content including 0% by mass, a first linear regression equation indicating the relationship between the moisture content and the Compton scattered X-ray intensity in the ore sample is determined. process and
A second linear regression equation indicating the relationship between the moisture content and the corrected X-ray intensity of the tertiary ore sample in the tertiary ore sample is determined, and the second linear regression equation is extrapolated to determine the value of the corrected X-ray intensity. a step of finding a point that is 0;
In the new ore sample having a predetermined moisture content, a corrected X-ray intensity is calculated by dividing the value of the secondary X-ray intensity by the value of the Compton scattered X-ray intensity, and further, the Compton scattered X-ray intensity is a step of calculating the moisture content by substituting the value of into the first linear regression equation;
A linear equation connecting the point where the corrected X-ray intensity value becomes 0 and the point where the corrected X-ray intensity value and moisture content value of the new ore sample are plotted is determined, and the linear equation is extrapolating to obtain a corrected X-ray intensity when the moisture content is 0%, and using it as the corrected X-ray intensity when the moisture content of the new ore sample is 0%;
The ore sample according to the first invention, further comprising the step of calculating the concentration of the element to be analyzed in the new ore sample from the corrected X-ray intensity at a moisture content of 0% in the new ore sample. This is an analysis method.
The third invention is
When the ore sample is in a lumpy form and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After adding and mixing pure water to the ore sample to impart fluidity and obtain a smooth measurement surface, the fluorescent X-ray analysis method described in the first or second invention is applied, and the analysis target is This is a method of analyzing ore samples characterized by determining the concentration of elements.
The fourth invention is
When the ore sample has a clay-like morphology and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After adding and mixing pure water to the ore sample to impart fluidity and obtain a smooth measurement surface, the fluorescent X-ray analysis method described in the first or second invention is applied, and the analysis target is This is a method of analyzing ore samples characterized by determining the concentration of elements.
The fifth invention is
The X-ray fluorescence analysis method according to the third or fourth aspect of the invention, wherein the total amount of pure water added to the ore sample is 50% by mass or less of the ore sample.

本発明によれば、鉱石試料が塊状であったり粘土状であったりしても、蛍光X線分析装置を用いて、迅速、簡便に分析対象元素の濃度を精度よく分析することが出来た。 According to the present invention, even if the ore sample is lumpy or clay-like, the concentration of the target element can be quickly and easily analyzed with high accuracy using a fluorescent X-ray analyzer.

本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図である。1 is a process diagram showing an outline of a sample preparation process in a sample preparation method for fluorescent X-ray analysis according to an embodiment of the present invention. 塊状を有する鉱石試料の外観の一例である。This is an example of the appearance of a lumpy ore sample. 図2に示す鉱石試料を測定容器における測定面側から見た外観の一例である。3 is an example of the appearance of the ore sample shown in FIG. 2 when viewed from the measurement surface side of the measurement container. 図2に示す鉱石試料へ流動性を付与した後の外観の一例である。This is an example of the appearance after imparting fluidity to the ore sample shown in FIG. 2. 図4に示す鉱石試料を測定容器における測定面側から見た外観の一例である。5 is an example of the appearance of the ore sample shown in FIG. 4 viewed from the measurement surface side of the measurement container. 第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aからのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。It is a graph showing the relationship between the moisture content of the first ore sample A on the X axis and the Compton scattered X-ray intensity from the ore sample A on the Y axis. 第一の鉱石試料Aの水分率をX軸にとり、補正X線強度の値をY軸にとって、両者の関係を示したグラフである。It is a graph showing the relationship between the moisture content of the first ore sample A on the X axis and the corrected X-ray intensity value on the Y axis.

本発明は蛍光X線分析装置を用いて、鉱石試料における分析対象元素の濃度を求める蛍光X線分析方法に関し、特には、鉱石試料が水分を含有し塊状であったり、粘土状であったりして流動性が悪い試料であっても、迅速且つ正確に分析結果を得ることが出来る鉱石試料の分析方法を提供することを目的とする。 The present invention relates to a fluorescent X-ray analysis method for determining the concentration of an analysis target element in an ore sample using a fluorescent X-ray analyzer, and in particular, the present invention relates to a fluorescent X-ray analysis method for determining the concentration of an element to be analyzed in an ore sample. An object of the present invention is to provide a method for analyzing ore samples that can quickly and accurately obtain analytical results even for samples with poor fluidity.

まず、鉱石試料の水分率に拘わらず、当該鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法によって定量する方法について「1.鉱石試料に含有される分析対象元素の定量方法」にて説明する。そして、当該「1.鉱石試料に含有される分析対象元素の定量方法」を用いて、原料鉱石から鉱石試料をサンプリングし、当該鉱石試料に含有される分析対象元素の濃度を、迅速、簡便に、精度よく分析する方法について「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明する。 First, we will explain how to quantify the concentration of the target element contained in an ore sample by X-ray fluorescence analysis, regardless of the moisture content of the ore sample. ” will be explained. Then, using the above-mentioned "1. Quantification method of the analysis target element contained in the ore sample", the ore sample is sampled from the raw ore, and the concentration of the analysis target element contained in the ore sample is quickly and easily determined. A method of analyzing with high accuracy will be explained in "2. Method of analyzing the concentration of an analysis target element contained in an ore sample".

1.鉱石試料に含有される分析対象元素の定量方法
本発明に係る鉱石試料に含有される分析対象元素の定量方法について、(1)原料鉱石から鉱石試料をサンプリングする工程、(2)所定量の水分率を有する鉱石試料を調製する工程、(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程、の順に説明する。
1. Method for quantifying elements to be analyzed contained in an ore sample Regarding the method for quantifying elements to be analyzed contained in an ore sample according to the present invention, (1) a step of sampling an ore sample from a raw ore, (2) a predetermined amount of water. (3) determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed.

(1)原料鉱石から鉱石試料をサンプリングする工程
原料鉱石において、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する。原料鉱石からサンプリングされた当該鉱石試料を本発明では、一次鉱石試料とする。例えば、一次鉱石試料として4点のサンプリングを実施するのであれば、原料鉱石の東、西、南、北の各地点から、一次鉱石試料A、B、C、Dを採取することが考えられる(尚、サンプリング数は、適宜、設定可能である)。
当該一次鉱石試料A、B、C、Dは概ね類似の元素組成を有するが、定量分析の対象となる分析対象元素においては、それぞれ異なった濃度を有していると考えられる。
(1) Process of sampling ore samples from raw ore The ore samples are sampled from ranges as far away from each other as possible in the raw ore. In the present invention, the ore sample sampled from the raw material ore is referred to as a primary ore sample. For example, if sampling is to be carried out at four points as primary ore samples, it is possible to collect primary ore samples A, B, C, and D from each point on the east, west, south, and north of the raw ore ( Note that the number of samplings can be set as appropriate).
Although the primary ore samples A, B, C, and D have generally similar elemental compositions, they are considered to have different concentrations of the elements to be analyzed, which are the targets of quantitative analysis.

(2)所定量の水分率を有する鉱石試料を調製する工程
前記一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする。そして、水分率0質量%となった一次鉱石試料A、B、C、Dのそれぞれを所定個に分割して、二次鉱石試料を得る。例えば、8個に分割する。
尚、この一次鉱石試料A、B、C、Dを乾燥させ、水分率を0質量%とする操作は、長時間を要する操作ではある。しかし後述する第一および第二の直線回帰式を求めた後の、鉱石試料E、F、G・・・においては、当該乾燥操作は不要となる。
(2) Step of preparing an ore sample having a predetermined moisture content The primary ore samples A, B, C, and D are dried to have a moisture content of 0% by mass. Then, each of the primary ore samples A, B, C, and D whose moisture content is 0% by mass is divided into predetermined pieces to obtain secondary ore samples. For example, divide it into 8 pieces.
Note that the operation of drying the primary ore samples A, B, C, and D to reduce the moisture content to 0% by mass is an operation that requires a long time. However, the drying operation is not necessary for ore samples E, F, G, . . . after obtaining the first and second linear regression equations, which will be described later.

次に、前記所定個に分割した二次鉱石試料のそれぞれへ、純水を添加しない、または、所定量の純水を添加して、水分率0質量%を含む所定の水分率を有する三次鉱石試料を調製する。
具体的には、例えば上述した8個に分割した二次鉱石試料を用いて、水分率0質量%である三次鉱石試料Awet0%、Bwet0%、Cwet0%、Dwet0%、から、例えば、水分率50質量%である三次鉱石試料Awet50%、Bwet50%、Cwet50%、Dwet50%までの範囲において、8段階の水分率を有する三次鉱石試料を調製した。
Next, pure water is not added to each of the secondary ore samples divided into predetermined pieces, or a predetermined amount of pure water is added to obtain a tertiary ore having a predetermined moisture content including a moisture content of 0% by mass. Prepare the sample.
Specifically, for example, using the secondary ore sample divided into eight pieces as described above, from the tertiary ore sample Awet0%, Bwet0%, Cwet0%, Dwet0%, which have a moisture content of 0% by mass, for example, a moisture content of 50%. Tertiary ore samples having eight levels of moisture content were prepared in the range of 50% Awet, 50% Bwet, 50% Cwet, and 50% Dwet in mass %.

(3)分析対象である元素の濃度と分析対象元素から発生する補正X線強度との関係を求める工程
ここで、水分率0質量%の三次鉱石試料Awet0%~Dwet0%に含有される分析対象元素の濃度を、所定の分析方法によって定量する。具体的には、ICP分析、湿式化学分析、蛍光X線分析等が考えられる。
(3) Process of determining the relationship between the concentration of the element to be analyzed and the corrected X-ray intensity generated from the element to be analyzed. The concentration of the element is determined by a predetermined analytical method. Specifically, ICP analysis, wet chemical analysis, fluorescent X-ray analysis, etc. can be considered.

次に、蛍光X線分析装置を用いて、水分率0質量%の三次鉱石試料Awet0%~Dwet0%、から、水分率50質量%のAwet50%~Dwet50%の、それぞれの三次鉱石試料へ一次X線を照射し、それぞれの三次鉱石試料に含有される分析対象元素から発生する二次X線強度と、それぞれの三次鉱石試料から発生するコンプトン散乱X線強度とを測定する。
そして、各鉱石試料の水分率とコンプトン散乱X線強度との関係を示す直線回帰式を求める(本発明において「第一の直線回帰式と記載する場合がある。)。
Next, using a fluorescent X-ray spectrometer, the primary The secondary X-ray intensity generated from the analysis target element contained in each tertiary ore sample and the Compton scattered X-ray intensity generated from each tertiary ore sample are measured.
Then, a linear regression equation indicating the relationship between the moisture content of each ore sample and the Compton scattered X-ray intensity is determined (in the present invention, this may be referred to as the "first linear regression equation").

ここで、一次鉱石試料A~Dより導かれた4種の第一の直線回帰式は、実質的に同一である第一の直線回帰式となる。これは、コンプトン散乱X線強度が一次鉱石試料の水分率に起因すること、および、一次鉱石試料A~Dのマトリックス部分の元素組成は実質的に同一あることによると考えられる。この第一の直線回帰式における実質的な同一性は、この後に採取される一次鉱石試料Eや、それ以降の一次鉱石試料F、G・・・においても同様であると考えられる。
従って、一次鉱石試料E以降の一次鉱石試料においては、コンプトン散乱X線強度の値と第一の直線回帰式とから、当該一次鉱石試料の水分率を算出することが出来る。
Here, the four types of first linear regression equations derived from the primary ore samples A to D are substantially the same first linear regression equation. This is considered to be because the Compton scattered X-ray intensity is caused by the moisture content of the primary ore sample, and the elemental compositions of the matrix portions of the primary ore samples A to D are substantially the same. The substantial identity in this first linear regression equation is considered to be the same in the primary ore sample E collected thereafter, and in the subsequent primary ore samples F, G, . . . .
Therefore, in the primary ore samples after primary ore sample E, the moisture content of the primary ore samples can be calculated from the Compton scattered X-ray intensity value and the first linear regression equation.

そして、同一の一次鉱石試料に由来する前記複数の三次鉱石試料、即ち、一次鉱石試料Aに由来する三次鉱石試料Awet0%~Awet50%、一次鉱石試料Bに由来する三次鉱石試料Bwet0%~Bwet50%、一次鉱石試料Cに由来する三次鉱石試料Cwet0%~Cwet50%、一次鉱石試料Dに由来する三次鉱石試料Dwet0%~Dwet50%に係る前記二次X線強度の値をコンプトン散乱X線強度の値で除して、それぞれの三次鉱石試料における補正X線強度を算出する。そして当該補正X線強度と水分率との関係を求める。
具体的には、当該補正X線強度をXY軸の一方の軸(例えばY軸)とし、水分率の値を他方の軸(例えばX軸)として、三次鉱石試料Awet0%~Awet50%、三次鉱石試料Bwet0%~Bwet50%、三次鉱石試料Cwet0%~Cwet50%、三次鉱石試料Dwet0%~Dwet50%の全ての試料に係る補正X線強度と、分析対象の元素の濃度との点をプロットし、一次鉱石試料A、B、C、Dのそれぞれにおいて、水分率の値と補正X線強度の値との関係を示す直線回帰式を得る(本発明において「第二の直線回帰式」と記載する場合がある。)。
The plurality of tertiary ore samples derived from the same primary ore sample, that is, the tertiary ore sample Awet0% to Awet50% derived from the primary ore sample A, and the tertiary ore sample Bwet0% to Bwet50% derived from the primary ore sample B. , the value of the secondary X-ray intensity related to the tertiary ore sample Cwet0% to Cwet50% derived from the primary ore sample C, and the value of the secondary X-ray intensity related to the tertiary ore sample Dwet0% to Dwet50% derived from the primary ore sample D is the value of the Compton scattered X-ray intensity Calculate the corrected X-ray intensity for each tertiary ore sample. Then, the relationship between the corrected X-ray intensity and the moisture content is determined.
Specifically, the corrected X-ray intensity is taken as one axis of the XY axis (for example, Y axis), and the moisture content value is taken as the other axis (for example, X axis), and the tertiary ore sample Awet0% to Awet50%, the tertiary ore sample Plot the points of the corrected X-ray intensity and the concentration of the element to be analyzed for all samples: sample Bwet0% to Bwet50%, tertiary ore sample Cwet0% to Cwet50%, and tertiary ore sample Dwet0% to Dwet50%, and For each of ore samples A, B, C, and D, a linear regression equation is obtained that indicates the relationship between the moisture content value and the corrected X-ray intensity value (in the present invention, when described as "second linear regression equation") ).

そして、一次鉱石試料A、B、C、Dのそれぞれに係る第二の直線回帰式を外挿したところ、補正X線強度の値が0となるときの水分率の値は、一次鉱石試料A、B、C、Dにおいて同一であることを知見した。
この補正X線強度の値が0となるときの水分率の値(X切片)が、一次鉱石試料A、B、C、Dにおいて同一であることは、当該所定の原料鉱石から新規にサンプリングされた鉱石試料においても、同様であると考えられる。
従って、当該所定の原料鉱石から新規にサンプリングされた鉱石試料に対し一次X線を照射し、分析対象元素から発生する二次X線強度と、コンプトン散乱X線強度とを測定し、補正X線強度と水分率とを求めて、その点をプロットする。そして、上述したX切片と、当該プロット点とを直線で結んで1次式を得、当該1次式を外挿して、水分率0質量%における補正X線強度の値(Y切片)を求め、水分率0質量%における補正X線強度と分析対象元素の濃度との検量線を適用すれば、当該新規にサンプリングされた鉱石試料の水分率に拘わらず、当該新規にサンプリングされた鉱石試料に含有される分析対象元素の濃度を求めることが出来ることに想到した。
Then, by extrapolating the second linear regression equation for each of the primary ore samples A, B, C, and D, the moisture content value when the corrected X-ray intensity value becomes 0 is the primary ore sample A. , B, C, and D were found to be the same.
The fact that the moisture content value (X-intercept) when the corrected X-ray intensity value becomes 0 is the same for primary ore samples A, B, C, and D means that a new sample from the predetermined raw material ore is used. It is thought that the same holds true for ore samples.
Therefore, an ore sample newly sampled from the predetermined raw material ore is irradiated with primary X-rays, the secondary X-ray intensity generated from the analysis target element and the Compton scattered X-ray intensity are measured, and the corrected X-ray Determine the strength and moisture content and plot the points. Then, the above-mentioned X-intercept and the plot point are connected with a straight line to obtain a linear equation, and the linear equation is extrapolated to obtain the corrected X-ray intensity value (Y-intercept) at a moisture content of 0% by mass. , by applying the calibration curve between the corrected X-ray intensity and the concentration of the target element at a moisture content of 0 mass%, the newly sampled ore sample will be We came up with the idea that it is possible to determine the concentration of the contained element to be analyzed.

2.鉱石試料に含有される分析対象元素の濃度を分析する方法
原料鉱石から鉱石試料をサンプリングし、当該鉱石試料に含有される分析対象元素の濃度を、迅速、簡便に、精度よく分析する方法について、図面を参照しながら説明する。
図1は、本発明の一実施の形態に係る蛍光X線分析用試料調製方法における試料調製プロセスの概略を示す工程図であり、(1)試料分取工程、(2)流動性の確認工程、(3)純水添加混合工程、(4)測定容器内への充填工程、(5)蛍光X線分析と分析結果の算出工程、の各工程を有する。以下、各工程毎に説明する。
2. A method for analyzing the concentration of an analysis target element contained in an ore sample A method for sampling an ore sample from raw ore and quickly, easily, and accurately analyzing the concentration of an analysis target element contained in the ore sample. This will be explained with reference to the drawings.
FIG. 1 is a process diagram showing an outline of the sample preparation process in a sample preparation method for fluorescent X-ray analysis according to an embodiment of the present invention, including (1) sample separation step, (2) fluidity confirmation step. , (3) pure water addition and mixing process, (4) filling process into the measurement container, and (5) fluorescent X-ray analysis and analysis result calculation process. Each step will be explained below.

(1)試料分取工程
本発明が対象とする鉱石試料は、原料鉱石からサンプリングされたものである。原料鉱石から鉱石試料をサンプリングする際は、上述したように、出来るだけ互いに離れた範囲から鉱石試料のサンプリングを実施する。
(1) Sample separation process The ore sample targeted by the present invention is sampled from raw ore. When sampling ore samples from raw material ore, as described above, the ore samples are sampled from ranges as far away from each other as possible.

(2)流動性の確認工程
前記分取した適量の鉱石試料の形態や流動性を確認する。
例えば、当該鉱石試料を測定容器内に移入し、当該測定容器を振ったり、容器の壁をたたいたりするなどして、鉱石試料を密に充填することを試みた後、当該測定容器の底面に張られたフィルム面において、平滑な測定面を得ることが出来ているか確認することも好ましい。
この結果、当該鉱石試料の形態が、例えば図2に示すように塊状、または粘土状であって、測定容器内に充填した際、例えば図3に示すように前記フィルム面において鉱石試料との間に多数の空隙が存在したりして、平滑な測定面を得ることが困難と考えられるときは、次の純水添加混合工程に進む。
(2) Fluidity confirmation process The form and fluidity of the appropriate amount of ore sample collected above is confirmed.
For example, after transferring the ore sample into a measurement container and attempting to densely pack the ore sample by shaking the measurement container or tapping the container wall, the bottom of the measurement container It is also preferable to check whether a smooth measurement surface can be obtained on the film surface stretched over the surface of the film.
As a result, the shape of the ore sample is lump-like or clay-like as shown in FIG. 2, and when it is filled into the measurement container, there is a gap between the ore sample and the ore sample on the film surface as shown in FIG. If it is considered difficult to obtain a smooth measurement surface due to the presence of many voids in the sample, proceed to the next pure water addition and mixing step.

(3)純水添加混合工程
鉱石試料を、例えばプラスチック製の密閉可能な容器に移入する。そして、当該鉱石試料中に塊があれば、これをスパチュラ等で解砕する。その後、試料質量に対して5質量%程度の純水を添加し容器を密閉後、当該容器を上下に振る等によって攪拌する。当該攪拌後、容器の蓋を開け、当該容器を動かしながら、鉱石試料の塊が認められないことを目視で確認する。一方、塊が認められた場合は、再度、純水を5質量%追加で加え攪拌を続ける。
(3) Pure water addition and mixing process The ore sample is transferred into a sealable container made of plastic, for example. If there are any lumps in the ore sample, they are crushed using a spatula or the like. Thereafter, about 5% by mass of pure water based on the mass of the sample is added, the container is sealed, and the container is stirred by shaking the container up and down. After stirring, open the lid of the container and visually confirm that no lumps of ore sample are observed while moving the container. On the other hand, if lumps are observed, add 5% by mass of pure water again and continue stirring.

鉱石試料によっては、容器の上下攪拌だけでは塊の解砕が困難な場合がある。このような場合は、容器内にボールミル粉砕用のボールを加えて攪拌を続ける。このとき、ボールの材質としては、測定対象元素に含まれない元素で構成されていることが好ましい。 Depending on the ore sample, it may be difficult to break up the lumps simply by stirring the container up and down. In such a case, add a ball for ball milling into the container and continue stirring. At this time, the ball is preferably made of an element that is not included in the elements to be measured.

含まれる塊の解砕が終わった鉱石試料の状態の一例を図4に示す。当該塊の解砕が終わった鉱石試料を測定容器に移入し、底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることが図5より確認できた。 FIG. 4 shows an example of the state of an ore sample after the contained lumps have been crushed. The ore sample whose lumps have been crushed is transferred to the measurement container, and it is confirmed from Figure 5 that no air bubbles or spaces are observed on the film surface stretched on the bottom, and a smooth measurement surface can be obtained. did it.

しかしながら、鉱石試料への純水の過剰添加等により、試料の流動性が高すぎこととなった場合、粗大な粒子と微細な粒子が相分離を起こすため、分析値の誤差要因となり得る。そこで鉱石試料への純水添加量の総量は、乾燥した鉱石試料の50質量%以下とすることが好ましいと考えられる。そして鉱石試料の流動性の目安としては、降伏応力が50Pa以上200Pa以下の範囲を示す状態が好ましいと考えられる。 However, if the fluidity of the sample becomes too high due to excessive addition of pure water to the ore sample, phase separation occurs between coarse particles and fine particles, which can cause errors in analytical values. Therefore, it is considered preferable that the total amount of pure water added to the ore sample is 50% by mass or less of the dried ore sample. As a guideline for the fluidity of an ore sample, it is considered preferable that the yield stress be in the range of 50 Pa or more and 200 Pa or less.

(4)測定容器内への充填工程
適宜な流動性を付与された鉱石試料を測定容器内へ充填する。当該測定容器の底面に張られたフィルム面において気泡や空間が認められず、平滑な測定面を得ることが出来ていることを確認する。
もし、鉱石試料の流動性不足により平滑な測定面を得ることが出来ていない場合は、「(3)純水添加混合工程」へ戻って、鉱石試料への純水添加、混合を再度実施する。
(4) Filling process into the measurement container The ore sample imparted with appropriate fluidity is filled into the measurement container. Confirm that no air bubbles or spaces are observed on the film surface stretched on the bottom of the measurement container, and that a smooth measurement surface can be obtained.
If it is not possible to obtain a smooth measurement surface due to insufficient fluidity of the ore sample, return to "(3) Pure water addition and mixing step" and add pure water to the ore sample and mix again. .

(5)二次X線分析と分析結果の算出工程
二次X線分析と分析結果の算出工程について、(I)鉱石試料の水分率とコンプトン散乱X線強度との関係、(II)鉱石試料の水分率と補正X線強度の値との関係、(III)新規な鉱石試料中における分析対象元素の濃度の算出方法、の順に説明する。
(5) Secondary X-ray analysis and analysis result calculation process Regarding the secondary X-ray analysis and analysis result calculation process, (I) Relationship between moisture content of ore sample and Compton scattered X-ray intensity, (II) Ore sample The relationship between the moisture content and the corrected X-ray intensity value, and (III) the method for calculating the concentration of the analysis target element in a new ore sample will be explained in this order.

(I)鉱石試料の水分率とコンプトン散乱X線強度との関係
鉱石試料の水分率と、当該鉱石試料からのコンプトン散乱X線強度との関係について説明する。図6は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aからのコンプトン散乱X線強度をY軸にとって、両者の関係を示したグラフである。
図6より、第一の鉱石試料Aに含有される分析対象元素からのコンプトン散乱X線強度は、当該鉱石試料の水分率が高くなると、上昇する傾向があり、各三次鉱石試料の水分率とコンプトン散乱X線強度との間には、第一の直線回帰式にて近似出来る関係があるとの知見が得られた。
一方、○で囲った鉱石試料A(水分率30質量%)は、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことにより、コンプトン散乱X線強度が低下したと考えられる。そこで、塊状となった鉱石試料A(水分率30質量%)のデータは用いずに、第一の直線回帰式を求めた。
尚、第一の鉱石試料B~Dにおいても同様であった。
(I) Relationship between moisture content of ore sample and Compton scattered X-ray intensity The relationship between the moisture content of an ore sample and the Compton scattered X-ray intensity from the ore sample will be explained. FIG. 6 is a graph showing the relationship between the moisture content of the first ore sample A on the X axis and the Compton scattered X-ray intensity from the ore sample A on the Y axis.
From Figure 6, the Compton scattered X-ray intensity from the analysis target element contained in the first ore sample A tends to increase as the moisture content of the ore sample increases, and It was found that there is a relationship between the Compton scattered X-ray intensity and the intensity that can be approximated by the first linear regression equation.
On the other hand, for ore sample A (water content 30 mass%), circled with a circle, in addition to the decrease in fluorescent X-ray intensity due to moisture, the sample becomes lumpy, resulting in a sparse measurement surface and a small X-ray irradiation area. This is thought to have caused the Compton scattered X-ray intensity to decrease. Therefore, the first linear regression equation was determined without using the data of the lumpy ore sample A (moisture content: 30% by mass).
Incidentally, the same was true for the first ore samples B to D.

(II)鉱石試料の水分率と補正X線強度の値との関係
鉱石試料の水分率と、当該鉱石試料からの補正X線強度の値との関係について説明する。図7は、第一の鉱石試料Aの水分率をX軸にとり、当該鉱石試料Aに含有される分析対象元素の蛍光X線強度をコンプトン散乱X線強度で除した補正X線強度の値をY軸にとって、両者の関係を示したグラフである。
第一の鉱石試料Aの水分率の値と補正X線強度の値とは、第二の直線回帰式にて近似出来る関係があるとの知見が得られた。
一方、○で囲った鉱石試料A(水分率30質量%)は、水分による蛍光X線強度低下に加えて、試料が塊状になることによって、測定面が疎になり、X線照射面積が小さくなったことにより、蛍光X線強度とコンプトン散乱X線強度とが低下したと考えられる。そこで、塊状となった鉱石試料A(水分率30質量%)のデータは用いずに、第二の直線回帰式を求めた。
尚、第一の鉱石試料B~Dにおいても傾きの値は異なるものの、これらの第二の直線回帰式を、補正X線強度の値が0となる点(X切片)まで外挿し、得られた当該X切片の値は、第一の鉱石試料AのX切片の値と同様であった。
(II) Relationship between the moisture content of an ore sample and the corrected X-ray intensity value The relationship between the moisture content of an ore sample and the corrected X-ray intensity value from the ore sample will be explained. FIG. 7 shows the corrected X-ray intensity value obtained by dividing the fluorescent X-ray intensity of the target element contained in the ore sample A by the Compton scattered X-ray intensity, with the moisture content of the first ore sample A taken on the X-axis. This is a graph showing the relationship between the two on the Y axis.
It was found that the moisture content value of the first ore sample A and the corrected X-ray intensity value have a relationship that can be approximated by the second linear regression equation.
On the other hand, for ore sample A (water content 30 mass%), circled with a circle, in addition to the decrease in fluorescent X-ray intensity due to moisture, the sample becomes lumpy, resulting in a sparse measurement surface and a small X-ray irradiation area. This is considered to be the reason why the fluorescent X-ray intensity and the Compton scattered X-ray intensity decreased. Therefore, a second linear regression equation was determined without using the data of the lumpy ore sample A (moisture content: 30% by mass).
Although the slope values are different for the first ore samples B to D, these second linear regression equations are extrapolated to the point (X-intercept) where the value of the corrected X-ray intensity becomes 0, and the following is obtained. The value of the X-intercept was similar to that of the first ore sample A.

(III)新規な鉱石試料中における分析対象元素の濃度の算出方法
蛍光X線分析装置を用い、新規な鉱石試料からの二次X線強度とコンプトン散乱X線強度の値とを測定する。そして、コンプトン散乱X線強度の測定結果と(I)の知見より新規な鉱石試料の水分率を算出する。一方、新規な鉱石試料における、二次X線強度とコンプトン散乱X線強度との値から、「1.鉱石試料に含有される分析対象元素の定量方法」にて説明した補正X線強度を算出する。
ここで、当該新規な鉱石試料も(II)の知見で説明したX切片の値を有すると考えられる。そこで、当該X切片と、鉱石試料の水分率-補正X線強度とのプロット点を直線で結んで1次式を得、当該1次式を外挿して、水分率0質量%における補正X線強度の値(Y切片)を求める。
当該新規な鉱石試料の水分率0質量%における補正X線強度の値が得られれば、予め作成しておいた、水分率0質量%における補正X線強度と分析対象元素の濃度との検量線より、鉱石試料中における分析対象元素の濃度を求めることが出来る。
(III) Method for calculating the concentration of an analysis target element in a new ore sample Using a fluorescent X-ray analyzer, the values of the secondary X-ray intensity and the Compton scattered X-ray intensity from the new ore sample are measured. Then, the moisture content of the new ore sample is calculated from the measurement results of the Compton scattered X-ray intensity and the findings in (I). On the other hand, from the values of the secondary X-ray intensity and Compton scattered X-ray intensity in the new ore sample, the corrected X-ray intensity explained in "1. Quantification method of the analysis target element contained in the ore sample" is calculated. do.
Here, it is considered that the new ore sample also has the value of the X-intercept explained in the finding (II). Therefore, by connecting the plot points of the X-intercept and the moisture content of the ore sample - corrected X-ray intensity with a straight line, a linear equation is obtained, and by extrapolating the linear equation, the corrected Find the intensity value (Y-intercept).
Once the value of the corrected X-ray intensity at a water content of 0 mass % of the new ore sample is obtained, a calibration curve of the corrected X-ray intensity at a water content of 0 mass % and the concentration of the target element, which has been created in advance, can be obtained. From this, the concentration of the element to be analyzed in the ore sample can be determined.

(6)まとめ
以上、説明した(1)~(5)の工程を、例えば、一の鉱石採掘場、所定鉱石の一の鉱脈、等に存在する原料鉱石において実施し、一旦、第一および第二の直線回帰式を求めた後は、当該一の鉱石採掘場や、鉱石の一の鉱脈等から新たに採取された鉱石試料が、塊状であったり粘土状であったりしても、蛍光X線分析装置を用いて、迅速、簡便に分析対象元素の濃度を精度よく分析することが出来た。
(6) Summary The steps (1) to (5) explained above are carried out on the raw material ore existing in, for example, one ore quarry, one vein of predetermined ore, etc., and once the After calculating the second linear regression equation, even if the ore sample newly collected from the first ore quarry or the first ore vein is lumpy or clay-like, the fluorescence Using a line analyzer, we were able to quickly and easily analyze the concentration of the target element with high accuracy.

(実施例1)
〈試料の調製〉
非鉄金属鉱山の原料鉱石の、互いに離れた範囲の4箇所から、A、B、C、D4種の鉱石試料をサンプリングした。当該鉱石試料はいずれも塊状を有しており、水分率は30質量%であった。当該塊状を有する鉱石試料A(水分率30質量%)の外観を図2に示す。
当該塊状を有する鉱石試料Aを測定容器内に充填した際、当該測定容器底部のフィルム面より見た外観を図3に示す。図3から解るように、フィルムと鉱石試料との間に多数の空隙が存在した。
(Example 1)
<Sample preparation>
Four types of ore samples, A, B, C, and D, were sampled from four separate locations of raw ore from a non-ferrous metal mine. All of the ore samples had a lumpy shape, and the moisture content was 30% by mass. FIG. 2 shows the appearance of ore sample A (moisture content: 30% by mass) having a lumpy shape.
FIG. 3 shows the external appearance seen from the film surface at the bottom of the measurement container when the ore sample A having the lump shape was filled into the measurement container. As can be seen from Figure 3, there were many voids between the film and the ore sample.

そこで、[実施の形態]欄の「2.鉱石試料に含有される分析対象元素の濃度を分析する方法」にて説明したように、鉱石試料中の水分率を調整した。
具体的には、まず鉱石試料Aを乾燥して鉱石試料A(水分率0質量%)とした。次に、鉱石試料A(水分率0質量%)を8分割して、それぞれをプラスチック製の密閉可能な容器へ入れ、そのまま、または、所定量の純水を添加し、容器を密閉後に当該容器を上下に振って攪拌した。そして、鉱石試料A(水分率0質量%)、鉱石試料A(水分率5質量%)、鉱石試料A(水分率10質量%)、鉱石試料A(水分率15質量%)、鉱石試料A(水分率20質量%)、鉱石試料A(水分率30質量%)、鉱石試料A(水分率40質量%)、鉱石試料A(水分率50質量%)を調製した。
攪拌後に当該容器の蓋を開け、当該容器を動かしながら鉱石試料の塊が認められるかを目視で確認したところ、鉱石試料A(水分率30質量%)に塊が認められた。他の鉱石試料には塊が認められなかった。
Therefore, as explained in "2. Method of analyzing the concentration of an analysis target element contained in an ore sample" in the [Embodiment] section, the moisture content in the ore sample was adjusted.
Specifically, ore sample A was first dried to obtain ore sample A (moisture content: 0% by mass). Next, ore sample A (moisture content: 0 mass%) is divided into 8 parts and each is placed in a sealable plastic container, either as is or after adding a predetermined amount of pure water and sealing the container. It was stirred by shaking it up and down. Then, ore sample A (moisture content 0 mass%), ore sample A (moisture content 5 mass%), ore sample A (moisture content 10 mass%), ore sample A (moisture content 15 mass%), ore sample A ( (moisture content: 20% by mass), ore sample A (water content: 30% by mass), ore sample A (water content: 40% by mass), and ore sample A (water content: 50% by mass).
After stirring, the lid of the container was opened and the container was moved to visually check whether lumps of the ore sample were observed. As a result, lumps were observed in ore sample A (water content 30% by mass). No lumps were observed in other ore samples.

これらの鉱石試料Aを、それぞれ蛍光X線分析装置の試料測定容器内に充填した。このときの、鉱石試料A(水分率40質量%)の外観を図4に、測定容器における測定面側から見た外観を図5に示す。図5から解るように、フィルムと鉱石試料との間には空隙が存在せず、平滑な測定面を得ることが出来ていることが確認出来た。
尚、当該純水添加後の鉱石試料の測定容器への充填が完了したら、迅速に二次X線とコンプトン散乱X線との測定を開始した。攪拌が終わった鉱石試料を長時間静置すると、粗大な粒子と微細な粒子との相分離が進行し、分析値の誤差要因となり得るからである。
These ore samples A were each filled into a sample measurement container of a fluorescent X-ray analyzer. The appearance of ore sample A (moisture content: 40% by mass) at this time is shown in FIG. 4, and the appearance seen from the measurement surface side of the measurement container is shown in FIG. As can be seen from FIG. 5, there were no voids between the film and the ore sample, and it was confirmed that a smooth measurement surface could be obtained.
In addition, when the filling of the measurement container with the ore sample after addition of the pure water was completed, measurement of secondary X-rays and Compton scattered X-rays was immediately started. This is because if the ore sample that has been stirred is allowed to stand still for a long time, phase separation between coarse particles and fine particles will proceed, which may cause errors in analytical values.

〈二次X線とコンプトン散乱X線との測定〉
鉱石試料A(水分率0質量%~50質量%)の平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。
水分率をX軸に、コンプトン散乱X線強度をY軸にとったグラフを図6に示す。
図6のグラフより、水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式を最小二乗法により求めたところ式1が得られた。

Y=-0.0685X+2.0184・・・・(式1)

次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。そして、水分率の値をX軸に、算出されたNiの補正X線強度をY軸にとったグラフを図7に示す。水分率と補正X線強度の値との関係を示す第二の直線回帰式を最小二乗法により求めたところ、Niに関しては式2が得られた。尚、式1、式2を求める際、塊状となった鉱物試料A(水分率30質量%)のデータは用いなかった。また、X線管としては、ロジウムターゲットX線管を用いた。

Y=-0.2477X+18.777・・・・(式2)
<Measurement of secondary X-rays and Compton scattered X-rays>
The smooth measurement surface of ore sample A (moisture content 0 to 50 mass%) is irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, the element to be analyzed, and Compton scattered X-rays are measured. The strength was measured.
FIG. 6 shows a graph in which the moisture content is plotted on the X-axis and the Compton scattered X-ray intensity is plotted on the Y-axis.
From the graph of FIG. 6, the first linear regression equation representing the relationship between the moisture content and the Compton scattered X-ray intensity was determined by the least squares method, and Equation 1 was obtained.

Y=-0.0685X+2.0184...(Formula 1)

Next, the corrected X-ray intensity was calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value. FIG. 7 shows a graph in which the moisture content value is plotted on the X-axis and the calculated corrected X-ray intensity of Ni is plotted on the Y-axis. When a second linear regression equation representing the relationship between the moisture content and the corrected X-ray intensity value was determined by the least squares method, equation 2 was obtained for Ni. Note that when calculating Equations 1 and 2, the data of the mineral sample A (moisture content 30% by mass), which was in the form of a lump, was not used. Moreover, a rhodium target X-ray tube was used as the X-ray tube.

Y=-0.2477X+18.777...(Formula 2)

以上説明した鉱石試料Aに対する操作を鉱石試料B~Dに対しても行った。
第一の直線回帰式は、鉱石試料A~Dにおいて実質的に一致した。また、鉱石試料A~Dのそれぞれにおいて、Niに関する第二の直線回帰式を求めた。そして、鉱石試料A~DのNiに関する第二の直線回帰式のX切片の値として75.8を得た。
The above-described operation for ore sample A was also performed for ore samples B to D.
The first linear regression equation was substantially consistent for ore samples AD. In addition, a second linear regression equation regarding Ni was determined for each of the ore samples A to D. Then, 75.8 was obtained as the value of the X-intercept of the second linear regression equation regarding Ni for ore samples A to D.

次に、鉱石試料Eをサンプリングした。当該鉱石試料も塊状を有していたので純水を添加し、測定容器底部のフィルム面と鉱石試料との間には空隙が存在しない状態とした。そして鉱石試料Eの平滑な測定面に1次X線を照射して、分析対象元素であるNiから発生する二次X線の強度と、コンプトン散乱X線強度とを測定した。そして、測定されたコンプトン散乱X線強度へ式1で示す第一の直線回帰式を適用して、純水を添加した鉱石試料Eの水分率を算出した。次に、二次X線の強度の値をコンプトン散乱X線強度の値で除して補正X線強度を算出した。算出された鉱石試料Eの水分率と補正X線強度とが示す点を、上述した図7に示すグラフにプロットし、上述したX切片と当該プロット点とを通る直線の1次式を求め、当該1次式を外挿してY切片の値を得た。そして当該Y切片の値として、鉱石試料Eの水分率0質量におけるNiの補正X線強度を得た。 Next, ore sample E was sampled. Since the ore sample also had a lumpy shape, pure water was added to ensure that there were no voids between the film surface at the bottom of the measurement container and the ore sample. The smooth measurement surface of ore sample E was then irradiated with primary X-rays, and the intensity of secondary X-rays generated from Ni, which is the element to be analyzed, and the Compton scattered X-ray intensity were measured. Then, by applying the first linear regression equation shown in Equation 1 to the measured Compton scattered X-ray intensity, the moisture content of the ore sample E to which pure water was added was calculated. Next, the corrected X-ray intensity was calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value. Plot the points indicated by the calculated moisture content and corrected X-ray intensity of ore sample E on the graph shown in FIG. The value of the Y-intercept was obtained by extrapolating the linear equation. Then, as the value of the Y-intercept, the corrected X-ray intensity of Ni at a moisture content of 0 mass of ore sample E was obtained.

そして、当該Niの補正X線強度へ、水分率0質量%におけるコンプトンX線強度を乗じて、鉱石試料Eに係る水分率0質量%におけるNiの二次X線強度の値を求め、当該結果を表1の水分率補正後強度欄に示した。 Then, the corrected X-ray intensity of Ni is multiplied by the Compton X-ray intensity at a moisture content of 0 mass% to obtain the value of the secondary X-ray intensity of Ni at a moisture content of 0 mass% for ore sample E, and the result is is shown in the strength column after moisture content correction in Table 1.

以下、鉱石試料中のAl、Siについても、上述したNiの場合と同様の測定と操作を行って、鉱石試料Eの水分率0質量におけるAl、Siの二次X線強度の値を求めた。
そして、当該補正X線強度へ水分率0質量%におけるコンプトンX線強度を乗じて、鉱石試料Eにおける水分率0質量%における、Al、Siについての二次X線強度の値を求め、当該結果を表1の水分率補正後強度欄に示した。
Below, measurements and operations similar to those for Ni described above were performed for Al and Si in the ore sample, and the values of the secondary X-ray intensities of Al and Si at a moisture content of 0 mass of ore sample E were determined. .
Then, the corrected X-ray intensity is multiplied by the Compton X-ray intensity at a moisture content of 0 mass% to obtain the value of the secondary X-ray intensity for Al and Si at a moisture content of 0 mass% in ore sample E, and the result is is shown in the strength column after moisture content correction in Table 1.

尚、実施例1および後述する比較例1において使用した蛍光X線装置は、Malvern Panalytical社製のAxios Advanced 4kWである。 The fluorescent X-ray apparatus used in Example 1 and Comparative Example 1 to be described later is Axios Advanced 4kW manufactured by Malvern Panalytical.

尚、表1において、基準強度(水分率0質量%)とは、本実施例の効果を確認する為に、敢えて鉱石試料Eを乾燥して作製した乾燥済みの鉱石試料E(水分率0質量%)からの分析対象元素(Ni、Al、Si)に係る二次X線強度(バックグラウンド補正後)であり、実測強度とは鉱石試料E(塊が認められなかった状態:水分率40質量%)からの分析対象元素(Ni、Al、Si)に係る二次X線強度である。
また、基準値との相対差とは、式3の値である。

相対差(%)=[基準強度(水分率0質量%)-水分率補正後強度]/基準強度(水分率0質量%)・・・・(式3)
In Table 1, the reference strength (moisture content 0 mass %) refers to the dried ore sample E (moisture content 0 mass %) prepared by drying ore sample E in order to confirm the effect of this example. It is the secondary X-ray intensity (after background correction) related to the analysis target elements (Ni, Al, Si) from %) is the secondary X-ray intensity related to the elements to be analyzed (Ni, Al, Si).
Further, the relative difference from the reference value is the value of Equation 3.

Relative difference (%) = [Reference strength (moisture content 0 mass%) - Strength after moisture content correction] / Reference strength (moisture content 0 mass%) ... (Formula 3)

表1の結果より、水分率補正後強度と基準強度(水分率0質量%)との差は、Ni、Al、Siのいずれの元素においても相対差で10%未満であった。即ち、鉱石試料Eを乾燥することなく、逆に純水を添加した鉱石試料Eから測定した二次X線強度と、コンプトン散乱X線強度とから、水分率0質量%における鉱石試料Eの補正X線強度の値を精度良く求めることが出来た。この結果、本発明に係る水分率補正方法が有効であることが理解できる。従って、水分を含む鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが出来、塊状や粘土状である鉱石試料に含有される分析対象元素の濃度を、蛍光X線分析法を用いて迅速、簡便に分析することが理解できる。 From the results in Table 1, the difference between the strength after moisture content correction and the reference strength (moisture content 0 mass %) was less than 10% in relative difference for any of the elements Ni, Al, and Si. That is, the correction of ore sample E at a moisture content of 0% by mass is made from the secondary X-ray intensity measured from ore sample E, which was obtained by adding pure water to ore sample E without drying it, and from the Compton scattered X-ray intensity. The value of X-ray intensity could be determined with high accuracy. As a result, it can be seen that the moisture content correction method according to the present invention is effective. Therefore, the concentration of the target element contained in an ore sample containing water can be quickly and easily analyzed using fluorescent X-ray analysis. It will be understood that the concentration of an element can be quickly and easily analyzed using fluorescent X-ray analysis.

Figure 0007424118000001
Figure 0007424118000001

(比較例1)
実施例1で使用した塊状を有する鉱石試料(水分率30質量%)へ純水を添加することなく、そのまま測定容器内に充填した。その際、上述したように、フィルムと鉱石試料との間に多数の空隙が存在した(図3参照)。
当該測定容器を蛍光X線測定装置へ入れ、試料中のNi、Al、Siから発生する二次X線の強度を測定した以外は、実施例1と同様の操作と測定を行った。
当該結果を表2に示す。
(Comparative example 1)
The lumpy ore sample (moisture content: 30% by mass) used in Example 1 was directly filled into a measurement container without adding pure water. At that time, as described above, there were many voids between the film and the ore sample (see FIG. 3).
The same operations and measurements as in Example 1 were performed, except that the measurement container was placed in a fluorescent X-ray measuring device and the intensity of secondary X-rays generated from Ni, Al, and Si in the sample was measured.
The results are shown in Table 2.

Figure 0007424118000002
Figure 0007424118000002

表2の結果より、水分率補正後強度と基準強度(水分率0質量%)との相対差は、10~32%と大きく、誤差の大きな測定となったことが理解できる。
From the results in Table 2, it can be seen that the relative difference between the strength after moisture content correction and the reference strength (moisture content 0 mass %) was as large as 10 to 32%, resulting in a measurement with a large error.

Claims (5)

鉱石試料に含有される分析対象元素を分析する方法であって、
原料鉱石の複数個所から鉱石試料をサンプリングする工程と、
前記サンプリングされた複数の鉱石試料のそれぞれを識別して一次鉱石試料とし、水分率を0質量%まで乾燥する工程と、
前記乾燥させた一次鉱石試料のそれぞれを所定個数に分割して、前記識別されたそれぞれの一次鉱石試料に由来する二次鉱石試料とし、同一の前記一次鉱石試料に由来する前記二次鉱石試料のそれぞれへ、純水を添加しない、または、所定量の純水を添加して、水分率0質量%を含む所定の水分率を有する三次鉱石試料を得る工程と、
水分率が0質量%の前記三次鉱石試料について前記分析対象元素の濃度を、所定の分析方法を用いて定量分析する工程と、
前記水分率が0質量%の前記三次鉱石試料および前記所定の水分率を有する三次鉱石試料のそれぞれへ一次X線を照射し、当該それぞれの三次鉱石試料から発生する前記分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、同一の前記一次鉱石試料に由来する前記複数の三次鉱石試料において、前記二次X線強度の値を前記コンプトン散乱X線強度の値で除して補正X線強度を算出する工程と、
前記補正X線強度と、前記鉱石試料に含有される分析対象元素の濃度との関係を求める工程と、
前記原料鉱石から新規にサンプリングされた、任意の水分率を有する新規な鉱石試料に対して、一次X線を照射し、当該新規な鉱石試料から発生する分析対象元素の二次X線強度と、コンプトン散乱X線強度とを測定し、当該二次X線強度の値を当該コンプトン散乱X線強度の値で除して補正X線強度を算出する工程と、
算出された前記補正X線強度を前記関係に適用して、前記新規な鉱石試料における分析対象元素の濃度を算出する工程とを有する、ことを特徴とする鉱石試料の分析方法。
A method for analyzing target elements contained in an ore sample, the method comprising:
a process of sampling ore samples from multiple locations of the raw ore;
identifying each of the plurality of sampled ore samples as a primary ore sample, and drying the sample to a moisture content of 0% by mass;
Each of the dried primary ore samples is divided into a predetermined number of secondary ore samples derived from each of the identified primary ore samples, and each of the secondary ore samples derived from the same primary ore sample is divided into a predetermined number of pieces. A step of not adding pure water or adding a predetermined amount of pure water to each to obtain a tertiary ore sample having a predetermined moisture content including a moisture content of 0% by mass;
Quantitatively analyzing the concentration of the analysis target element for the tertiary ore sample with a moisture content of 0% by mass using a predetermined analysis method;
The tertiary ore sample with the moisture content of 0 mass % and the tertiary ore sample with the predetermined moisture content are each irradiated with primary X-rays, and the secondary X-rays of the analysis target element generated from each of the tertiary ore samples are ray intensity and Compton scattered X-ray intensity are measured, and in the plurality of tertiary ore samples derived from the same primary ore sample, the value of the secondary X-ray intensity is divided by the value of the Compton scattered X-ray intensity. calculating the corrected X-ray intensity;
determining the relationship between the corrected X-ray intensity and the concentration of the analysis target element contained in the ore sample;
A new ore sample newly sampled from the raw material ore and having an arbitrary moisture content is irradiated with primary X-rays, and the secondary X-ray intensity of the analysis target element generated from the new ore sample is determined. and calculating a corrected X-ray intensity by measuring the Compton scattered X-ray intensity and dividing the value of the secondary X-ray intensity by the value of the Compton scattered X-ray intensity;
A method for analyzing an ore sample, comprising the step of applying the calculated corrected X-ray intensity to the relationship to calculate the concentration of the element to be analyzed in the new ore sample.
前記補正X線強度と、前記新規な鉱石試料に含有される分析対象元素の濃度との関係を求めるとは、
前記0質量%を含む所定の水分率を有する三次鉱石試料のコンプトン散乱X線強度に基づいて、鉱石試料における、水分率とコンプトン散乱X線強度との関係を示す第一の直線回帰式を求める工程と、
前記三次鉱石試料における、水分率と前記三次鉱石試料の補正X線強度との関係を示す第二の直線回帰式を求め、第二の直線回帰式を外挿して前記補正X線強度の値が0となる点を求める工程と、
所定の水分率を有する前記新規な鉱石試料において、前記二次X線強度の値を前記コンプトン散乱X線強度の値で除して補正X線強度を算出し、さらに、前記コンプトン散乱X線強度の値を第一の直線回帰式へ代入して水分率を算出する工程と、
前記補正X線強度の値が0となる点と、前記新規な鉱石試料に係る補正X線強度の値と水分率の値とをプロットした点とを結ぶ1次式を求め、当該1次式を外挿して水分率が0%のときの補正X線強度を求め、前記新規な鉱石試料の水分率0%における補正X線強度とする工程と、
前記新規な鉱石試料の水分率0%における補正X線強度から、前記新規な鉱石試料における分析対象元素の濃度を算出する工程とを有する、ことを特徴とする請求項1に記載の鉱石試料の分析方法。
Determining the relationship between the corrected X-ray intensity and the concentration of the analysis target element contained in the new ore sample means:
Based on the Compton scattered X-ray intensity of the tertiary ore sample having a predetermined moisture content including 0% by mass, a first linear regression equation indicating the relationship between the moisture content and the Compton scattered X-ray intensity in the ore sample is determined. process and
A second linear regression equation indicating the relationship between the moisture content and the corrected X-ray intensity of the tertiary ore sample in the tertiary ore sample is determined, and the second linear regression equation is extrapolated to determine the value of the corrected X-ray intensity. a step of finding a point that is 0;
In the new ore sample having a predetermined moisture content, a corrected X-ray intensity is calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value, and further, the Compton scattered X-ray intensity is calculated by dividing the secondary X-ray intensity value by the Compton scattered X-ray intensity value. a step of calculating the moisture content by substituting the value of into the first linear regression equation;
A linear equation connecting the point where the corrected X-ray intensity value becomes 0 and the point where the corrected X-ray intensity value and moisture content value of the new ore sample are plotted is determined, and the linear equation is extrapolating to obtain a corrected X-ray intensity when the moisture content is 0%, and using it as the corrected X-ray intensity when the moisture content of the new ore sample is 0%;
The ore sample according to claim 1, further comprising the step of calculating the concentration of the element to be analyzed in the new ore sample from the corrected X-ray intensity at a moisture content of the new ore sample of 0%. Analysis method.
前記鉱石試料の形態が塊状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、請求項1または2に記載の蛍光X線分析方法を適用し、分析対象元素の濃度を求めることを特徴とする鉱石試料の分析方法。
When the ore sample is in a lumpy form and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After adding and mixing pure water to the ore sample to impart fluidity and obtain a smooth measurement surface, the fluorescent X-ray analysis method according to claim 1 or 2 is applied to analyze the elements to be analyzed. An analysis method for ore samples characterized by determining the concentration.
前記鉱石試料の形態が粘土状であって、1次X線の照射を受ける平滑な測定面を得ることが困難であるとき、
前記鉱石試料へ純水を添加して混合することで流動性を付与し、平滑な測定面を得た後、請求項1または2に記載の蛍光X線分析方法を適用し、分析対象元素の濃度を求めることを特徴とする鉱石試料の分析方法。
When the ore sample has a clay-like morphology and it is difficult to obtain a smooth measurement surface that is irradiated with primary X-rays,
After adding and mixing pure water to the ore sample to impart fluidity and obtain a smooth measurement surface, the fluorescent X-ray analysis method according to claim 1 or 2 is applied to analyze the elements to be analyzed. An analysis method for ore samples characterized by determining the concentration.
前記鉱石試料への純水添加量の総量が、前記鉱石試料の50質量%以下であることを特徴とする請求項3または4に記載の鉱石試料の分析方法。
The method for analyzing an ore sample according to claim 3 or 4, wherein the total amount of pure water added to the ore sample is 50% by mass or less of the ore sample.
JP2020040918A 2019-03-27 2020-03-10 Analysis method for ore samples Active JP7424118B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059868 2019-03-27
JP2019059868 2019-03-27

Publications (2)

Publication Number Publication Date
JP2020165962A JP2020165962A (en) 2020-10-08
JP7424118B2 true JP7424118B2 (en) 2024-01-30

Family

ID=72714418

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020040917A Active JP7400558B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020040918A Active JP7424118B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples
JP2020041399A Active JP7415685B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020040917A Active JP7400558B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020041399A Active JP7415685B2 (en) 2019-03-27 2020-03-10 Analysis method for ore samples

Country Status (1)

Country Link
JP (3) JP7400558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400558B2 (en) 2019-03-27 2023-12-19 住友金属鉱山株式会社 Analysis method for ore samples
CN117169264A (en) * 2023-09-04 2023-12-05 上海有色金属工业技术监测中心有限公司 Method for measuring content of lithium element in lithium-boron alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049205A (en) 2003-07-28 2005-02-24 Nippon Its Kk Soil analyzing method and fluorescent x-ray soil analyzing apparatus used for the same
JP2006138660A (en) 2004-11-10 2006-06-01 Canon Inc Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
JP2012032372A (en) 2010-06-29 2012-02-16 Rigaku Corp X-ray analysis method and apparatus for the same
JP2017116535A (en) 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
WO2017111146A1 (en) 2015-12-25 2017-06-29 堺化学工業株式会社 LOW α-RAY BARIUM SULFATE PARTICLES, USE METHOD THEREFOR, AND PRODUCTION METHOD THEREFOR
JP2018063251A (en) 2016-10-07 2018-04-19 株式会社リガク Method for analyzing sample

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130931A (en) 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
JP6583158B2 (en) 2015-09-15 2019-10-02 住友金属鉱山株式会社 Sample preparation method for fluorescent X-ray analysis
CN105738394A (en) 2016-03-01 2016-07-06 中国地质科学院矿产综合利用研究所 X-ray fluorescence spectrum analysis method for primary and secondary components in rubidium ore
JP7400558B2 (en) 2019-03-27 2023-12-19 住友金属鉱山株式会社 Analysis method for ore samples

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049205A (en) 2003-07-28 2005-02-24 Nippon Its Kk Soil analyzing method and fluorescent x-ray soil analyzing apparatus used for the same
JP2006138660A (en) 2004-11-10 2006-06-01 Canon Inc Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
JP2012032372A (en) 2010-06-29 2012-02-16 Rigaku Corp X-ray analysis method and apparatus for the same
JP2017116535A (en) 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis
WO2017111146A1 (en) 2015-12-25 2017-06-29 堺化学工業株式会社 LOW α-RAY BARIUM SULFATE PARTICLES, USE METHOD THEREFOR, AND PRODUCTION METHOD THEREFOR
JP2018063251A (en) 2016-10-07 2018-04-19 株式会社リガク Method for analyzing sample

Also Published As

Publication number Publication date
JP2020165961A (en) 2020-10-08
JP7400558B2 (en) 2023-12-19
JP7415685B2 (en) 2024-01-17
JP2020165962A (en) 2020-10-08
JP2020165963A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7424118B2 (en) Analysis method for ore samples
CN105241907B (en) With the method for X-ray fluorescence spectra analysis pig iron composition
Georgakopoulou et al. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics
Gazulla et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength‐dispersive X‐ray fluorescence (WD‐XRF)
CN103674985B (en) A kind of accurately and reliably, silicon, sulfur, the detection method of P elements in simple and rapid steel-making exothermic mixture
CN102809578A (en) Method of measuring component contents in fluorite by applying X fluorescence powder tablet pressing method
CN105738394A (en) X-ray fluorescence spectrum analysis method for primary and secondary components in rubidium ore
Havukainen et al. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples
CN108051468A (en) X-ray fluorescence spectrum method for simultaneously analyzing fluorite, barite and celestite
CN104267054A (en) Method for analyzing main elements in geological sample by utilizing X-fluorescence spectrum
Silva et al. Determination of La, Ce, Nd, Sm, and Gd in mineral waste from cassiterite beneficiation by wavelength-dispersive X-ray fluorescence spectrometry
CN107389716A (en) The method of impurity in x-ray fluorescence spectrometry Copper Ores
CN104297276A (en) Method for analysis of trace elements in geological sample by X-fluorescence spectrum
CN104076056A (en) Measuring method for cerium oxide content in coal injection additive
Budak et al. X-ray fluorescence analysis of malachite ore concentrates in the Narman region
Wang et al. Quantitative analysis of turbostratically disordered nontronite with a supercell model calibrated by the PONKCS method
CN105547777A (en) A preparing method of a pig iron standard sample
CN107688036A (en) The assay method of coal ash chemical composition
Li et al. A novel technique for online slurry grade detection based on EDXRF
CN106970100A (en) The method that the analysis of applied energy dispersive x-ray fluorescence determines calcium content in limestone deposit
Pandey et al. Determination of trace amounts of uranium in plutonium oxide by wavelength dispersive X-ray fluorescence spectrometry
CN113748333B (en) Fluorescent X-ray analyzer
Bos et al. Non-destructive analysis of small irregularly shaped homogenous samples by X-ray fluorescence spectrometry
JP2017015737A (en) Method of inspecting copper slag containing fine aggregate
Shan et al. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R150 Certificate of patent or registration of utility model

Ref document number: 7424118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150