JP2017015737A - Method of inspecting copper slag containing fine aggregate - Google Patents

Method of inspecting copper slag containing fine aggregate Download PDF

Info

Publication number
JP2017015737A
JP2017015737A JP2016205090A JP2016205090A JP2017015737A JP 2017015737 A JP2017015737 A JP 2017015737A JP 2016205090 A JP2016205090 A JP 2016205090A JP 2016205090 A JP2016205090 A JP 2016205090A JP 2017015737 A JP2017015737 A JP 2017015737A
Authority
JP
Japan
Prior art keywords
fine aggregate
copper slag
containing fine
copper
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016205090A
Other languages
Japanese (ja)
Other versions
JP6674142B2 (en
Inventor
明郎 高津
Akio Takatsu
明郎 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016205090A priority Critical patent/JP6674142B2/en
Publication of JP2017015737A publication Critical patent/JP2017015737A/en
Application granted granted Critical
Publication of JP6674142B2 publication Critical patent/JP6674142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To find the percentage of copper slag in copper slag containing fine aggregate conveniently and with high accuracy.SOLUTION: After copper slag containing fine aggregate of a test object is sampled, the sampled copper slag containing fine aggregate is crushed to obtain powdery fine aggregate with a particle diameter of less than 0.150 mm. The powdery fine aggregate is measured by X-ray fluorescence analysis, to calculate the percentage of copper slag in fine aggregate.SELECTED DRAWING: Figure 1

Description

本発明は、銅スラグ含有細骨材の検査方法に関する。より詳しくは、コンクリート用細骨材として用いられる銅スラグ含有細骨材中の銅スラグが占める割合を測定する検査方法である。
The present invention relates to a method for inspecting a copper slag-containing fine aggregate. More specifically, it is an inspection method for measuring the proportion of copper slag in the copper slag-containing fine aggregate used as the fine aggregate for concrete.

コンクリートはその経済性や施工性、強度、耐久性などから土木建築物の主要材料として広く用いられている。コンクリートは、粗骨材、細骨材、セメント、水を主原料とし、これをよく混合して泥しょう状態とした生コンクリートを型枠の中に流し込み(通常、打ち込みという)、硬化させたものである。粗骨材としては粒径が約50mm以下の砂利が、細骨材は粒径が約5mm以下の砂が用いられてきた。   Concrete is widely used as the main material of civil engineering buildings because of its economic efficiency, workability, strength and durability. Concrete consists of coarse aggregate, fine aggregate, cement, and water as main raw materials, poured into concrete to form a mud that is mixed well, and then hardened. It is. Gravel with a particle size of about 50 mm or less has been used as the coarse aggregate, and sand with a particle size of about 5 mm or less has been used as the fine aggregate.

近年、環境保護を目的とした規制により海や川からの砂利や砂の入手が難しくなり、代替材が求められるようになった。代替材としては、例えば、銅スラグ、高炉スラグ、フライアッシュ焼成物などが挙げられる。その中でも、銅スラグは、アルカリ骨材反応が起きない点、塩分を含有しない点など、天然砂より優れた特性を有しており、広く使用されている。銅スラグとは、銅製錬業で産出される製品であり、鉄、珪素、カルシウム、酸素を主成分とする非晶質無機化合物である。   In recent years, regulations aimed at protecting the environment have made it difficult to obtain gravel and sand from the sea and rivers, and alternative materials have been demanded. Examples of the alternative material include copper slag, blast furnace slag, and fly ash fired product. Among them, copper slag has characteristics superior to natural sand, such as the point that alkali-aggregate reaction does not occur and the point that it does not contain salt, and is widely used. Copper slag is a product produced by the copper smelting industry and is an amorphous inorganic compound mainly composed of iron, silicon, calcium, and oxygen.

コンクリート製造工場では、セメント、水、粗骨材、細骨材、混和剤等を調合してコンクリートを製造している。細骨材は種類毎に特性が異なるので、良質のコンクリートを作るには複数種類の細骨材を混合するのが一般的である。このため、細骨材の種類毎に貯蔵設備や切り出し設備を用意して、複数種類の細骨材を混合したり、複数種類の細骨材が混合された混合済細骨材が流通しており、該混合済細骨材を用いたりしている。   In a concrete manufacturing factory, concrete is manufactured by mixing cement, water, coarse aggregate, fine aggregate, admixture and the like. Since fine aggregates have different characteristics for each type, it is common to mix multiple types of fine aggregates to make high-quality concrete. For this reason, storage facilities and cutting facilities are prepared for each type of fine aggregate, and multiple types of fine aggregates are mixed, or mixed fine aggregates in which multiple types of fine aggregates are mixed are distributed. The mixed fine aggregate is used.

ところで、細骨材として、天然砂だけで構成されている細骨材をコンクリートに用いると、得られるコンクリートでは乾燥収縮が大きくなりひび割れる恐れがあることが知られている。そこで、特許文献1には、天然砂と銅スラグとからなる細骨材を用いて乾燥収縮率を調製する方法が開示されている。   By the way, it is known that when a fine aggregate composed only of natural sand is used as a fine aggregate in concrete, the resulting concrete has a large drying shrinkage and may be cracked. Therefore, Patent Document 1 discloses a method for adjusting the drying shrinkage rate using a fine aggregate made of natural sand and copper slag.

一方、細骨材として、銅スラグだけで構成されている細骨材をコンクリートに用いると、もし不純物(鉛、砒素、カドミウム)の含有量が多く不純物が適切に固定された組成物となっていない場合などは、得られるコンクリートの環境負荷が天然石や土壌の環境負荷を超える恐れがある。そこで、非特許文献1には、コンクリート用細骨材に占める銅スラグの割合に上限が示されている。   On the other hand, if a fine aggregate composed only of copper slag is used for concrete as a fine aggregate, if it contains a large amount of impurities (lead, arsenic, cadmium), the composition has a fixed impurity. If not, the environmental impact of the resulting concrete may exceed that of natural stone and soil. Therefore, Non-Patent Document 1 shows an upper limit on the proportion of copper slag in the fine aggregate for concrete.

このように、良質のコンクリートを得るには、細骨材の構成比率を調節する必要が生じる。ところが、細骨材は種類毎に密度も粒径も異なるので、目標通りの構成比率に調節するのが難しい。そこで、細骨材の構成比率を簡便に分析する方法が、コンクリート製造者からも、混合済細骨材製造者からも求められていた。   Thus, in order to obtain high-quality concrete, it is necessary to adjust the composition ratio of the fine aggregate. However, since fine aggregates have different densities and particle sizes for each type, it is difficult to adjust the composition ratio to the target. Therefore, a method for simply analyzing the composition ratio of the fine aggregate has been demanded by both the concrete manufacturer and the mixed fine aggregate manufacturer.

特開2014−094860号公報JP 2014-094860 A

JIS A5011−3:2016JIS A5011-3: 2016

本発明は、銅スラグ含有細骨材中の銅スラグが占める割合を、簡便かつ高い精度で求める検査方法を提供することを目的とする。   An object of this invention is to provide the inspection method which calculates | requires the ratio for which copper slag in a copper slag containing fine aggregate accounts easily and with high precision.

本発明者は、銅スラグ含有細骨材中の銅スラグが占める割合を測定するにあたり、携帯型の蛍光X線分析装置が安価に入手可能となってきたことに着目した。また、銅スラグは多量の鉄分を含有しており、その含有率は、36〜42質量%程度であり、一方、他の細骨材構成材料である石灰石、砕砂、海砂は鉄分をほとんど含有していないことから、対象細骨材に用いられている銅スラグの鉄分含有率と、銅スラグ含有細骨材の鉄分の測定値を用いれば、当該銅スラグ含有細骨材中の銅スラグ量に換算できることに想到し、さらに、試料調整を高速化し、細骨材の粒径を揃えれば、加圧成形をせずとも精度よく蛍光X線分析法により測定できることを見出し、本発明を完成するに至った。   The present inventor paid attention to the fact that portable fluorescent X-ray analyzers have become available at low cost in measuring the proportion of copper slag in the copper slag-containing fine aggregate. Copper slag contains a large amount of iron, and its content is about 36 to 42% by mass. On the other hand, other fine aggregate constituent materials such as limestone, crushed sand and sea sand contain almost iron. Therefore, if the iron content of copper slag used in the target fine aggregate and the measured iron content of the copper slag-containing fine aggregate are used, the amount of copper slag in the copper slag-containing fine aggregate In addition, it is found that if the sample preparation is speeded up and the particle size of the fine aggregate is made uniform, it can be accurately measured by fluorescent X-ray analysis without pressing, and the present invention is completed. It came to.

すなわち、本発明の第1によれば、銅スラグ含有細骨材の検査方法であって、検査対象の銅スラグ含有細骨材からサンプリングした後、サンプリングした銅スラグ含有細骨材を粉砕して、粒径0.150mm未満の粉状細骨材を得て、粉状細骨材を蛍光X線分析法によって細骨材中に銅スラグが占める割合を測定することを特徴とする銅スラグ含有細骨材の検査方法が提供される。   That is, according to the first aspect of the present invention, the method for inspecting a copper slag-containing fine aggregate, after sampling from the copper slag-containing fine aggregate to be inspected, the sampled copper slag-containing fine aggregate is pulverized. And obtaining a powdered fine aggregate having a particle size of less than 0.150 mm, and measuring the proportion of the powdered fine aggregate occupied by the copper slag in the fine aggregate by fluorescent X-ray analysis A method for inspecting fine aggregate is provided.

本発明の銅スラグ含有細骨材の検査方法によれば、コンクリート用細骨材として用いられる銅スラグ含有細骨材中の銅スラグが占める割合を、簡便に試料調整して、携帯型蛍光X線装置を用いて、簡便かつ高い精度で分析結果が得られる。よって、産業上極めて有用である。   According to the method for inspecting a copper slag-containing fine aggregate of the present invention, the proportion of copper slag in the copper slag-containing fine aggregate used as the fine aggregate for concrete is simply adjusted to a sample, and the portable fluorescent X An analysis result can be obtained easily and with high accuracy using a line device. Therefore, it is very useful industrially.

本発明の検査方法とその準備作業の順番を示す概略工程図である。It is a schematic process drawing which shows the order of the inspection method of the present invention and its preparatory work.

以下、本発明の銅スラグ含有細骨材の検査方法について詳しく説明する。   Hereinafter, the inspection method of the copper slag containing fine aggregate of this invention is demonstrated in detail.

本発明の銅スラグ含有細骨材の検査方法は、
検査対象の銅スラグ含有細骨材からサンプリングした後、前記サンプリングした銅スラグ含有細骨材を粉砕して、粒径0.150mm未満の粉状細骨材を得て、
前記粉状細骨材を蛍光X線分析法によって細骨材中に銅スラグが占める割合を測定することを特徴としている。
The inspection method of the copper slag containing fine aggregate of the present invention,
After sampling from the copper slag-containing fine aggregate to be inspected, the sampled copper slag-containing fine aggregate is crushed to obtain a powdery fine aggregate having a particle size of less than 0.150 mm,
The powdered fine aggregate is characterized by measuring the proportion of copper slag in the fine aggregate by fluorescent X-ray analysis.

銅スラグを含有している銅スラグ含有細骨材は、銅スラグ、石灰石、砕砂、海砂など多くの種類の細骨材で構成されており、通常は鉄分のほとんどが銅スラグの部分にある。個別の細骨材は粒径が揃っていることが多いが、各種細骨材で構成調整された混合済細骨材の場合は、その粒度はミクロンオーダーからミリメートルオーダーと大きな幅を持っている。このような粒度分布の大きな粉体試料をそのままの状態で、蛍光X線分析装置で直接細骨材中に銅スラグが占める割合を測定すると、X線の照射範囲(いわゆるコリメータ径)内における銅スラグの偏在が顕著に現れ、正確な含有率を求めることは極めて困難であった。   Copper slag-containing fine aggregates containing copper slag are composed of many types of fine aggregates such as copper slag, limestone, crushed sand, sea sand, etc., and most of the iron is usually in the copper slag part . Individual fine aggregates often have the same particle size, but in the case of mixed fine aggregates composed of various fine aggregates, the particle size has a large range from the micron order to the millimeter order. . When the proportion of copper slag in the fine aggregate is measured directly with a fluorescent X-ray analyzer with such a powder sample having a large particle size distribution as it is, the copper within the X-ray irradiation range (so-called collimator diameter) is measured. The uneven distribution of slag appeared remarkably, and it was extremely difficult to obtain an accurate content rate.

本発明の銅スラグ含有細骨材の検査方法においては、検査対象の銅スラグ含有細骨材からサンプリングした後、前記サンプリングした銅スラグ含有細骨材を粉砕して、粒径を0.150mm未満に揃えることにより、X線の照射範囲内には、銅スラグ含有細骨材を構成する各種細骨材が露出しており、統計的には全体の各種細骨材の構成比率を代表する粒子群といえる。また、粒径を0.150mm未満に揃えることにより、X線の照射範囲内の粒子群の起伏も小さくすることができ、得られる蛍光X線は、全体の組成を代表した値となる。   In the inspection method for copper slag-containing fine aggregate of the present invention, after sampling from the copper slag-containing fine aggregate to be inspected, the sampled copper slag-containing fine aggregate is pulverized, and the particle size is less than 0.150 mm. The various fine aggregates that make up the copper slag-containing fine aggregate are exposed within the X-ray irradiation range, and particles that are representative of the composition ratio of the various fine aggregates as a whole. A group. Further, by arranging the particle diameter to be less than 0.150 mm, the undulation of the particle group within the X-ray irradiation range can be reduced, and the obtained fluorescent X-ray has a value representative of the entire composition.

以下、本発明の銅スラグ含有細骨材の検査方法の一実施形態を、図1を参照しながら詳細に説明する。   Hereinafter, an embodiment of a method for inspecting a copper slag-containing fine aggregate of the present invention will be described in detail with reference to FIG.

1)銅スラグ含有細骨材
まず、銅スラグを含有している銅スラグ含有細骨材(混合済細骨材と呼ぶことがある)を用意する。銅スラグ含有細骨材は、石灰石、砕砂、海砂から選ばれる1種類以上の天然砂と銅スラグとを含有していることを特徴としている。上記銅スラグとともに、各種細骨材(石灰石、砕砂、海砂など)を、それぞれ比率(体積比または重量比)を定めて混合したものである。銅スラグ含有細骨材を作製するにあたっては、全体が均一になるように、混合機で連続的に混合したり、一旦、各細骨材を平地に集めて重機で混合したりすることが望ましい。
1) Copper slag-containing fine aggregate First, a copper slag-containing fine aggregate containing copper slag (sometimes referred to as a mixed fine aggregate) is prepared. The copper slag-containing fine aggregate is characterized by containing one or more kinds of natural sand and copper slag selected from limestone, crushed sand and sea sand. Along with the copper slag, various fine aggregates (limestone, crushed sand, sea sand, etc.) are mixed with their respective ratios (volume ratio or weight ratio) determined. In producing the copper slag-containing fine aggregate, it is desirable to continuously mix with a mixer so that the whole is uniform, or once collect each fine aggregate on a flat ground and mix with a heavy machine .

2)銅スラグ、天然砂
銅スラグは、上記したように、銅製錬業で産出される製品であり、鉄、珪素、カルシウム、酸素を主成分とする非晶質無機化合物である。銅スラグは、多量の鉄分を含有しており、その含有率は、36〜42質量%程度である。なお、同一の銅製錬所の銅スラグであれば鉄含有率のばらつきは±2%程度に調整されているのが一般的である。
2) Copper slag, natural sand Copper slag is a product produced in the copper smelting industry as described above, and is an amorphous inorganic compound mainly composed of iron, silicon, calcium, and oxygen. Copper slag contains a large amount of iron, and its content is about 36 to 42% by mass. In addition, in the case of copper slag from the same copper smelter, the variation in the iron content is generally adjusted to about ± 2%.

一方、石灰石、砕砂、海砂などの天然砂は、鉄分をほとんど含有していない。このことから、本発明の銅スラグ含有細骨材の検査方法の、粉状銅スラグ含有細骨材の鉄分について蛍光X線分析法によって測定することにより、銅スラグ含有細骨材中の銅スラグ量に換算できる。   On the other hand, natural sand such as limestone, crushed sand and sea sand contains almost no iron. From this, the copper slag in the copper slag-containing fine aggregate is measured by measuring the iron content of the powdered copper slag-containing fine aggregate by the fluorescent X-ray analysis method in the inspection method of the copper slag-containing fine aggregate of the present invention. Can be converted into a quantity.

3)サンプリング
上記銅スラグ含有細骨材の分析を行うためには、石灰石、砕砂、海砂から選ばれる1種類以上の天然砂と銅スラグを含有している銅スラグ含有細骨材(混合済細骨材)からサンプリングを行う。サンプリングは、全体の各種細骨材の構成比率を代表する集合となるように行われる方法であればよく、公知の方法として、例えば、検査対象の銅スラグ含有細骨材を板状に広げて対角線上に等間隔に採取していく方法や、該銅スラグ含有細骨材の全量をコンベアに切り出しながら一定時間毎に採取していく方法などがある。
3) Sampling In order to analyze the copper slag-containing fine aggregate, the copper slag-containing fine aggregate containing one or more natural sands selected from limestone, crushed sand and sea sand and copper slag (mixed) Sampling from fine aggregate. The sampling may be a method that is performed so as to be a set that represents the composition ratio of the entire various fine aggregates. As a known method, for example, a copper slag-containing fine aggregate to be inspected is spread in a plate shape. There are a method of sampling at regular intervals on a diagonal line, a method of sampling the entire amount of the copper slag-containing fine aggregate on a conveyer at regular intervals, and the like.

4)縮分
次に、サンプリングした銅スラグ含有細骨材を縮分する。縮分は公知の方法を用いればよく、例えば、よくかき混ぜた後にサンプリングと同様にして行えばよい。
4) Reduction Next, the sampled copper slag-containing fine aggregate is reduced. For the reduction, a known method may be used. For example, the mixing may be performed in the same manner as the sampling after stirring.

もともと銅スラグ含有細骨材が少量しかない場合や、一部の細骨材が全体の各種細骨材の構成比率を代表する組成と考えられる場合は、サンプリングで少量のみ分取して縮分を省略することができる。   If there is originally only a small amount of fine aggregate containing copper slag, or if some of the fine aggregate is considered to be a composition that represents the composition ratio of various fine aggregates, only a small amount is sampled and reduced. Can be omitted.

5)乾燥
銅スラグ含有細骨材は、サンプリングした時点では水分を含有していることが多いため、粉砕作業前に乾燥させることが好ましい。乾燥には、乾燥器等の大がかりな設備は必要とせず、電子レンジによる加熱乾燥等で構わない。銅スラグ含有細骨材の乾燥時間は、サンプリングした細骨材の量と湿潤の度合いによって適宜調整すればよい。
5) Drying Since the copper slag-containing fine aggregate often contains moisture at the time of sampling, it is preferably dried before the pulverization operation. Drying does not require large-scale equipment such as a dryer, and may be heat-dried by a microwave oven. What is necessary is just to adjust suitably the drying time of a copper slag containing fine aggregate with the quantity and the degree of wetness of the sampled fine aggregate.

6)粉砕
乾燥した銅スラグ含有細骨材は、粉砕により、粒径0.150mm未満の粉体(以下、粉状細骨材と呼ぶことがある)とする必要がある。粉砕には粉砕機を用いてもよいが、SUS製などの硬質の乳鉢と乳棒を用いれば、人力に頼っても、粒径0.150mm未満とすることが可能である。但し、瑪瑙製乳鉢、乳棒の場合は難しい。
6) Grinding The dried copper slag-containing fine aggregate needs to be pulverized into a powder having a particle size of less than 0.150 mm (hereinafter sometimes referred to as powdered fine aggregate). A pulverizer may be used for the pulverization, but if a hard mortar and pestle made of SUS or the like is used, the particle size can be made less than 0.150 mm even if it depends on human power. However, it is difficult for smoked mortar and pestle.

粉砕した銅スラグ含有細骨材の粒径が0.150mm未満となったかどうか確認するには、篩を用いてもよく、篩以外にサイクロンなどを用いてもよく、また、予め粉砕試験を行って経験的に粒径が0.150mm未満となるに十分な時間をかけて粉砕するのでもよい。目開き0.150mmの篩を通過しない銅スラグ含有細骨材がある場合は、通過する大きさとなるまで粉砕を繰り返せばよい。この際、篩を通過する粉状細骨材については再度の粉砕を避けるために取り分けておいてもよい。   In order to confirm whether the particle size of the crushed copper slag-containing fine aggregate is less than 0.150 mm, a sieve may be used, a cyclone or the like may be used in addition to the sieve, and a pulverization test is performed in advance. Then, empirically, it may be pulverized taking a sufficient time to make the particle size less than 0.150 mm. When there is a copper slag-containing fine aggregate that does not pass through a sieve having an opening of 0.150 mm, the pulverization may be repeated until the size passes. At this time, the fine powder aggregate passing through the sieve may be set apart to avoid re-grinding.

銅スラグ含有細骨材の中で、銅スラグは最も硬度が高いので、他の細骨材に比較して、上記篩を通過する大きさまで到達するのに時間を要する。粒径0.150mm未満に至っていない粒子の粉砕を省略したり、測定から除外したりすると、銅スラグ量が少ない状態で測定することとなるため注意を要する。   Among the copper slag-containing fine aggregates, copper slag has the highest hardness, so that it takes time to reach the size passing through the sieve as compared with other fine aggregates. Care must be taken because if the pulverization of particles that have not reached a particle size of less than 0.150 mm is omitted or excluded from the measurement, the amount of copper slag will be measured.

7)蛍光X線分析法による測定
上記粉砕工程を経て得られた粉状細骨材は、蛍光X線分析法によって測定する。
7) Measurement by fluorescent X-ray analysis The powdery fine aggregate obtained through the pulverization step is measured by fluorescent X-ray analysis.

蛍光X線分析法には、迅速性、容易性、非破壊という利点がある。蛍光X線分析法は、試料面(固体または液体)にX線を照射することによって蛍光X線を発生させ、蛍光X線の強度が試料中の目的元素の濃度に比例していることに基づき、目的元素の定量を行う。ただし、X線が照射された領域がその物質を代表する組成になっていることが必要である。目的元素が当該領域に偏在すると、定量性に大きな誤差が生じるからである。   X-ray fluorescence analysis has the advantages of rapidity, ease, and non-destructiveness. X-ray fluorescence analysis is based on the fact that X-rays are generated by irradiating a sample surface (solid or liquid) with X-rays, and the intensity of the fluorescent X-rays is proportional to the concentration of the target element in the sample. Quantify the target element. However, the region irradiated with X-rays needs to have a composition that represents the substance. This is because if the target element is unevenly distributed in the region, a large error occurs in the quantitativeness.

目的元素の偏在を解消するために、従来、固体試料では試料調整を行っている。試料調整の具体的方法としては、試料を粉砕して均一にした後に加圧成形したり、融解剤で溶かしてからガラスビードに固めたりする方法が挙げられる。つまり、蛍光X線分析法を用いて目的元素の濃度を測定するためには、蛍光X線分析装置のほかに、粉砕機、加圧成形機、ガラスビード作製機などの高価で大きな設備を必要とし、測定時間も長くなる。   In order to eliminate the uneven distribution of the target element, sample preparation has been conventionally performed for solid samples. Specific methods of sample preparation include a method in which the sample is pulverized and made uniform and then pressure-molded, or melted with a melting agent and then solidified into a glass bead. In other words, in order to measure the concentration of the target element using the fluorescent X-ray analysis method, in addition to the fluorescent X-ray analyzer, expensive and large facilities such as a pulverizer, a pressure molding machine, and a glass bead making machine are required. And the measurement time becomes longer.

本発明は、上記したように、極めて安価な粉砕器具(乳鉢と乳棒)のみで粉砕を行うことで、得られた粉状細骨材を用い、蛍光X線分析法によって細骨材中に銅スラグが占める割合を測定することができ、上記した、混合済細骨材の成形またはガラスビード化等は不要となるので設備費用が節約できる。   As described above, the present invention uses a powdered fine aggregate obtained by grinding only with an extremely inexpensive grinding tool (mortar and pestle), and copper in the fine aggregate by fluorescent X-ray analysis. The proportion of the slag can be measured, and the above-described molding of the mixed fine aggregate or glass beading becomes unnecessary, so that the equipment cost can be saved.

粉砕機や成形機といった設備に費用をかけることなく、一般的で安価な粉砕手段(たとえば、乳鉢と乳棒)を用いるだけで検査方法を用いることができるので、現場での測定作業を迅速かつ確実に行うことができる。   The inspection method can be used simply by using general and inexpensive crushing means (for example, mortar and pestle) without costing equipment such as a crusher and a molding machine. Can be done.

蛍光X線分析法による測定に先立って、分析試料である粉状細骨材の、X線の照射範囲は、刷毛や摺り切りなどで平らにならしておくことが望ましい。   Prior to the measurement by the fluorescent X-ray analysis method, it is desirable that the X-ray irradiation range of the powdered fine aggregate as the analysis sample is made flat by brushing or scraping.

上記粉状細骨材を蛍光X線分析法によって、細骨材中の鉄の発する蛍光X線の強度を分析する。銅スラグ含有率が既知の標準試料についても、鉄の発する蛍光X線の強度を分析しておく。強度が一致すれば、標準試料と同じ銅スラグ含有率と判断できる。あるいは、数点の銅スラグが占める割合が既知の粉状細骨材標準試料から、銅スラグが占める割合に対する鉄の蛍光X線強度の関係(検量線)を求めておき、対象の粉状細骨材から得た強度をこの関係に当てはめて銅スラグ含有率を求めることができる。   The powdery fine aggregate is analyzed by fluorescent X-ray analysis for the intensity of fluorescent X-rays emitted by iron in the fine aggregate. For the standard sample whose copper slag content is known, the intensity of fluorescent X-rays emitted by iron is analyzed in advance. If the strength matches, it can be determined that the copper slag content is the same as that of the standard sample. Alternatively, the relationship between the X-ray fluorescence intensity of iron with respect to the proportion of copper slag (calibration curve) is obtained from a powdered fine aggregate standard sample with a known proportion of copper slag, and the target fine powder The strength obtained from the aggregate can be applied to this relationship to determine the copper slag content.

上記のようにして得られた検量線を演算機能を有する装置に保存し、対象となる粉状細骨材試料について鉄の蛍光X線強度を測定することで、上記装置の演算機能を用いて、当該試料中の銅スラグ含有率を直接表示させることも可能である。   The calibration curve obtained as described above is stored in a device having a calculation function, and the fluorescent X-ray intensity of iron is measured for the target powdery fine aggregate sample, thereby using the calculation function of the device. It is also possible to directly display the copper slag content in the sample.

なお、銅スラグに固有の元素として鉄を例示したが、天然砂の成分によっては、鉄以外の元素について分析して銅スラグ含有率を求めることも可能である。   In addition, although iron was illustrated as an element intrinsic | native to copper slag, depending on the component of natural sand, it is also possible to analyze elements other than iron and to obtain | require copper slag content rate.

本発明の銅スラグ含有細骨材の検査方法を用いることにより、極めて安価な粉砕器具(乳鉢と乳棒)のみで銅スラグ含有細骨材の粉砕を行うことでよく、得られた粉状細骨材を用い、成形機といった設備を用いることもなく、携帯型の蛍光X線装置を用いて、細骨材中に銅スラグが占める割合を測定することができ、現場での測定作業を迅速かつ確実に行うことができる。   By using the method for inspecting a copper slag-containing fine aggregate of the present invention, it is sufficient to pulverize the copper slag-containing fine aggregate with only a very inexpensive crusher (mortar and pestle), and the obtained powdered fine bone The ratio of copper slag in fine aggregate can be measured using a portable fluorescent X-ray device without using equipment such as a molding machine. It can be done reliably.

[実施例1]
(検量線の作成)
銅スラグ含有細骨材(混合細骨材)の構成材料である、銅スラグ、石灰石、砕砂、海砂を用意した。これら構成材料をそれぞれ、SUS製の乳鉢とSUS製の乳棒を用いて粉砕し、粉状銅スラグ、粉状石灰石、粉状砕砂、粉状海砂を作製した。粉砕で作製した上記粉状材料は、SUS製の篩(目開き0.150mm)を全量が通り抜けることを確認した。
[Example 1]
(Create a calibration curve)
Copper slag, limestone, crushed sand and sea sand, which are constituent materials of copper slag-containing fine aggregate (mixed fine aggregate), were prepared. These constituent materials were each pulverized using a SUS mortar and a SUS pestle to produce powdered copper slag, powdered limestone, powdered crushed sand, and powdered sea sand. It was confirmed that the powdered material produced by pulverization was completely passed through a SUS sieve (aperture 0.150 mm).

上記粉状材料を調合して、重量比が石灰石:砕砂:海砂=1:1:2である3種混合粉を作製した。続いて、重量比が粉状銅スラグ:3種混合粉=1:9、2:8、3:7である標準試料(混合砂)を作製した。   The above powdery material was blended to prepare a mixed powder of three kinds having a weight ratio of limestone: crushed sand: sea sand = 1: 1: 2. Subsequently, a standard sample (mixed sand) having a weight ratio of powdered copper slag: 3 types of mixed powder = 1: 9, 2: 8, 3: 7 was prepared.

それぞれの標準試料をプラスチックフィルム(6μm厚)と円筒型プラスチック治具からなるホルダー内へ約10g入れた。ホルダー内の標準試料の高さを平らにならした後、携帯型蛍光X線装置(Skyray社製Genius XRF。以下、装置と呼ぶことがある。)を用いて、コリメータ径4mm、測定時間120秒で測定した。各標準試料につき5回の測定を行い、その結果を反映させた検量線(横軸:蛍光X線強度、縦軸:銅スラグ含有率)を装置の演算機能を用いて算出した。装置に検量線を保存し、以降は、試料を測定することで、当該試料中の銅スラグ含有率を装置に直接表示させることとした。   About 10 g of each standard sample was put into a holder composed of a plastic film (6 μm thick) and a cylindrical plastic jig. After flattening the height of the standard sample in the holder, a collimator diameter of 4 mm and a measurement time of 120 seconds using a portable fluorescent X-ray apparatus (Genius XRF manufactured by Skyray, hereinafter sometimes referred to as an apparatus). Measured with Each standard sample was measured five times, and a calibration curve (horizontal axis: fluorescent X-ray intensity, vertical axis: copper slag content) reflecting the results was calculated using the calculation function of the apparatus. A calibration curve was stored in the apparatus, and thereafter, the sample was measured, and the copper slag content in the sample was directly displayed on the apparatus.

(試料の測定)
次に、市販の混合細骨材(含有比率;銅スラグ:石灰石:砕砂:海砂=1:1:1:2の混合比とされているもの。)を用意し、図1に示す手順で混合細骨材中の銅スラグ含有率を検証することにした。
(Sample measurement)
Next, a commercially available mixed fine aggregate (content ratio; copper slag: limestone: crushed sand: sea sand = 1: 1: 1: 2 mixing ratio) is prepared, and the procedure shown in FIG. We decided to verify the copper slag content in the mixed fine aggregate.

床面に合成樹脂(ブルーシート)を敷き、その上に上記混合細骨材を乗せ、平らにならした。ならした混合細骨材の上面から、無作為に10地点を選んで印をつけた。印の10地点を円筒管で上から下まで貫いて、円筒内に入った混合細骨材を採取(サンプリング)した。   A synthetic resin (blue sheet) was laid on the floor, and the mixed fine aggregate was placed on the synthetic resin (blue sheet) to level it. Ten points were randomly selected from the top surface of the mixed fine aggregate. Ten points of the mark were penetrated from the top to the bottom with a cylindrical tube, and the mixed fine aggregate contained in the cylinder was collected (sampled).

採取した混合細骨材をよくかき混ぜたうえで、適切な縮分により約50gを試料として取り出した。   After the collected fine aggregate was well mixed, about 50 g was taken out as a sample by appropriate reduction.

取り出した試料を、電子レンジで600Wを3分かけて乾燥した。   The sample taken out was dried in a microwave oven at 600 W for 3 minutes.

乾燥した試料を、室温まで冷えるのを待ってから、SUS製の乳鉢とSUS製の乳棒を用いて粉砕した。粉砕した試料は、目開き0.15mmのSUS製篩にかけ、篩上に残った試料は篩を通り抜けるまで粉砕をやり直し、乾燥した試料の全量が粒子径0.15mm未満の粉体試料となった。   The dried sample was allowed to cool to room temperature and then ground using a SUS mortar and a SUS pestle. The crushed sample was passed through a SUS sieve having an opening of 0.15 mm, and the sample remaining on the sieve was pulverized again until it passed through the sieve, and the total amount of the dried sample became a powder sample having a particle diameter of less than 0.15 mm. .

得られた粉体試料をプラスチックフィルム(6μm厚)と円筒型プラスチック治具からなるホルダー内へ約10g入れた。ホルダー内の粉体試料の高さを平らにならした後、装置を用いてコリメータ径4mm、測定時間120秒で測定した。ホルダーは動かさずにさらに2回測定し、3回の平均値として銅スラグ含有率20.8%を得た。   About 10 g of the obtained powder sample was put into a holder made of a plastic film (6 μm thick) and a cylindrical plastic jig. After flattening the height of the powder sample in the holder, it was measured using a device with a collimator diameter of 4 mm and a measurement time of 120 seconds. The holder was measured two more times without moving, and a copper slag content of 20.8% was obtained as an average of three times.

(測定値の検証)
次にホルダー内の粉体試料を、ホルダーを揺動させることで撹拌し、ホルダー内の粉体試料の高さを平らにならした後、装置を用いてコリメータ径4mm、測定時間120秒で測定した。ホルダーは動かさずにさらに2回測定し、3回の平均値として銅スラグ含有率20.6%を得た。
(Verification of measured values)
Next, the powder sample in the holder is agitated by rocking the holder, and after the level of the powder sample in the holder is leveled, the collimator diameter is 4 mm and the measurement time is 120 seconds using the apparatus. did. The holder was measured two more times without moving, and a copper slag content of 20.6% was obtained as an average of three times.

測定結果は撹拌前が20.8%で撹拌後が20.6%であり、差が0.2ポイント(測定結果の1/100)と小さかった。試料が0.15mm未満に微粉化されていることで、試料内の各材料の分布が光学的に均一に近くなり、測定結果の差が小さくなったと考えられる。   The measurement result was 20.8% before stirring and 20.6% after stirring, and the difference was as small as 0.2 points (1/100 of the measurement result). It is considered that when the sample is pulverized to less than 0.15 mm, the distribution of each material in the sample becomes optically uniform, and the difference in measurement results is reduced.

[参考例1]
(検量線の作成)
実施例1と同様にして作製した標準試料(粉状銅スラグ:3種混合粉=1:9、2:8、3:7である)を、適量のバインダで混練し加圧成形してペレット状の標準試料を得た。ペレット状の標準試料は、リガク社製サイマルティックス12(据置型蛍光X線装置。以下、据置機と呼ぶことがある。)を用いて、コリメータ径30mm、測定時間40秒で測定した。各標準試料の測定結果を反映させた検量線を据置機の演算機能を用いて算出した。据置機に検量線を保存し、以降は、試料を測定することで、当該試料中の銅スラグ含有率を据置機に直接表示させることとした。
[Reference Example 1]
(Create a calibration curve)
A standard sample (powdered copper slag: mixed powder of three types = 1: 9, 2: 8, 3: 7) prepared in the same manner as in Example 1 was kneaded with an appropriate amount of binder, pressure-molded, and pelletized. A standard sample was obtained. The pellet-shaped standard sample was measured using Rigaku's Simultix 12 (stationary fluorescent X-ray apparatus; hereinafter sometimes referred to as a stationary machine) with a collimator diameter of 30 mm and a measurement time of 40 seconds. A calibration curve reflecting the measurement results of each standard sample was calculated using the calculation function of the stationary machine. The calibration curve was stored in the stationary machine, and thereafter, the sample was measured to display the copper slag content in the sample directly on the stationary machine.

(試料の測定)
実施例1と同様にして採取した混合細骨材をよくかき混ぜたうえで、適切な縮分により約500gを試料として取り出した。
(Sample measurement)
The mixed fine aggregate collected in the same manner as in Example 1 was thoroughly mixed, and about 500 g was taken out as a sample by appropriate reduction.

取り出した試料を、乾燥器に入れて105℃で2時間かけて乾燥した。   The sample taken out was put into a dryer and dried at 105 ° C. for 2 hours.

乾燥した試料を、粉砕機で粉砕し、粉体試料を得た。この粉体試料を、目開き0.15mmの篩にかけたところ、篩上には何も残らなかった。   The dried sample was pulverized with a pulverizer to obtain a powder sample. When this powder sample was passed through a sieve having an aperture of 0.15 mm, nothing remained on the sieve.

粉体試料を、標準試料の場合と同様に、適量のバインダで混練し加圧成形してペレット状の試料を得た。   As in the case of the standard sample, the powder sample was kneaded with an appropriate amount of binder and pressure-molded to obtain a pellet-shaped sample.

ペレット状の試料を、据置機を用いてコリメータ径30mm、測定時間40秒で測定した。ペレット状の試料を動かさずにさらに2回測定し、3回の平均値として銅スラグ含有率20.9%を得た。   The pellet-like sample was measured using a stationary machine with a collimator diameter of 30 mm and a measurement time of 40 seconds. The pellet-like sample was measured twice more without moving, and a copper slag content of 20.9% was obtained as an average value of the three times.

(実施例1と参考例1の比較)
参考例1の測定結果の20.9%からすると、実施例1の測定結果の20.6%や20.8%は妥当な結果であったといえる。実施例1のようにコリメータ径が小さな装置を用いて、粉体のまま測定した場合でも、試料の粒子径を0.15mm未満に揃えることによって、そして高さを平らにならすことによって、測定結果の精度が向上した。その結果、コリメータ径が十分に大きい据置機を用いて、加圧成形した場合とほぼ同等な測定結果が得られることが判明した。
(Comparison between Example 1 and Reference Example 1)
From 20.9% of the measurement result of Reference Example 1, it can be said that 20.6% and 20.8% of the measurement result of Example 1 were appropriate results. Even when the powder is measured with the apparatus having a small collimator diameter as in Example 1, the measurement result is obtained by aligning the particle diameter of the sample to less than 0.15 mm and leveling the height. Improved accuracy. As a result, it was found that a measurement result almost equivalent to that obtained by pressure molding using a stationary machine having a sufficiently large collimator diameter can be obtained.

[比較例1]
(試料の測定)
乾燥した試料を粉砕するために用いた乳鉢と乳棒に代えて、それぞれ瑪瑙製とした点以外は実施例1と同様にしたところ、粉砕に1日かけても篩(目開き0.15mm)を通らない粒子が残った。なお、この粒子を目視で確認したところ、銅スラグ(混合細骨材の構成材料の中で最も硬度が大きい)と同じ黒色をしているもののみであった。
[Comparative Example 1]
(Sample measurement)
Instead of the mortar and pestle used to pulverize the dried sample, the same procedure as in Example 1 was conducted except that each sample was smoked. Particles that did not pass remained. In addition, when this particle | grain was confirmed visually, it was only the thing which is the same black as copper slag (the hardness is the largest among the constituent materials of a mixed fine aggregate).

これ以上の粉砕をすることなく、0.15mmより大きな粒子も含めて実施例1の粉体試料の代わりとして処理を進めた。   The processing proceeded as a substitute for the powder sample of Example 1 including particles larger than 0.15 mm without further pulverization.

(測定値の検証)
測定結果は撹拌前が18.9%で撹拌後が21.9%であり、差が3.0ポイント(測定結果の1/10超え)と大きかった。この結果は、銅スラグの比較的大きな粒がコリメータの照射範囲に偏在した結果であると推定される。
(Verification of measured values)
The measurement result was 18.9% before stirring and 21.9% after stirring, and the difference was as large as 3.0 points (over 1/10 of the measurement result). This result is presumed to be a result of relatively large grains of copper slag being unevenly distributed in the irradiation range of the collimator.

(実施例1と比較例1の比較)
比較例1は撹拌により測定結果の1/10超えの誤差を示したのに対し、実施例1は撹拌しても測定結果の1/100程度の誤差に収まり、試料の微粉化により、銅スラグ粒の偏在化による測定データの変動を抑制できることが判明した。
(Comparison between Example 1 and Comparative Example 1)
While Comparative Example 1 showed an error exceeding 1/10 of the measurement result by stirring, Example 1 was still within an error of about 1/100 of the measurement result even when stirring. It was found that the fluctuation of measurement data due to the uneven distribution of grains can be suppressed.

コンクリート向け細骨材の製造、販売、購入、使用に際して、構成材料の含有割合をその場で簡単に分析することができる。分析結果は、製造工程の調合比率を変更したり、販売価格を計算したり、購入の可否を判断したり、使用量を計算して高品質なコンクリートを製造したりするのに用いることができる。


When manufacturing, selling, purchasing, and using fine aggregates for concrete, the content ratio of the constituent materials can be easily analyzed on the spot. The analysis results can be used to change the blending ratio of the manufacturing process, calculate the selling price, determine whether or not to purchase, and calculate the amount used to produce high-quality concrete. .


Claims (6)

銅スラグ含有細骨材の検査方法であって、
検査対象の銅スラグ含有細骨材からサンプリングした後、前記サンプリングした銅スラグ含有細骨材を粉砕して、粒径0.150mm未満の粉状細骨材を得て、
前記粉状細骨材を蛍光X線分析法によって測定し、細骨材中に銅スラグが占める割合を算出することを特徴とする銅スラグ含有細骨材の検査方法。
A method for inspecting a copper slag-containing fine aggregate,
After sampling from the copper slag-containing fine aggregate to be inspected, the sampled copper slag-containing fine aggregate is crushed to obtain a powdery fine aggregate having a particle size of less than 0.150 mm,
A method for inspecting a copper-slag-containing fine aggregate, characterized in that the powdered fine aggregate is measured by fluorescent X-ray analysis, and the proportion of copper slag in the fine aggregate is calculated.
前記測定は、前記粉状細骨材中の、銅スラグに固有の元素の発する蛍光X線の強度を測定することであり、前記算出は、前記粉状細骨材からの前記蛍光X線の強度を、銅スラグが占める割合が既知の粉状細骨材標準試料からの強度と比較することにより、当該粉状細骨材中に銅スラグが占める割合を算出すること、を特徴とする請求項1に記載の銅スラグ含有細骨材の検査方法。
The measurement is to measure the intensity of fluorescent X-rays emitted by elements unique to copper slag in the powdered fine aggregate, and the calculation is performed on the fluorescent X-rays from the powdered fine aggregate. The ratio of copper slag in the powdered fine aggregate is calculated by comparing the strength with the strength from a powdered fine aggregate standard sample with a known ratio of copper slag. The inspection method of copper slag containing fine aggregate of claim | item 1.
前記銅スラグに固有の元素が鉄であり、前記比較は、銅スラグが占める割合に対する鉄の蛍光X線の強度の関係を、複数の前記標準試料から求めたうえで、前記関係に前記粉状細骨材からの強度を当てはめることで行う
ことを特徴とする、請求項2に記載の銅スラグ含有細骨材の検査方法。
The element intrinsic to the copper slag is iron, and the comparison is based on the relationship between the intensity of the fluorescent X-rays of iron and the ratio of the copper slag occupied from the plurality of standard samples. The method for inspecting a copper slag-containing fine aggregate according to claim 2, wherein the method is performed by applying strength from the fine aggregate.
前記銅スラグ含有細骨材を粉砕するのに先立って、前記銅スラグ含有細骨材を乾燥することにより水分を取り除く
ことを特徴とする、請求項1〜3のいずれかに記載の銅スラグ含有細骨材の検査方法。
Prior to crushing the copper slag-containing fine aggregate, moisture is removed by drying the copper slag-containing fine aggregate. The copper slag-containing composition according to any one of claims 1 to 3, Inspection method for fine aggregate.
前記サンプリングした銅スラグ含有細骨材の粉砕を、乳鉢および乳棒を用いて行うことを特徴とする請求項1〜4のいずれかに記載の銅スラグ含有細骨材の検査方法。
The method for inspecting a copper slag-containing fine aggregate according to any one of claims 1 to 4, wherein the sampled copper slag-containing fine aggregate is pulverized using a mortar and a pestle.
前記銅スラグ含有細骨材が、石灰石、砕砂、海砂から選ばれる1種類以上の天然砂と銅スラグとを含有していることを特徴とする請求項1〜5にいずれかに記載の銅スラグ含有細骨材の検査方法。

The copper according to any one of claims 1 to 5, wherein the copper slag-containing fine aggregate contains one or more natural sands selected from limestone, crushed sand, and sea sand and copper slag. Inspection method for fine aggregate containing slag.

JP2016205090A 2016-10-19 2016-10-19 Inspection method of fine aggregate containing copper slag Active JP6674142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016205090A JP6674142B2 (en) 2016-10-19 2016-10-19 Inspection method of fine aggregate containing copper slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205090A JP6674142B2 (en) 2016-10-19 2016-10-19 Inspection method of fine aggregate containing copper slag

Publications (2)

Publication Number Publication Date
JP2017015737A true JP2017015737A (en) 2017-01-19
JP6674142B2 JP6674142B2 (en) 2020-04-01

Family

ID=57830382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205090A Active JP6674142B2 (en) 2016-10-19 2016-10-19 Inspection method of fine aggregate containing copper slag

Country Status (1)

Country Link
JP (1) JP6674142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112260A (en) * 2017-12-22 2019-07-11 住友金属鉱山株式会社 Method for producing fine aggregate
CN113916868A (en) * 2020-07-10 2022-01-11 中铝洛阳铜加工有限公司 Method for measuring copper content in copper ash of copper alloy smelting furnace
CN114720498A (en) * 2022-04-09 2022-07-08 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) Method for detecting and analyzing self-collapse of hardened concrete or mortar caused by problematic aggregate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281075A (en) * 2004-03-30 2005-10-13 Taiheiyo Cement Corp Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate
JP2010078502A (en) * 2008-09-26 2010-04-08 Sumitomo Osaka Cement Co Ltd Methods for determining and quantifying slug aggregate in concrete
US20110067601A1 (en) * 2009-09-24 2011-03-24 Ash Improvement Technology, Inc. Production of cement additives from combustion products of hydrocarbon fuels and strength enhancing metal oxides
JP2011163810A (en) * 2010-02-05 2011-08-25 Ohbayashi Corp Method for estimating amount of cement
JP2013033007A (en) * 2011-08-03 2013-02-14 Toa Harbor Works Co Ltd Estimation method for chloride content percentage in recycled fine aggregate for concrete
JP2014006183A (en) * 2012-06-26 2014-01-16 Penta Ocean Construction Co Ltd Quality control method for admixture of dredged soil and steelmaking slag
CN103592325A (en) * 2013-10-28 2014-02-19 北京工业大学 Method for determining finely-grinded mineral slag original content in hardened concrete
JP2014094860A (en) * 2012-11-09 2014-05-22 Sumitomo Metal Mining Engineering Co Ltd Method of producing concrete and method of preparing fine aggregates for concrete production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281075A (en) * 2004-03-30 2005-10-13 Taiheiyo Cement Corp Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate
JP2010078502A (en) * 2008-09-26 2010-04-08 Sumitomo Osaka Cement Co Ltd Methods for determining and quantifying slug aggregate in concrete
US20110067601A1 (en) * 2009-09-24 2011-03-24 Ash Improvement Technology, Inc. Production of cement additives from combustion products of hydrocarbon fuels and strength enhancing metal oxides
JP2011163810A (en) * 2010-02-05 2011-08-25 Ohbayashi Corp Method for estimating amount of cement
JP2013033007A (en) * 2011-08-03 2013-02-14 Toa Harbor Works Co Ltd Estimation method for chloride content percentage in recycled fine aggregate for concrete
JP2014006183A (en) * 2012-06-26 2014-01-16 Penta Ocean Construction Co Ltd Quality control method for admixture of dredged soil and steelmaking slag
JP2014094860A (en) * 2012-11-09 2014-05-22 Sumitomo Metal Mining Engineering Co Ltd Method of producing concrete and method of preparing fine aggregates for concrete production
CN103592325A (en) * 2013-10-28 2014-02-19 北京工业大学 Method for determining finely-grinded mineral slag original content in hardened concrete

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112260A (en) * 2017-12-22 2019-07-11 住友金属鉱山株式会社 Method for producing fine aggregate
JP7110590B2 (en) 2017-12-22 2022-08-02 住友金属鉱山株式会社 Manufacturing method of fine aggregate
CN113916868A (en) * 2020-07-10 2022-01-11 中铝洛阳铜加工有限公司 Method for measuring copper content in copper ash of copper alloy smelting furnace
CN113916868B (en) * 2020-07-10 2024-01-09 中铝洛阳铜加工有限公司 Method for measuring copper content in copper ash of copper alloy smelting furnace
CN114720498A (en) * 2022-04-09 2022-07-08 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) Method for detecting and analyzing self-collapse of hardened concrete or mortar caused by problematic aggregate

Also Published As

Publication number Publication date
JP6674142B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
Liska et al. Scaled-up commercial production of reactive magnesium cement pressed masonry units. Part I: Production
JP7393489B2 (en) Concrete manufacturing method
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
EP3234593A1 (en) Apparatus and method for producing and analyzing a plurality of sample materials
JP6674142B2 (en) Inspection method of fine aggregate containing copper slag
US20190119159A1 (en) Composite material comprising phosphogypsum
JP6020990B2 (en) Quality control method for clay and steelmaking slag mixed material
Mijatović et al. Validation of energy-dispersive X-ray fluorescence procedure for determination of major and trace elements present in the cement based composites
JP5429058B2 (en) Quantitative analysis of ettringite in inorganic oxide materials
JP2012255689A (en) Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material
Diefenderfer et al. Temperature and confinement effects on the stiffness of a cold central-plant recycled mixture
Jagadesh et al. Microscopic analyses and performance characteristics of granite powder blended cement
Nedeljković et al. Non-destructive screening methodology based on handheld XRF for the classification of concrete: cement type-driven separation
JP2020165962A (en) Ore sample analysis method
AU2017396650A1 (en) Method for producing coal ash, coal ash, and cement composition
Muktan et al. Effect of Partial Replacement of Natural Fine Aggregate with Crushed Stone Dust: A Case Study of Makawanpur District
JP6568768B2 (en) Method for producing artificial ground material and method for determining the amount of additive added in the production of artificial ground material
Bauerová et al. Quantification of vegetable oil content in lime mortar by thermal analysis
JP2021046675A (en) Construction method of ground improvement work
CN107389709B (en) Method and its application based on the preferred siliceous materials of XRD
Dey Chemical Characterization of Recycled Concrete Aggregates Using a Handheld X-Ray Fluorescence Device
JP5272541B2 (en) Cement-based material for ground improvement and selection method of addition amount
JP3333974B2 (en) Method for producing concrete using layered silicate mineral-containing aggregate
JP5681417B2 (en) Method for estimating the mixing rate of binder
Kukla et al. Particle size distribution of dried sewage sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R150 Certificate of patent or registration of utility model

Ref document number: 6674142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150