JP2006138660A - Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method - Google Patents

Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method Download PDF

Info

Publication number
JP2006138660A
JP2006138660A JP2004326396A JP2004326396A JP2006138660A JP 2006138660 A JP2006138660 A JP 2006138660A JP 2004326396 A JP2004326396 A JP 2004326396A JP 2004326396 A JP2004326396 A JP 2004326396A JP 2006138660 A JP2006138660 A JP 2006138660A
Authority
JP
Japan
Prior art keywords
soil
belt
fluorescent
analysis
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004326396A
Other languages
Japanese (ja)
Inventor
Yasuo Takahashi
靖男 高橋
Masahiro Fujita
昌宏 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004326396A priority Critical patent/JP2006138660A/en
Publication of JP2006138660A publication Critical patent/JP2006138660A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for analyzing a metal non-uniformly distributed in polluted soil, powdery food or the like with high precision and high sensitivity. <P>SOLUTION: This pretreatment method is characterized in that a mixture process of a sample for use in the analysis of a metal in polluted soil is set to a wet system and, water or an organic liquid in components under wet sieve is dried and removed on a heat-resistant plastic film. The fluorescent X-ray analyzing method employing this pretreatment method is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光X線法、全反射蛍光X線法、などを用いて汚染土壌中含有金属を分析する場合の前処理方法に関する。   The present invention relates to a pretreatment method for analyzing metals contained in contaminated soil using a fluorescent X-ray method, a total reflection fluorescent X-ray method, or the like.

従来の蛍光X線法などによる汚染土壌中金属分析前処理では、混合、乾燥、粉砕、篩い、などを個別単位作業で行っていて、この内、混合作業は、採取土壌をそのまま、または乾燥後混合するのが通常の方法であって、注水後混合する方法は通常行われていない。また、篩い下成分は、篩い前に乾燥済みであるため、その後の工程においては、乾燥は、行わないのが通常である。これは、主に、環境省告示で決められた方法が、風乾、粉砕、篩い、を義務化しているためと考えられる。この告示によらない簡易分析法を実施しようとすれば、湿式粉砕、湿式混合、湿式篩い法は、比較的容易に考案可能かもしれないが、その後の乾燥手段として、耐熱性加熱ベルトを用いる方法は、知られていない。   In the conventional pretreatment of metal analysis in contaminated soil by the fluorescent X-ray method, etc., mixing, drying, crushing, sieving, etc. are performed as individual unit operations. Mixing is a normal method, and a method of mixing after pouring water is not usually performed. Moreover, since the under-sieving component has been dried before sieving, it is usually not performed in the subsequent steps. This is thought to be mainly because the method determined by the Ministry of the Environment notification requires air drying, crushing, and sieving. If a simple analysis method not based on this notification is to be carried out, wet pulverization, wet mixing, and wet sieving methods may be devised relatively easily, but a method using a heat-resistant heating belt as the subsequent drying means Is not known.

土壌の金属系汚染の調査は、蛍光X線法、原子スペクトル法、比色法などの測定によって行われている。採掘した土壌は、数百〜数千グラム、数百〜数千平方センチメートルの大量であるのに対し、これらの測定に必要な試料は、環境省告示による公定法の含有試験では、重量6g以上となっており、一般的運用では、6〜15グラム程度である。また、蛍光X線法での照射面積では、数平方ミリメートルとなって、母体土壌より数桁も小さいため、不均一汚染状態の場合には全体試料を代表した部分であるかどうかが疑わしい。このために、得られた分析結果が、汚染状態を示すものであるかが常に問題となる。分析所間誤差の主要な原因は、このような試料の混合不足とされている。これを解決するために、5点混合法などの処置がとられている。この方法は、混合作業が人手である点が欠点であり、混合効果を発揮するには、各々キログラムオーダーの母体土壌を5点混合する必要がある。この混合作業の代わりに5点を測定する方法は、測定作業量が5倍になる点が欠点である。特に、粘土や湿った土壌の混合作業は、人手では重労働となる。粘土や湿った土壌を乾燥すると土壌は、固まることが多く、粉砕しないと混合できないことが多い。また、乾燥には、数十時間以上の多くの時間がかかる。汚染対策上、この乾燥待ち時間が対策作業を遅らせるため最も嫌われるものとなっている。   Investigation of metal contamination of soil is carried out by measurements such as fluorescent X-ray method, atomic spectrum method, and colorimetric method. While the mined soil is a large quantity of several hundred to several thousand grams and several hundred to several thousand square centimeters, the sample necessary for these measurements is a weight test of 6 g or more in the content test of the official method by the Ministry of the Environment notification. In general operation, it is about 6-15 grams. Moreover, since the irradiation area in the fluorescent X-ray method is several square millimeters, which is several orders of magnitude smaller than that of the mother soil, it is doubtful whether or not it is a part representing the entire sample in the case of non-uniform contamination. For this reason, it is always a problem whether the obtained analysis result indicates a contamination state. The main cause of interlaboratory errors is considered to be insufficient mixing of samples. In order to solve this, measures such as a five-point mixing method have been taken. This method is disadvantageous in that the mixing work is manual, and in order to exert the mixing effect, it is necessary to mix 5 points each of mother soil of the order of kilograms. The method of measuring 5 points instead of the mixing operation is disadvantageous in that the amount of measurement work is 5 times. In particular, mixing clay and moist soil is a labor-intensive task. When clay or wet soil is dried, the soil often hardens and often cannot be mixed without being crushed. Also, drying takes a lot of time of several tens of hours. In order to prevent pollution, this drying waiting time is most disliked because it delays the countermeasure work.

また、公定法に定められた含有金属量分析方法では、乾燥や篩いの時間ばかりでなく、抽出時間、抽出器具が大きな負荷であるため、最近は、公定法によらない簡易分析が非常な勢いで普及しており、その方法としては、固体のまま分析する蛍光X線法が、主流となりつつある。抽出後溶液で簡易分析する方法は、抽出時間ばかりでなく、その前工程の混合、乾燥、ふるいに時間がかかるためにあまり普及していない。更に、蛍光X線法の場合は、原子スペクトル法や比色法と違って、検出感度を向上させるためには、篩いの目を100メッシュ程度つまり粒子径0.2mm程度に細かくすることが要求され、この篩い作業の負荷が大きい。また、分析精度を向上させるためには、測定面を平滑として蛍光X線検出器との距離を一定に収める必要がある。   In addition, the analysis method for the amount of metal contained in the official method is not only drying and sieving time, but also the extraction time and the extraction equipment are heavy loads. As the method, the fluorescent X-ray method for analyzing the solid as it is is becoming mainstream. A simple analysis method using a solution after extraction is not so popular because it takes time not only for extraction time but also for mixing, drying, and sieving in the previous steps. Furthermore, in the case of the fluorescent X-ray method, unlike the atomic spectrum method or the colorimetric method, in order to improve the detection sensitivity, it is required to make the sieve screen finer to about 100 mesh, that is, about 0.2 mm in particle diameter. The load of this sieving work is large. In order to improve the analysis accuracy, it is necessary to keep the measurement surface smooth and keep the distance from the fluorescent X-ray detector constant.

これらの問題を解決するための手段として、例えば、特許文献1がある。特許文献1に記載されている方法では、混合工程がないために、金属の偏在を平均化して精度を上げることができない。また、注水するケースも記述されているがその後の工程は、水切り工程となっていて乾燥工程がなく、水溶性金属成分は水切り工程において流れ去ってしまい、負誤差が大きい。つまり、上記方法では、汚染土壌の効率的選別を主たる用途としており、分析精度という点で、不十分であった。
特開2003−166956号公報
As means for solving these problems, for example, there is Patent Document 1. In the method described in Patent Document 1, since there is no mixing step, the uneven distribution of metal cannot be averaged to increase the accuracy. Although the case of pouring water is also described, the subsequent process is a draining process, there is no drying process, and the water-soluble metal component flows away in the draining process, resulting in a large negative error. That is, the above method is mainly used for efficient selection of contaminated soil, and is insufficient in terms of analysis accuracy.
JP 2003-166156 A

本発明は、上記した従来技術における問題点を解決するためになされたものであって、土壌中金属の蛍光X線分析の前処理作業即ち、乾燥、粉砕、篩い、成形、の内、従来法には、見られなかった、(1)混合工程の湿式化、(2)篩い工程後の水または有機液体の乾燥除去工程を耐熱性樹脂から成る加熱ベルトを使用する、の2つの特徴的手段を講ずることによって実現し、上記の欠点を解決することを目的とするものである。   The present invention has been made in order to solve the above-described problems in the prior art, and is a pretreatment operation for fluorescent X-ray analysis of metals in soil, that is, drying, pulverization, sieving, molding, and conventional methods. There are two characteristic means that are not seen in the above: (1) Wetting of the mixing step, (2) Drying and removing of water or organic liquid after the sieving step, using a heating belt made of a heat-resistant resin It aims to solve the above-mentioned drawbacks.

本発明は、キログラムオーダーの土壌を乾燥前に水または有機液体を注入してスラリー化または軟質化してから機械力、超音波、加熱などのエネルギーで粉砕・混合し、その後、スラリー状態のまま篩いにかけ、篩い下の土壌スラリーを耐熱性プラスチック材料で構成された幅数十センチメートル、長さ数十センチメートルのベルトまたは独立したシートに滴下し、このベルトまたはシート上で加熱乾燥及び送風乾燥し、蛍光X線法に必要な最小の薄さである約数ミリメートルと必要な最小の平滑さであるバラツキ約数百マイクロメートルに成形する。乾燥成形された薄板状土壌は、ベルトまたはシート上を移動中または停止中に1個または複数の検出ヘッドを持った蛍光X線装置で分析される。分析終了後、かきとりナイフによってベルトまたはシート上土壌は掻き落とされる。このような手段によって、従来技術の問題を解決する土壌中金属分析の前処理方法及びこれを用いた各種分析方法を提供するものである。   In the present invention, water or organic liquid is poured into a soil of kilogram order to make a slurry or soften before drying, and then pulverized and mixed with energy such as mechanical force, ultrasonic wave, and heating, and then sieved in a slurry state. And dripping the soil slurry under the sieve onto a belt of several tens of centimeters in width and several tens of centimeters made of heat-resistant plastic material or an independent sheet, and then drying by heating and blowing on the belt or sheet. Then, it is formed into about several millimeters, which is the minimum thickness required for the fluorescent X-ray method, and variations of about several hundred micrometers, which is the minimum smoothness required. The dry-molded lamellar soil is analyzed with a fluorescent X-ray apparatus having one or more detection heads while moving or stopping on a belt or sheet. After the analysis is completed, the soil on the belt or sheet is scraped off by a scraping knife. By such means, a pretreatment method for metal analysis in soil that solves the problems of the prior art and various analysis methods using the same are provided.

本発明によって、金属汚染土壌分析を前処理し、蛍光X線分析法などで分析することによって、土壌汚染金属の分布が偏在あるいは局在し、つまり、不均一な試料であっても従来法よりも、高精度に分析することができ、汚染有無の判断を誤って経済的、社会的損失を蒙る確率が減少する。   According to the present invention, by pre-processing metal-contaminated soil analysis and analyzing by fluorescent X-ray analysis or the like, the distribution of soil-contaminated metal is unevenly distributed or localized. However, it can be analyzed with high accuracy, and the probability of suffering an economic and social loss due to a wrong determination of the presence or absence of contamination is reduced.

図1は、本発明の実施例に係る前処理方法が適用された蛍光X線分析法の要部概略図を示している。この前処理方法では、土壌試料及び水または有機液体を予備混合する予備混合槽1、予備混合槽及びホッパー内の攪拌を行う攪拌機2、ホッパーを構成するロート3、供給する土壌4、水5、ホッパーを構成する第一篩い6、混合・粉砕後の土壌スラリーを第二篩いに供給するピンチバルブ7、第一篩いより細かい第二篩い8、更に細かい第三篩い、土壌スラリーを加熱乾燥用ベルトに供給するノズル10、耐熱性プラスチック製土壌スラリー加熱乾燥用ベルト11、ベルト駆動用回転機構12、ベルトを蛍光X線検出ヘッドに密接させるベルト押さえ13、ベルト回転機構のモーター14、ベルト加熱用ヒーター15、ヒーターをベルトに接触・離反させる上下機構16、乾燥空気兼冷却空気を送風するファン17、ベルト上土壌をかきとって回収する土壌かきとりゴム18、土壌かきとりゴムをベルトに接触・離反させる保持具19、回収土壌容器20、篩い架台21、ベルト架台22、制御機構架台23、蛍光X線分析装置及び前処理部制御用ノートパソコン24、蛍光X線分析装置25、を備えている。   FIG. 1 shows a schematic diagram of a main part of a fluorescent X-ray analysis method to which a pretreatment method according to an embodiment of the present invention is applied. In this pretreatment method, a premixing tank 1 for premixing a soil sample and water or an organic liquid, a stirrer 2 for stirring in the premixing tank and the hopper, a funnel 3 constituting the hopper, supplied soil 4, water 5, The first sieve 6 constituting the hopper, the pinch valve 7 for supplying the mixed and pulverized soil slurry to the second sieve, the second sieve 8 finer than the first sieve, the finer third sieve, and the belt for heating and drying the soil slurry Nozzle 10 to be fed to, heat-resistant plastic soil slurry heating and drying belt 11, belt driving rotation mechanism 12, belt presser 13 for bringing the belt into close contact with the fluorescent X-ray detection head, belt rotation mechanism motor 14, belt heating heater 15. Lifting mechanism 16 for contacting / separating the heater with the belt, fan 17 for blowing dry / cooling air, and scraping the soil on the belt Soil scraper rubber 18 to be recovered in this manner, holder 19 for bringing soil scraper rubber into contact with and separating from the belt, recovered soil container 20, sieve base 21, belt base 22, control mechanism base 23, fluorescent X-ray analyzer and pre-processing unit control Notebook computer 24 and fluorescent X-ray analyzer 25.

本発明における好ましい条件の一例を運転諸元として以下に示す。   An example of preferable conditions in the present invention is shown below as operation specifications.

(1)土壌量は、500g程度が好ましく、5g以下では、汚染土壌の代表性が悪く、2000g以上では、攪拌槽から溢れる。ここでは、約500gをプラスチック製予備攪拌槽(1リットル 直径約10cm、深さ約13cm)にとった。:所要時間30秒
(2)注入水は、土壌重量の同量程度が好ましい。ここでは、土壌重量の約1倍の400ミリリットルを注入した。:約10秒
(3)プロペラで攪拌:3分
(4)目開き3mmの第一篩いを通して、ロートに注いだ。予備攪拌槽を水100mlで洗浄し、洗浄液もロートに注いだ:30秒
(5)ロートに攪拌機をセットし、攪拌を開始した後、ピンチバルブ電磁弁を約5秒間開き、ナイロン製1mm及び0.3mmからなる第二、第三ふるい(篩い直径50mm ふるい間隔:10mm)(毎回交換)に注入する。自然流下によって大粒成分はやや先に落下するが、第一篩い上にひっかかる。分析対象となる0.3mm以下の土壌成分は、分散液全体によく均一化されたまま篩いを電磁弁が開いた約5秒間で約100mlが通過した。約5秒で電磁弁を閉とした。これは、0.3mm以下の試料全体をよく代表していると見られた。通過量は、投入量の1/50〜1/2程度が好ましい。1/50以下では、代表性が悪く、1/2以上では、後半での攪拌が空転してできなくなる、篩いが重さに耐えられなくなる、篩い下がベルトから溢れる、分析時間が長く効率が低下する等の欠点がある。
(1) The amount of soil is preferably about 500 g, and if it is 5 g or less, the representativeness of the contaminated soil is bad, and if it is 2000 g or more, it overflows from the stirring tank. Here, about 500 g was taken in a plastic pre-stirring tank (1 liter diameter: about 10 cm, depth: about 13 cm). : Time required 30 seconds (2) The amount of injected water is preferably about the same as the soil weight. Here, 400 milliliters of about 1 times the soil weight was injected. : About 10 seconds (3) Stirring with a propeller: 3 minutes (4) The mixture was poured into a funnel through a first sieve having an opening of 3 mm. The pre-stirring tank was washed with 100 ml of water, and the cleaning solution was also poured into the funnel: 30 seconds (5) After setting the stirrer in the funnel and starting stirring, the pinch valve solenoid valve was opened for about 5 seconds, and the nylon 1 mm and 0 .Inject into 2nd and 3rd sieves consisting of 3 mm (sieve diameter 50 mm, sieve interval: 10 mm) (changed every time). Large particles fall a little earlier due to natural flow, but get caught on the first sieve. About 100 ml of the soil component of 0.3 mm or less to be analyzed passed through the sieve for about 5 seconds while the electromagnetic valve was opened while being well homogenized throughout the dispersion. The solenoid valve was closed in about 5 seconds. This was seen to be representative of the entire sample of 0.3 mm or less. The passing amount is preferably about 1/50 to 1/2 of the input amount. Below 1/50, the representativeness is poor. At 1/2 or above, stirring in the second half cannot be performed idly, the sieve cannot withstand the weight, the sieve underflows from the belt, the analysis time is long, and the efficiency is high. There are disadvantages such as lowering.

(6)ふるい下を、出口直径10mmのじょうご状ノズルからベルト状加温体上に排出した。排出時間約6秒。ベルトは、上記電磁弁の開動作と共に動き出し、閉動作後3秒後に停止する。ベルト速度は、毎秒約4cmの速度とし、開状態5秒とその後の3秒で合計約8秒間動き、約32cm移動した。ベルト上にベルト移動方向を長径とする約25cm×10cm、厚さ約3mmのペースト状土壌が形成された。ふるい、電磁弁、攪拌槽は、1バッチ終了後、手ではずし、水で洗浄した。攪拌槽残分は、土壌回収タンクに貯蔵した。   (6) The bottom of the sieve was discharged from a funnel-shaped nozzle having an outlet diameter of 10 mm onto the belt-shaped heating element. Discharge time is about 6 seconds. The belt starts to move with the opening operation of the solenoid valve, and stops 3 seconds after the closing operation. The belt speed was about 4 cm per second. The belt moved for about 8 seconds in 5 seconds in the open state and 3 seconds thereafter, and moved about 32 cm. On the belt, a paste-like soil having a length of about 25 cm × 10 cm and a thickness of about 3 mm was formed. The sieve, solenoid valve and stirring tank were removed by hand after one batch and washed with water. The remainder of the stirring tank was stored in a soil collection tank.

(7)送風機能付き150℃移動式ベルト状ヒーターに乗った土壌は、停止したベルト上で乾燥して膜状土壌に変化する。   (7) The soil riding on the 150 ° C. movable belt-like heater with a blowing function is dried on the stopped belt and changed to film-like soil.

(8)ベルト材質:ポリイミド樹脂製フィルム 厚さ約0.1mm
(9)発熱方式:発熱ローラー及び加熱板間接加熱方式
(10)ヒーター幅25cm 加温体上部長さ50cm 幅は、15〜30cmが好ましい。15cmより狭い場合は、ベルトサイドから土壌が溢流して好ましくない。30センチより広い場合は、装置の可搬性が悪い。ここでは、幅25cmとした。長さは、40cmより短い場合は、送り速度が遅く、ベルトサイドからの溢流がおきやすい。80cmより長い場合は、装置の可搬性が悪い。ここでは、長さを50cmとした。
(8) Belt material: Polyimide resin film Thickness of about 0.1mm
(9) Heat generation method: Heat generation roller and heating plate indirect heating method (10) Heater width 25 cm Heating body upper length 50 cm The width is preferably 15 to 30 cm. When it is narrower than 15 cm, the soil overflows from the belt side, which is not preferable. If it is wider than 30 cm, the portability of the device is poor. Here, the width was 25 cm. When the length is shorter than 40 cm, the feeding speed is slow, and overflow from the belt side tends to occur. If it is longer than 80 cm, the portability of the device is poor. Here, the length was 50 cm.

(11)滴下速度毎秒約20ml。滴下速度は、土壌の粘土性でほぼ決まるため選択の余地はあまりない。そのため、合計滴下時間を調節して定量下限を確保する。合計滴下時間は2秒以上10秒以下が好ましい。2秒より短い場合は、定量下限が悪い。10秒より長いとベルト速度との関係からベルトサイドからの溢流が起こりやすい条件になる。   (11) The dropping speed is about 20 ml per second. The dripping rate is almost determined by the clay nature of the soil, so there is little room for selection. Therefore, the lower limit of quantification is secured by adjusting the total dropping time. The total dropping time is preferably from 2 seconds to 10 seconds. If it is shorter than 2 seconds, the lower limit of quantification is bad. If it is longer than 10 seconds, overflow from the belt side tends to occur due to the belt speed.

(12)蒸発速度は、毎分約30mlであった。   (12) The evaporation rate was about 30 ml per minute.

(13)ベルト移動速度は、篩い下土壌が流れ広がる速度よりやや早くすることが好ましく、毎秒約4cmを選択した。乾燥工程でのベルト停止時間約3分。通常、2.5〜3.5分でほどよい乾燥状態が得られた。この後、加熱板を数mm下降させて、加熱を停止させた。   (13) The belt moving speed is preferably slightly faster than the speed at which the sieved soil flows and spreads, and is selected to be about 4 cm per second. Belt stop time in the drying process is about 3 minutes. Usually, a moderately dry state was obtained in 2.5 to 3.5 minutes. Thereafter, the heating plate was lowered several mm to stop the heating.

(14)形成される膜状土壌の厚さ1.5mm。   (14) The thickness of the membranous soil formed is 1.5 mm.

(15)乾燥工程の次にベルトを移動速度毎秒約0.3mmで動かし、蛍光X線ヘッドで分析を開始した。蛍光X線ヘッド部分を走るベルトの浮き上がりを押さえるために、蛍光X線ヘッド付近は、ベルトサイドに溝幅0.13mm 溝深さ10mmのガイドスリットを設け、蛍光X線ヘッドがベルトに常に密着状態を保つようにした。   (15) Following the drying step, the belt was moved at a moving speed of about 0.3 mm per second, and analysis was started with a fluorescent X-ray head. To suppress the lifting of the belt running on the fluorescent X-ray head, a guide slit with a groove width of 0.13 mm and a groove depth of 10 mm is provided near the fluorescent X-ray head so that the fluorescent X-ray head is always in close contact with the belt. To keep.

(16)土壌の合計積算時間は、14分とした。合計積算時間は、3〜30分が好ましい。3分より少ない場合は、蛍光X線の感度が悪くなり、30分より多い場合は、全体工程の効率が低下する。   (16) The total accumulated time of the soil was 14 minutes. The total accumulated time is preferably 3 to 30 minutes. When the time is less than 3 minutes, the sensitivity of the fluorescent X-rays is deteriorated. When the time is more than 30 minutes, the efficiency of the entire process is lowered.

(17)照射ビーム径10mm
(18)この後、加熱板を再び上昇させベルトを余熱する。また、ベルト上土壌回収継続のために、更に3分間、毎秒0.3mmで、計約5cm前進する。これで、ベルト上土壌の回収が終了する。ベルトは、次のスタートで毎秒4cmで動き始める。これが繰り返される。次の試料の蛍光X線測定中、即ち、ベルト速度が毎秒0.3mmの工程で、前回試料は、ゴム製ナイフによって掻き落とされる。この間、毎秒0.3mmの低速であるため、ナイフとベルトとの摩擦によるベルトの磨耗が比較的少ない。
(17) Irradiation beam diameter 10 mm
(18) Thereafter, the heating plate is raised again to preheat the belt. Further, in order to continue the soil recovery on the belt, the robot moves forward by about 5 cm at 0.3 mm per second for another 3 minutes. This completes the collection of soil on the belt. The belt starts moving at 4 cm per second on the next start. This is repeated. During the fluorescent X-ray measurement of the next sample, that is, in the process where the belt speed is 0.3 mm per second, the previous sample is scraped off by a rubber knife. During this time, because of the low speed of 0.3 mm per second, the wear of the belt due to the friction between the knife and the belt is relatively small.

(19)検知終了土壌をウレタンゴム製ナイフでかきとった結果、残留土壌は、目で確認できない程度であった。剥いだ土壌を回収土壌ケースに貯めた。   (19) As a result of scraping the detection-completed soil with a urethane rubber knife, the residual soil was not visible. The peeled soil was stored in a recovered soil case.

上記の例では、分析所要時間は、1個目試料合計約21分、2個目以降も、約21分間隔で処理される。この間に次の試料処理のための攪拌槽、電磁弁、篩い、の洗浄、組立などの準備作業及びデータ処理などを行えば、作業者は、効率的に前処理と分析を遂行できる。鉛汚染土壌3kg中の鉛を本発明の方法で蛍光X線簡易現場分析した場合と従来法で蛍光X線簡易現場分析した場合とを比較した。従来法は、約10gづつ6個所から採取し、計約60gを約40分間乾燥器で乾燥し、メノウ乳鉢で約5分づつ計30分粉砕・混合し、篩いには、約3分づつ計20分かかった。分析は、1個当たり、5分づつ計30分かかり、総合計約120分かかった。その結果、従来法では、前処理からとおしての6回分析の平均値は、110mg/kg、個別データは、鉛の偏在が比較的多いにもかかわらず1回の採取量が10gであったため、50〜640mg/kgで、範囲としては、590mg/kgであった。一方、本発明の方法の場合、所要時間は、約120分でほぼ同じであり、1回の採取量が500gで6回前処理、即ち3kg全量を前処理する方法であったため、平均値は、190mg/kg、個別データは、140〜200mg/kgで、範囲としては、60mg/kgで、約1/10に縮小した。更に、環境省告示第19号の方法で15gづつ採取し、6個所を前処理及びICP発光分析した結果は、平均170mg/kgで、個別データは、80〜490mg/kgで、範囲は、410mg/kgであった。本発明の方が従来法よりも範囲が小さく、公定法とのずれも小さかった。実際の現場では、採掘されたkgオーダーの土壌1サンプルの6個所を分析することは、ほとんどなく、1個所の分析で汚染の有無を判断する場合が多い。その場合、従来法よりも、判断を誤る可能性は、かなり小さくなった。   In the above example, the total analysis time is about 21 minutes for the first sample, and the second and subsequent samples are processed at intervals of about 21 minutes. During this time, if preparatory work such as washing, assembly, and the like for the next sample processing of the stirring tank, electromagnetic valve, sieve, and data processing are performed, the worker can efficiently perform pretreatment and analysis. Comparison was made between the case where lead in 3 kg of lead-contaminated soil was subjected to a fluorescent X-ray simple on-site analysis by the method of the present invention and the case where a conventional method was used to analyze the fluorescent X-ray simple on-site. In the conventional method, about 10 g each is collected from 6 places, about 60 g in total is dried with a dryer for about 40 minutes, pulverized and mixed in an agate mortar for about 5 minutes for a total of 30 minutes, and the sieve is measured for about 3 minutes each. It took 20 minutes. The analysis took 30 minutes in total, 5 minutes per piece, and took about 120 minutes in total. As a result, according to the conventional method, the average value of the six analyzes from the pretreatment was 110 mg / kg, and the individual data was 10 g at one time even though lead was relatively unevenly distributed. 50 to 640 mg / kg, and the range was 590 mg / kg. On the other hand, in the case of the method of the present invention, the required time is approximately the same at about 120 minutes, and since the amount collected at one time is 500 g and pretreated six times, that is, the method of pretreating the whole amount of 3 kg, the average value is 190 mg / kg, individual data is 140 to 200 mg / kg, and the range is 60 mg / kg, which is reduced to about 1/10. Furthermore, 15 g was sampled by the method of Ministry of the Environment Notification No. 19 and the results of pretreatment and ICP emission analysis of 6 locations were 170 mg / kg on average, individual data was 80-490 mg / kg, and the range was 410 mg / Kg. The range of the present invention was smaller than that of the conventional method, and the deviation from the official method was also small. In an actual site, it is rare to analyze six locations of one sample of mined kg-order soil, and it is often the case that the presence or absence of contamination is determined by analysis at one location. In that case, the possibility of misjudgment is considerably less than in the conventional method.

更に、蛍光X線ヘッド部の土壌による汚れが上面照射よりも下面照射の方が少なく、長期間の連続使用が可能となった。   Furthermore, the soil of the fluorescent X-ray head part is less soiled by the lower surface irradiation than the upper surface irradiation, and continuous use for a long period of time becomes possible.

図1の2で、攪拌槽注入水として、エタノール30v/v%を含む水を使用した。乾燥速度が約1分短縮され、約2分となった。   In 2 of FIG. 1, water containing 30 v / v% ethanol was used as the stirring tank injection water. The drying speed was reduced by about 1 minute to about 2 minutes.

以上、本発明の実施例を説明したが、本発明はこの実施例に限定されるものではなく、要旨を逸脱しない範囲での設計変更があっても本発明に含まれる。例えば、実施例1では、土壌投入量を500gとしたが、例えば200g程度であっても、同じように分析可能である。また、分析方法は、蛍光X線法、に限るものではなく、全反射蛍光X線法、レーザー励起発光法ような、比較的局所の分析であるために、分析試料の代表性、試料全体の均一性が要求される分析にも、本前処理法は、有効である。また、対象試料としては、土壌に限らず、粉状であれば、食品、鉱物、化学薬品、医薬品、などにも適用可能である。   As mentioned above, although the Example of this invention was described, this invention is not limited to this Example, Even if there is a design change in the range which does not deviate from a summary, it is contained in this invention. For example, in Example 1, the amount of soil input is 500 g. However, even if it is about 200 g, for example, the same analysis is possible. In addition, the analysis method is not limited to the X-ray fluorescence method, but is a comparatively local analysis such as a total reflection X-ray fluorescence method or a laser excitation emission method. This pretreatment method is also effective for analyzes that require uniformity. In addition, the target sample is not limited to soil, and can be applied to food, minerals, chemicals, pharmaceuticals, and the like as long as it is in powder form.

(産業上の利用可能性)
汚染土壌や粉状の食品などの中に不均一に分布する金属の分析を高精度、高感度に行える方法を提供する。
(Industrial applicability)
To provide a highly accurate and sensitive method for analyzing metals that are unevenly distributed in contaminated soil and powdered foods.

本発明方法によって検知される金属は、鉛、カドミウム、クロム、砒素、セレンなどの蛍光X線装置で感度のよい金属である。   The metal detected by the method of the present invention is a metal having high sensitivity in a fluorescent X-ray apparatus such as lead, cadmium, chromium, arsenic, and selenium.

本発明に係る前処理機構及び蛍光X線分析装置である。1 is a pretreatment mechanism and a fluorescent X-ray analyzer according to the present invention.

符号の説明Explanation of symbols

1 予備混合槽
2 攪拌機
3 ロート
4 土壌
5 水
6 第一篩い
7 ピンチバルブ
8 第二篩い
9 第三篩い
10 ノズル
11 ベルト状加温体
12 回転機構
13 ベルト押さえ
14 モーター
15 ヒーター
16 上下機構
17 ファン
18 土壌かきとりゴム
19 保持具
20 回収土壌容器
21 篩い架台
22 ベルト架台
23 制御機構架台
24 ノートパソコン(蛍光X線装置用兼前処理装置用)
25 蛍光X線分析装置
DESCRIPTION OF SYMBOLS 1 Preliminary mixing tank 2 Stirrer 3 Funnel 4 Soil 5 Water 6 First sieve 7 Pinch valve 8 Second sieve 9 Third sieve 10 Nozzle 11 Belt heating element 12 Rotating mechanism 13 Belt presser 14 Motor 15 Heater 16 Vertical mechanism 17 Fan 18 Soil scraping rubber 19 Holder 20 Collected soil container 21 Sieve mount 22 Belt mount 23 Control mechanism mount 24 Notebook PC (for fluorescent X-ray device and pre-treatment device)
25 X-ray fluorescence analyzer

Claims (4)

土壌中金属分析用試料に水または有機液体を注入して湿式混合した後、湿式篩い下成分中の水または有機液体を乾燥除去する工程を有し、かつ、乾燥手段として耐熱性プラスチックフィルムから成るシート状またはベルト状加温体を用いることを特徴とする前処理方法。   It comprises a step of injecting water or organic liquid into a sample for metal analysis in soil and performing wet mixing, followed by drying and removing the water or organic liquid in the wet sieving component, and comprises a heat-resistant plastic film as a drying means. A pretreatment method using a sheet-like or belt-like heating element. 請求項1の前処理方法を用いる分析方法。   An analysis method using the pretreatment method according to claim 1. 土壌中金属分析用試料に水または有機液体を注入して湿式混合した後、湿式篩い下成分中の水または有機液体を乾燥除去する工程と、加熱乾燥フィルム側からフィルムを透過させてX線照射する工程を有し、かつ、乾燥手段として耐熱性プラスチックフィルムから成るシート状またはベルト状加温体を用いることを特徴とする蛍光X線分析法。   After injecting water or organic liquid into a sample for metal analysis in soil and wet-mixing it, dry the water or organic liquid in the wet sieving components and remove the water or organic liquid from the heat-dried film side. And a sheet-like or belt-like heating element made of a heat-resistant plastic film as a drying means. X線照射中に前回試料のベルト上土壌を掻き落とす工程を有する請求項3に記載の蛍光X線分析法。   The fluorescent X-ray analysis method according to claim 3, further comprising a step of scraping the soil on the belt of the previous sample during X-ray irradiation.
JP2004326396A 2004-11-10 2004-11-10 Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method Withdrawn JP2006138660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326396A JP2006138660A (en) 2004-11-10 2004-11-10 Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326396A JP2006138660A (en) 2004-11-10 2004-11-10 Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method

Publications (1)

Publication Number Publication Date
JP2006138660A true JP2006138660A (en) 2006-06-01

Family

ID=36619587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326396A Withdrawn JP2006138660A (en) 2004-11-10 2004-11-10 Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method

Country Status (1)

Country Link
JP (1) JP2006138660A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065793A1 (en) * 2006-11-30 2008-06-05 Sumitomo Metal Mining Co., Ltd. Specific element detecting apparatus
WO2008108079A1 (en) 2007-03-02 2008-09-12 Railway Technical Research Institute Analytical sample drying method and drying apparatus
JP2011047741A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp Device and method for measuring bromine concentration
KR101300445B1 (en) * 2011-12-14 2013-08-27 손동현 The auto treat equipment to a heavy metal analysis of soil
CN106018450A (en) * 2016-07-13 2016-10-12 广州市怡文环境科技股份有限公司 Fully automatic on-line monitoring system and method adopting total reflection X-ray fluorescence technology
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method
WO2017191905A1 (en) * 2016-05-04 2017-11-09 주식회사 엘림글로벌 Automated soil contamination analysis device
CN109470535A (en) * 2018-11-12 2019-03-15 崔维佳 The Microwave Pretreatment device and microwave method for preprocessing of heavy metal-polluted soil detection
JP2020165963A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065793A1 (en) * 2006-11-30 2008-06-05 Sumitomo Metal Mining Co., Ltd. Specific element detecting apparatus
WO2008108079A1 (en) 2007-03-02 2008-09-12 Railway Technical Research Institute Analytical sample drying method and drying apparatus
JPWO2008108079A1 (en) * 2007-03-02 2010-06-10 財団法人鉄道総合技術研究所 Analysis sample drying processing method and drying processing apparatus
US8001854B2 (en) 2007-03-02 2011-08-23 Railway Technical Research Institute Analytical sample drying method and drying apparatus
JP2011047741A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp Device and method for measuring bromine concentration
KR101300445B1 (en) * 2011-12-14 2013-08-27 손동현 The auto treat equipment to a heavy metal analysis of soil
JP2017058362A (en) * 2015-09-15 2017-03-23 住友金属鉱山株式会社 X-ray fluorescence analysis sample preparation method
WO2017191905A1 (en) * 2016-05-04 2017-11-09 주식회사 엘림글로벌 Automated soil contamination analysis device
KR101795494B1 (en) 2016-05-04 2017-11-13 주식회사 엘림글로벌 Apparatus for detecting soil pollution
CN106018450A (en) * 2016-07-13 2016-10-12 广州市怡文环境科技股份有限公司 Fully automatic on-line monitoring system and method adopting total reflection X-ray fluorescence technology
CN109470535A (en) * 2018-11-12 2019-03-15 崔维佳 The Microwave Pretreatment device and microwave method for preprocessing of heavy metal-polluted soil detection
CN109470535B (en) * 2018-11-12 2021-06-01 吉林小德川农业科技有限公司 Microwave pretreatment device and microwave pretreatment method for soil heavy metal detection
JP2020165963A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method
JP2020165962A (en) * 2019-03-27 2020-10-08 住友金属鉱山株式会社 Ore sample analysis method
JP7415685B2 (en) 2019-03-27 2024-01-17 住友金属鉱山株式会社 Analysis method for ore samples
JP7424118B2 (en) 2019-03-27 2024-01-30 住友金属鉱山株式会社 Analysis method for ore samples

Similar Documents

Publication Publication Date Title
JP3418787B2 (en) Waste treatment method and equipment
JP2006138660A (en) Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
WO2008056465A1 (en) Sorting device
WO2008065793A1 (en) Specific element detecting apparatus
Xiao et al. Controlling granular segregation using modulated flow
Deng et al. Modeling segregation of polydisperse granular materials in hopper discharge
DE69417591T2 (en) Automatic device for inspection of a dusty product
US5324949A (en) Method of effecting NIR-analyses of successive material samples, and a system for carrying out the method
CN110579385B (en) Full-automatic sample mixing and dividing device and method
AU2007310805B2 (en) Method of and equipment for preparing an analysis sample
JP2009180636A (en) Separation apparatus, separating method and method for manufacturing material
CN210803179U (en) Grit aggregate moisture content survey device for concrete
WO2008032363A1 (en) Method of measuring grain size and apparatus for measuring grain size
Welsby et al. A continuous pilot-scale flotation rig for the systematic study of flotation variables
KR20120061093A (en) Apparatus for measuring crushing rate of coal crusher
Naicker Particle Segregation Associated with Sub-Sampling of Feed at a Typical UG2 Concentrator
CN221334428U (en) Mashing device for solid food detection
US3795807A (en) Pneumatic conveying system for transferring slurry samples to an analyzer
Bakker Feasibility of surface sampling in automated inspection of concrete aggregates during bulk transport on a conveyor
JP2011005429A (en) Automatic sorting apparatus and method for manufacturing material
CN117419983B (en) Soil sample detection pre-treatment method and device
CN213148890U (en) Quick stirring device for food inspection
US20230033441A1 (en) Mineralogical Analysis System of Copper Concentrate
JPS56163435A (en) Method and apparatus for crushing and extracting cereals, beans, nuts, and the like for inspection specimen
JP4399924B2 (en) Method of mixing and measuring fine aggregate and admixture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205