WO2008032363A1 - Method of measuring grain size and apparatus for measuring grain size - Google Patents

Method of measuring grain size and apparatus for measuring grain size Download PDF

Info

Publication number
WO2008032363A1
WO2008032363A1 PCT/JP2006/318036 JP2006318036W WO2008032363A1 WO 2008032363 A1 WO2008032363 A1 WO 2008032363A1 JP 2006318036 W JP2006318036 W JP 2006318036W WO 2008032363 A1 WO2008032363 A1 WO 2008032363A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
agglomerate mixture
mixture
agglomerate
sensor
Prior art date
Application number
PCT/JP2006/318036
Other languages
French (fr)
Japanese (ja)
Inventor
Takato Kaya
Ken Shimazutsu
Original Assignee
Kotobuki Engineering & Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kotobuki Engineering & Manufacturing Co., Ltd. filed Critical Kotobuki Engineering & Manufacturing Co., Ltd.
Priority to PCT/JP2006/318036 priority Critical patent/WO2008032363A1/en
Publication of WO2008032363A1 publication Critical patent/WO2008032363A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Definitions

  • the present invention relates to a particle size measurement technique for aggregates of sand, rocks, minerals, etc., wastes such as concrete galley, or agglomerates of various diameters of granular materials, and more particularly agglomerates.
  • the present invention relates to a particle size measuring method and a particle size measuring device capable of accurately measuring the particle size distribution of a mixture in real time.
  • Patent Document 1 A method of using a laser beam to scatter light in the light to refract the light and measure the particle size distribution from the degree of refraction.
  • Patent Document 2 (3) Measurement using a CCD camera (Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 6-109615
  • Patent Document 2 JP-A-6-213796
  • the conventional particle size measurement technique for the above-mentioned agglomerate mixture has the following problems.
  • the present invention has been made in view of the above points, and an object of the present invention is to accurately measure the particle size distribution of the agglomerate mixture in real time with a simple means.
  • An object of the present invention is to provide a particle size measuring method and a particle size measuring apparatus capable of performing the same.
  • a further object of the present invention is to provide a particle size measuring method and a particle size measuring device capable of controlling the particle size mixture production apparatus by measuring the particle size distribution of the particle mixture in real time.
  • the first invention of the present application is a particle size measurement method for measuring the particle size from the surface layer to the inside of the agglomerate mixture, forcibly applying vibration to the agglomerate mixture, and dividing the agglomerate mixture according to particle size.
  • the surface roughness of the separated and vibrationally separated agglomerate mixture and the surface of the agglomerate mixture are removed by the surface of the agglomerated mixture and the surface roughness of the exposed layer is measured with a sensor.
  • a particle size measuring method characterized in that the particle size distribution of the agglomerate mixture is obtained by calculation based on the measured values of the surface roughness in the range from the surface layer to the inside of the agglomerate mixture.
  • the force measured by directing force from the surface layer of the agglomerate mixture or the internal force of the agglomerate mixture is also measured toward the surface layer.
  • the particle mixture separated by vibration by moving either one or both of the agglomerate mixture or the sensor and the exposure device for the agglomerate mixture is moved.
  • a particle size measuring method characterized by exposing the inside of a lump mixture.
  • a third invention of the present application is a particle size measuring device for measuring the particle size from the surface layer to the inside of the agglomerate mixture, and a vibration device for forcibly applying vibration to the agglomerate mixture to vibrate and separate the agglomerate mixture;
  • a measuring device for measuring the surface roughness of the agglomerate mixture separated by vibration for each particle size the measuring device comprising a sensor arranged toward the separated agglomerate mixture, and vibration separation
  • An exposure means for removing the agglomerated mixture and exposing the inside thereof, and a central processing unit for calculating the particle size distribution of the agglomerate mixture based on the measured surface roughness by the sensor, the agglomerate mixture,
  • either one or both of the sensor and exposure means that compose the measuring device are moved, and the measured value of the surface roughness in the range from the surface layer to the inside of the vibrationally separated agglomerate mixture is calculated by the central processing unit.
  • a particle size measuring device is provided, wherein the particle size distribution
  • a fourth invention of the present application is the sensor according to the third invention, comprising a conveying means for continuously conveying the agglomerate mixture, and constituting a measuring device toward the conveying means equipped with a vibration device.
  • a particle size measuring device is provided.
  • a fifth invention of the present application provides the particle size measuring apparatus according to the fourth invention, wherein the means for conveying the agglomerate mixture is a belt type conveyor.
  • a sixth invention of the present application provides the particle size measuring device according to the third invention, wherein the sensor and the exposure means constituting the measuring device are arranged so as to be movable along the agglomerate mixture.
  • an elevating means is provided in the agglomerate mixture exposing means integrated with the sensor, and the sensor can be moved up and down in synchronization with the agglomerate mixture exposing means by the elevating means.
  • the present invention can provide a particle size measuring method and a particle size measuring device capable of accurately measuring the particle size distribution of the agglomerate mixture in real time with simple means. Furthermore, the present invention can provide a particle size measuring method and a particle size measuring device capable of controlling the particle size mixture production apparatus by measuring the particle size distribution of the particle mixture in real time.
  • the present invention can measure the particle size of various types of agglomerate mixtures, and is versatile.
  • FIG. 1 shows a model diagram of a particle size measuring apparatus according to an embodiment of the present invention.
  • the particle size measuring apparatus includes a hopper 10 containing a dried agglomerate mixture A, a conveying means 20 for continuously conveying the agglomerate mixture A released from the hopper 10, and an agglomerated mixture being conveyed.
  • a vibration device 30 that forcibly applies vibration to A and a measurement device 40 that measures the surface layer and the internal surface roughness of the vibrationally separated agglomerate mixture A are provided.
  • Agglomerate lump mixture A means a mixture of particles with different particle diameters, such as sand, gravel, crushed stone, concrete crushed material, pharmaceuticals, foods, etc. It is included.
  • the hopper 10 is installed above the conveying start side of the conveying means 20 (in this example, to the right of the conveying means 20), and controls the open / close gate (not shown) provided at the lower end of the hopper 10 to control the agglomerate mixture A.
  • the supply amount can be adjusted and the supply amount per unit time can be grasped.
  • the conveying means 20 is, for example, a belt-type conveyor in which an endless belt 23 is stretched between a pair of drums 21 and 22 and can convey the agglomerate mixture A from the position of the hopper 10 toward the left in the figure. ing.
  • the installation direction of the conveying means 20 is not limited to the horizontal installation form shown in the figure, and may be inclined up and down.
  • the conveying means 20 is not limited to the illustrated belt type conveyor, and various conveying means can be applied.
  • the conveying means 20 may be a fixed conveying path with a downward slope. In short, it is sufficient that the agglomerate mixture A discharged from the hopper 10 can be conveyed in one direction.
  • Excitation device A vibration device 30 is provided in a part of the conveying means 20 (in this example, the central part of the conveying means 20), and vibration can be separated according to the particle diameter by applying vibration to the agglomerate mixture A being conveyed. It is structured as follows.
  • the vibration exciter 30 is arranged below the upper end of the endless belt 23 to vibrate the endless belt 23 directly! As will be shown, this includes the case where the entire conveying means 20 is vibrated.
  • the vibration is imparted to the agglomerate mixture A being transported so that the coarser one in the agglomerate mixture A rises toward the surface layer while the smaller dimension sinks. This is because the agglomerate mixture A is vibrationally separated according to the conditions.
  • the agglomerate mixture A is vibrationally separated according to the particle size, so that it is not necessary to use various types of sieves as in the prior art. Therefore, it is possible to efficiently separate the agglomerate mixture A being conveyed in a short time.
  • the endless belt 23 may have a simple configuration in which vibration is applied! /.
  • the endless belt 23 may be struck directly or indirectly for vibration.
  • the vibration device 30 is appropriately selected in consideration of the type of the agglomerate mixture A and the transport amount.
  • the measuring device 40 for measuring the surface roughness of the agglomerate mixture A is composed of a sensor 41 and an agglomerate mixture A exposing means arranged on the terminal end of the conveying means 20 (in this example, on the left side of the conveying means 20).
  • a central processing unit 44 that calculates the particle size distribution of the agglomerate mixture A based on
  • the sensor 41 is a known optical sensor that can electrically measure the surface roughness of a granule, and for example, a known CCD laser type displacement sensor (manufactured by Keyence Corporation) can be used. It is important that the sensor 41 and the level rod 42 are integrated, and in particular, the protruding length of the lower end of the level rod 42 is substantially coincident with the optimum measurement distance of the sensor 41.
  • the level rod 42 is arranged on the upstream side with respect to the sensor 41 along the conveying direction of the agglomerate mixture A.
  • the surface roughness of the surface layer of the vibration-isolated agglomerate mixture A can be measured, but the inner surface roughness of the hierarchically separated agglomerate mixture A can be measured. I can't.
  • the lower part of the level rod 42 lowered together with the sensor 41 is penetrated into the agglomerated mixture A being conveyed, and the inner surface roughness of the agglomerated mixture A exposed by the level rod 42 is divided.
  • the sensor 41 can be continuously measured.
  • the level rod 42 functions to expose the inside of the agglomerate mixture A which has been separated by vibration to an arbitrary depth.
  • the cross-sectional shape of the level rod 42 is not limited to the circular shape shown in FIG. 4, and any cross-sectional shape can be adopted, and the horizontal width of the level rod 42 is also arbitrary depending on the type of the agglomerate mixture A. Can be set to
  • the elevating means 43 that supports the sensor 41 and the level rod 42 so as to be able to advance and retreat toward the agglomerate mixture A being conveyed includes various fluid cylinders, a screw feed mechanism, and the like.
  • force lifting means 43 indicating that the lifting means 43 is connected to the level rod 42 integrated with the sensor 41 may be provided separately for the sensor 41 and the level rod 42.
  • the sensor 41 may be fixed and installed, and only the level rod 42 may be raised and lowered.
  • the central processing unit 44 has a calculation program for calculating the particle size distribution of the agglomerate mixture A based on the measured value of the surface roughness measured by the sensor 41, the amount of displacement of the level rod 42, and the like.
  • the particle size distribution of the agglomerate mixture A can be displayed in a known output form in real time. [0022] (6) Measuring method
  • the endless belt 23 constituting the conveying means 20 rotates in one direction.
  • the open / close gate at the lower end of the hopper 10 is opened, the quantitative supply of the agglomerate mixture A onto the endless belt 23 is started, and the agglomerate mixture A is mounted on the endless belt 23 and from right to left in the figure. It is conveyed toward.
  • the internal surface roughness can be determined in real time from the surface layer of the agglomerate mixture A in the following manner.
  • the vibration device 30 As the vibration device 30 is operated, the agglomerate mixture A being conveyed is subjected to vibration and separated by vibration.
  • the coarser size of the agglomerate mixture A rises to the surface layer, and the finer size sinks and the agglomerate mixture A is hierarchically separated according to particle size. .
  • the surface roughness of the agglomerate mixture A is as follows. Measurement is performed.
  • the sensor 41 measures the surface roughness of the surface layer of the agglomerate mixture A that has been vibrationally separated.
  • the lower part of the level rod 42 increases the amount of penetration while the surface layer of the agglomerate mixture A is divided.
  • the inside of the agglomerate mixture A is divided by force, and the surface roughness is measured by the sensor 41 inside the exposed agglomerate mixture A.
  • the measurement point P of the sensor 41 remains unchanged, and only the depth of the measurement point P increases.
  • the surface roughness is measured over the entire depth from the surface layer portion to the deepest portion of the vibration-isolated granule mixture A.
  • Information such as the measured surface roughness value measured by the sensor 41 and the displacement amount of the level rod 42 is sent to the central processing unit 44.
  • Fig. 5 shows the measurement result of the particle size measured by the sensor 41 over the entire depth of the surface layer of the agglomerate mixture A up to the deepest part.
  • the central processing unit 44 calculates the particle size distribution of the agglomerate mixture A in real time based on the measured values of the internal surface roughness according to the surface layer and depth of the agglomerate mixture A.
  • the surface roughness inside the agglomerate mixture A can be grasped according to the penetration amount (depth) of the level rod 42. Therefore, by measuring the displacement amount (depth) of the level rod 42, a specific particle size range can be obtained. The amount (total amount) of the corresponding agglomerate mixture A can also be calculated in real time.
  • the particle size measurement of the agglomerate mixture A is performed only for a short time for the purpose of sampling, or continuously during the transportation of the agglomerate mixture A.
  • the measuring device 40 side is arranged to be movable up and down at a fixed position and the agglomerate mixture A side is configured to be movable is described.
  • the measuring device 40 side that can be moved up and down may be configured to be movable along the surface of the granule mixture A.
  • either one or both of the measuring device 40 and the agglomerate mixture A are configured to be relatively movable.
  • the surface layer part of the vibrationally separated agglomerate mixture A is forcibly removed by a removal plate (not shown) and the agglomerate mixture A after being removed Particle size measurement may be performed for
  • the particles with a large particle size not planned for use are mixed in the agglomerate mixture A before measurement, the particles with a large particle size not planned for use are removed to be measured. Can be narrowed down.
  • the hopper 10 may be used instead of the hopper 10 to directly supply the mixture.
  • the particle size distribution of the agglomerate mixture measured in real time can be fed back to the production device for the agglomerate mixture and used for controlling the production device.
  • FIG. 1 is a model diagram of a particle size measuring apparatus according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

A method of measuring grain size and an apparatus for measuring grain size whereby the grain size distribution of a granular material can be accurately measured in real time using a simple means. This apparatus comprises a vibration exciter (30) which forcedly vibrates a grain-mass mixture (A) to thereby divide the grain-mass mixture (A) and a measurement unit (40) whereby the surface layer roughness and the inner face roughness of the grain-mass mixture (A) having been divided by the vibration are measured for each grain size. The measurement unit (40) has a sensor (41) which is located toward the grain-mass mixture (A) having been divided by the vibration and a level rod (42) which is located in such a manner as allowing insertion thereof into the grain-mass mixture (A) having been divided by the vibration.

Description

明 細 書  Specification
粒度測定方法及び粒度測定装置  Particle size measuring method and particle size measuring device
技術分野  Technical field
[0001] 本発明は、砂、岩石、鉱物等の骨材、コンクリートガラ等の廃棄物、又は各種異径 粉粒体の粒塊混合物を対象とした粒度測定技術に関し、より詳細には粒塊混合物の 粒度分布をリアルタイムで、かつ、正確に測定することができる粒度測定方法及び粒 度測定装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a particle size measurement technique for aggregates of sand, rocks, minerals, etc., wastes such as concrete galley, or agglomerates of various diameters of granular materials, and more particularly agglomerates. The present invention relates to a particle size measuring method and a particle size measuring device capable of accurately measuring the particle size distribution of a mixture in real time.
背景技術  Background art
[0002] 従来より骨材の粒度分布を測定する方法としてはつぎの方法が知られて 、る。  [0002] Conventionally, the following methods are known as methods for measuring the particle size distribution of aggregates.
( 1)網目の異なる複数種類のふる!、を用いてふる!、分けする方法。  (1) A method of dividing and sorting using multiple types of screens with different meshes!
(2)レーザ光を用いて、光中に砂を飛ばして光を屈折させ、その屈折の具合から粒 度分布を測定する方法 (特許文献 1)。  (2) A method of using a laser beam to scatter light in the light to refract the light and measure the particle size distribution from the degree of refraction (Patent Document 1).
(3) CCDカメラを用いて測定する方法 (特許文献 2)。  (3) Measurement using a CCD camera (Patent Document 2).
[0003] 特許文献 1 :特開平 6— 109615号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-109615
特許文献 2 :特開平 6— 213796号公報  Patent Document 2: JP-A-6-213796
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記した粒塊混合物を対象とした従来の粒度測定技術にあってはつぎのような問 題点がある。 [0004] The conventional particle size measurement technique for the above-mentioned agglomerate mixture has the following problems.
(1)現在最も多用されて 、るふる 、分け方法にあっては、ふる!/、分け作業を人手に 頼っているため、測定に多くの人員を要するだけでなぐ集計作業を終えるまでに約 半日もの長時間がかかり、リアルタイムによる粒度分布の測定が不可能である。 さらに、ふるいは一度使うと目詰まりを生じるため、測定の都度ふるいを掃除しなけ ればならな ヽと 、う欠点もある。  (1) Currently, the most commonly used method is the `` Furu '', the separation method, and because it relies on manual labor, it requires about a lot of people to measure and it takes about to complete the counting work. It takes a long time of half a day and it is impossible to measure the particle size distribution in real time. In addition, since the sieve is clogged once used, there is a drawback that the sieve must be cleaned after each measurement.
(2)レーザ光を用いる測定方法では、極小な砂に対しては精密な測定ができるが、レ 一ザ光を完全に遮る程の大きさの粒径物にっ 、ては、測定ができな 、と 、う欠点が ある。 (3) CCDカメラを用いる方法の場合は、測定装置が高価であるだけでなぐ極めて小 さい粒度分布の測定には適するが、測定の視野が狭ぐ大量の砂又は砂利の測定 には適しな!/、と!/、つた難点がある。 (2) With the measurement method using laser light, precise measurement can be performed for extremely small sand, but it is possible to measure with a particle size large enough to completely block the laser light. There are disadvantages. (3) In the case of a method using a CCD camera, it is suitable for measuring a very small particle size distribution as well as being expensive, but suitable for measuring a large amount of sand or gravel with a narrow field of measurement. ! /, And! / Have some difficulties.
[0005] 本発明は以上の点に鑑みて成されたもので、その目的とするところは、簡易な手段 で以つて、粒塊混合物の粒度分布をリアルタイムで、かつ、正確に測定することがで きる粒度測定方法及び粒度測定装置を提供することにある。 [0005] The present invention has been made in view of the above points, and an object of the present invention is to accurately measure the particle size distribution of the agglomerate mixture in real time with a simple means. An object of the present invention is to provide a particle size measuring method and a particle size measuring apparatus capable of performing the same.
更に本発明の目的は、粒塊混合物の粒度分布をリアルタイムで測定して粒塊混合 物の生産装置をコントロールできる粒度測定方法及び粒度測定装置を提供すること にある。  A further object of the present invention is to provide a particle size measuring method and a particle size measuring device capable of controlling the particle size mixture production apparatus by measuring the particle size distribution of the particle mixture in real time.
課題を解決するための手段  Means for solving the problem
[0006] 本願の第 1発明は、粒塊混合物の表層から内部に亘つて粒度を測定する粒度測定 方法であって、粒塊混合物に強制的に振動を与えて粒塊混合物を粒度別に振動分 離し、振動分離した粒塊混合物の表層及び粒塊混合物の露出手段により、振動分 離した粒塊混合物の表層を取り除いて階層的に露出させた内部の面粗さをセンサで 測定し、少なくとも前記粒塊混合物の表層から内部に亘る範囲の面粗さの測定値に 基づき演算して粒塊混合物の粒度分布を求めることを特徴とする、粒度測定方法を 提供する。 [0006] The first invention of the present application is a particle size measurement method for measuring the particle size from the surface layer to the inside of the agglomerate mixture, forcibly applying vibration to the agglomerate mixture, and dividing the agglomerate mixture according to particle size. The surface roughness of the separated and vibrationally separated agglomerate mixture and the surface of the agglomerate mixture are removed by the surface of the agglomerated mixture and the surface roughness of the exposed layer is measured with a sensor. Provided is a particle size measuring method characterized in that the particle size distribution of the agglomerate mixture is obtained by calculation based on the measured values of the surface roughness in the range from the surface layer to the inside of the agglomerate mixture.
センサで振動分離した粒塊混合物の面粗さを測定する形態としては、粒塊混合物 の表層から内部に向力つて測定する力、或いは粒塊混合物の内部力も表層へ向け て測定する。  As a form of measuring the surface roughness of the agglomerate mixture separated by vibration with the sensor, the force measured by directing force from the surface layer of the agglomerate mixture or the internal force of the agglomerate mixture is also measured toward the surface layer.
本願の第 2発明は、前記第 1発明において、前記粒塊混合物、又はセンサと粒塊 混合物の露出手段とにより構成される測定装置の何れか一方、又は両方を移動させ て、振動分離した粒塊混合物の内部を露出することを特徴とする、粒度測定方法を 提供する。  According to a second invention of the present application, in the first invention, the particle mixture separated by vibration by moving either one or both of the agglomerate mixture or the sensor and the exposure device for the agglomerate mixture is moved. Provided is a particle size measuring method characterized by exposing the inside of a lump mixture.
本願の第 3発明は、粒塊混合物の表層から内部に亘つて粒度を測定する粒度測定 装置であって、粒塊混合物に強制的に振動を与えて粒塊混合物を振動分離する加 振装置と、粒度毎に振動分離した粒塊混合物の面粗さを測定する測定装置とを具備 し、前記測定装置は振動分離した粒塊混合物へ向けて配置したセンサと、振動分離 した粒塊混合物を取り除いて内部を露出させる露出手段と、前記センサによる面粗さ の測定値に基づき粒塊混合物の粒度分布を算出する中央演算処理部とを有し、前 記粒塊混合物、又は測定装置を構成するセンサと露出手段の何れか一方、又は両 方を移動させて、振動分離した粒塊混合物の表層から内部に亘る範囲の面粗さの測 定値を中央演算処理部で演算して粒塊混合物の粒度分布を求めることを特徴とする 、粒度測定装置を提供する。 A third invention of the present application is a particle size measuring device for measuring the particle size from the surface layer to the inside of the agglomerate mixture, and a vibration device for forcibly applying vibration to the agglomerate mixture to vibrate and separate the agglomerate mixture; A measuring device for measuring the surface roughness of the agglomerate mixture separated by vibration for each particle size, the measuring device comprising a sensor arranged toward the separated agglomerate mixture, and vibration separation An exposure means for removing the agglomerated mixture and exposing the inside thereof, and a central processing unit for calculating the particle size distribution of the agglomerate mixture based on the measured surface roughness by the sensor, the agglomerate mixture, Alternatively, either one or both of the sensor and exposure means that compose the measuring device are moved, and the measured value of the surface roughness in the range from the surface layer to the inside of the vibrationally separated agglomerate mixture is calculated by the central processing unit. Thus, a particle size measuring device is provided, wherein the particle size distribution of the agglomerate mixture is determined.
本願の第 4発明は、前記第 3発明において、粒塊混合物を連続的に搬送する搬送 手段を具備し、加振装置を装備させた前記搬送手段に向けて測定装置を構成する センサと露出手段を配設したことを特徴とする、粒度測定装置を提供する。  A fourth invention of the present application is the sensor according to the third invention, comprising a conveying means for continuously conveying the agglomerate mixture, and constituting a measuring device toward the conveying means equipped with a vibration device. A particle size measuring device is provided.
本願の第 5発明は、前記第 4発明において、前記粒塊混合物の搬送手段がベルト 式コンベアであることを特徴とする、粒度測定装置を提供する。  A fifth invention of the present application provides the particle size measuring apparatus according to the fourth invention, wherein the means for conveying the agglomerate mixture is a belt type conveyor.
本願の第 6発明は、前記第 3発明において、測定装置を構成するセンサと露出手 段を粒塊混合物に沿って移動可能に配設したことを特徴とする、粒度測定装置を提 供する。  A sixth invention of the present application provides the particle size measuring device according to the third invention, wherein the sensor and the exposure means constituting the measuring device are arranged so as to be movable along the agglomerate mixture.
本願の第 7発明は、前記第 3発明において、前記センサと一体化した粒塊混合物 の露出手段に昇降手段を設け、前記昇降手段により該センサを粒塊混合物の露出 手段に同調させて昇降自在に構成したことを特徴とする、粒度測定装置を提供する  According to a seventh invention of the present application, in the third invention, an elevating means is provided in the agglomerate mixture exposing means integrated with the sensor, and the sensor can be moved up and down in synchronization with the agglomerate mixture exposing means by the elevating means. Providing a particle size measuring device characterized in that
発明の効果 The invention's effect
[0007] 本発明は簡易な手段で以つて、粒塊混合物の粒度分布をリアルタイムで、かつ、正 確に測定することができる粒度測定方法及び粒度測定装置を提供することができる。 更に本発明は、粒塊混合物の粒度分布をリアルタイムで測定して粒塊混合物の生 産装置をコントロールできる粒度測定方法及び粒度測定装置を提供することができ る。  [0007] The present invention can provide a particle size measuring method and a particle size measuring device capable of accurately measuring the particle size distribution of the agglomerate mixture in real time with simple means. Furthermore, the present invention can provide a particle size measuring method and a particle size measuring device capable of controlling the particle size mixture production apparatus by measuring the particle size distribution of the particle mixture in real time.
また本発明は様々な種類の粒塊混合物を対象とした粒度測定が可能であり、汎用 性に富む。  In addition, the present invention can measure the particle size of various types of agglomerate mixtures, and is versatile.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、図面を参照しながら本発明に係る一実施の形態について説明する。 [0009] (1)粒度測定装置の概要 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. [0009] (1) Outline of particle size measuring device
図 1に本発明の一実施例に係る粒度測定装置のモデル図を示す。  FIG. 1 shows a model diagram of a particle size measuring apparatus according to an embodiment of the present invention.
本発明に係る粒度測定装置は、乾燥した粒塊混合物 Aを収容したホッパ 10と、ホッ パ 10から放出された粒塊混合物 Aを連続的に搬送する搬送手段 20と、搬送中の粒 塊混合物 Aに強制的に振動を与える加振装置 30と、振動分離した粒塊混合物 Aの 表層及び内部の面粗さを測定する測定装置 40とを具備する。  The particle size measuring apparatus according to the present invention includes a hopper 10 containing a dried agglomerate mixture A, a conveying means 20 for continuously conveying the agglomerate mixture A released from the hopper 10, and an agglomerated mixture being conveyed. A vibration device 30 that forcibly applies vibration to A and a measurement device 40 that measures the surface layer and the internal surface roughness of the vibrationally separated agglomerate mixture A are provided.
本発明で!/ヽぅ粒塊混合物 Aとは、粒径の異なる粉粒体が混在した混合物を意味し、 例えば砂、砂利、砕石、コンクリート破砕物、医薬品、食品等の多分野の混合物を含 むものである。  In the present invention! / Agglomerate lump mixture A means a mixture of particles with different particle diameters, such as sand, gravel, crushed stone, concrete crushed material, pharmaceuticals, foods, etc. It is included.
以下、粒度測定装置の各構成要素について詳述する。  Hereinafter, each component of the particle size measuring apparatus will be described in detail.
[0010] (2)ホッパ [0010] (2) Hopper
ホッパ 10は搬送手段 20の搬送開始側 (本例では搬送手段 20の右方)の上方に設 置され、ホッパ 10の下端に装備した図外の開閉ゲートを制御することで粒塊混合物 Aの供給量を調整したり、単位時間当たりの供給量を把握可能に構成されている。  The hopper 10 is installed above the conveying start side of the conveying means 20 (in this example, to the right of the conveying means 20), and controls the open / close gate (not shown) provided at the lower end of the hopper 10 to control the agglomerate mixture A. The supply amount can be adjusted and the supply amount per unit time can be grasped.
[0011] 尚、本例では搬送手段 20へ粒塊混合物 Aを供給する手段として、ホッパ 10を用い る場合について説明するが、粒塊混合物 Aの供給手段は公知の各種の供給手段が 適用可能である。  [0011] In this example, the case where the hopper 10 is used as the means for supplying the agglomerate mixture A to the conveying means 20 will be described. However, various known supply means can be applied as the means for supplying the agglomerate mixture A. It is.
[0012] (3)搬送手段  [0012] (3) Conveying means
搬送手段 20は例えば一対のドラム 21, 22間に無端ベルト 23を掛け渡したベルト 式コンベアであり、ホッパ 10の位置から図の左方へ向けて粒塊混合物 Aを搬送し得 るようになっている。  The conveying means 20 is, for example, a belt-type conveyor in which an endless belt 23 is stretched between a pair of drums 21 and 22 and can convey the agglomerate mixture A from the position of the hopper 10 toward the left in the figure. ing.
搬送手段 20の設置方向は図示した水平の設置形態に限定されるものではなぐ上 下に傾斜していてもよい。  The installation direction of the conveying means 20 is not limited to the horizontal installation form shown in the figure, and may be inclined up and down.
さらに搬送手段 20は図示したベルト式コンベアに限定されるものではなぐ各種の 搬送手段が適用可能であり、例えば下り勾配のついた固定式の搬送路であってもよ い。要はホッパ 10から放出される粒塊混合物 Aを一方向へ向けて搬送できればよい  Further, the conveying means 20 is not limited to the illustrated belt type conveyor, and various conveying means can be applied. For example, the conveying means 20 may be a fixed conveying path with a downward slope. In short, it is sufficient that the agglomerate mixture A discharged from the hopper 10 can be conveyed in one direction.
[0013] (4)加振装置 搬送手段 20の一部 (本例では搬送手段 20の中央部)には加振装置 30を配備して 搬送中の粒塊混合物 Aに振動を付与して粒径に応じた振動分離を行なえるように構 成されている。 [0013] (4) Excitation device A vibration device 30 is provided in a part of the conveying means 20 (in this example, the central part of the conveying means 20), and vibration can be separated according to the particle diameter by applying vibration to the agglomerate mixture A being conveyed. It is structured as follows.
本例では無端ベルト 23の上位側の下方に加振装置 30を配置して、無端ベルト 23 を直接振動させる場合につ!ヽて示すが、搬送手段 20の全体を振動させる場合も含 むものである。  In this example, the vibration exciter 30 is arranged below the upper end of the endless belt 23 to vibrate the endless belt 23 directly! As will be shown, this includes the case where the entire conveying means 20 is vibrated.
[0014] 搬送中の粒塊混合物 Aに振動を付与するのは、粒塊混合物 Aのなかの寸法の粗 いものが表層へ向けて上昇しつつ、寸法の小さなが沈するように、粒径に応じて粒塊 混合物 Aを振動分離するためである。  [0014] The vibration is imparted to the agglomerate mixture A being transported so that the coarser one in the agglomerate mixture A rises toward the surface layer while the smaller dimension sinks. This is because the agglomerate mixture A is vibrationally separated according to the conditions.
このように、本発明では粒塊混合物 Aを粒径に応じて振動分離することから、従来 のような何種類ものふるいを使用せずに済む。そのため、搬送中の粒塊混合物 Aを 短時間のうちに効率よく分離することが可能となる。  In this way, in the present invention, the agglomerate mixture A is vibrationally separated according to the particle size, so that it is not necessary to use various types of sieves as in the prior art. Therefore, it is possible to efficiently separate the agglomerate mixture A being conveyed in a short time.
[0015] 加振装置 30としては公知の起振機 (パイブ口モータ)を採用できることの他に、無端 ベルト 23の支持面に予め多数の凹凸を形成しておき、これらの凹凸群を通過する際 に無端ベルト 23に振動が付与されるような簡易な構成であってもよ!/、。或いは無端 ベルト 23を直接、又は間接的に打撃して加振する場合もある。  In addition to being able to employ a known vibrator (pipe mouth motor) as the vibration device 30, a large number of irregularities are formed in advance on the support surface of the endless belt 23 and pass through these irregularities. In this case, the endless belt 23 may have a simple configuration in which vibration is applied! /. Alternatively, the endless belt 23 may be struck directly or indirectly for vibration.
加振装置 30は粒塊混合物 Aの種類や搬送量等を考慮して最適なものを適宜選択 する。  The vibration device 30 is appropriately selected in consideration of the type of the agglomerate mixture A and the transport amount.
[0016] (5)測定装置  [5] (5) Measuring device
粒塊混合物 Aの表面粗さを測定する測定装置 40は、搬送手段 20の終端部 (本例 では搬送手段 20の左方)の上に配置されたセンサ 41及び粒塊混合物 Aの露出手段 であるレベルロッド 42と、これらのセンサ 41及びレベルロッド 42を搬送手段 20へ向 けて昇降させる昇降手段 43と、センサ 41で測定した粒度 (面粗さ)データと粒塊混合 物 Aの搬送量を基に粒塊混合物 Aの粒度分布を算出する中央演算処理部 44とによ り構成される c  The measuring device 40 for measuring the surface roughness of the agglomerate mixture A is composed of a sensor 41 and an agglomerate mixture A exposing means arranged on the terminal end of the conveying means 20 (in this example, on the left side of the conveying means 20). A certain level rod 42, these sensors 41 and elevating means 43 for raising and lowering the level rod 42 toward the conveying means 20, and the particle size (surface roughness) data measured by the sensor 41 and the conveying amount of the agglomerate mixture A A central processing unit 44 that calculates the particle size distribution of the agglomerate mixture A based on
[0017] センサ 41は粒体の面粗さを電気的に測定可能な公知の光学式センサで、例えば 公知の CCDレーザ式の変位センサ (株式会社キーエンス社製)等が使用可能である [0018] センサ 41とレベルロッド 42は一体化されていて、特にレベルロッド 42の下端の突出 長がセンサ 41の最適な測定距離と略一致していることが肝要である。 The sensor 41 is a known optical sensor that can electrically measure the surface roughness of a granule, and for example, a known CCD laser type displacement sensor (manufactured by Keyence Corporation) can be used. It is important that the sensor 41 and the level rod 42 are integrated, and in particular, the protruding length of the lower end of the level rod 42 is substantially coincident with the optimum measurement distance of the sensor 41.
また、センサ 41とレベルロッド 42の配置形態については、粒塊混合物 Aの搬送方 向に沿ってレベルロッド 42をセンサ 41に対して上流側に位置するように配置する。  As for the arrangement form of the sensor 41 and the level rod 42, the level rod 42 is arranged on the upstream side with respect to the sensor 41 along the conveying direction of the agglomerate mixture A.
[0019] ここでセンサ 41とレベルロッド 42を組み合わせた理由について説明する。 Here, the reason why the sensor 41 and the level rod 42 are combined will be described.
仮にセンサ 41だけを配置した場合、振動分離した粒塊混合物 Aの表層の面粗さは 測定可能であるが、階層的に分離された粒塊混合物 Aの内部の面粗さを測定するこ とができない。  If only the sensor 41 is arranged, the surface roughness of the surface layer of the vibration-isolated agglomerate mixture A can be measured, but the inner surface roughness of the hierarchically separated agglomerate mixture A can be measured. I can't.
そこで、本発明ではセンサ 41と共に降下させたレベルロッド 42の下部を搬送中の 粒塊混合物 Aに貫入させ、レベルロッド 42で力き分けて露出した粒塊混合物 Aの内 部の面粗さをセンサ 41で連続的に測定し得るようにした。  Therefore, in the present invention, the lower part of the level rod 42 lowered together with the sensor 41 is penetrated into the agglomerated mixture A being conveyed, and the inner surface roughness of the agglomerated mixture A exposed by the level rod 42 is divided. The sensor 41 can be continuously measured.
すなわち、レベルロッド 42は振動分離した粒塊混合物 Aの内部を任意の深さで露 出させるために機能する。  That is, the level rod 42 functions to expose the inside of the agglomerate mixture A which has been separated by vibration to an arbitrary depth.
したがって、レベルロッド 42の断面形状は図 4に示す円形に限定されるものではな ぐ任意の断面形状を採用することができ、またレベルロッド 42の横幅も粒塊混合物 Aの種類に応じて任意に設定することができる。  Therefore, the cross-sectional shape of the level rod 42 is not limited to the circular shape shown in FIG. 4, and any cross-sectional shape can be adopted, and the horizontal width of the level rod 42 is also arbitrary depending on the type of the agglomerate mixture A. Can be set to
これにより、搬送中に振動分離した粒塊混合物 Aの表層部力 最深部までの全深 さに亘る粒度測定が可能となる。  As a result, it is possible to measure the particle size over the entire depth to the deepest part of the surface layer force of the agglomerate mixture A that has been vibrationally separated during conveyance.
[0020] センサ 41とレベルロッド 42を搬送中の粒塊混合物 Aへ向けて進退可能に支持する 昇降手段 43は、各種の流体シリンダやねじ送り機構等で構成される。 [0020] The elevating means 43 that supports the sensor 41 and the level rod 42 so as to be able to advance and retreat toward the agglomerate mixture A being conveyed includes various fluid cylinders, a screw feed mechanism, and the like.
本例では、センサ 41と一体ィ匕したレベルロッド 42に昇降手段 43を接続した場合を 示す力 昇降手段 43をセンサ 41とレベルロッド 42に個別に設けてもよい。  In this example, force lifting means 43 indicating that the lifting means 43 is connected to the level rod 42 integrated with the sensor 41 may be provided separately for the sensor 41 and the level rod 42.
また、センサ 41が高性能である場合はセンサ 41を固定して設置し、レベルロッド 42 のみを昇降させてもよい。  If the sensor 41 has high performance, the sensor 41 may be fixed and installed, and only the level rod 42 may be raised and lowered.
[0021] 中央演算処理部 44は、センサ 41で測定した面粗さの測定値と、レベルロッド 42の 変位量等を基に粒塊混合物 Aの粒度分布を算出する演算プログラムを有していて、 リアルタイムで粒塊混合物 Aの粒度分布を公知の出力形態で表示できるようになって いる。 [0022] (6)測定方法 The central processing unit 44 has a calculation program for calculating the particle size distribution of the agglomerate mixture A based on the measured value of the surface roughness measured by the sensor 41, the amount of displacement of the level rod 42, and the like. The particle size distribution of the agglomerate mixture A can be displayed in a known output form in real time. [0022] (6) Measuring method
つぎに上記した粒度測定装置による粒度の測定方法について説明する。 図 1にお 、て、搬送手段 20を構成する無端ベルト 23は一方向に回転して 、る。 ホッパ 10の下端の開閉ゲートを開放すると、無端ベルト 23上へ粒塊混合物 Aの定 量的な供給が開始され、粒塊混合物 Aが無端ベルト 23に搭載されて図の右方から 左方へ向けて搬送される。  Next, a method for measuring the particle size using the above-described particle size measuring apparatus will be described. In FIG. 1, the endless belt 23 constituting the conveying means 20 rotates in one direction. When the open / close gate at the lower end of the hopper 10 is opened, the quantitative supply of the agglomerate mixture A onto the endless belt 23 is started, and the agglomerate mixture A is mounted on the endless belt 23 and from right to left in the figure. It is conveyed toward.
本発明では以下の要領で粒塊混合物 Aの表層から内部の面粗さをリアルタイムで 柳』定することができる。  In the present invention, the internal surface roughness can be determined in real time from the surface layer of the agglomerate mixture A in the following manner.
[0023] [粒塊混合物の振動分離工程] [0023] [Vibration separation process of agglomerate mixture]
[0024] 加振装置 30の稼動に伴い、搬送中の粒塊混合物 Aが振動を受けて振動分離され る。  [0024] As the vibration device 30 is operated, the agglomerate mixture A being conveyed is subjected to vibration and separated by vibration.
その結果、搬送過程において、粒塊混合物 Aのなかの寸法のより粗いものが表層 へ上昇し、また寸法のより細かなものは沈降して粒塊混合物 Aが粒度毎に階層的に 分離される。  As a result, in the conveyance process, the coarser size of the agglomerate mixture A rises to the surface layer, and the finer size sinks and the agglomerate mixture A is hierarchically separated according to particle size. .
[0025] [粒度の測定] [0025] [Measurement of particle size]
図 2〜4に示すように、無端ベルト 23の上方に配設したセンサ 41及びレベルロッド 4 2の真下を粒塊混合物 Aが通過する際、以下のようにして粒塊混合物 Aの面粗さの 測定が行なわれる。  As shown in FIGS. 2 to 4, when the agglomerate mixture A passes under the sensor 41 and the level rod 42 disposed above the endless belt 23, the surface roughness of the agglomerate mixture A is as follows. Measurement is performed.
[0026] レベルロッド 42の下端が粒塊混合物 Aに接触する前においては、センサ 41が振動 分離した粒塊混合物 Aの表層を対象に面粗さを測定する。  [0026] Before the lower end of the level rod 42 comes into contact with the agglomerate mixture A, the sensor 41 measures the surface roughness of the surface layer of the agglomerate mixture A that has been vibrationally separated.
つぎに昇降手段 43の伸長作動に伴い、センサ 41及びレベルロッド 42の降下を開 始する。  Next, as the elevating means 43 is extended, the sensor 41 and the level rod 42 begin to descend.
レベルロッド 42の下部が粒塊混合物 Aの表層を力き分けながらその貫入量を増し ていく。  The lower part of the level rod 42 increases the amount of penetration while the surface layer of the agglomerate mixture A is divided.
[0027] レベルロッド 42の貫入により、粒塊混合物 Aの内部が力き分けられ、露出した粒塊 混合物 Aの内部をセンサ 41で以つて面粗さの測定を行なう。  [0027] By the penetration of the level rod 42, the inside of the agglomerate mixture A is divided by force, and the surface roughness is measured by the sensor 41 inside the exposed agglomerate mixture A.
粒塊混合物 Aが移動するのに対し、センサ 41の測定点 Pは不変であり、測定点 Pの 深度だけが増していく。 これにより、振動分離された粒塊混合物 Aの表層部から最深部までの全深さに亘っ て面粗さの測定が行なわれる。 While the agglomerate mixture A moves, the measurement point P of the sensor 41 remains unchanged, and only the depth of the measurement point P increases. Thus, the surface roughness is measured over the entire depth from the surface layer portion to the deepest portion of the vibration-isolated granule mixture A.
[0028] センサ 41で測定した面粗さの測定値やレベルロッド 42の変位量等の情報が中央 演算処理部 44へ送られる。 Information such as the measured surface roughness value measured by the sensor 41 and the displacement amount of the level rod 42 is sent to the central processing unit 44.
図 5は粒塊混合物 Aの表層部カも最深部までの全深さに亘りセンサ 41で測定した 粒度の測定結果を示す  Fig. 5 shows the measurement result of the particle size measured by the sensor 41 over the entire depth of the surface layer of the agglomerate mixture A up to the deepest part.
[0029] 中央演算処理部 44は粒塊混合物 Aの表層や深さに応じた内部の面粗さの測定値 等を基に粒塊混合物 Aの粒度分布をリアルタイムで算出する。 [0029] The central processing unit 44 calculates the particle size distribution of the agglomerate mixture A in real time based on the measured values of the internal surface roughness according to the surface layer and depth of the agglomerate mixture A.
そして、図 6に示すような粒塊混合物 Aの粒度分布を得る。  Then, the particle size distribution of the agglomerate mixture A as shown in FIG. 6 is obtained.
また、レベルロッド 42の貫入量 (深さ)に応じて粒塊混合物 Aの内部の面粗さを把 握できるので、レベルロッド 42の変位量 (深度)を計測することで特定の粒度範囲に 応じた粒塊混合物 Aの量 (総量)もリアルタイムに算出することができる。  In addition, the surface roughness inside the agglomerate mixture A can be grasped according to the penetration amount (depth) of the level rod 42. Therefore, by measuring the displacement amount (depth) of the level rod 42, a specific particle size range can be obtained. The amount (total amount) of the corresponding agglomerate mixture A can also be calculated in real time.
[0030] なお、粒塊混合物 Aの粒度測定は、サンプリング目的で短時間だけ測定するか、或 いは粒塊混合物 Aの搬送中にぉ 、て連続測定するものとする。 [0030] It should be noted that the particle size measurement of the agglomerate mixture A is performed only for a short time for the purpose of sampling, or continuously during the transportation of the agglomerate mixture A.
[0031] (7)その他の実施の形態 [0031] (7) Other embodiments
以上はセンサ 41及びレベルロッド 42が降下する過程で粒塊混合物 Aの粒度測定 を行なう場合にっ ヽて説明した力 その反対にレベルロッド 42を粒塊混合物 Aの最 深部まで降下させた後、レベルロッド 42を上昇させる過程で粒塊混合物 Aの粒度測 定を行なうことも可能である。  The above is the force explained when measuring the particle size of the agglomerate mixture A while the sensor 41 and the level rod 42 are descending.On the contrary, after the level rod 42 is lowered to the deepest part of the agglomerate mixture A, It is also possible to measure the particle size of the agglomerate mixture A in the process of raising the level rod 42.
[0032] また以上は粒塊混合物 Aの内部を露出させる手段として、測定装置 40側を定点位 置で昇降自在に配置し、粒塊混合物 A側を移動可能に構成した組み合わせとした 場合について説明したが、反対に昇降自在に配置した測定装置 40側を粒塊混合物 Aの表面に沿って移動可能に構成してもよい。 [0032] Further, as described above, as a means for exposing the inside of the agglomerate mixture A, the case where the measuring device 40 side is arranged to be movable up and down at a fixed position and the agglomerate mixture A side is configured to be movable is described. However, on the contrary, the measuring device 40 side that can be moved up and down may be configured to be movable along the surface of the granule mixture A.
要は測定装置 40又は粒塊混合物 Aの何れか一方、又は両方を相対的に移動可能 に構成してあればよい。  In short, it is sufficient that either one or both of the measuring device 40 and the agglomerate mixture A are configured to be relatively movable.
[0033] また、搬送手段 20で以つて粒塊混合物 Aを移送中に、振動分離した粒塊混合物 A の表層部を図示しない除去板等で強制的に取り除き、取り除いた後の粒塊混合物 A を対象に粒度測定を行なってもよ ヽ。 本例にあっては、測定前の粒塊混合物 A中に使用予定外の大粒径の粒体が混在 している場合に、使用予定外の大粒径の粒体を除去して測定対象を絞り込むことが できる。 [0033] In addition, during the transfer of the agglomerate mixture A by the conveying means 20, the surface layer part of the vibrationally separated agglomerate mixture A is forcibly removed by a removal plate (not shown) and the agglomerate mixture A after being removed Particle size measurement may be performed for In this example, when particles with a large particle size not planned for use are mixed in the agglomerate mixture A before measurement, the particles with a large particle size not planned for use are removed to be measured. Can be narrowed down.
[0034] また以上は搬送手段 20へ粒塊混合物 Aを供給する手段としてホッパ 10を用いた 倍について説明したが、ホッパ 10に代えて粒塊混合物 Aの生産装置から直接供給し てもよい。  [0034] Although the above description has been made with respect to the case where the hopper 10 is used as the means for supplying the granule mixture A to the conveying means 20, the hopper 10 may be used instead of the hopper 10 to directly supply the mixture.
生産装置から直接粒塊混合物 Aを供給すれば、リアルタイムで測定してた粒塊混 合物の粒度分布を粒塊混合物の生産装置へフィードバックして、生産装置の制御に 活用することができる。  If the agglomerate mixture A is supplied directly from the production device, the particle size distribution of the agglomerate mixture measured in real time can be fed back to the production device for the agglomerate mixture and used for controlling the production device.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明に係る粒度測定装置のモデル図 [0035] FIG. 1 is a model diagram of a particle size measuring apparatus according to the present invention.
[図 2]粒塊混合物の表層の粒度測定時の説明図  [Fig.2] Explanatory drawing when measuring the particle size of the surface layer of the agglomerate mixture
[図 3]粒塊混合物の内部の粒度測定時の説明図  [Figure 3] Explanatory drawing of measuring the particle size inside the agglomerate mixture
[図 4]図 3における IV— IVの断面図  [Figure 4] Sectional view of IV-IV in Figure 3
[図 5]粒塊混合物の粒度測定結果の説明図  [Fig.5] Explanatory drawing of particle size measurement result of agglomerate mixture
[図 6]粒塊混合物の粒度分布の説明図  [Figure 6] Illustration of particle size distribution of agglomerate mixture
符号の説明  Explanation of symbols
[0036] A 粒塊混合物  [0036] A agglomerate mixture
P センサによる測定点  Measurement point by P sensor
10 ホッパ  10 Hopper
20 搬送手段  20 Transport means
23 無端ベルト  23 Endless belt
30 加振装置  30 Exciter
31 テッド、ベッド、  31 Ted, bed,
40 測定装置  40 Measuring equipment
41 センサ  41 sensors
42 レベルロッド  42 level rod
43 昇降手段 中央演算処理部 43 Lifting means Central processing unit

Claims

請求の範囲 The scope of the claims
[1] 粒塊混合物の表層から内部に亘つて粒度を測定する粒度測定方法であって、 粒塊混合物に強制的に振動を与えて粒塊混合物を粒度別に振動分離し、 振動分離した粒塊混合物の表層及び粒塊混合物の露出手段により、振動分離し た粒塊混合物の表層を取り除いて階層的に露出させた内部の面粗さをセンサで測 定し、  [1] A particle size measuring method for measuring the particle size from the surface layer to the inside of the agglomerate mixture, forcibly giving vibration to the agglomerate mixture, and vibrating and separating the agglomerate mixture according to the particle size. The surface of the mixture and the agglomerate mixture exposure means remove the surface of the vibrationally separated agglomerate mixture and measure the internal surface roughness of the layered exposure with a sensor.
少なくとも前記粒塊混合物の表層から内部に亘る範囲の面粗さの測定値に基づき 演算して粒塊混合物の粒度分布を求めることを特徴とする、  The particle size distribution of the agglomerate mixture is calculated by calculating based on at least the measured surface roughness in the range from the surface layer to the inside of the agglomerate mixture,
粒度測定方法。  Particle size measurement method.
[2] 請求項 1において、前記粒塊混合物、又はセンサと粒塊混合物の露出手段とにより 構成される測定装置の何れか一方、又は両方を移動させて、振動分離した粒塊混合 物の内部を露出することを特徴とする、粒度測定方法。  [2] In Claim 1, the inside of the agglomerate mixture separated by vibration by moving either one or both of the agglomerate mixture or the sensor and the exposure device for the agglomerate mixture. A particle size measuring method, characterized by exposing
[3] 粒塊混合物の表層から内部に亘つて粒度を測定する粒度測定装置であって、 粒塊混合物に強制的に振動を与えて粒塊混合物を振動分離する加振装置と、 粒度毎に振動分離した粒塊混合物の面粗さを測定する測定装置とを具備し、 前記測定装置は振動分離した粒塊混合物へ向けて配置したセンサと、 振動分離した粒塊混合物を取り除いて内部を露出させる露出手段と、 [3] A particle size measuring device for measuring the particle size from the surface layer to the inside of the agglomerate mixture, the vibration device forcing the agglomerate mixture to vibrate and separating the agglomerate mixture, and for each particle size A measuring device for measuring the surface roughness of the vibration-separated agglomerate mixture, wherein the measuring device removes the vibration-separated agglomerate mixture and exposes the interior. Exposure means to cause,
前記センサによる面粗さの測定値に基づき粒塊混合物の粒度分布を算出する中 央演算処理部とを有し、  A central processing unit for calculating the particle size distribution of the agglomerate mixture based on the measured surface roughness by the sensor,
前記粒塊混合物、又は測定装置を構成するセンサと露出手段の何れか一方、又は 両方を移動させて、振動分離した粒塊混合物の表層から内部に亘る範囲の面粗さの 測定値を中央演算処理部で演算して粒塊混合物の粒度分布を求めることを特徴と する、  By moving one or both of the agglomerate mixture or the sensor and exposure means constituting the measuring device, the surface roughness measurement value in the range from the surface layer to the inside of the agglomerated and separated agglomerate mixture is centrally calculated. It is characterized by calculating the particle size distribution of the agglomerate mixture by calculating in the processing unit.
粒度測定装置。  Particle size measuring device.
[4] 請求項 3において、粒塊混合物を連続的に搬送する搬送手段を具備し、加振装置 を装備させた前記搬送手段に向けて測定装置を構成するセンサと露出手段を配設 したことを特徴とする、粒度測定装置。  [4] In Claim 3, the conveyance means for continuously conveying the agglomerate mixture is provided, and the sensor and the exposure means constituting the measurement device are arranged toward the conveyance means equipped with the vibration exciter. A particle size measuring apparatus characterized by
[5] 請求項 4において、前記粒塊混合物の搬送手段がベルト式コンベアであることを特 徴とする、粒度測定装置。 [5] In claim 4, the conveying means for the agglomerate mixture is a belt type conveyor. A particle size measuring device.
[6] 請求項 3において、測定装置を構成するセンサと露出手段を粒塊混合物の表面に 沿って移動可能に配設したことを特徴とする、粒度測定装置。  6. The particle size measuring apparatus according to claim 3, wherein the sensor and the exposing means constituting the measuring apparatus are arranged so as to be movable along the surface of the agglomerate mixture.
[7] 請求項 3において、前記センサと一体化した粒塊混合物の露出手段に昇降手段を 設け、前記昇降手段により該センサを粒塊混合物の露出手段に同調させて昇降自 在に構成したことを特徴とする、粒度測定装置。  [7] In Claim 3, the means for exposing the agglomerate mixture integrated with the sensor is provided with an elevating means, and the sensor is synchronized with the means for exposing the agglomerate mixture by the elevating means and is configured to elevate itself. A particle size measuring apparatus characterized by
PCT/JP2006/318036 2006-09-12 2006-09-12 Method of measuring grain size and apparatus for measuring grain size WO2008032363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318036 WO2008032363A1 (en) 2006-09-12 2006-09-12 Method of measuring grain size and apparatus for measuring grain size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318036 WO2008032363A1 (en) 2006-09-12 2006-09-12 Method of measuring grain size and apparatus for measuring grain size

Publications (1)

Publication Number Publication Date
WO2008032363A1 true WO2008032363A1 (en) 2008-03-20

Family

ID=39183437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318036 WO2008032363A1 (en) 2006-09-12 2006-09-12 Method of measuring grain size and apparatus for measuring grain size

Country Status (1)

Country Link
WO (1) WO2008032363A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200518A (en) * 2015-04-11 2016-12-01 鹿島建設株式会社 Method and system for particle size distribution measurement of ground material
JP2018066613A (en) * 2016-10-18 2018-04-26 鹿島建設株式会社 Method and system for soil property determination
EP3730225B1 (en) * 2019-04-26 2023-09-20 Thilo Kraemer Dust removal system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079495A (en) * 1999-09-10 2001-03-27 Takuma Co Ltd Sorter
JP2002221481A (en) * 2001-01-29 2002-08-09 Nkk Corp Particle size measuring apparatus
JP2002243621A (en) * 2001-02-15 2002-08-28 Solt Industry Center Of Japan Inline particle diameter measurement system
JP2003035651A (en) * 2001-07-19 2003-02-07 Kotobuki Giken Kogyo Kk Equipment and method for measuring particle size

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079495A (en) * 1999-09-10 2001-03-27 Takuma Co Ltd Sorter
JP2002221481A (en) * 2001-01-29 2002-08-09 Nkk Corp Particle size measuring apparatus
JP2002243621A (en) * 2001-02-15 2002-08-28 Solt Industry Center Of Japan Inline particle diameter measurement system
JP2003035651A (en) * 2001-07-19 2003-02-07 Kotobuki Giken Kogyo Kk Equipment and method for measuring particle size

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200518A (en) * 2015-04-11 2016-12-01 鹿島建設株式会社 Method and system for particle size distribution measurement of ground material
JP2018066613A (en) * 2016-10-18 2018-04-26 鹿島建設株式会社 Method and system for soil property determination
EP3730225B1 (en) * 2019-04-26 2023-09-20 Thilo Kraemer Dust removal system

Similar Documents

Publication Publication Date Title
US10377061B2 (en) Processing of three dimensional printed parts
US11235518B2 (en) Method and device for producing three-dimensional components with the aid of an overfeed sensor
US20150266157A1 (en) Processing of three dimensional printed parts
DE502006007566D1 (en) Method and device for dosing and pneumatic conveying of poorly flowing bulk material
US8780196B2 (en) Particle measuring instrument, in particular for the analysis of grain sizes of fine and very fine bulk materials
WO2008032363A1 (en) Method of measuring grain size and apparatus for measuring grain size
JP6415974B2 (en) Vibration method of belt conveyor and vibrating belt conveyor
CN112638551A (en) Method and apparatus for removing thread, and method for processing electronic/electric device component dust
FR2991973A1 (en) DEVICE FOR SORTING PRODUCTS
CN111299137A (en) Burnt precious stone sorting system based on machine vision
ATE283378T1 (en) METHOD AND DEVICE FOR SUPPLYING GRANULAR RAW MATERIAL FOR PRODUCING REDUCED IRON
JP5740852B2 (en) Powder cutting device and powder foreign matter inspection device using the same
JP4571886B2 (en) Transport device for inspection equipment
JPS6347513B2 (en)
JP2005028285A (en) Minute magnetic material removing apparatus
EP3507586B1 (en) A measuring device for analysis of particles and method of analyzing particles using the measuring device
JP2006138660A (en) Pretreatment method of analysis of metal in soil and fluorescent x-ray analyzing method using method
CN209953204U (en) River silt handles and uses gravel and sand conveyer
JP2012007999A (en) Particulate foreign material inspecting device using particulate sieving device
CN209791998U (en) Material grading and screening device for engineering
JP2002221481A (en) Particle size measuring apparatus
JP4351625B2 (en) Concrete waste recycling treatment equipment
JP2004230208A (en) Method and apparatus for inspecting appearance of electronic part
JP2020180835A (en) Grain degree determination method and system for ground material
JP2007076819A (en) Vibration bowl, vibration bowl feeder, and vacuum evaporation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP