JP2003035651A - Equipment and method for measuring particle size - Google Patents

Equipment and method for measuring particle size

Info

Publication number
JP2003035651A
JP2003035651A JP2001220392A JP2001220392A JP2003035651A JP 2003035651 A JP2003035651 A JP 2003035651A JP 2001220392 A JP2001220392 A JP 2001220392A JP 2001220392 A JP2001220392 A JP 2001220392A JP 2003035651 A JP2003035651 A JP 2003035651A
Authority
JP
Japan
Prior art keywords
particle size
vibration
particles
collision
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001220392A
Other languages
Japanese (ja)
Inventor
Takahito Kaya
賀谷隆人
Shuichi Aihara
相原秀一
Yuichi Nagahara
長原雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kotobuki Engineering and Manufacturing Co Ltd
Original Assignee
Kotobuki Engineering and Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kotobuki Engineering and Manufacturing Co Ltd filed Critical Kotobuki Engineering and Manufacturing Co Ltd
Priority to JP2001220392A priority Critical patent/JP2003035651A/en
Publication of JP2003035651A publication Critical patent/JP2003035651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the size of a particle simply. SOLUTION: The equipment 1 for measuring the size of a particle 4 comprises an oscillatory member 11 against which the particle 4 collides, and a unit 12 for measuring oscillation of the oscillatory member 11. Oscillation of the oscillatory member 11 being generated when the particle 4 collides against it is measured by the oscillation measuring unit 12 and the size of the particle 4 is measured from the distribution of oscillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、砕石などの粒子の
粒度の測定に関するものである。
TECHNICAL FIELD The present invention relates to measurement of particle size of particles such as crushed stone.

【0002】[0002]

【従来の技術】従来、岩石など粒子の粒度は、目の大き
さの異なる複数のスクリーン(篩)を通して、通過の可
否により測定している。そのため、粒度の測定に多くの
時間を要していた。また、多数の粒子を撮影し、画像処
理でそれぞれの粒子の粒度を測定している。しかし、微
粒子は、他粒子の裏に隠れて、正確な粒度を測定するこ
とができない。
2. Description of the Related Art Conventionally, the particle size of particles such as rock has been measured by passing a plurality of screens (sieves) having different mesh sizes depending on whether the particles can pass through. Therefore, it took a lot of time to measure the particle size. Also, a large number of particles are photographed and the particle size of each particle is measured by image processing. However, the fine particles are hidden behind other particles, and the accurate particle size cannot be measured.

【0003】[0003]

【発明が解決しようとする課題】<イ>本発明は、粒子
の粒度を簡単に測定することにある。 <ロ>また、本発明は、粒子の粒度を簡単な装置で測定
することにある。
<A> The present invention is to easily measure the particle size of particles. <B> Further, the present invention is to measure the particle size of particles with a simple apparatus.

【0004】[0004]

【問題を解決するための手段】本発明は、粒子の粒度を
測定する粒度測定装置において、粒子が衝突する衝突振
動材と、衝突振動材の振動を測定する振動測定装置とを
備え、粒子が衝突振動材に衝突した際に発生する衝突振
動材の振動を振動測定装置で測定し、振動分布から粒子
の粒度を測定することを特徴とする、粒度測定装置、又
は、前記粒度測定装置において、衝突振動材は、線状、
棒状、又は板状であることを特徴とする、粒度測定装
置、又は、前記粒度測定装置において、衝突振動材の振
動と共振する共振体を備えることを特徴とする、粒度測
定装置、又は、粒子の粒度を測定する粒度測定方法にお
いて、粒子が通過する領域に衝突振動材を配置し、粒子
が衝突振動材に衝突した際に発生する衝突振動材の振動
を測定し、振動分布から粒子の粒度を測定することを特
徴とする、粒度測定方法、又は、粒子の粒度を測定する
粒度測定方法において、同程度の粒度からなる粒子が通
過する領域が複数あり、順次各領域を通るように衝突振
動材を移動させ、粒子が衝突振動材に衝突した際に発生
する衝突振動材の振動を測定し、振動分布から各領域に
ある粒子の粒度を測定することを特徴とする、粒度測定
方法にある。
SUMMARY OF THE INVENTION The present invention provides a particle size measuring device for measuring the particle size of particles, which comprises a collision vibrating material with which the particles collide, and a vibration measuring device for measuring vibration of the collision vibrating material. The vibration of the collision vibrating material generated when colliding with the collision vibrating material is measured by a vibration measuring device, characterized by measuring the particle size of the particles from the vibration distribution, the particle size measuring device, or in the particle size measuring device, The impact vibration material is linear,
Characterized in that it is rod-shaped or plate-shaped, the particle size measuring device, or, in the particle size measuring device, characterized by comprising a resonator that resonates with the vibration of the collision vibration material, the particle size measuring device, or particles In the particle size measuring method for measuring the particle size of, the collision vibration material is arranged in the area where the particles pass, the vibration of the collision vibration material generated when the particles collide with the collision vibration material is measured, and the particle size of the particle is determined from the vibration distribution. In the particle size measuring method, or in the particle size measuring method for measuring the particle size of particles, there are a plurality of regions through which particles having the same particle size pass, and collision vibration is generated so as to sequentially pass through each region. In the particle size measuring method, the material is moved, the vibration of the collision vibrating material generated when the particles collide with the collision vibrating material is measured, and the particle size of the particles in each region is measured from the vibration distribution. .

【0005】[0005]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0006】<イ>粒度測定装置 粒度測定装置1は、粒子4が衝突振動材11に衝突した
際に発生する衝突振動材11の振動分布から粒度を測定
するものであり、図1に示すように、粒子が衝突する衝
突振動材11とその振動を測定する振動測定装置12を
備えている。粒度測定装置12は、粒子4の粒度とこの
粒子4が衝突した際の衝突振動材11の振動分布との間
に相関関係があり、この相関関係から逆に粒度を求める
ものである。なお、粒子4とは、球形に限らず、任意の
形状をもった粒状のものを言い、土木材を例に取ると、
骨材、砂、破砕された岩石などがある。また、粒度と
は、粒子の大きさの程度を表すもので、粒度が大きいと
は、例えば粒子の径が大きいことを言う。
<A> Particle Size Measuring Device The particle size measuring device 1 measures the particle size from the vibration distribution of the collision vibrating member 11 generated when the particles 4 collide with the collision vibrating member 11, as shown in FIG. Further, a collision vibration member 11 on which particles collide and a vibration measuring device 12 for measuring the vibration thereof are provided. The particle size measuring device 12 has a correlation between the particle size of the particles 4 and the vibration distribution of the collision vibrating material 11 when the particles 4 collide, and finds the particle size in reverse from this correlation. Note that the particles 4 are not limited to spherical shapes, but are particles having an arbitrary shape. Taking earth and wood as an example,
There are aggregates, sand, and crushed rock. Further, the particle size represents the degree of the size of the particle, and the large particle size means that the particle diameter is large, for example.

【0007】<ロ>衝突振動材 衝突振動材11は、粒子4が衝突した際、振動するもの
であればよい。衝突振動材11は、線状、棒状、板状、
又は、立体状(多面体状また球状、それらの内部に空間
が有るものと無いもの、その空間に仕切が有るものと無
いもの、立体の表面の一部が無いものなどを含む)のも
のが使用できる。粒子4の通過領域、例えば、落下領域
において衝突振動材11を移動させれば、広範囲の領域
に亘って粒子4の粒度を測定することができる。
<B> Colliding Vibration Material The collision vibration material 11 may be any material that vibrates when the particles 4 collide. The collision vibrating material 11 has a linear shape, a rod shape, a plate shape,
Or, three-dimensional shape (including polyhedral shape or spherical shape, those with or without space inside, those with or without partitions in the space, and those without part of the surface of the solid) are used. it can. The particle size of the particles 4 can be measured over a wide range by moving the collision vibrating material 11 in a passage area of the particles 4, for example, a falling area.

【0008】<ハ>振動測定装置 振動測定装置12は、衝突振動材11の振動を測定する
ものであり、種々のものがある。例えば、振動測定装置
11は、衝突振動材11の振動を直接測定するもの、ま
た、衝突振動材に共振体を取り付け、共振体の振動を測
定するものなどがある。振動検知手段14は、衝突振動
材11や共振体13の振動を検知できるものであれば良
く、音を電気信号に変換するマイク、振動による圧力変
化を電気信号に変換する圧電素子などがある。検知した
電気信号は、振動処理装置15で衝突振動材11の振動
分布を求めることができる。振動処理装置15は、例え
ば、高速フーリエ変換(FFT)装置を使用したり、又
は、バンドパスフィルターや演算処理装置などを使用し
て、検知された電気信号の振動を複数に分け、振動分布
を求めることができる。
<C> Vibration Measuring Device The vibration measuring device 12 measures the vibration of the collision vibration member 11, and there are various types. For example, the vibration measuring device 11 may be one that directly measures the vibration of the collision vibration material 11 or one that measures the vibration of the resonance body by attaching a resonator to the collision vibration material. The vibration detecting means 14 may be any as long as it can detect the vibration of the collision vibrating material 11 and the resonator 13, and includes a microphone that converts sound into an electric signal, a piezoelectric element that converts pressure change due to vibration into an electric signal, and the like. The vibration distribution of the collision vibration member 11 can be obtained by the vibration processing device 15 from the detected electric signal. The vibration processing device 15 uses, for example, a fast Fourier transform (FFT) device, or uses a bandpass filter, an arithmetic processing device, or the like to divide the vibration of the detected electric signal into a plurality of vibration distributions. You can ask.

【0009】<ニ>衝突振動材の振動分布 粒子4の粒度と衝突振動材11の振動分布には、相関関
係があり、その例を図2に示す。図2は、同一の粒度測
定装置1で異なった粒度の粒子について測定したもので
あり、図2(A)は、、岩石の粒度0.3mm〜1.2
mmの粒子が衝突振動材に衝突した際に発生した振動分
布を示している。図2(B)は、粒度1.2mm〜3m
mの粒子における振動分布であり、図2(C)は、粒度
3mm〜5mmの粒子における振動分布である。
<D> Vibration distribution of collision vibration material There is a correlation between the particle size of the particles 4 and the vibration distribution of the collision vibration material 11, and an example thereof is shown in FIG. FIG. 2 is a graph of particles having different particle sizes measured by the same particle size measuring device 1. FIG. 2A shows a rock particle size of 0.3 mm to 1.2 mm.
The vibration distribution generated when the mm particles collide with the collision vibrating material is shown. FIG. 2B shows a particle size of 1.2 mm to 3 m.
2C is a vibration distribution in a particle of m, and FIG. 2C is a vibration distribution in a particle having a particle size of 3 mm to 5 mm.

【0010】図2は、横軸が対数目盛で振動数(Hz)
を示しており、縦軸がパワースペクトラム(dBV)
(1目盛:8dBV)を示している。基準の振動数(基
準点)の振動の強度は、粒度が大きいほど、強くなって
いる。図2(A)〜(C)において、特定の振動数(基
準点)の強度は、粒度に応じて異なり、粒度の大きいほ
ど強度が強くなっている。この基準点は、測定対象によ
って決めればよい。図2では、振動数が増大すると、強
度変化が生じ始める付近の振動数を基準点としている。
In FIG. 2, the horizontal axis is the logarithmic scale and the frequency (Hz).
The vertical axis indicates the power spectrum (dBV).
(1 scale: 8 dBV) is shown. The vibration intensity at the standard frequency (reference point) is stronger as the grain size is larger. In FIGS. 2A to 2C, the strength at a specific frequency (reference point) differs depending on the particle size, and the larger the particle size, the stronger the strength. This reference point may be determined depending on the measurement target. In FIG. 2, when the frequency increases, the frequency near the point where the intensity change begins to be taken as the reference point.

【0011】振動数が更に増大すると、粒度に応じて、
強度変化の割合(振動パターン)が異なり始める。そこ
で、粒度の違いに対して、強度変化の差異が大きくなる
周波数を選び、比較周波数とし、この比較周波数の強度
差を調べることにより、粒度を特定することができる。
As the frequency further increases, depending on the grain size,
The rate of change in intensity (vibration pattern) begins to differ. Therefore, it is possible to specify the granularity by selecting a frequency having a large difference in intensity change with respect to the difference in granularity, setting the frequency as a comparison frequency, and examining the intensity difference between the comparison frequencies.

【0012】図2の第1比較周波数において、粒度0.
3mm〜1.2mmでは、基準点に対して8dBVの差
異があるが(図2(A))、粒度1.2mm〜3mmで
は、基準点に対して15dBVの差異があり(図2
(B))、粒度3mm〜5mmでは、基準点に対して2
6dBVの差異がある(図2(C))。また、第2比較
周波数において、粒度0.3mm〜1.2mmでは、基
準点に対して3dBVの差異があるが、粒度1.2mm
〜3mmでは、基準点に対して15dBVの差異があ
り、粒度3mm〜5mmでは、基準点に対して33dB
Vの差異がある。また、第3比較周波数において、粒度
0.3mm〜1.2mmでは、基準点に対して8dBV
の差異があるが、粒度1.2mm〜3mmでは、基準点
に対して25dBVの差異があり、粒度3mm〜5mm
では、基準点に対して42dBVの差異がある。このよ
うに、各粒度に応じた周波数分布のパターンがあり、こ
のパターンの相違を利用することにより、粒度を測定す
ることができる。
At the first comparison frequency in FIG. 2, grain size 0.
At 3 mm to 1.2 mm, there is a difference of 8 dBV from the reference point (Fig. 2 (A)), but at grain sizes of 1.2 mm to 3 mm, there is a difference of 15 dBV from the reference point (Fig. 2 (A)).
(B)), with a grain size of 3 mm to 5 mm, 2 with respect to the reference point
There is a difference of 6 dBV (Fig. 2 (C)). In the second comparison frequency, when the grain size is 0.3 mm to 1.2 mm, there is a difference of 3 dBV from the reference point, but the grain size is 1.2 mm.
There is a difference of 15 dBV from the reference point at ~ 3 mm, and 33 dB from the reference point at grain sizes of 3 mm to 5 mm.
There is a difference in V. Further, at the third comparison frequency, when the grain size is 0.3 mm to 1.2 mm, 8 dBV with respect to the reference point.
However, in the particle size of 1.2 mm to 3 mm, there is a difference of 25 dBV from the reference point, and the particle size of 3 mm to 5 mm.
Then, there is a difference of 42 dBV from the reference point. As described above, there is a pattern of frequency distribution corresponding to each grain size, and the grain size can be measured by utilizing the difference in this pattern.

【0013】以下、粒度測定装置を粒度調整装置で使用
する例を説明する。
An example of using the particle size measuring device in the particle size adjusting device will be described below.

【0014】<イ>粒度調整装置 粒度調整装置2は、例えば図3のように、振動搬送部2
0と分割部3とを備えており、粒度の異なる多数の粒子
4を同程度の粒度に応じて調整する。粒度の異なる多数
の粒子は、ホッパーなどの粒子投入部41から振動搬送
部20に投入され、堆積しながら振動され多層に分離
し、移送され、分割部3で容器42に大別して調整され
る。
<B> Granularity Adjusting Device The granularity adjusting device 2 is, for example, as shown in FIG.
0 and the dividing section 3 are provided, and a large number of particles 4 having different particle sizes are adjusted according to the same particle size. A large number of particles having different particle sizes are charged from a particle charging unit 41 such as a hopper to the vibration conveyance unit 20, vibrated while being deposited, separated into multiple layers, transferred, and roughly divided into containers 42 in the dividing unit 3 and adjusted.

【0015】粒度調整装置2の粒子の落下位置に衝突振
動材11を配置する。衝突振動材11の振動数を測定す
ることにより、衝突振動材に衝突した粒子の粒度を求め
ることができる。なお、調整とは、同程度の粒度の粒
子、即ち、ある幅の粒度を持った粒子の集まりに大まか
に分けることである。
The collision vibrating material 11 is arranged at the particle dropping position of the particle size adjusting device 2. By measuring the frequency of the collision vibrating material 11, the particle size of the particles colliding with the collision vibrating material can be obtained. The adjustment is roughly divided into particles having the same particle size, that is, a group of particles having a particle size of a certain width.

【0016】<ロ>振動搬送部 振動搬送部20は、粒子を振動し、搬送するものであれ
ば良く、粒度の異なる多数の粒子を上部に堆積して振動
を与えるものである。これにより、粒度の小さい粒子は
徐々に下層に移り、粒度の大きな粒子は上層に移り、同
程度の粒度の粒子が同一の層になるように分布し、粒子
が粒度ごとに多層に分離する。振動搬送部20は、振動
の付与と同時に又は後に、多層になった粒子を運搬す
る。なお、ここでいう多層とは、各層の境界が明確に分
かれているのではなく、粒度が下層から上層に従って大
きくなるように分布している状態を意味している。
<B> Vibrating and Conveying Section The vibrating and conveying section 20 may be one that vibrates and conveys particles, and is a means for vibrating by depositing a large number of particles having different particle sizes on the upper part. As a result, the particles having a small particle size gradually move to the lower layer, the particles having a large particle size move to the upper layer, the particles having the same particle size are distributed so as to form the same layer, and the particles are separated into multiple layers for each particle size. The vibration conveyance unit 20 conveys the multi-layered particles simultaneously with or after the application of vibration. The term "multilayer" as used herein means that the boundaries between the layers are not clearly separated, but the particle size is distributed such that the particle size increases from the lower layer to the upper layer.

【0017】振動搬送部20は、例えば、振動装置21
を備えたベルトコンベアの搬送ベルトを利用できる。振
動装置21で搬送ベルトを例えば、上下方向、または、
斜め方向などに振動することにより、搬送ベルト上に堆
積した粒子に振動を与え、堆積した粒子を多層に分離し
て搬送することができる。
The vibrating and conveying section 20 includes, for example, a vibrating device 21.
A conveyor belt of a belt conveyor equipped with can be used. The vibrating device 21 moves the conveyor belt in, for example, the vertical direction, or
By vibrating in an oblique direction or the like, the particles accumulated on the conveyor belt can be vibrated, and the accumulated particles can be separated into multiple layers and conveyed.

【0018】<ハ>分割部 分割部3は、振動搬送部上で多層に積層した粒子の中、
複数の集まりに分けるものである。例えば、分割部3
は、上層に位置する粒子を遠くに落下させ、下層に位置
する粒子を近くに落下させるように、多層の各層を分け
るように粒子を投下するものである。
<C> Dividing part The dividing part 3 is a part of the particles laminated in multiple layers on the vibrating and conveying part.
It is divided into multiple groups. For example, the dividing unit 3
Is a method of dropping particles so as to separate each layer of a multilayer so that particles located in an upper layer fall far and particles located in a lower layer fall close to each other.

【0019】<ニ>投下手段 分割部3の投下手段は、上層に位置する粒子を遠くに落
下させ、下層に位置する粒子を近くに落下させるもの
で、例えば図3のように、ベルトコンベアの回転部を利
用できる。搬送ベルトをモータなどの回転装置31で回
転駆動することにより、搬送ベルト上に多層に堆積した
粒子の中、上層にある粒子は、回転軸32からの距離
(回転半径)が大きいので、回転軸から遠い場所に落下
し、下層にある粒子は、回転半径が小さいので、回転軸
から近い場所に落下する。
<D> Dropping means The dropping means of the dividing unit 3 drops the particles located in the upper layer to a distance and the particles located in the lower layer to a close distance. For example, as shown in FIG. A rotating part can be used. By rotating the conveyor belt by a rotating device 31 such as a motor, among particles accumulated in multiple layers on the conveyor belt, particles in the upper layer have a large distance (rotation radius) from the rotation axis 32. The particles in the lower layer have a small radius of gyration and thus fall to a location near the axis of rotation.

【0020】<ホ>粒度の測定 粒子の落下領域に衝突振動材11を移動可能に配置す
る。衝突振動材11を粒度の小さな領域から大きい領域
までの範囲で移動して、各粒子の粒度を測定する。これ
により、1台の粒度測定装置で各領域を通過する粒子の
粒度が測定でき、容器42に収容された粒子の粒度を知
ることができる。
<E> Particle size measurement The collision vibration material 11 is movably arranged in the particle falling area. The collision vibration material 11 is moved in a range from a small particle size region to a large particle size region, and the particle size of each particle is measured. Thereby, the particle size of the particles passing through each region can be measured by one particle size measuring device, and the particle size of the particles contained in the container 42 can be known.

【0021】[0021]

【発明の効果】本発明は、次のような効果を得ることが
できる。 <イ>本発明は、粒子の粒度を簡単に測定することがで
きる。 <ロ>また、本発明は、簡単な装置で粒子の粒度を測定
することができる。
According to the present invention, the following effects can be obtained. <A> In the present invention, the particle size of particles can be easily measured. <B> Further, in the present invention, the particle size of particles can be measured with a simple device.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒度測定装置の測定原理図[Figure 1] Measurement principle diagram of particle size analyzer

【図2】衝突振動材の振動分布と粒子の粒度の関係を示
す図
FIG. 2 is a diagram showing the relationship between the vibration distribution of a collision vibration member and the particle size of particles.

【図3】粒度測定装置の適用例を示す図FIG. 3 is a diagram showing an application example of a particle size measuring device.

【符号の説明】 1・・・粒度測定装置 11・・衝突振動材 12・・振動測定装置 13・・共振体 14・・振動検知装置 15・・振動処理装置 2・・・粒度調整装置 20・・振動搬送部 21・・振動装置 3・・・分割部 31・・回転装置 32・・回転軸 33・・仕切板 4・・・粒子 41・・粒子投入部 42・・容器[Explanation of symbols] 1. Particle size measuring device 11..Collision vibration material 12 ... Vibration measuring device 13 ... Resonator ..Vibration detection device 15 ... Vibration processing device 2 Particle size adjuster 20 ... Vibration transfer unit 21..Vibration device 3 ... Dividing part 31..Rotation device 32 ... Rotating shaft 33 .. Partition plates 4 ... particles 41..Particle input unit 42..container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長原雄一 広島県呉市広白岳1丁目2番2号 コトブ キ技研工業株式会社内 Fターム(参考) 2G047 AA01 BA04 BC00 BC04 CA03 EA09 GG12 GG17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuichi Nagahara             1-2-2 Hiroshiradake, Kure City, Hiroshima Prefecture             Ki Giken Co., Ltd. F-term (reference) 2G047 AA01 BA04 BC00 BC04 CA03                       EA09 GG12 GG17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】粒子の粒度を測定する粒度測定装置におい
て、 粒子が衝突する衝突振動材と、 衝突振動材の振動を測定する振動測定装置とを備え、 粒子が衝突振動材に衝突した際に発生する衝突振動材の
振動を振動測定装置で測定し、振動分布から粒子の粒度
を測定することを特徴とする、粒度測定装置。
1. A particle size measuring device for measuring the particle size of particles, comprising: a collision vibrating material with which particles collide; and a vibration measuring device for measuring vibration of the collision vibrating material, wherein when the particles collide with the collision vibrating material. A particle size measuring device characterized in that the vibration of a collision vibrating material generated is measured by a vibration measuring device and the particle size of the particles is measured from the vibration distribution.
【請求項2】請求項1に記載の粒度測定装置において、 衝突振動材は、線状、棒状、又は板状であることを特徴
とする、粒度測定装置。
2. The particle size measuring apparatus according to claim 1, wherein the collision vibration material has a linear shape, a rod shape, or a plate shape.
【請求項3】請求項1に記載の粒度測定装置において、 衝突振動材の振動と共振する共振体を備えることを特徴
とする、粒度測定装置。
3. The particle size measuring apparatus according to claim 1, further comprising a resonator that resonates with the vibration of the collision vibration material.
【請求項4】粒子の粒度を測定する粒度測定方法におい
て、 粒子が通過する領域に衝突振動材を配置し、 粒子が衝突振動材に衝突した際に発生する衝突振動材の
振動を測定し、振動分布から粒子の粒度を測定すること
を特徴とする、粒度測定方法。
4. A particle size measuring method for measuring the particle size of particles, wherein a collision vibrating material is arranged in a region through which the particles pass, and the vibration of the collision vibrating material generated when the particles collide with the collision vibrating material is measured, A particle size measuring method characterized by measuring the particle size of a particle from a vibration distribution.
【請求項5】粒子の粒度を測定する粒度測定方法におい
て、 同程度の粒度からなる粒子が通過する領域が複数あり、
順次各領域を通るように衝突振動材を移動させ、 粒子が衝突振動材に衝突した際に発生する衝突振動材の
振動を測定し、振動分布から各領域にある粒子の粒度を
測定することを特徴とする、粒度測定方法。
5. A particle size measuring method for measuring the particle size of particles, wherein there are a plurality of regions through which particles having similar particle sizes pass,
By moving the collision vibrating material so that it passes through each area in sequence, measure the vibration of the collision vibrating material generated when the particles collide with the collision vibrating material, and measure the particle size of the particles in each area from the vibration distribution. Characteristic, particle size measurement method.
JP2001220392A 2001-07-19 2001-07-19 Equipment and method for measuring particle size Pending JP2003035651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220392A JP2003035651A (en) 2001-07-19 2001-07-19 Equipment and method for measuring particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220392A JP2003035651A (en) 2001-07-19 2001-07-19 Equipment and method for measuring particle size

Publications (1)

Publication Number Publication Date
JP2003035651A true JP2003035651A (en) 2003-02-07

Family

ID=19054214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220392A Pending JP2003035651A (en) 2001-07-19 2001-07-19 Equipment and method for measuring particle size

Country Status (1)

Country Link
JP (1) JP2003035651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032363A1 (en) * 2006-09-12 2008-03-20 Kotobuki Engineering & Manufacturing Co., Ltd. Method of measuring grain size and apparatus for measuring grain size
JP2015038434A (en) * 2013-08-19 2015-02-26 株式会社神戸製鋼所 Grain size estimation method of granulation material, and control method of granulation process
KR20190127679A (en) * 2017-03-14 2019-11-13 머터리얼스 센터 레오벤 포르슝 게엠베하 Particle sensor and its method for measuring particulate concentration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032363A1 (en) * 2006-09-12 2008-03-20 Kotobuki Engineering & Manufacturing Co., Ltd. Method of measuring grain size and apparatus for measuring grain size
JP2015038434A (en) * 2013-08-19 2015-02-26 株式会社神戸製鋼所 Grain size estimation method of granulation material, and control method of granulation process
KR20190127679A (en) * 2017-03-14 2019-11-13 머터리얼스 센터 레오벤 포르슝 게엠베하 Particle sensor and its method for measuring particulate concentration
JP2020510821A (en) * 2017-03-14 2020-04-09 マテリアルズ センター レオーベン フォルシャン ゲーエムベーハー Particle sensor and method for measuring particle concentration
JP7127247B2 (en) 2017-03-14 2022-08-31 マテリアルズ センター レオーベン フォルシャン ゲーエムベーハー Particle sensors and methods for measuring particle concentrations
KR102492249B1 (en) 2017-03-14 2023-01-27 머터리얼스 센터 레오벤 포르슝 게엠베하 Particulate sensor and method for measuring particulate concentration

Similar Documents

Publication Publication Date Title
Baumann et al. Surface properties and the flow of granular material in a two-dimensional rotating-drum model
JP2011510812A (en) Particle classification method and apparatus
US11548043B2 (en) Method for detecting and removing buildup on a component, system and computer program
CN109153510A (en) Escapement
EP0424167B1 (en) Particle classification
CN203356079U (en) Tea color sorter accurate in feeding
JP2003035651A (en) Equipment and method for measuring particle size
EP0267948A1 (en) Separation method and apparatus
CA1069200A (en) Apparatus for sensing moving particles or small moving objects
Nazarenko et al. Research of technical systems of materials sorting processes
RU2353439C2 (en) Method for separation of diamond-containing materials and device for its realisation
JPS59109262A (en) Method and device for separating granular substance
WO2014130898A1 (en) Material separation and conveyance using tuned waves
JPH07294412A (en) Grain size distribution measuring device
JPH0341220B2 (en)
JP2002326057A (en) Grain size adjusting device and grain size adjusting method
JPS6154449A (en) Deciding method of life or death of shellfish
KR20030096360A (en) Automatic particle analysing system
JPS6324425B2 (en)
JP2003300019A (en) Vibration screen and screen equipment provided with the same
JPH0518884A (en) Measuring device for grain size distribution
JP2004098034A (en) Sieve for removing foreign matter
JPH11319715A (en) Cylindrical screen rotation type sieving apparatus
JPH09187730A (en) Apparatus for separating light substance
JP3972987B2 (en) Granule size distribution measuring apparatus and particle size distribution measuring method