WO2008056465A1 - Sorting device - Google Patents

Sorting device Download PDF

Info

Publication number
WO2008056465A1
WO2008056465A1 PCT/JP2007/063682 JP2007063682W WO2008056465A1 WO 2008056465 A1 WO2008056465 A1 WO 2008056465A1 JP 2007063682 W JP2007063682 W JP 2007063682W WO 2008056465 A1 WO2008056465 A1 WO 2008056465A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting
layer
resin film
sieving
concentration
Prior art date
Application number
PCT/JP2007/063682
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Yokoyama
Ryozo Ushio
Koji Komatsu
Koji Kawamoto
Original Assignee
Sumitomo Metal Mining Co., Ltd.
International Center For Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co., Ltd., International Center For Environmental Technology Transfer filed Critical Sumitomo Metal Mining Co., Ltd.
Priority to JP2008501099A priority Critical patent/JP4138865B2/en
Publication of WO2008056465A1 publication Critical patent/WO2008056465A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • B07C5/3427Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain by changing or intensifying the optical properties prior to scanning, e.g. by inducing fluorescence under UV or x-radiation, subjecting the material to a chemical reaction

Definitions

  • the present invention relates to an intermediate product, a by-product in a process of producing a soil containing a specific element, a raw material such as an ore containing the specific element, or a powdery, granular or gravel-like product or product containing the specific element,
  • This refers to sorting equipment used for process management and quality control in manufacturing equipment, purification equipment, recycling equipment, etc., for sorting wastes and other sorting objects according to a predetermined concentration.
  • Soil contamination by toxic substances has become a major social problem, and in particular, the problem of soil contamination by heavy metals such as hexavalent chromium 'mercury' power Doom is becoming more serious.
  • many methods are generally used to purify contaminated soil with heavy metals after excavating the contaminated soil, treating it with fixed soil, and transporting it to a disposal site.
  • the decrease in the remaining capacity and the remaining years at the final disposal site has become a problem. For this reason, for example, dredging heavy metals adhering to contaminated soil by washing operation and filling the purified soil back to the original ground or reclaimed ground has attracted attention.
  • the contaminated soil is selected according to the concentration of contamination and the type of the contaminant, and the selected soil is converted into the selected soil. It is desirable to perform appropriate treatments such as cleaning. This is due to the following circumstances.
  • a device using fluorescent X-rays is known as a sorting device for soil and the like.
  • a sorting device for soil and the like For example, in Japanese Patent No. 3698255, fluorescent X-rays generated by irradiating X-rays on contaminated soil moving on a belt are detected, and based on the detection results, contamination conveyed on the belt is detected.
  • a soil sorting device that switches the soil transport path is disclosed. This device estimates the concentration of heavy metals and the like contained in the soil based on the amount of detected fluorescent X-rays, and sorts soil contaminated with high concentration and soil with low concentration of contamination.
  • Japanese Patent No. 3696522 discloses that the waste loaded on the belt is irradiated with X-rays, and the generated fluorescent X-rays are detected to detect the presence or absence of a specific element.
  • a waste sorting apparatus for sorting in accordance with this is disclosed.
  • Patent Document 1 Japanese Patent No. 3698255
  • Patent Document 2 Japanese Patent No. 3696522
  • the sorting apparatus described in Patent Document 1 is suitable for adding water to a contaminated soil when performing a sorting process, making it into a slurry, and sieving it into a coarse and fine grained portion by a wet process. .
  • the selection target is raw materials, depending on the purpose or method of use after sorting, it may not be used as it is due to its high moisture content. In such a case, a dehydration process or the like is required to reduce the water content, and depending on what the specific element is eluted to the treated water side, it is also necessary to newly purify the treated water. For this reason, the processing cost increases and the processing cost may become excessive. Furthermore, the slurry itself may become unusable by slurrying.
  • the waste to be sorted is fluorescent X Even during line analysis, it always moves at a constant speed.
  • the X-ray detector is not in contact. In this case, by providing the separation distance, the fluorescent X-ray intensity is attenuated, and even if the presence or absence of the specific element can be determined, it is difficult to accurately determine the concentration of the specific element.
  • the measurement window for taking fluorescent X-rays into the analyzer can be brought into contact with the object to be measured, or the conveyance of the object to be measured is temporarily stopped and brought into contact with the object to be measured.
  • the measurement window is damaged due to contact with the measurement object.
  • measurement objects that are in a water-containing condition such as contaminated soil and sludge are very likely to adhere, so it is inevitable that the measurement objects will adhere to the measurement window when they come into contact. If measurement is continued with the measurement object attached to the measurement window, accurate measurement values cannot be obtained, and efficient sorting cannot be performed.
  • the present invention has been made in view of the circumstances as described above, and its purpose is not to make soil containing a specific element, raw material or product in the form of powder, granules or gravel into a slurry.
  • Another object of the present invention is to provide a sorting apparatus capable of efficiently sorting according to a predetermined control concentration.
  • the sorting device is a powdery or granular substance, gravel, earth and sand, or soil, on which a sorting object containing a specific element is placed, and the sorting object is moved.
  • a layer adjusting means for flatly processing a concentration detecting means for detecting the concentration of a specific element by irradiating X-rays on the layer of the object to be sorted whose upper surface is processed flat; and detecting the generated fluorescent X-ray;
  • a transport path switching unit that is provided on the downstream side of the X-ray irradiation position in the moving direction of the selection target and switches the transport path of the selection target based on the detection result of the concentration detection unit.
  • the specific element is an element that generates fluorescent X-rays by X-ray irradiation.
  • the content of elements with atomic numbers from 12 to 92 can be estimated by measuring fluorescent X-rays when irradiated with X-rays, and may be included in the specific elements.
  • the range of atomic numbers may expand due to improvements in measurement technology.
  • the detection of the concentration of the specific element by X-ray irradiation can be performed at a predetermined interval. That is, it is possible to employ a detection object that is detected each time a predetermined amount is conveyed, with respect to a selection object that is conveyed continuously or intermittently by the conveying means.
  • the screening object can be screened for all parts of the screening object transported on the transporting means, but only for the part to be irradiated with X-rays. Also good.
  • the range of processing the surface of the screened object to be screened can be limited to the range irradiated with X-rays.
  • the fluorescent X-ray measuring apparatus may be one that uses only one in the sorting apparatus of the present invention, but may be one in which a plurality of units are arranged in the conveying direction of the conveying means. A plurality of units may be arranged in a direction perpendicular to the transport direction. By using a plurality of devices in this way, it is possible to measure the concentration of a specific element in a short time or over a wide range.
  • the concentration of the specific element is detected with respect to the selection target object that has been moved and sieved by the conveying means, and a sample or the like for detecting the concentration of the specific element is collected. There is no need. Therefore, it is possible to efficiently sort the object by associating the object to be sorted with the measurement result of the concentration of the specific element. In addition, since the sorting object moving on the moving means is screened and the upper surface is flattened, it is possible to measure the concentration with a small measurement error.
  • a sorting device is the sorting device according to the embodiment (1), wherein the sieving device has a particle size of a passing object within a range of 1 mm to 15 mm. Less than the set value.
  • the particle size of the selection object to be measured by the sieve sorting apparatus is set to be equal to or smaller than the set value. Therefore, the concentration measurement of a specific element can be made stable with small errors
  • the above set value of particle size is preferably set within the range of 1 mm to 15 mm, more preferably within the range of 2 mm to 10 mm.
  • the above set value of particle size is preferably set within the range of 1 mm to 15 mm, more preferably within the range of 2 mm to 10 mm.
  • the above set value should be lmm or more, more preferably 2mm or more.
  • the sorting apparatus according to the aspect (3) of the present invention is the sorting apparatus according to the aspect (1) or the aspect (2), in which the sieving device sieves the object to be sorted that is moved by the conveying means. It is possible to move between the dividing position and the raised position so as not to contact the moving sorting object.
  • the screening of the objects to be selected can be performed intermittently.
  • the screen having slits or meshes for sieving is not separated from the layer of the object to be sorted so that it is separated from the upper part of the conveying means so that the The screen of the separating device can be cleaned.
  • the screen is easily clogged or deformed when the screened object is screened and the screened object adheres to the screen.
  • moisture-containing and viscous sorting objects tend to adhere to the screen, but each time a certain amount of sieving is performed, the screen is cleaned or replaced, so that a stable and efficient sieve is obtained. Dividing is possible.
  • a sorting device is the sorting device according to any one of the embodiments (1) to (3), wherein the sieving device moves on the transport means.
  • a selection object having a particle size of a predetermined value or less is left in the central portion of the product layer in the width direction, and the selection object having a particle size exceeding the predetermined value is moved to both ends in the width direction.
  • the measurement error can be reduced by measuring the concentration of the specific element with respect to the sorting object whose particle size is equal to or smaller than a predetermined value.
  • the sorting object having a particle size exceeding a predetermined value and the sorting object having a predetermined value or less can be collectively transported to the same path. Therefore, efficient sieving and selection corresponding to the measured concentration of the specific element can be performed efficiently.
  • a sorting device is the sorting device according to any one of the embodiments (1) to (4), wherein the sieving device has a particle size of a predetermined value or less. It is assumed that the thickness of the layer to be selected is set to be 15 mm or more!
  • the layer thickness is less than 15 mm
  • the X-rays are screened to a layer below the layer whose particle size is adjusted by sieving when the selection target is irradiated with X-rays to measure the concentration of a specific element. Measurement error increases. Therefore, measurement with a small measurement error is possible when the layer whose particle size is adjusted by sieving as described above has a sufficient thickness. In addition, more accurate measurement is possible by setting the layer thickness to 20 mm or more.
  • a sorting device is the sorting device according to any one of the embodiments (1) to (5), wherein the sieving device in the conveying direction of the sorting object is provided.
  • a cross-sectional regulating means that is provided upstream of the position and adjusts the cross-sectional shape perpendicular to the transport direction of the layer of the object to be sorted that moves on the transport means to a predetermined shape, and the sieving device is It is assumed that the selection object occupying a part of the cross-sectional shape is installed so as to be screened.
  • the cross-section restricting means is configured so that the cross-sectional shape of the layer of the sorting object conveyed by the conveying means
  • the sieving device performs sieving on the raised part of the layer of the selection object.
  • the portion of the sorting object deposited on the conveying means that is guided to the sieving device is set higher than the surroundings, a predetermined amount of the sorting object can be accurately guided to the sieving device.
  • coarse particles and lumps that have a particle size larger than a predetermined value and do not pass through a sieve are easily removed to the side of the layer of the object to be sorted.
  • the concentration of the specific element It is possible to prevent the coarse portion excluded on the side from becoming a hindrance when measuring.
  • the cross-section restricting means for bringing the portion leading to the sieving device into a raised state on the carrying means one having a gate having an opening corresponding to the cross-sectional shape to be adjusted can be adopted.
  • the cross-sectional shape of the selection object that is deposited on the conveying means and passes through the gate is adjusted to the shape of the opening.
  • a plate that squeezes and raises the objects to be sorted on the conveying means may be provided.
  • a sorting device is a sorting device separated from the sorting device according to any one of the embodiments (1) to (7) by the sieve sorting device.
  • a spray for spraying water on the surface of the target object and a position where the spray is provided in the conveying direction of the selection target are provided on one or both of the upstream side and the downstream side of the position where the target is selected.
  • a moisture meter for measuring the moisture content is provided, and the moisture content of the object to be sorted after being sprayed with water is adjusted to 5 to 20%.
  • a sorting apparatus is the sorting apparatus according to any one of the embodiments (1) to (8), wherein the layer adjusting means leveles the surface of the layer to be sorted. It shall be equipped with a scraper.
  • the scraper is a plate-like member pressed against a portion of the selection target that is irradiated with X-rays, presses the layer of the selection target to be transported to level the surface, and has a predetermined level. It is intended to regulate the conveyance to the downstream side by scraping off the sorting object accumulated above the height.
  • the force for pressing the scraper against the layer of the object to be sorted is adjusted by using a panel, a weight, a gear, or the like so that the layer of the object to be sorted becomes flat.
  • a sorting device is the sorting device according to any one of the embodiments (1) to (9), wherein the layer adjusting means is sieved by the sieving device.
  • a roller for filling the upper surface of the layer of the selected object with a predetermined pressure, and the pressure with which the roller presses the upper surface of the layer of the object to be selected is set within a range from 20 kPa to lOOkPa. To do.
  • a sorting apparatus is the sorting apparatus according to any one of the embodiments (1) to (10), wherein the concentration detection means is an upper surface of the layer of the sorting object. And a measurement window into which fluorescent X-rays are taken, a resin film is inserted, and as the concentration of a specific element is repeatedly detected, a new resin film is added to the upper surface of the layer to be selected. And a resin film supply device that supplies between the X-ray and the measurement window into which fluorescent X-rays are taken.
  • a sorting device is the sorting device according to the embodiment (11), wherein the concentration detecting means is supported to face the sorting object and can advance and retreat.
  • the measurement window is brought into contact with the sorting object, and after the X-ray irradiation and the fluorescent X-ray measurement are performed, the sorting object is separated from the sorting object.
  • the resin film supply device moves the position of the resin film continuous in a belt shape, and the transport means is driven.
  • a sorting apparatus is the sorting apparatus according to the aspect (12), wherein the resin film supply device is located downstream of the measurement window in the conveyance direction of the resin film.
  • a scraper shall be provided on the upstream side of the position where the resin film is wound up in a roll shape to peel off the object to be sorted adhered to the resin film.
  • the scraper can be made of rubber, resin, metal, or the like.
  • a sorting device is the sorting device according to any one of the embodiment (11) and the force up to the embodiment (13), wherein the resin film is made of polyvinyl chloride vinyl, polyethylene, It shall consist of either polyester or polyimide.
  • the resin used herein includes natural resin, thermosetting resin, general-purpose plastic such as thermoplastic resin, engineering plastic, super engineering plastic, and the like. Depending on the element to be measured, it is possible to accurately measure X-ray fluorescence.
  • Examples of the selection object include raw materials, intermediate products, products, by-products, waste, soil, and the like. Specifically, cement, ore, glass, incineration ash, coal ash, heavy metal, etc. Examples include contaminated soil, slag, sludge, inorganic or organic compound granules or granules. The invention's effect
  • the concentration of the specific element in the sorting object is determined using a part of the sorting object. Can be measured. And it becomes possible to make a measurement error small. Therefore, the necessary treatment before selection becomes simple, no water for slurrying is required, and no waste water is generated. In addition, since the configuration of the sorting equipment is simple, the area required for installation is also reduced. Furthermore, the resin film supply device can prevent the object to be sorted from adhering to the measurement window and can protect the measurement device, thereby enabling accurate measurement over a long period of time. With this simple facility, the concentration of a specific element in a selection target can be measured quickly and with a small measurement error, and selection can be made according to this measurement value. Can be promoted.
  • FIG. 1 is a schematic side view of a sorting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the sorting apparatus shown in FIG. [Fig. 3] A view of the gate with a damper used in the sorting apparatus shown in Fig. 1 as viewed from the downstream side of the conveyance path.
  • FIG. 4 is a schematic side view of a vibrating sieve used in the sorting apparatus shown in FIG.
  • FIG. 5 is a schematic front view of the vibrating screen shown in FIG.
  • FIG. 6 is a schematic plan view of the vibrating screen shown in FIG.
  • FIG. 7 is a schematic plan view showing the function of the vibrating screen shown in FIGS. 4, 5, and 6.
  • FIG. 7 is a schematic plan view showing the function of the vibrating screen shown in FIGS. 4, 5, and 6.
  • FIG. 8 is a schematic side view showing another example of a transport path switching device that can be used in place of the transport path switching device shown in FIG.
  • FIG. 9 is a schematic front view showing a specific example of the fluorescent X-ray measuring apparatus used in the sorting apparatus shown in FIG. 1 and a resin film supply apparatus provided in the fluorescent X-ray measuring apparatus.
  • FIG. 10 is a schematic side view of the fluorescent X-ray measurement apparatus shown in FIG.
  • FIG. 11 is a graph showing the relationship between the thickness of the resin film supplied to the fluorescent X-ray measurement apparatus and the measured lead concentration.
  • 10 X-ray fluorescence measurement device
  • 10a measurement window
  • FIG. 1 is a schematic side view showing a configuration of a sorting apparatus according to an embodiment of the present invention.
  • Fig. 2 is a schematic plan view of the same sorting device. This sorting device selects ores and soils for metal making that contain small or large particle sizes.
  • This sorting device temporarily stores grizzly 1 that separates and removes coarse particles with a particle size exceeding 50 mm, and the sorting object Sa from which coarse particles have been removed by grizzly 1.
  • a part of the sorting object S to be transported on the belt conveyor 3 and the gate 4 with a damper that makes the cross-sectional shape of the sorting objects to be deposited into a predetermined shape are screened and coarse particles are separated on the belt conveyor 3.
  • the water content of fine particles of the object to be sorted is sprayed with water.
  • the moisture content of the sorting object sprayed with water by the spray 6, the scraper 7 that regulates the height of the fine particles that have passed through the vibrating screen 5 to flatten the surface, and the spray 6.
  • X-rays are applied to the moisture meter 8b to be measured, the roller 9 for further flattening and filling the surface at the part for measuring the concentration of the specific element contained in the sorting object, and the flattened and filled sorting object X-ray fluorescence measuring device 10 that detects the fluorescent X-rays that are generated, and a transport path switching device that switches the transport direction of the sorting object emitted from the belt conveyor 3 in response to the detection result of the fluorescent light measurement device 10 11 and the main part is composed.
  • the grizzly 1 has a plurality of bars la supported on the hopper 2, and the particle size in the selection object containing the specific element is 50 by adjusting the interval between the bars la. Coarse particles exceeding mm are kept on the bar so that they do not fall into the hopper 2, and only sorting objects with a particle size of 50 mm or less are fed into the hopper 2.
  • the bar la is supported by being inclined, so that the coarse particles retained on the bar are discharged to a process for performing the treatment corresponding to the coarse particles.
  • the grizzly 1 is also equipped with a bi-bromo counter (not shown), which can vibrate the grizzly 1 as necessary to make it easier for the selection object to pass through the grizzly! /,
  • the bi-bromo counter not shown
  • the hopper 2 accommodates the sorting object Sa that has passed through the grizzly 1, and supplies a predetermined amount to the belt conveyor 3 stably.
  • This hopper 2 beltcon A gate 4 is fixedly supported at the supply portion of the sorting object with respect to the bear 3, and a trapezoidal cutout 4a is provided below the gate 4 as shown in FIG.
  • This notched portion becomes an opening for discharging the sorting object from the hopper 2, and this opening force also supplies the sorting object Sa onto the belt conveyor 3.
  • the gate 4 is provided with a first guide 41 on both sides of the notch 4a, and the first damper 42 is provided so as to be movable in the vertical direction along the first guide 41. It is supported.
  • the first damper 42 is provided with a trapezoidal cutout 42a having a width smaller than the cutout 4a provided in the gate 4 along the lower side.
  • the first damper 42 is provided with second guides 43 on both sides of the notch 42a, and the first dampers 42 can move vertically with respect to the first dampers along the second guides 43.
  • a second damper 44 which has become possible, is provided.
  • the gate 4 and the dampers 42 and 44 are an example of one that functions as a cross-section restricting unit that makes a cross-section of the objects to be sorted deposited on the belt conveyor 3 into a predetermined shape. That is, by adjusting the positions of the first damper 42 and the second damper 44 supported by the gate 4, the amount of the sorting object supplied from the hopper 2 to the belt conveyor 3 is adjusted. Furthermore, as shown in Fig. 3, the cross-sectional shape perpendicular to the direction of movement of the belt conveyor 3 of the object to be selected supplied on the belt conveyor 3 is a shape in which a narrow trapezoid is mounted on a wide trapezoid. Can be adjusted.
  • the height of the upper surface of the lower trapezoidal portion Sc can be adjusted by adjusting the height of the first damper 42, and the height of the upper trapezoidal portion Sb can be adjusted by adjusting the position of the second damper 44.
  • the position of the upper surface can be adjusted to a predetermined height, that is, a height suitable for fluorescent X-ray measurement.
  • FIG. 4 is a schematic side view showing the vibrating sieve 5
  • FIG. 5 is a front view of the same vibrating sieve 5
  • FIG. 6 is a plan view of the same vibrating sieve 5.
  • the vibrating sieve 5 functions as a sieving device in the present invention.
  • a plurality of bars supported in the vertical direction are arranged at predetermined intervals. Each of the bars is arranged so that the upper end thereof is retracted downstream in the moving direction of the belt conveyor 3.
  • the screen composed of a plurality of bars is arranged such that the center in the width direction of the belt conveyor 3 protrudes toward the upstream side and recedes toward the downstream side as it approaches the side edge.
  • Bipromoter 51 is installed so that vibration is transmitted to each bar of the screen.
  • the X-ray irradiation range can be screened and separated in a short time, and at the same time the objects to be screened can be mixed and stirred, so that the concentration of specific elements can be detected and the objects to be sorted can be selected.
  • Efficiency can be improved.
  • the screen opening is as small as 2 mm, clogging is likely to occur when sieving objects to be screened with water, so the use of a vibrating sieve is effective.
  • the vibrating screen 5 having a plurality of bars is supported by the gate 4 at a position to screen the trapezoidal portion Sb of the upper layer of the selection target deposited in a trapezoidal shape having a two-layer cross section. .
  • the trapezoidal portion Sb in the upper layer of the sorting object conveyed on the belt conveyor 3 hits the vibrating sieve 5, and the fine particles in the sorting object are placed between the screen bars arranged at predetermined intervals. Pass through.
  • coarse particles Sd that cannot pass between the bars are pushed out sideways along the bars that are positioned so as to recede as they approach the side edges, and the side portions on the belt conveyor 3 It is deposited on.
  • the maximum diameter of the selection object passing between the plurality of bars is adjusted by the interval between the bars, and the plurality of bars are preferably supported so as to have a value set in a range of 2 mm to 10 mm. ing.
  • the layer Se on which fine particles that have passed through the vibrating sieve 5 are deposited is a target for measuring the concentration of the specific element by X-ray irradiation. Therefore, the height of the trapezoidal portion Sb of the upper layer and the position of the vibrating sieve 5 in the selection object on the belt conveyor 3 are set so that the thickness of the layer Se is 15 mm or more.
  • the vibration sieve 5 can be adjusted in the vertical direction with respect to the belt conveyor, and has a structure that can be moved upward and fixed so as not to contact the moving selection object.
  • the measurement of the concentration of a specific element by the fluorescent X-ray measurement apparatus 10 is not necessarily performed continuously, and when the measurement is performed intermittently, only the portion where the vibrating screen 5 emits X-rays is screened. You may go. It is desirable to clean the screen regularly and replace the screen when necessary so that the screen is not clogged when the vibrating screen moves away from the top.
  • the moving speed of the belt conveyor 3 can be increased to improve the processing efficiency.
  • the vibrating sieve 5 is a screen in which a plurality of bars are arranged at predetermined intervals. However, a net-like member may be used. However, it is preferable to use a screen because the screen is less likely to break and clogging is less likely to occur.
  • the spray 6 is adjusted so that water is sprayed on the surface of the measurement layer Se that has passed through the vibrating sieve 5 so as to have a predetermined moisture content.
  • the spray 6 is adjusted in the amount of water spray based on the moisture content measured by the moisture meter 8a provided on the upstream side of the position where the spray is provided in the conveying direction of the sorting object.
  • the moisture meter 8a for example, a type in which the moisture content is measured by the amount of infrared absorption can be used.
  • the object to be sorted whose water content is adjusted by spraying from the above spray 6 is loosely accumulated and bulky, and the flatness of the surface is lost, so the upper surface is flattened by the scraper 7. To do.
  • the moisture content of the screened object to be screened is measured by a moisture meter 8b provided downstream of the position where the spray is provided in the transport direction of the screened object and upstream of the roller 9. Then, by adjusting the numerical value within a predetermined value range, handling when the upper surface is adjusted to be flat becomes easy, and the upper surface of the layer to be selected is appropriately flattened. As a result, the measurement by the fluorescent X-ray measuring device is appropriately performed, and the measurement with a small error becomes possible.
  • the water content is preferably 5 to 20%, more preferably 5 to 10%.
  • the roller 9 further pressurizes and flattens the upper surface of the flattened target object, and allows the layer of the target object to obtain an appropriate filling degree.
  • the pressure applied to the top surface of the layer to be selected can be adjusted with a pan so that the pressure is 20 kPa to lOOkPa. Note that both the roller 9 and the scraper 7 may be used together, or one of them may be used.
  • the X-ray fluorescence measurement apparatus 10 detects X-ray fluorescence generated by a specific element force contained in the selection target when the surface of the layer of the selection target is irradiated with X-rays.
  • the fluorescent X-ray measurement apparatus 10 includes an X-ray irradiation unit and a fluorescent X-ray detection unit inside a box-shaped case.
  • the resin film is supported so as to cover the measurement window for taking in the fluorescent X-rays, and as the concentration of the specific element is repeatedly detected, the resin film that has become band-shaped is moved to a new one.
  • a resin film supply device is provided for supplying the resin film to a position facing the measurement window. To prevent X-ray leakage, this fluorescent X-ray measurement device It is desirable to provide a cover (not shown!) Using a material that can block X-rays so as to cover the vicinity of the X-ray irradiation position.
  • the resin film supply device moves the belt-shaped resin film 16 in a direction substantially orthogonal to the conveying direction of the object to be sorted.
  • the resin film 16 is pulled out and moved by the driving roller 18.
  • a guide 19 for supporting the resin film 16 is preferably provided between the brewing roll 17 and the fluorescent X-ray measurement window 10a.
  • the guide 19 has a structure in which the resin film 16 is sandwiched.
  • the belt conveyor 3 that conveys the selection object stops, and the fluorescent X-ray measurement apparatus 10 descends to a predetermined position.
  • the driving roller 18 for moving the resin film 16 is stopped.
  • the measurement window 10a of the fluorescent X-ray measurement apparatus is brought into contact with the layer Se of the selection target object with the resin film 16 interposed, and the concentration of the specific element is measured in this state.
  • the layer Se of the selection object is separated from the measurement window 10a of the fluorescent X-ray measuring apparatus 10 and the distance is large, the fluorescent X-ray intensity is attenuated and accurate measurement cannot be performed. Therefore, the thickness of the layer Se of the selection object and the descending distance of the fluorescent X-ray measurement apparatus 10 are adjusted in advance, and the measurement window 10a and the selection object are brought into contact with the resin film 16 therebetween. Further, by supporting the resin film 16 in contact with the measurement window 10a, it is possible to prevent the sorting object Se from entering between the resin film 16 and the measurement window 10a.
  • the fluorescent X-ray measuring apparatus 10 After the measurement of the fluorescent X-rays, the fluorescent X-ray measuring apparatus 10 is raised, and at the same time, the driving roller 18 rotates to move the resin film 16 by a predetermined length and cover the measurement window 10a. A new part of the strip-shaped resin film is fed to the position. In addition, the portion that has been in contact with the object to be sorted is removed by the scraper 20 from the object to be sorted adhering to the resin film 16 and conveyed to a scooping roll (not shown). On the other hand, the belt conveyor 3 is driven to move a predetermined distance, and conveys the object to be sorted.
  • the resin film used in the present invention is not limited as long as it has sufficient strength, has little attenuation of fluorescent X-ray intensity, and contains an element to be measured.
  • any of polyvinyl chloride, polyethylene, polyester and polyimide is preferred, and polyester is particularly preferred because of its excellent mechanical strength.
  • the thickness of the resin film to be used must be selected in consideration of the relationship with the film material and attenuation of fluorescent X-ray intensity.
  • This measurement was conducted in a state where the soil with a lead concentration of 150 mgZkg was not inserted with a resin film and with a condition where the thickness of the four types of resin films was changed. Shown in 11. As shown in the measurement results, as the thickness of the resin film increases, the lead concentration is measured to be lower, and correction is necessary according to the thickness and type of the resin film. And the X-ray fluorescence measurement device has a lower detection limit, and if the measured value becomes small, accurate measurement cannot be performed even if correction is performed. For this reason, when a measurement object with a lead concentration of 150mgZkg is measured with a resin film, the measured value should not be less than about lOOmgZkg. Therefore, it can be seen from the results of FIG. 11 that in order to obtain an accurate measurement value, the thickness of the resin film needs to be 0.3 mm or less, and more preferably 0.2 mm or less. However, considering the mechanical strength of the resin film, the thickness should be at least 0.1 mm.
  • the carry-out path switching device 11 has a plate-like member with a variable inclination angle that comes into contact with the sorting object Sf discharged from the belt conveyor 3. By changing the angle, the falling direction of the sorting object Sf discharged from the belt conveyor 3 is changed. Then, the inclination angle is set so that it falls on one of the two conveyor belt conveyors 12 and 13 for transporting the sorting object in different directions.
  • the operation of the carry-out path switching device 11 is controlled by the control device 14 based on the measurement result by the fluorescent X-ray measurement device 10. In other words, the measured value force of the fluorescent X-ray measurement device 10 is also measured by the data processing unit of the control device 14 in the concentration of the specific element Is detected.
  • the sorting object Sf before and after the position where the data is measured is discharged from the end of the belt conveyor 3.
  • the inclination angle is set so that it falls onto the belt conveyor 12 for carrying out the high concentration sorting object.
  • the inclination angle is set so that the selection object near the measurement position falls on the belt conveyor 13 for carrying out the low concentration selection object. Is set.
  • the carry-out path switching device 11 may be selected for each portion of the soil corresponding to the position where this measurement was performed, such as the measurement value for each time measured by the fluorescent X-ray measurement device 10, but may be a plurality of times. It is also possible to sort by the area where the measurement is performed. In other words, at a predetermined interval on the belt conveyor, the X-ray fluorescence measurement device performs a plurality of measurements, and based on the average value of these, the soil containing these measurement points is collectively transported. Sort by selecting to select.
  • the carry-out path switching device 11 In addition to the plate-like member that regulates the falling direction of the sorting object as described above, various types of configurations can be adopted as the carry-out path switching device 11 as shown in FIG. As shown in the figure, the object to be sorted is placed on a short belt conveyor 15 that can be switched in the circumferential movement direction, and the delivery path of the sorting object placed in the circumferential movement direction of the belt conveyor is switched. Can do. That is, when the concentration of the specific element contained in the placed sorting object is high, the conveyor belt switching belt conveyor 15 is set so that the sorting object is placed on the belt conveyor 12 for carrying out the high-concentration raw material. To drive.
  • the moving direction of the belt conveyor 15 is reversed so that the sorting object is a low-concentration raw material. It can be driven to be placed on the belt conveyor 13 for carrying out.
  • a sorting object including a specific element can be deposited in a predetermined cross-sectional shape from the hopper 2 onto the belt conveyor 3, and can be deposited and sent out almost uniformly in the transport direction. Then, when the accumulation shape is set appropriately, a part of the object can be guided to the vibrating screen 5 while conveying the object to be sorted.
  • the vibrating sieve 5 screens the sorting object having a predetermined particle size or less from the sorting object to be conveyed and leaves it in the center of the belt conveyor 3 and also moves the sorting object having a particle size exceeding the predetermined value to the belt. Extrude to side on conveyor 3.
  • sorted objects can the sieving, base belt conveyor 3 measuring on small concentration of a specific element for each predetermined amount of sorting objects conveyed by Teigosa (e.g. 20% Within). Based on the concentration of the specific element measured in this way, the selection objects to be discharged from the belt conveyor 3 are continuously selected, and the selection object having a high concentration of the specific element and the selection object having a low concentration of the specific element are selected. It can be carried out in different directions. Therefore, efficient sorting is possible, and management according to the concentration of each specific element can be used for the selected sorting target.
  • Teigosa e.g. 20% Within
  • Table 1 shows an example of the results of sorting tests using lead-contaminated soil. These measurements were made to sort out lead-contaminated soil in units of about 200 kg, and five fluorescent X-ray measurements were taken at predetermined intervals on the belt conveyor for each 200 kg of lead-contaminated soil. . That is, every time approximately 200 kg is transported on the belt conveyor, X-ray fluorescence measurement is performed five times in sequence, and based on this average value, the transport destination of this approximately 200 kg of lead-contaminated soil is determined, and the transport path is switched. Sorting was performed with the equipment. About 200 kg of lead-contaminated soil was prepared, and the result of performing the above test for each was equivalent to Test Nos. 1 to 5 in Table 1.
  • the standard value for determining whether or not to take measures against soil contamination is, for example, 150 mgZkg.
  • the measurement error can be about 20%, that is, 150 ⁇ 30 mgZkg. Therefore, when sorting, it is possible to set a sorting standard that indicates that purification is not necessary if the lead concentration is 120 mgZkg or less, and that purification is necessary if the lead concentration is exceeded.
  • a sorting test was conducted in the same manner as in Example 1 above using nickel ore.
  • An example of the results is shown in Table 2.
  • the nickel content is about 1.5% at low grades, and it was impossible to make iron with the conventional technology. It is necessary to select high-quality nickel ore efficiently. For example, when sorting with a content of 1.5%, this device can reduce the measurement error to about 1.5 ⁇ 0.3%.
  • the nickel concentration should be 1.2% or less. Selection criteria such as low grade if there is high quality and high grade if it is higher can be set.
  • Table 2 shows that nickel ore can be sorted using the sorting apparatus of the present invention.
  • sampling is carried out from tens of thousands tons of tens of tons to hundreds of t, pulverized and evenly mixed, and a predetermined amount is divided and taken out. And by analyzing this according to the JIS standard, the representative value is obtained.
  • the sorting apparatus of the present invention since the fluorescent X-ray measurement is performed five times in units of 200 kg to obtain the representative value, more efficient sorting is possible.
  • fly ash can be sorted as shown in Table 3. In the case of fly ash, there are criteria for multiple elements, so if any one of them does not meet the criteria, the judgment was rejected.
  • a screening test was performed in the same manner as in Examples 1 to 3 above using molten slag.
  • An example of the results is shown in Table 4.
  • the content of heavy metals is one of the selection criteria.
  • indicates that it can be used, and X indicates that it cannot be used.

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sorting Of Articles (AREA)

Abstract

An object (Sa) to be sorted is placed on a belt conveyor (3) from a hopper (2) such that a portion of the upper part of the object layer is raised. The object is hit against a vibration sieve (5) while being conveyed, fine grain portions having passed the sieve are left at the center of the belt conveyor, and rough grain portions are pushed out to both sides of the belt conveyor. The upper surface of the center is flattened and the amount of water content is adjusted. After that, X-ray is applied to the object by a fluorescent X-ray measurement device (10), and the density of a specific element is measured by detecting a fluorescent X-ray generated. When the object is discharged from the belt conveyor, the direction of unloading is changed by a conveyance route changeover device (11) based on the measurement value of the density of the specific element.

Description

明 細 書  Specification
選別装置  Sorting device
技術分野  Technical field
[0001] 本発明は、特定元素を含む土壌、特定元素を含む鉱石等の原材料、又は特定元 素を含む粉状、粒状若しくは砂礫状の製品若しくは製品を製造する工程における中 間製品、副産物、廃棄物等の選別対象物を、所定の濃度に応じて選別し、製造設備 、浄化設備、リサイクル設備等における工程管理や品質管理に用いる選別装置に関 するものである。  [0001] The present invention relates to an intermediate product, a by-product in a process of producing a soil containing a specific element, a raw material such as an ore containing the specific element, or a powdery, granular or gravel-like product or product containing the specific element, This refers to sorting equipment used for process management and quality control in manufacturing equipment, purification equipment, recycling equipment, etc., for sorting wastes and other sorting objects according to a predetermined concentration.
背景技術  Background art
[0002] 有害物質による土壌汚染は大きな社会問題となっており、特に六価クロム '水銀'力 ドミゥムなどの重金属類による土壌汚染問題が深刻化している。現在、重金属類によ る汚染土壌の浄ィ匕は、汚染土壌を掘り出して固定ィ匕処理を行った後、処分場に運搬 して処理する方法が一般に多く採用されている。しかし、近年の廃棄物の発生量増 加に伴い、最終処分場の残存容量および残存年数の減少が問題化している。このた め、例えば洗浄操作によって汚染土壌に付着した重金属類を洗い流し、浄化された 土壌を元の地盤や造成地盤に埋め戻すと ヽぅ方法が注目されて 、る。  [0002] Soil contamination by toxic substances has become a major social problem, and in particular, the problem of soil contamination by heavy metals such as hexavalent chromium 'mercury' power Doom is becoming more serious. At present, many methods are generally used to purify contaminated soil with heavy metals after excavating the contaminated soil, treating it with fixed soil, and transporting it to a disposal site. However, with the increase in the amount of waste generated in recent years, the decrease in the remaining capacity and the remaining years at the final disposal site has become a problem. For this reason, for example, dredging heavy metals adhering to contaminated soil by washing operation and filling the purified soil back to the original ground or reclaimed ground has attracted attention.
[0003] 前記のように汚染土壌を浄ィ匕処理して力 元の地盤などに埋め戻す場合には、汚 染土壌を汚染濃度や汚染物質の種類に応じて選別し、選別された土壌に対してそ れぞれに適した洗浄などの処理を行うことが望まれている。これは次のような事情によ るものである。  [0003] As described above, when the contaminated soil is purified and backfilled to a strong ground, etc., the contaminated soil is selected according to the concentration of contamination and the type of the contaminant, and the selected soil is converted into the selected soil. It is desirable to perform appropriate treatments such as cleaning. This is due to the following circumstances.
[0004] 重金属類で汚染されて浄ィ匕による修復が必要であると判断された土壌でも、一般 的には土壌の表層と地表面下の深 、層とでは汚染濃度が異なって 、ることが多!、。 また、平面上での位置の違いでも汚染濃度が著しく異なることがあり、まったく修復の 必要がない部分もある。さらに汚染物質の特性により異常に汚染濃度が高い部分が 偏在していて、浄ィ匕設備の処理能力を超えることがある。このような場合には、浄ィ匕 設備が高濃度の重金属類で汚染されるため、浄ィ匕設備の洗浄操作をしないと、その 後の処理において所定の浄ィ匕が不可能になることがある。 [0005] このように、処理が必要と判断された区域の土壌でも汚染状態が均一でな!、ために 、すべてを同じ工程で浄化処理すると、処理が不要である清浄な土壌や所定の汚染 濃度に達しない土壌も処理対象となってしまい、処理効率が悪くなつてしまう。また、 浄ィ匕設備の処理能力を超えるほどの汚染濃度が高い土壌を画一的に処理すると、 高濃度で汚染した部分の再処理や浄化設備の洗浄を行う必要があり、処理の効率 が低下する。 [0004] Even soils that have been contaminated with heavy metals and that need to be repaired by purifiers generally have different levels of contamination between the surface layer of the soil and the depth or layer beneath the surface. There are so many! In addition, the concentration of contamination can be significantly different depending on the position on the plane, and there are some parts that do not need to be repaired at all. Furthermore, due to the characteristics of the pollutants, the part with an abnormally high contamination concentration is unevenly distributed, which may exceed the treatment capacity of the purification equipment. In such a case, the purification equipment is contaminated with high-concentration heavy metals. If the purification equipment is not washed, the specified purification equipment cannot be used in the subsequent processing. There is. [0005] In this way, even in the soil of the area where treatment is determined to be necessary, the state of contamination is uniform! Therefore, when all of the soil is purified in the same process, clean soil that does not require treatment or predetermined contamination is required. Soil that does not reach the concentration is also subject to treatment, resulting in poor treatment efficiency. In addition, if soil with a high contamination concentration that exceeds the treatment capacity of the purification plant is treated uniformly, it is necessary to reprocess the contaminated part with high concentration and to clean the purification facility. descend.
[0006] 一方、重金属等の特定元素は本来適切に管理されるべきものであり、土壌汚染及 びその修復分野に限って問題となるものではない。原材料の効率的な利用ゃリサイ クルを推進することにより、資源の消費を抑制し、環境への負荷を低減するためにも 重金属等の特定元素を管理する必要がある。このため、一般産業界において原材料 [0006] On the other hand, specific elements such as heavy metals should be properly managed originally, and are not a problem only in the field of soil contamination and its restoration. By promoting recycling of efficient use of raw materials, it is necessary to manage specific elements such as heavy metals in order to reduce resource consumption and reduce environmental impact. For this reason, in the general industry, raw materials
、製品、廃棄物等の中の特定元素の含有量が問題となる。 The content of specific elements in products, wastes, etc. becomes a problem.
例えば、セメントを製造する分野では、石炭灰、汚泥、汚染土壌などの各種廃棄物 力 Sリサイクルを図るためにセメントに混合されている。そして、このような各種材料につ いて有害微量成分に対する規制が行われており、この規制値に合致した石炭灰、汚 泥、汚染土壌などが使用され、適切な処理を実施して充分な品質管理がなされた製 品として出荷されている。このようにセメントの製造工程を管理する際に、原材料にお ける特定の元素の含有量を測定し、適切に原材料を選別する必要がある。  For example, in the field of manufacturing cement, various waste forces such as coal ash, sludge, and contaminated soil are mixed with cement for recycling. These various materials are regulated with respect to harmful trace components, and coal ash, sludge, contaminated soil, etc. that meet these regulatory values are used, and appropriate treatment is performed to ensure sufficient quality. Shipped as a managed product. Thus, when managing the cement manufacturing process, it is necessary to measure the content of specific elements in the raw materials and to select the raw materials appropriately.
[0007] また、製鍊分野においては、従来技術では低品位のために製鍊が困難であった鉱 石などの資源もある品位以上の鉱石については、製鍊技術の向上により商業用とし て利用することが可能となってきている。このため、鉱石を適切に選別して有効に鉱 石を利用することが考慮されて 、る。  [0007] In addition, in the ironmaking field, ore with higher quality, which has resources such as ore, which was difficult to produce with conventional technology due to low grade, has been made commercially available by improving the ironmaking technology. It has become possible to use it. For this reason, it is considered that the ore is appropriately selected and effectively used.
[0008] しかし、前述のように原材料の有効利用や廃棄物等のリサイクルを推進していく上 で、原材料や廃棄物の適切な選別が行われないと、製品に有害物質や妨害物質が 不純物として混入したり、製品の工程管理や品質管理が難しくなつてしまう。また、製 鍊等においては、低品位と高品位の原材料との混在によって、適切且つ効率的な製 鍊ができないなどの問題が生じる。  [0008] However, as described above, in order to promote effective use of raw materials and recycling of waste, etc., if proper selection of raw materials and waste is not performed, harmful or interfering substances are introduced into the product as impurities. Or process management and quality control of the product becomes difficult. In addition, in steelmaking etc., there is a problem that proper and efficient steelmaking cannot be achieved due to the mixing of low-quality and high-quality raw materials.
[0009] 以上のことから、特定元素を含む原材料等を、特定元素の含有量に応じて簡便な 設備で選別を可能にすることが求められている。適切かつ効率の良い選別を行うこと により、経済的に特定元素の含有量を規制値 ·基準値以下とし、製品の安全性を確 保することができる。 [0009] From the above, it is required to enable selection of raw materials and the like containing a specific element with simple equipment according to the content of the specific element. Appropriate and efficient sorting This makes it possible to ensure the safety of the product by making the content of the specified element economically below the regulation value / standard value.
[0010] 上記のような事情から、土壌等の選別装置として蛍光 X線を用いたものが知られて いる。例えば、特許第 3698255号公報には、ベルトに積載されて移動する汚染土壌 に X線を照射して発生した蛍光 X線を検知し、その検出結果に基づ 、てベルト上で 搬送される汚染土壌の搬送経路を切り換える土壌選別装置が開示されている。この 装置は、検出される蛍光 X線の量によって土壌に含まれる重金属等の濃度を推定し 、高濃度で汚染された土壌と汚染が低濃度の土壌とを選別するものである。  [0010] Under the circumstances described above, a device using fluorescent X-rays is known as a sorting device for soil and the like. For example, in Japanese Patent No. 3698255, fluorescent X-rays generated by irradiating X-rays on contaminated soil moving on a belt are detected, and based on the detection results, contamination conveyed on the belt is detected. A soil sorting device that switches the soil transport path is disclosed. This device estimates the concentration of heavy metals and the like contained in the soil based on the amount of detected fluorescent X-rays, and sorts soil contaminated with high concentration and soil with low concentration of contamination.
また、特許第 3696522号公報には、ベルトに積載されて移動する廃棄物に X線を 照射し、発生した蛍光 X線を検知して特定元素の含有の有無を検出し、その検出結 果に応じて分別する廃棄物の分別装置が開示されている。  In addition, Japanese Patent No. 3696522 discloses that the waste loaded on the belt is irradiated with X-rays, and the generated fluorescent X-rays are detected to detect the presence or absence of a specific element. A waste sorting apparatus for sorting in accordance with this is disclosed.
特許文献 1:特許第 3698255号公報  Patent Document 1: Japanese Patent No. 3698255
特許文献 2:特許第 3696522号公報  Patent Document 2: Japanese Patent No. 3696522
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 前記特許文献 1に記載の選別装置は、選別処理を行うときに汚染土壌に加水し、ス ラリー化して湿式で粗粒分と細粒分とに篩い分けるのに適したものである。しかし、汚 染土壌をスラリー化することなく選別するのが望まれる場合がある。つまり、選別前の 全ての土壌に加水してスラリー化すると、浄化処理が不要な土壌や湿式処理に適さ ない土壌についても同じようにスラリー化することになる。そして、その後には脱水処 理が必要になり、処理水の浄化も必要になる。  [0011] The sorting apparatus described in Patent Document 1 is suitable for adding water to a contaminated soil when performing a sorting process, making it into a slurry, and sieving it into a coarse and fine grained portion by a wet process. . However, it may be desirable to screen contaminated soil without slurrying. In other words, if all the soil before selection is hydrated and slurried, soil that does not require purification treatment or soil that is not suitable for wet treatment will be slurried in the same way. After that, dehydration treatment is necessary, and purification of treated water is also necessary.
また、選別対象が原材料等であるときには、選別後の使用目的あるいは使用方法 等によっては、含水率が高いことによりそのまま使用できない場合がある。このような 場合には、含水率を下げるために脱水処理工程等が必要となり、ものによっては処 理水側へ特定元素が溶出しまうため、新たに処理水の浄化も必要となる。このため、 処理工程が多くなるとともに処理費用も過大となる場合がある。さらに、スラリー化する ことでそのもの自体が使用できない状態となってしまう場合もある。  In addition, when the selection target is raw materials, depending on the purpose or method of use after sorting, it may not be used as it is due to its high moisture content. In such a case, a dehydration process or the like is required to reduce the water content, and depending on what the specific element is eluted to the treated water side, it is also necessary to newly purify the treated water. For this reason, the processing cost increases and the processing cost may become excessive. Furthermore, the slurry itself may become unusable by slurrying.
[0012] 一方、前記特許文献 2に記載の分別装置では、分別の対象となる廃棄物は蛍光 X 線分析中にも常に一定速度で移動するものであり、測定対象物である廃棄物と蛍光On the other hand, in the sorting device described in Patent Document 2, the waste to be sorted is fluorescent X Even during line analysis, it always moves at a constant speed.
X線検出部が非接触となっている。この場合、離間距離を設けることにより、蛍光 X線 強度が減衰し、特定元素の含有の有無が判定できたとしても、特定元素の濃度を正 確に判定することが難しくなる。 The X-ray detector is not in contact. In this case, by providing the separation distance, the fluorescent X-ray intensity is attenuated, and even if the presence or absence of the specific element can be determined, it is difficult to accurately determine the concentration of the specific element.
[0013] また、蛍光 X線を分析装置内に取り入れる測定窓を測定対象物に接触させて測定す ることや、測定対象物の搬送を一旦停止して測定窓を接触させ、蛍光 X線の測定後 に離れるように制御することも可能ではあるが、測定対象物との接触により測定窓が 破損するという問題が生じる場合がある。さらに、汚染土壌や汚泥などの含水状態に ある測定対象物は、非常に付着しやすいため、接触することによって測定窓に測定 対象物が付着することが避けられない。測定窓に測定対象物が付着した状態で測定 を続けると、正確な測定値が得られず、効率の良い選別ができない。  [0013] In addition, the measurement window for taking fluorescent X-rays into the analyzer can be brought into contact with the object to be measured, or the conveyance of the object to be measured is temporarily stopped and brought into contact with the object to be measured. Although it is possible to control it so that it is separated after the measurement, there may be a problem that the measurement window is damaged due to contact with the measurement object. Furthermore, measurement objects that are in a water-containing condition such as contaminated soil and sludge are very likely to adhere, so it is inevitable that the measurement objects will adhere to the measurement window when they come into contact. If measurement is continued with the measurement object attached to the measurement window, accurate measurement values cannot be obtained, and efficient sorting cannot be performed.
[0014] 本発明は上記のような事情に鑑みてなされたものであり、その目的は、特定元素を 含む土壌や、粉状、粒状もしくは砂礫状の原材料又は製品等を、スラリー状にしなく ても所定の管理濃度に応じて効率よく選別することができる選別装置を提供すること である。  [0014] The present invention has been made in view of the circumstances as described above, and its purpose is not to make soil containing a specific element, raw material or product in the form of powder, granules or gravel into a slurry. Another object of the present invention is to provide a sorting apparatus capable of efficiently sorting according to a predetermined control concentration.
課題を解決するための手段  Means for solving the problem
[0015] 本発明の態様(1)である選別装置は、 粉状もしくは粒状の物質、砂礫、土砂又は 土壌であって特定元素を含む選別対象物が載置され、該選別対象物を移動させる 搬送手段と、 前記搬送手段によって移動中の選別対象物の少なくとも一部を前記 搬送手段上で篩!、分ける篩!、分け装置と、 前記篩!、分け装置を通過した選別対象 物の上面を平坦に処理する層調整手段と、 上面が平坦に処理された選別対象物 の層に X線を照射し、発生した蛍光 X線を検出することにより特定元素の濃度を検出 する濃度検出手段と、 前記選別対象物の移動方向における前記 X線の照射位置 の下流側に設けられ、前記濃度検出手段の検出結果に基づいて前記選別対象物の 搬送経路を切り換える搬送経路切換手段と、を有する。 [0015] The sorting device according to the embodiment (1) of the present invention is a powdery or granular substance, gravel, earth and sand, or soil, on which a sorting object containing a specific element is placed, and the sorting object is moved. A conveying means; and at least a part of the sorting object being moved by the conveying means on the conveying means !, a separating screen !, a separating device, and an upper surface of the sorting object that has passed through the screening device, the separating apparatus. A layer adjusting means for flatly processing; a concentration detecting means for detecting the concentration of a specific element by irradiating X-rays on the layer of the object to be sorted whose upper surface is processed flat; and detecting the generated fluorescent X-ray; A transport path switching unit that is provided on the downstream side of the X-ray irradiation position in the moving direction of the selection target and switches the transport path of the selection target based on the detection result of the concentration detection unit.
ここで特定元素は、 X線照射によって蛍光 X線を発生する元素であり、アルミニウム 、珪素、硫黄、塩素、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト 、ニッケル、銅、亜鉛、砒素、セレン、臭素、ルビジウム、ストロンチウム、モリブデン、 ノ《ラジウム、銀、カドミウム、スズ、アンチモン、白金、金、水銀、鉛、ビスマスなどを含 むものである。また、原子番号が 12から 92までの元素は、 X線を照射したときの蛍光 X線の測定によって、含有量の推定が可能と考えられており、上記特定元素に含ま れる可能性がある。さらに、測定技術の向上によって上記原子番号における範囲は 拡大する可能性もある。 Here, the specific element is an element that generates fluorescent X-rays by X-ray irradiation. Aluminum, silicon, sulfur, chlorine, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, Selenium, bromine, rubidium, strontium, molybdenum, It includes substances such as radium, silver, cadmium, tin, antimony, platinum, gold, mercury, lead and bismuth. In addition, it is thought that the content of elements with atomic numbers from 12 to 92 can be estimated by measuring fluorescent X-rays when irradiated with X-rays, and may be included in the specific elements. In addition, the range of atomic numbers may expand due to improvements in measurement technology.
[0016] 上記選別装置において、 X線の照射による特定元素の濃度の検出は所定の間隔 で行うことができる。つまり、搬送手段によって連続的又は間欠的に搬送される選別 対象物について、ほぼ所定量が搬送される毎に検出を行うものを採用することができ る。そして、篩い分け装置による選別対象物の篩い分けは、搬送手段上で搬送され る選別対象物に対して全ての部分に行っても良いが、 X線の照射を行う部分のみに 対して行っても良い。また、篩い分けた選別対象物の表面を平坦に処理する範囲は 、 X線を照射する範囲に限定して行うこともできる。 X線の照射は大きくても一辺が 10 〜20mm程度の範囲であり、この範囲の選別対象物が調整されていればよい。 一方、上記蛍光 X線測定装置は、本発明の選別装置において 1基のみを用いるも のであっても良!、が、搬送手段の搬送方向に複数台を配列するものであっても良 、 。また、搬送方向と直角方向に複数台を配列しても良い。このように複数台を用いる ことによって、特定元素の濃度測定を短時間で行ったり、広い範囲で行うことが可能 となる。 [0016] In the above sorting apparatus, the detection of the concentration of the specific element by X-ray irradiation can be performed at a predetermined interval. That is, it is possible to employ a detection object that is detected each time a predetermined amount is conveyed, with respect to a selection object that is conveyed continuously or intermittently by the conveying means. The screening object can be screened for all parts of the screening object transported on the transporting means, but only for the part to be irradiated with X-rays. Also good. In addition, the range of processing the surface of the screened object to be screened can be limited to the range irradiated with X-rays. Even if X-ray irradiation is large, one side is in the range of about 10 to 20 mm, and it is sufficient that the selection target in this range is adjusted. On the other hand, the fluorescent X-ray measuring apparatus may be one that uses only one in the sorting apparatus of the present invention, but may be one in which a plurality of units are arranged in the conveying direction of the conveying means. A plurality of units may be arranged in a direction perpendicular to the transport direction. By using a plurality of devices in this way, it is possible to measure the concentration of a specific element in a short time or over a wide range.
[0017] また、上記選別装置では、搬送手段によって移動させて篩い分けた選別対象物に ついて特定元素の濃度を検出するものであり、特定元素の濃度を検出するためのサ ンプルなどを採取する必要がない。したがって、搬送する選別対象物と特定元素の 濃度の測定結果とを対応させて効率よく対象物を選別することができる。また、搬送 手段で移動中の選別対象物に対して篩い分けおよび上面の平坦ィ匕を行うため、測 定誤差の小さ 、濃度測定を行うことが可能となる。  [0017] Further, in the above-described sorting apparatus, the concentration of the specific element is detected with respect to the selection target object that has been moved and sieved by the conveying means, and a sample or the like for detecting the concentration of the specific element is collected. There is no need. Therefore, it is possible to efficiently sort the object by associating the object to be sorted with the measurement result of the concentration of the specific element. In addition, since the sorting object moving on the moving means is screened and the upper surface is flattened, it is possible to measure the concentration with a small measurement error.
[0018] 本発明の好ましい態様 (2)である選別装置は、態様(1)の選別装置において、 前 記篩い分け装置は、通過する選別対象物の粒径を、 1mmから 15mmの範囲内で設 定された値以下とする。  [0018] A sorting device according to a preferred embodiment (2) of the present invention is the sorting device according to the embodiment (1), wherein the sieving device has a particle size of a passing object within a range of 1 mm to 15 mm. Less than the set value.
[0019] 前記のように篩 ヽ分け装置で測定対象となる選別対象物の粒径を設定値以下とす ることによって、特定元素の濃度測定は誤差の小さい安定したものとすることができる[0019] As described above, the particle size of the selection object to be measured by the sieve sorting apparatus is set to be equal to or smaller than the set value. Therefore, the concentration measurement of a specific element can be made stable with small errors
。上記の粒径の設定値は、 1mmから 15mmの範囲内で設定するのが望ましぐより 望ましくは 2mmから 10mmの範囲内である。例えば土壌を測定対象とする場合には 、上記設定値を lmm以下とすると、篩い分け装置を通過する選別対象物の量が少 なくなりすぎ、所定の層厚が確保できない。このように層厚が充分でない状態で測定 された値に基づいて選別対象物全体の濃度を判定すると測定誤差が大きくなる可能 性が生じる。さらに、篩い分けのためのスリットや網目の目開きが小さくなることによつ て、スリットや網目が詰まり易くなり、篩いの単位面積当たりの通過量が低下し、安定 した篩い操作が困難となる。したがって、上記設定値は lmm以上、より望ましくは 2m m以上とする。 . The above set value of particle size is preferably set within the range of 1 mm to 15 mm, more preferably within the range of 2 mm to 10 mm. For example, when soil is a measurement target, if the set value is set to 1 mm or less, the amount of the selection target passing through the sieving device is too small, and a predetermined layer thickness cannot be secured. In this way, if the concentration of the entire selection target is determined based on the value measured in a state where the layer thickness is not sufficient, there is a possibility that the measurement error becomes large. Furthermore, since the slits and mesh openings for sieving are reduced, the slits and meshes are likely to be clogged, the amount of passage per unit area of the sieve is reduced, and stable sieving operation becomes difficult. . Therefore, the above set value should be lmm or more, more preferably 2mm or more.
[0020] 一方、例えば土壌を測定対象とする場合に、上記設定値を 15mmを超える値とす ると、濃度検出手段の X線照射範囲において空隙が発生しやすぐ測定誤差が大き くなる。そして、 10mm以下とすることによってより精度の高い測定が可能となる。また 、 X線照射範囲は大きくても一辺が 10〜20mm程度であるので、一つの礫や土の塊 の占める範囲が大きくなると、測定対象である土壌の均一性が損なわれ、やはり測定 誤差が大きくなる要因となる。  [0020] On the other hand, for example, when soil is a measurement target, if the set value exceeds 15 mm, voids are generated in the X-ray irradiation range of the concentration detection means, and the measurement error immediately increases. And by making it 10mm or less, it becomes possible to measure with higher accuracy. In addition, even if the X-ray irradiation range is large, one side is about 10 to 20 mm, so if the range occupied by one gravel or soil lump increases, the uniformity of the soil to be measured is impaired, and measurement errors are still caused. It becomes a factor to become large.
[0021] 本発明の好ま 、態様 (3)である選別装置は、態様( 1)又は態様 (2)の選別装置 において、 前記篩い分け装置は、前記搬送手段によって移動する選別対象物を篩 い分ける位置と、移動する選別対象物に接触しないように上昇した位置との間で移 動可能となって 、るものである。  [0021] Preferably, the sorting apparatus according to the aspect (3) of the present invention is the sorting apparatus according to the aspect (1) or the aspect (2), in which the sieving device sieves the object to be sorted that is moved by the conveying means. It is possible to move between the dividing position and the raised position so as not to contact the moving sorting object.
[0022] 選別対象物の篩い分けは、間欠的に行うことができる。そして、篩い分けを行わな いときには、篩い分けるためのスリット又は網目を有するスクリーンが搬送中の選別対 象物の層に接触しな 、ように搬送手段の上部に離隔しておくことによって、篩 、分け 装置のスクリーンの清掃が可能となる。スクリーンは、選別対象物の篩い分けを行うこ とによって選別対象物が付着し、目詰まりが生じやすいし、変形が起こることも考えら れる。特に含水状態や粘性のある選別対象物はスクリーンに付着しやすくなるが、所 定量の篩い分けを行う毎にスクリーンを清掃し、もしくはスクリーンを交換することによ り、安定して効率の良い篩い分けが可能となる。 [0023] 本発明の好ましい態様 (4)である選別装置は、態様(1)から態様(3)までのいずれ かの選別装置において、 前記篩い分け装置は、前記搬送手段上で移動する選別 対象物の層の幅方向における中央部分に、粒径が所定値以下の選別対象物を残し 、粒径が所定値を超える選別対象物を幅方向における両端部に移動させるものとす る。 [0022] The screening of the objects to be selected can be performed intermittently. When sieving is not performed, the screen having slits or meshes for sieving is not separated from the layer of the object to be sorted so that it is separated from the upper part of the conveying means so that the The screen of the separating device can be cleaned. The screen is easily clogged or deformed when the screened object is screened and the screened object adheres to the screen. In particular, moisture-containing and viscous sorting objects tend to adhere to the screen, but each time a certain amount of sieving is performed, the screen is cleaned or replaced, so that a stable and efficient sieve is obtained. Dividing is possible. [0023] A sorting device according to a preferred embodiment (4) of the present invention is the sorting device according to any one of the embodiments (1) to (3), wherein the sieving device moves on the transport means. A selection object having a particle size of a predetermined value or less is left in the central portion of the product layer in the width direction, and the selection object having a particle size exceeding the predetermined value is moved to both ends in the width direction.
[0024] このような選別装置では、粒径が所定値以下となった選別対象物に対して特定元 素の濃度を測定することにより、測定誤差を小さくすることができる。また、搬送経路 を切り換えて選別対象物を選別するときには、粒径が所定値を超える選別対象物と 所定値以下の選別対象物とを同じ経路に一括して搬送することができる。したがって 、効率の良い篩い分けと、測定された特定元素の濃度に対応した選別を効率良く行 うことができる。  [0024] In such a sorting apparatus, the measurement error can be reduced by measuring the concentration of the specific element with respect to the sorting object whose particle size is equal to or smaller than a predetermined value. In addition, when the sorting object is sorted by switching the transport route, the sorting object having a particle size exceeding a predetermined value and the sorting object having a predetermined value or less can be collectively transported to the same path. Therefore, efficient sieving and selection corresponding to the measured concentration of the specific element can be performed efficiently.
[0025] 本発明の好ましい態様(5)である選別装置は、態様(1)から態様 (4)までのいずれ かの選別装置において、 前記篩い分け装置は、粒径が所定値以下となった選別対 象物の層の厚さが 15mm以上となるように設定されて!、るものとする。  [0025] A sorting device according to a preferred embodiment (5) of the present invention is the sorting device according to any one of the embodiments (1) to (4), wherein the sieving device has a particle size of a predetermined value or less. It is assumed that the thickness of the layer to be selected is set to be 15 mm or more!
[0026] 層厚が 15mm未満では、特定元素の濃度測定のため、選別対象物に X線を照射し たときに、 X線が篩い分けを行って粒径を調整した層より下の層にまで達し、測定誤 差が大きくなる。したがって、前記のように篩い分けて粒径が調整された層が充分な 厚さを有することによって、測定誤差の小さい測定が可能になる。また、層厚を 20m m以上とすることによってより精度の高い測定が可能となる。  [0026] When the layer thickness is less than 15 mm, the X-rays are screened to a layer below the layer whose particle size is adjusted by sieving when the selection target is irradiated with X-rays to measure the concentration of a specific element. Measurement error increases. Therefore, measurement with a small measurement error is possible when the layer whose particle size is adjusted by sieving as described above has a sufficient thickness. In addition, more accurate measurement is possible by setting the layer thickness to 20 mm or more.
[0027] 本発明の好ましい態様 (6)である選別装置は、態様(1)から態様(5)までのいずれ かの選別装置において、 前記選別対象物の搬送方向における前記篩い分け装置 が設けられた位置の上流側に設けられ、前記搬送手段上で移動する選別対象物の 層の搬送方向と直角方向の断面形状を所定の形状に調整する断面規制手段を有し 、 前記篩い分け装置は、前記断面形状の一部を占める選別対象物について篩い 分けを行うように設置されて ヽるものとする。  [0027] A sorting device according to a preferred embodiment (6) of the present invention is the sorting device according to any one of the embodiments (1) to (5), wherein the sieving device in the conveying direction of the sorting object is provided. A cross-sectional regulating means that is provided upstream of the position and adjusts the cross-sectional shape perpendicular to the transport direction of the layer of the object to be sorted that moves on the transport means to a predetermined shape, and the sieving device is It is assumed that the selection object occupying a part of the cross-sectional shape is installed so as to be screened.
[0028] 搬送される選別対象物の断面形状を調整することによって、断面の一部について 安定して篩い分けを行うことが可能となる。つまり、搬送される選別対象物から所定量 の選別対象物を安定して篩い分け装置に導くことができ、篩い分けられた後の選別 対象物の層厚を特定元素の濃度の測定に適するように調整することが容易となる。 そして、選別対象物の全部を篩い分けなくても、特定元素の測定における誤差を小 さくすることが可能となり、選別の効率を著しく向上させることができる。 [0028] By adjusting the cross-sectional shape of the sorting object to be conveyed, it is possible to stably screen a part of the cross-section. In other words, a predetermined amount of the sorting object can be stably guided to the sieving device from the conveyed sorting object, and the sorting after the sieving is performed. It becomes easy to adjust the layer thickness of the object so as to be suitable for the measurement of the concentration of the specific element. In addition, it is possible to reduce errors in measurement of specific elements without screening all of the objects to be sorted, and the efficiency of sorting can be significantly improved.
[0029] 本発明の好ましい態様(7)である選別装置は、態様 (6)の選別装置において、 前 記断面規制手段は、搬送手段によって搬送される選別対象物の層の断面形状を、 上面の一部が盛り上げられた状態に調整するものであり、 前記篩い分け装置は前 記選別対象物の層の盛り上げられた部分について篩い分けを行うものとする。  [0029] In the sorting apparatus according to a preferred aspect (7) of the present invention, in the sorting apparatus according to the aspect (6), the cross-section restricting means is configured so that the cross-sectional shape of the layer of the sorting object conveyed by the conveying means The sieving device performs sieving on the raised part of the layer of the selection object.
[0030] 搬送手段上に堆積された選別対象物の篩い分け装置に導かれる部分を周囲より 高くしておくと、所定量の選別対象物を正確に篩い分け装置に導くことができる。また 、粒径が所定値より大きくて篩いを通過しない粗大な粒子や塊が搬送される選別対 象物の層の側部に排除され易くなる。また、篩いを通過した選別対象物の層の上面 を X線の照射のために平坦にするとき、および選別対象物の層の表面に X線の照射 口を接近または押し当てて特定元素の濃度を測定するときに、側部に排除された粗 粒部分が障害になるのを防止することができる。なお、篩い分け装置に導く部分を搬 送手段上で盛り上げられた状態とする断面規制手段は、調整しょうとする断面形状 に対応した開口を有するゲートを備えるものを採用することができる。この断面規制 手段では、搬送手段に堆積されてゲートを通過する選別対象物の断面形状が上記 開口の形状に調整されるものである。また、搬送手段上の選別対象物をかき寄せて 盛り上げるプレートを設けるものであっても良い。  [0030] If the portion of the sorting object deposited on the conveying means that is guided to the sieving device is set higher than the surroundings, a predetermined amount of the sorting object can be accurately guided to the sieving device. In addition, coarse particles and lumps that have a particle size larger than a predetermined value and do not pass through a sieve are easily removed to the side of the layer of the object to be sorted. In addition, when flattening the top surface of the layer of the selection object that has passed through the sieve for X-ray irradiation, and when the X-ray irradiation port approaches or presses the surface of the layer of the selection object, the concentration of the specific element It is possible to prevent the coarse portion excluded on the side from becoming a hindrance when measuring. As the cross-section restricting means for bringing the portion leading to the sieving device into a raised state on the carrying means, one having a gate having an opening corresponding to the cross-sectional shape to be adjusted can be adopted. In this cross-section regulating means, the cross-sectional shape of the selection object that is deposited on the conveying means and passes through the gate is adjusted to the shape of the opening. In addition, a plate that squeezes and raises the objects to be sorted on the conveying means may be provided.
[0031] 本発明の好ましい態様 (8)である選別装置は、態様(1)から態様(7)までのいずれ かの選別装置にぉ ヽて、 前記篩 ヽ分け装置で篩 、分けられた選別対象物の表面 に水を噴霧するスプレーと、前記選別対象物の搬送方向における前記スプレーが設 けられた位置の上流側および下流側の 、ずれか一方又は双方に設けられ、選別対 象物の含水率を測定する水分計とを備え、前記スプレーにより水を噴霧された後の 選別対象物の含水率を 5〜20%に調整するものとする。  [0031] A sorting device according to a preferred embodiment (8) of the present invention is a sorting device separated from the sorting device according to any one of the embodiments (1) to (7) by the sieve sorting device. A spray for spraying water on the surface of the target object and a position where the spray is provided in the conveying direction of the selection target are provided on one or both of the upstream side and the downstream side of the position where the target is selected. A moisture meter for measuring the moisture content is provided, and the moisture content of the object to be sorted after being sprayed with water is adjusted to 5 to 20%.
[0032] 前記篩!ヽ分け装置で篩!ヽ分けられた粒径が所定値以下の選別対象物は、含水率 を 5%から 20%までに調整するのが望ましぐこの範囲に調整することによって、特定 元素の濃度の測定誤差を小さく維持することができる。また、特定元素を含む選別対 象物の取り扱いが容易となる。選別対象物の含水率が 5%未満になると、例えば土 壌の搬送および篩い分けを行う過程で粗粒分と細粒分との分離が生じやすくなる。 つまり、堆積された選別対象物の層の上部に粗粒分が、下部には細粒分が偏在しや すくなり、上部粗粒分によって X線の照射範囲に空隙ができやすくなるため、測定誤 差の原因となる。一方、含水率が 20%を超えると選別対象物がペースト状となり、篩 い分けが困難となったり、搬送するための部材への付着が生じやすくなつたりし、取り 扱いが難しくなる。取り扱いの容易性からは含水率を 10%以下とするのがより望まし い。適度な水分が存在することによってローラーによる填圧が適切に行われ、選別対 象物の層の表面がより平坦化する。 [0032] It is desirable to adjust the moisture content from 5% to 20% for the selection object having a particle size of not more than a predetermined value, which is screened and sorted by the screening device. As a result, the measurement error of the concentration of the specific element can be kept small. In addition, sorting pairs containing specific elements Handling of the figurine becomes easy. When the water content of the selection target is less than 5%, for example, separation of coarse and fine particles is likely to occur during the process of transporting and sieving the soil. In other words, coarse particles are likely to be unevenly distributed on the upper part of the layer of the deposited object to be sorted, and fine particles are likely to be unevenly distributed on the lower part, and the upper coarse particles can easily form voids in the X-ray irradiation range. This may cause errors. On the other hand, if the moisture content exceeds 20%, the object to be sorted becomes a paste, which makes it difficult to screen, or tends to adhere to members for transportation, making handling difficult. From the viewpoint of ease of handling, it is more desirable to keep the water content below 10%. Due to the presence of appropriate moisture, the roller is properly filled with pressure, and the surface of the layer to be sorted becomes more flat.
[0033] 本発明の好ましい態様(9)である選別装置は、態様(1)から態様 (8)までのいずれ 力の選別装置において、 前記層調整手段は、選別対象物の層の表面を均すスクレ 一パーを備えて 、るものとする。  [0033] A sorting apparatus according to a preferred embodiment (9) of the present invention is the sorting apparatus according to any one of the embodiments (1) to (8), wherein the layer adjusting means leveles the surface of the layer to be sorted. It shall be equipped with a scraper.
[0034] 前記スクレーパーは、選別対象物の X線を照射する部分に押し当てられる板状の 部材であり、搬送される選別対象物の層を押圧して表面を平坦に均すとともに、所定 の高さ以上に堆積された選別対象物を削り取るようにして、下流側に搬送されるのを 規制するものである。スクレーパーを選別対象物の層に押し付ける力は、パネ、錘、 ギアなどを利用して選別対象物の層が平坦となるように調整されて ヽる。  [0034] The scraper is a plate-like member pressed against a portion of the selection target that is irradiated with X-rays, presses the layer of the selection target to be transported to level the surface, and has a predetermined level. It is intended to regulate the conveyance to the downstream side by scraping off the sorting object accumulated above the height. The force for pressing the scraper against the layer of the object to be sorted is adjusted by using a panel, a weight, a gear, or the like so that the layer of the object to be sorted becomes flat.
[0035] 本発明の好ましい態様(10)である選別装置は、態様(1)から態様(9)までのいず れかの選別装置において、 前記層調整手段は、前記篩い分け装置で篩い分けら れた選別対象物の層の上面を所定の圧力で填圧するローラーを備え、 該ローラー が選別対象物の層の上面を押す圧力は、 20kPaから lOOkPaまでの範囲内で設定 されているものとする。  [0035] A sorting device according to a preferred embodiment (10) of the present invention is the sorting device according to any one of the embodiments (1) to (9), wherein the layer adjusting means is sieved by the sieving device. A roller for filling the upper surface of the layer of the selected object with a predetermined pressure, and the pressure with which the roller presses the upper surface of the layer of the object to be selected is set within a range from 20 kPa to lOOkPa. To do.
[0036] ローラーによって篩い分け装置を通過した後の対象物の層を填圧し、平坦とするこ とによって蛍光 X線の測定を小さい誤差で行うことが可能となる。そして、堆積された 対象物の層を填圧するときのローラーの圧力が 20kPaから lOOkPaであるときに、 X 線の照射および蛍光 X線の検出による特定元素の濃度の測定誤差が極小となること が実験の結果カゝら確認された。圧力が 20kPa未満では填圧が充分ではなぐ対象物 の層の内部に空隙が多くなつて測定誤差が大きくなる。一方、 lOOkPaを超えると填 圧による選別対象物の層の充填度の増加は少ないが、填圧によって選別対象物の 層に亀裂が生じ、測定誤差に影響を及ぼすことがあって好ましくな!/、。 [0036] By filling and flattening the layer of the object after passing through the sieving device with a roller, it becomes possible to measure fluorescent X-rays with a small error. And, when the pressure of the roller when filling the layer of the deposited object is 20 kPa to lOOkPa, the measurement error of the concentration of a specific element due to X-ray irradiation and fluorescent X-ray detection may be minimized. As a result of the experiment, they were confirmed. If the pressure is less than 20 kPa, the measurement error will increase due to the large number of voids inside the object layer where the filling pressure is not sufficient. On the other hand, if it exceeds lOOkPa Although the increase in the filling level of the layer of the selection object due to pressure is small, it is preferable because the layer of the selection object cracks due to the filling pressure and affects measurement errors!
[0037] 本発明の好ましい態様(11)である選別装置は、態様(1)から態様(10)までのいず れかの選別装置において、 前記濃度検出手段は、選別対象物の層の上面と蛍光 X線を取り入れる測定窓との間に榭脂フィルムが介挿されており、特定元素の濃度の 検出が繰り返し行われるのにともなって新たな榭脂フィルムを選別対象物の層の上 面と蛍光 X線を取り入れる測定窓との間に供給する榭脂フィルム供給装置を備えるも のとする。  [0037] A sorting apparatus according to a preferred embodiment (11) of the present invention is the sorting apparatus according to any one of the embodiments (1) to (10), wherein the concentration detection means is an upper surface of the layer of the sorting object. And a measurement window into which fluorescent X-rays are taken, a resin film is inserted, and as the concentration of a specific element is repeatedly detected, a new resin film is added to the upper surface of the layer to be selected. And a resin film supply device that supplies between the X-ray and the measurement window into which fluorescent X-rays are taken.
[0038] 本発明の好ましい態様(12)である選別装置は、態様(11)の選別装置において、 前記濃度検出手段は、選別対象物に対向して支持されるとともに進退が可能にな つており、選別対象物の搬送が停止された状態で前記測定窓を選別対象物に接触 させ、 X線の照射及び蛍光 X線の測定を行った後に選別対象物カゝら離隔されるもの であり、 前記測定窓が選別対象物から離隔された状態で、前記榭脂フィルム供給 装置は、帯状に連続した前記榭脂フィルムの位置を移動させ、前記搬送手段が駆動 されるものとする。  [0038] A sorting device according to a preferred embodiment (12) of the present invention is the sorting device according to the embodiment (11), wherein the concentration detecting means is supported to face the sorting object and can advance and retreat. In the state where the transport of the sorting object is stopped, the measurement window is brought into contact with the sorting object, and after the X-ray irradiation and the fluorescent X-ray measurement are performed, the sorting object is separated from the sorting object. In the state where the measurement window is separated from the object to be sorted, the resin film supply device moves the position of the resin film continuous in a belt shape, and the transport means is driven.
[0039] 蛍光 X線の測定窓と選別対象物との間に榭脂フィルムを介挿することによって、搬 送されてくる選別対象物が直接測定窓へ付着するのを防止できる。また、形状の尖 つたものなどが搬送されてきた場合に榭脂フィルムによって測定窓を保護することで 、長期間にわたって選別対象物中の特定元素の濃度を正確に測定でき、効率の良 い選別が可能となる。また、帯状に連続した榭脂フィルムを必要に応じて移動させる ことにより、常に汚れのない榭脂フィルムによって測定窓が保護される状態が維持さ れ、さらに搬送手段により移動している選別対象物に測定窓を接触させることなぐ選 別対象物が停止している状態で特定元素の濃度を測定するため、精度の高い測定 が可能となる。  [0039] By inserting a resin film between the fluorescent X-ray measurement window and the selection object, it is possible to prevent the conveyed selection object from adhering directly to the measurement window. In addition, by protecting the measurement window with a grease film when a sharp object is transported, the concentration of a specific element in the object to be sorted can be accurately measured over a long period of time. Is possible. In addition, by moving the continuous grease film as necessary, the state where the measurement window is always protected by the clean grease film is maintained, and the sorting object that is moved by the conveying means is also maintained. Since the concentration of a specific element is measured while the object to be selected is stopped without bringing the measurement window into contact with it, highly accurate measurement is possible.
[0040] 本発明の好ましい態様(13)である選別装置は、態様(12)の選別装置において、 前記榭脂フィルム供給装置は、前記榭脂フィルムの搬送方向における前記測定窓 の下流側で該榭脂フィルムがロール状に巻き取られる位置の上流側に、榭脂フィル ムに付着した選別対象物を剥離するスクレーパーを備えるものとする。 [0041] スクレーパーを設置することにより、榭脂フィルムは付着した選別対象物の大部分 が除去された状態で巻き取られ、長期間にわたって、榭脂フィルムの円滑な移動が 可能となる。なお、スクレーパーは、ゴム、榭脂、金属などで作製することができる。 [0040] A sorting apparatus according to a preferred aspect (13) of the present invention is the sorting apparatus according to the aspect (12), wherein the resin film supply device is located downstream of the measurement window in the conveyance direction of the resin film. A scraper shall be provided on the upstream side of the position where the resin film is wound up in a roll shape to peel off the object to be sorted adhered to the resin film. [0041] By installing the scraper, the resin film is wound up in a state where most of the attached object to be sorted is removed, and the resin film can be smoothly moved over a long period of time. The scraper can be made of rubber, resin, metal, or the like.
[0042] 本発明の好ましい態様(14)である選別装置は、態様(11)力も態様(13)までのい ずれかの選別装置において、 前記榭脂フィルムが、ポリ塩ィ匕ビニル、ポリエチレン、 ポリエステル、ポリイミドのいずれかからなるものとする。  [0042] A sorting device according to a preferred embodiment (14) of the present invention is the sorting device according to any one of the embodiment (11) and the force up to the embodiment (13), wherein the resin film is made of polyvinyl chloride vinyl, polyethylene, It shall consist of either polyester or polyimide.
[0043] ここでの榭脂とは、天然榭脂をはじめ、熱硬化性榭脂、熱可塑性榭脂である汎用プ ラスチック、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなど を含むものであり、前記榭脂フィルムを測定対象元素によって、使い分けることで、正 確な蛍光 X線の測定が可能となる。  [0043] The resin used herein includes natural resin, thermosetting resin, general-purpose plastic such as thermoplastic resin, engineering plastic, super engineering plastic, and the like. Depending on the element to be measured, it is possible to accurately measure X-ray fluorescence.
[0044] なお、前記選別対象物としては、原材料、中間製品、製品、副産物、廃棄物、土壌 などが挙げられ、具体的には、セメント、鉱石、ガラス、焼却灰、石炭灰、重金属等で 汚染された土壌、スラグ、汚泥、無機化合物又は有機化合物の粉粒体又は粒状体な どが挙げられる。 発明の効果  [0044] Examples of the selection object include raw materials, intermediate products, products, by-products, waste, soil, and the like. Specifically, cement, ore, glass, incineration ash, coal ash, heavy metal, etc. Examples include contaminated soil, slag, sludge, inorganic or organic compound granules or granules. The invention's effect
[0045] 本発明の選別装置によれば、選別対象物の全体をスラリー化することなぐもとの状 態で搬送しながら、その一部を使用して選別対象物中の特定元素の濃度を測定する ことができる。そして、測定誤差を小さいものとすることが可能となる。したがって、選 別の前に必要な処理が簡便となり、スラリー化のための水が不要でかつ排水も発生 しない。また、選別処理設備の構成が簡便となることから設置するのに必要な面積も 少なくなる。さらに、榭脂フィルム供給装置によって、測定窓への選別対象物の付着 を防止でき、かつ測定装置の保護ができることで、長期間にわたって正確な測定が 可能となる。このように簡便な設備により選別対象物中の特定元素の濃度を迅速か つ小さい測定誤差で測定し、この測定値に応じた選別ができるため、資源の効率的 な利用やリサイクルを積極的に推進することができる。  [0045] According to the sorting apparatus of the present invention, while the entire sorting object is transported in the original state without being slurried, the concentration of the specific element in the sorting object is determined using a part of the sorting object. Can be measured. And it becomes possible to make a measurement error small. Therefore, the necessary treatment before selection becomes simple, no water for slurrying is required, and no waste water is generated. In addition, since the configuration of the sorting equipment is simple, the area required for installation is also reduced. Furthermore, the resin film supply device can prevent the object to be sorted from adhering to the measurement window and can protect the measurement device, thereby enabling accurate measurement over a long period of time. With this simple facility, the concentration of a specific element in a selection target can be measured quickly and with a small measurement error, and selection can be made according to this measurement value. Can be promoted.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]本発明の一実施形態である選別装置の概略側面図である。  FIG. 1 is a schematic side view of a sorting apparatus according to an embodiment of the present invention.
[図 2]図 1に示す選別装置の概略平面図である。 [図 3]図 1に示す選別装置で用いられるダンパー付きゲートを搬送経路の下流側力 見た図である。 FIG. 2 is a schematic plan view of the sorting apparatus shown in FIG. [Fig. 3] A view of the gate with a damper used in the sorting apparatus shown in Fig. 1 as viewed from the downstream side of the conveyance path.
[図 4]図 1に示す選別装置で用いられる振動篩の概略側面図である。  FIG. 4 is a schematic side view of a vibrating sieve used in the sorting apparatus shown in FIG.
[図 5]図 4に示す振動篩の概略正面図である。  5 is a schematic front view of the vibrating screen shown in FIG.
[図 6]図 4に示す振動篩の概略平面図である。  6 is a schematic plan view of the vibrating screen shown in FIG.
[図 7]図 4、図 5および図 6に示す振動篩の機能を示す概略平面図である。  7 is a schematic plan view showing the function of the vibrating screen shown in FIGS. 4, 5, and 6. FIG.
[図 8]図 1に示す搬送経路切換装置に代えて用いることができる搬送経路切換装置 の他の例を示す概略側面図である。  FIG. 8 is a schematic side view showing another example of a transport path switching device that can be used in place of the transport path switching device shown in FIG.
[図 9]図 1に示す選別装置で用いられる蛍光 X線測定装置及びこの蛍光 X線測定装 置が備える榭脂フィルム供給装置の一具体例を示す概略正面図である。  FIG. 9 is a schematic front view showing a specific example of the fluorescent X-ray measuring apparatus used in the sorting apparatus shown in FIG. 1 and a resin film supply apparatus provided in the fluorescent X-ray measuring apparatus.
[図 10]図 9に示す蛍光 X線測定装置の概略側面図である。  FIG. 10 is a schematic side view of the fluorescent X-ray measurement apparatus shown in FIG.
[図 11]蛍光 X線測定装置に供給される榭脂フィルムの厚みと測定された鉛濃度との 関係を示すグラフである。  FIG. 11 is a graph showing the relationship between the thickness of the resin film supplied to the fluorescent X-ray measurement apparatus and the measured lead concentration.
符号の説明  Explanation of symbols
[0047] 1:グリズリー、 2:ホッパー、 3:ベルトコンベア、 4:ゲート、 5:振動篩、  [0047] 1: Grizzly, 2: Hopper, 3: Belt conveyor, 4: Gate, 5: Vibrating sieve,
6:スプレー、 7:スクレーパー、 8a, 8b:水分計、 9:ローラー、  6: Spray, 7: Scraper, 8a, 8b: Moisture meter, 9: Roller,
10:蛍光 X線測定装置、 10a:測定窓、 11、搬送経路切換装置、  10: X-ray fluorescence measurement device, 10a: measurement window, 11, transfer path switching device,
12:高濃度の選別対象物を搬出するためのベルトコンベア、  12: Belt conveyor for carrying out high concentration sorting objects,
13:低濃度の選別対象物を搬出するためのベルトコンベア、 14:制御装置、 15:搬送経路切換用ベルトコンベア、 16:榭脂フィルム、 17:卷出ロール、 18:駆動ローラー、 19:ガイド、 20:スクレーパー、  13: Belt conveyor for unloading low-concentration objects, 14: Control device, 15: Belt conveyor for transfer route switching, 16: Grease film, 17: Feeding roll, 18: Drive roller, 19: Guide , 20: scraper,
41:第 1のガイド、 42:第 1のダンパー、  41: 1st guide, 42: 1st damper,
43:第 2のガイド、 44:第 2のダンパー、 51:バイプロモーター  43: Second guide, 44: Second damper, 51: Bipromoter
Sa, Sb, Sc, Sd, Se, Sf:選別対象物  Sa, Sb, Sc, Sd, Se, Sf: Selection target
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下、本発明の実施の形態を図に基づいて説明する。図 1は、本発明の一実施形 態である選別装置の構成を示す概略側面図である。また、図 2は同じ選別装置の概 略平面図である。 この選別装置は、金属の製鍊を行うための鉱石や土壌等の、粒径が小さいものから 大きいものが含まれるものを選別対象物とするものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view showing a configuration of a sorting apparatus according to an embodiment of the present invention. Fig. 2 is a schematic plan view of the same sorting device. This sorting device selects ores and soils for metal making that contain small or large particle sizes.
この選別装置は、特定元素を含む選別対象物カゝら粒径が 50mmを超える粗粒分を 分離除去するグリズリー 1と、グリズリー 1で粗粒分が除去された選別対象物 Saを一 時貯留するホッパー 2と、ホッパー 2に貯留された選別対象物 Saを運搬するためのベ ルトコンベア 3と、ホッパー 2から所定量の選別対象物をベルトコンベア 3上に送り出 すとともに、ベルトコンベア 3上に堆積される選別対象物の断面形状を所定の形状に するダンパー付きのゲート 4と、ベルトコンベア 3上で搬送される選別対象物 Sの一部 を篩い分け、ベルトコンベア 3上で粗粒分と細粒分とに分離する振動篩 5と、振動篩 5 で篩!ヽ分けられた選別対象物の細粒分の含水率を測定する水分計 8aと、水分計 8a が測定した含水率に基づ 、て水を噴霧し、選別対象物の細粒分の含水率を調整す るスプレー 6と、前記振動篩 5を通過した細粒分の堆積高さを規制して表面を平坦に するスクレーパー 7と、スプレー 6により水を噴霧された選別対象物の含水率を測定 する水分計 8bと、選別対象物に含まれる特定元素の濃度を測定する部分で表面を さらに平坦にするとともに填圧するローラー 9と、平坦化して填圧された選別対象物に X線を照射し、発生する蛍光 X線を検出する蛍光 X線測定装置 10と、蛍光線測定装 置 10による検出結果に対応してベルトコンベア 3から放出される選別対象物の搬送 方向を切り換える搬送経路切換装置 11と、で主要部が構成されている。  This sorting device temporarily stores grizzly 1 that separates and removes coarse particles with a particle size exceeding 50 mm, and the sorting object Sa from which coarse particles have been removed by grizzly 1. The hopper 2 to be transported, the belt conveyor 3 for transporting the sorting object Sa stored in the hopper 2, and a predetermined amount of the sorting object from the hopper 2 to the belt conveyor 3, and to the belt conveyor 3. A part of the sorting object S to be transported on the belt conveyor 3 and the gate 4 with a damper that makes the cross-sectional shape of the sorting objects to be deposited into a predetermined shape are screened and coarse particles are separated on the belt conveyor 3. Vibrating sieve 5 separated into fine particles, Moisture meter 8a for measuring the moisture content of the fine particles of the screened material sorted by vibrating sieve 5, and based on the moisture content measured by moisture meter 8a The water content of fine particles of the object to be sorted is sprayed with water. The moisture content of the sorting object sprayed with water by the spray 6, the scraper 7 that regulates the height of the fine particles that have passed through the vibrating screen 5 to flatten the surface, and the spray 6. X-rays are applied to the moisture meter 8b to be measured, the roller 9 for further flattening and filling the surface at the part for measuring the concentration of the specific element contained in the sorting object, and the flattened and filled sorting object X-ray fluorescence measuring device 10 that detects the fluorescent X-rays that are generated, and a transport path switching device that switches the transport direction of the sorting object emitted from the belt conveyor 3 in response to the detection result of the fluorescent light measurement device 10 11 and the main part is composed.
[0049] 前記グリズリー 1は、ホッパー 2の上に支持された複数のバー laを有するものであり 、バー laの間隔が調整されることにより、特定元素を含む選別対象物中の粒径が 50 mmを超える粗粒分をホッパー 2に落下しないようにバー上にとどめ、粒径が 50mm 以下の選別対象物のみをホッパー 2に投入するものとなっている。そして、前記バー laが傾斜して支持されることにより、バー上にとどめられた粗粒分を、粗粒分に対応 した処理を行う工程へと排出するものとなっている。また、グリズリー 1にはバイブロモ 一ター(図示しない)が設置されており、必要に応じてグリズリー 1に振動を加え、選別 対象物がグリズリーを通過するのを容易とするようになって!/、る。  [0049] The grizzly 1 has a plurality of bars la supported on the hopper 2, and the particle size in the selection object containing the specific element is 50 by adjusting the interval between the bars la. Coarse particles exceeding mm are kept on the bar so that they do not fall into the hopper 2, and only sorting objects with a particle size of 50 mm or less are fed into the hopper 2. The bar la is supported by being inclined, so that the coarse particles retained on the bar are discharged to a process for performing the treatment corresponding to the coarse particles. The grizzly 1 is also equipped with a bi-bromo counter (not shown), which can vibrate the grizzly 1 as necessary to make it easier for the selection object to pass through the grizzly! /, The
[0050] 前記ホッパー 2は、前記グリズリー 1を通過した選別対象物 Saをー且収容し、所定 の量を安定してベルトコンベア 3に供給するものである。このホッパー 2のベルトコン ベア 3に対する選別対象物の供給部には、ゲート 4が固定支持されており、このゲー ト 4の下部には、図 3に示すように台形状の切り欠き 4aが設けられている。この切り欠 き部分がホッパー 2から選別対象物を排出する開口部となり、この開口力も選別対象 物 Saをベルトコンベア 3上に供給するものとなっている。 [0050] The hopper 2 accommodates the sorting object Sa that has passed through the grizzly 1, and supplies a predetermined amount to the belt conveyor 3 stably. This hopper 2 beltcon A gate 4 is fixedly supported at the supply portion of the sorting object with respect to the bear 3, and a trapezoidal cutout 4a is provided below the gate 4 as shown in FIG. This notched portion becomes an opening for discharging the sorting object from the hopper 2, and this opening force also supplies the sorting object Sa onto the belt conveyor 3.
[0051] ゲート 4には、切り欠き 4aの両側方に第 1のガイド 41が設けられ、この第 1のガイド 4 1に沿って上下方向に移動が可能となるように第 1のダンパー 42が支持されて 、る。 この第 1のダンパー 42には前記ゲート 4に設けられた切り欠き 4aより幅の小さい台形 状の切り欠き 42aが下辺に沿って設けられている。さらに、第 1のダンパー 42には、 前記切り欠き 42aの両側方に第 2のガイド 43が設けられており、この第 2のガイド 43に 沿って第 1のダンパーに対して上下方向に移動が可能となった第 2のダンパー 44が 設けられている。 [0051] The gate 4 is provided with a first guide 41 on both sides of the notch 4a, and the first damper 42 is provided so as to be movable in the vertical direction along the first guide 41. It is supported. The first damper 42 is provided with a trapezoidal cutout 42a having a width smaller than the cutout 4a provided in the gate 4 along the lower side. Further, the first damper 42 is provided with second guides 43 on both sides of the notch 42a, and the first dampers 42 can move vertically with respect to the first dampers along the second guides 43. A second damper 44, which has become possible, is provided.
[0052] 前記ゲート 4およびダンパー 42、 44は、ベルトコンベア 3上に堆積された選別対象 物の断面を所定の形状とする断面規制手段として機能するものの一例である。つまり 、ゲート 4に支持された第 1のダンパー 42および第 2のダンパー 44の位置を調整する ことにより、ホッパー 2からベルトコンベア 3に供給される選別対象物の量が調整され る。さらに、図 3に示すように、ベルトコンベア 3上に供給された選別対象物のベルトコ ンベア 3の移動方向と直角な断面の形状を、幅の広い台形上に幅の狭い台形を積 載した形状に調整することができる。そして、第 1のダンパー 42の高さを調整すること によって下層の台形部分 Scの上面の高さを調整することができ、第 2のダンパー 44 の位置を調整することによって上層の台形部分 Sbの上面の位置を所定の高さ、すな わち蛍光 X線の測定に適した高さに調整することができる。  [0052] The gate 4 and the dampers 42 and 44 are an example of one that functions as a cross-section restricting unit that makes a cross-section of the objects to be sorted deposited on the belt conveyor 3 into a predetermined shape. That is, by adjusting the positions of the first damper 42 and the second damper 44 supported by the gate 4, the amount of the sorting object supplied from the hopper 2 to the belt conveyor 3 is adjusted. Furthermore, as shown in Fig. 3, the cross-sectional shape perpendicular to the direction of movement of the belt conveyor 3 of the object to be selected supplied on the belt conveyor 3 is a shape in which a narrow trapezoid is mounted on a wide trapezoid. Can be adjusted. Then, the height of the upper surface of the lower trapezoidal portion Sc can be adjusted by adjusting the height of the first damper 42, and the height of the upper trapezoidal portion Sb can be adjusted by adjusting the position of the second damper 44. The position of the upper surface can be adjusted to a predetermined height, that is, a height suitable for fluorescent X-ray measurement.
[0053] 図 4は前記振動篩 5を示す概略側面図、図 5は同じ振動篩 5の正面図、図 6は同じ 振動篩 5の平面図である。この振動篩 5は、本発明において篩い分け装置として機能 するものであり、図 4に示すように、上下方向に支持された複数のバーを所定の間隔 で配列したものである。バーのそれぞれは上方端がベルトコンベア 3の移動方向にお ける下流側に後退するよう配置されている。複数のバーで構成されるスクリーンは、 図 6に示すようにベルトコンベア 3の幅方向における中央が上流側に突き出し、側縁 に近づくにしたがって下流側に後退するようにバーが配列されている。そして、上記 スクリーンのバーのそれぞれに振動が伝達されるようにバイプロモーター 51が取り付 けられて 、る。スクリーンを振動させることによって X線を照射する範囲の篩 、分けを 短い時間で行うことができると同時に篩い分け対象物を混合'攪拌できるので、特定 元素の濃度の検出および選別対象物の選別の効率を向上させることができる。特に スクリーンの目開きが 2mm程度と小さくなると、含水状態の選別対象物を篩い分ける ときに目詰まりが生じやすいので、振動篩の使用が有効である。 FIG. 4 is a schematic side view showing the vibrating sieve 5, FIG. 5 is a front view of the same vibrating sieve 5, and FIG. 6 is a plan view of the same vibrating sieve 5. The vibrating sieve 5 functions as a sieving device in the present invention. As shown in FIG. 4, a plurality of bars supported in the vertical direction are arranged at predetermined intervals. Each of the bars is arranged so that the upper end thereof is retracted downstream in the moving direction of the belt conveyor 3. As shown in FIG. 6, the screen composed of a plurality of bars is arranged such that the center in the width direction of the belt conveyor 3 protrudes toward the upstream side and recedes toward the downstream side as it approaches the side edge. And above Bipromoter 51 is installed so that vibration is transmitted to each bar of the screen. By vibrating the screen, the X-ray irradiation range can be screened and separated in a short time, and at the same time the objects to be screened can be mixed and stirred, so that the concentration of specific elements can be detected and the objects to be sorted can be selected. Efficiency can be improved. In particular, if the screen opening is as small as 2 mm, clogging is likely to occur when sieving objects to be screened with water, so the use of a vibrating sieve is effective.
[0054] 前記のように複数のバーを備える振動篩 5が、前記ゲート 4によって断面が 2層の台 形状に堆積された選別対象物の上層の台形部分 Sbを篩い分ける位置に支持されて いる。これにより、ベルトコンベア 3上で搬送される選別対象物の上層にある台形部 分 Sbが前記振動篩 5に突き当たり、選別対象物中の細粒分は所定間隔で配列され たスクリーンのバーの間を通過する。図 7に示すように、バーの間を通過し得ない粗 粒分 Sdは側縁に近づくにしたがって後退する位置に配置されたバーに沿って側方 に押し出され、ベルトコンベア 3上の側部に堆積される。前記のように複数のバーの 間を通過する選別対象物の最大径はバーの間隔によって調整され、望ましくは 2m mから 10mmまでの範囲で設定された値となるように複数のバーが支持されている。 また、この振動篩 5を通過した細粒分が堆積する層 Seが、 X線の照射によって特定元 素の濃度の測定対象となるものである。したがって、この層 Seの厚さが 15mm以上と なるように、ベルトコンベア 3上の選別対象物における上層の台形部分 Sbの高さおよ び振動篩 5の位置が設定されて ヽる。  [0054] As described above, the vibrating screen 5 having a plurality of bars is supported by the gate 4 at a position to screen the trapezoidal portion Sb of the upper layer of the selection target deposited in a trapezoidal shape having a two-layer cross section. . As a result, the trapezoidal portion Sb in the upper layer of the sorting object conveyed on the belt conveyor 3 hits the vibrating sieve 5, and the fine particles in the sorting object are placed between the screen bars arranged at predetermined intervals. Pass through. As shown in FIG. 7, coarse particles Sd that cannot pass between the bars are pushed out sideways along the bars that are positioned so as to recede as they approach the side edges, and the side portions on the belt conveyor 3 It is deposited on. As described above, the maximum diameter of the selection object passing between the plurality of bars is adjusted by the interval between the bars, and the plurality of bars are preferably supported so as to have a value set in a range of 2 mm to 10 mm. ing. In addition, the layer Se on which fine particles that have passed through the vibrating sieve 5 are deposited is a target for measuring the concentration of the specific element by X-ray irradiation. Therefore, the height of the trapezoidal portion Sb of the upper layer and the position of the vibrating sieve 5 in the selection object on the belt conveyor 3 are set so that the thickness of the layer Se is 15 mm or more.
[0055] また、この振動篩 5は、ベルトコンベアに対して上下方向に位置の調整が可能で、 移動する選別対象物に接触しないように上方に移動させて固定できる構造となって いる。つまり、蛍光 X線測定装置 10による特定元素の濃度の測定は、必ずしも連続 的に行う必要はなぐ間欠的に測定を行う場合には前記振動篩 5が X線を照射する 部分のみについて篩い分けを行ってもよい。そして、振動篩が上部に離れたときにス クリーンの目詰まりを解消するように定期的に清掃や必要な場合はスクリーンの取替 えを行うのが望ましい。また、振動篩 5が離れたときには、ベルトコンベア 3の移動速 度を大きくし、処理の効率を向上させることもできる。  [0055] Further, the vibration sieve 5 can be adjusted in the vertical direction with respect to the belt conveyor, and has a structure that can be moved upward and fixed so as not to contact the moving selection object. In other words, the measurement of the concentration of a specific element by the fluorescent X-ray measurement apparatus 10 is not necessarily performed continuously, and when the measurement is performed intermittently, only the portion where the vibrating screen 5 emits X-rays is screened. You may go. It is desirable to clean the screen regularly and replace the screen when necessary so that the screen is not clogged when the vibrating screen moves away from the top. In addition, when the vibrating screen 5 is separated, the moving speed of the belt conveyor 3 can be increased to improve the processing efficiency.
[0056] なお、前記振動篩 5には、所定間隔で複数のバーが配置されたスクリーンが用いら れているが、網状の部材を用いてもよい。ただし、スクリーンの方が破損しにくぐまた 目詰まりも生じにく 、ため、スクリーンを用いるのが好まし 、。 [0056] The vibrating sieve 5 is a screen in which a plurality of bars are arranged at predetermined intervals. However, a net-like member may be used. However, it is preferable to use a screen because the screen is less likely to break and clogging is less likely to occur.
[0057] 前記スプレー 6は、振動篩 5を通過した測定用の層 Seの表面に水を噴霧し、所定の 含水率になるように調整するものである。このスプレー 6は、選別対象物の搬送方向 におけるスプレーが設けられた位置の上流側に設けられた水分計 8aよって測定され た含水率に基づき散水量が調整される。水分計 8aは、例えば赤外線の吸収量によ つて含水率を測定するタイプを用いることができる。上記スプレー 6からの散水によつ て含水率が調整された選別対象物は、緩く堆積されて嵩高くなつており、かつ表面の 平坦性が失われているので、スクレーパー 7により上面を平坦にする。このとき、篩い 分けられた選別対象物の含水率は、選別対象物の搬送方向におけるスプレーが設 けられた位置の下流側であってローラー 9の上流側に設けられた水分計 8bにより測 定され、その数値が所定の値の範囲に調整されることにより、上面を平坦に調整する ときの取り扱いが容易となり、選別対象物の層の上面は適切に平坦ィ匕される。これに より蛍光 X線測定装置による測定が適切に行われ、誤差の小さい測定が可能となる。 なお、上記含水率の値は、 5〜20%とするのが望ましぐより好ましくは 5から 10% である。 [0057] The spray 6 is adjusted so that water is sprayed on the surface of the measurement layer Se that has passed through the vibrating sieve 5 so as to have a predetermined moisture content. The spray 6 is adjusted in the amount of water spray based on the moisture content measured by the moisture meter 8a provided on the upstream side of the position where the spray is provided in the conveying direction of the sorting object. As the moisture meter 8a, for example, a type in which the moisture content is measured by the amount of infrared absorption can be used. The object to be sorted whose water content is adjusted by spraying from the above spray 6 is loosely accumulated and bulky, and the flatness of the surface is lost, so the upper surface is flattened by the scraper 7. To do. At this time, the moisture content of the screened object to be screened is measured by a moisture meter 8b provided downstream of the position where the spray is provided in the transport direction of the screened object and upstream of the roller 9. Then, by adjusting the numerical value within a predetermined value range, handling when the upper surface is adjusted to be flat becomes easy, and the upper surface of the layer to be selected is appropriately flattened. As a result, the measurement by the fluorescent X-ray measuring device is appropriately performed, and the measurement with a small error becomes possible. The water content is preferably 5 to 20%, more preferably 5 to 10%.
[0058] 前記ローラー 9は、平坦になった選別対象物の上面をさらに填圧してより平坦にす るとともに、選別対象物の層が適度な充填度を得られるようにする。適度な充填度を 得るために、選別対象物の層の上面を押す圧力が 20kPaから lOOkPaとなるようにバ ネなどで調整できるようになつている。なお、このローラー 9と前記スクレーパー 7とは 、双方を併用しても良いし、いずれか一方を使用するものであっても良い。  [0058] The roller 9 further pressurizes and flattens the upper surface of the flattened target object, and allows the layer of the target object to obtain an appropriate filling degree. In order to obtain an appropriate degree of filling, the pressure applied to the top surface of the layer to be selected can be adjusted with a pan so that the pressure is 20 kPa to lOOkPa. Note that both the roller 9 and the scraper 7 may be used together, or one of them may be used.
[0059] 前記蛍光 X線測定装置 10は、選別対象物の層の表面に X線を照射したときに、選 別対象物に含まれる特定元素力 発生する蛍光 X線を検出するものである。この蛍 光 X線測定装置 10は、箱状のケースの内部に X線照射部と蛍光 X線検知部とを備え ている。そして、蛍光 X線を取り入れる測定窓を覆うように榭脂フィルムが支持されて おり、特定元素の濃度の検出が繰り返し行われるのにともなって帯状となった榭脂フ イルムを移動し、新たな榭脂フィルムを測定窓と対向する位置に供給する榭脂フィル ム供給装置が備えられている。また、 X線の漏洩を防ぐために、この蛍光 X線測定装 置 10および X線の照射位置付近を覆うように X線を遮断できる材料を用いたカバー( 図示しな!、)等を設けるのが望まし 、。 [0059] The X-ray fluorescence measurement apparatus 10 detects X-ray fluorescence generated by a specific element force contained in the selection target when the surface of the layer of the selection target is irradiated with X-rays. The fluorescent X-ray measurement apparatus 10 includes an X-ray irradiation unit and a fluorescent X-ray detection unit inside a box-shaped case. The resin film is supported so as to cover the measurement window for taking in the fluorescent X-rays, and as the concentration of the specific element is repeatedly detected, the resin film that has become band-shaped is moved to a new one. A resin film supply device is provided for supplying the resin film to a position facing the measurement window. To prevent X-ray leakage, this fluorescent X-ray measurement device It is desirable to provide a cover (not shown!) Using a material that can block X-rays so as to cover the vicinity of the X-ray irradiation position.
[0060] 前記榭脂フィルム供給装置は、図 9及び図 10に示すように選別対象物の搬送方向 とほぼ直交する方向に帯状の榭脂フィルム 16を移動させるものであり、卷出ロール 1 7から駆動ローラー 18により榭脂フィルム 16を引き出して移動させるものである。卷出 ロール 17と蛍光 X線の測定窓 10aの間には、榭脂フィルム 16を支持するガイド 19を 備えることが好ましい。ガイド 19は、榭脂フィルム 16を挟み込む構造となっており、測 定窓 10aの近くまで設けることで、榭脂フィルム 16を安定的に供給でき、かつ飛散す る選別対象物力 榭脂フィルム 16を保護することができる。  [0060] As shown in Figs. 9 and 10, the resin film supply device moves the belt-shaped resin film 16 in a direction substantially orthogonal to the conveying direction of the object to be sorted. The resin film 16 is pulled out and moved by the driving roller 18. A guide 19 for supporting the resin film 16 is preferably provided between the brewing roll 17 and the fluorescent X-ray measurement window 10a. The guide 19 has a structure in which the resin film 16 is sandwiched. By providing the resin film 16 close to the measurement window 10a, the resin film 16 can be stably supplied and the object to be screened can be dispersed. Can be protected.
[0061] 蛍光 X線測定装置 10が蛍光 X線を測定するときには、選別対象物を搬送するベル トコンベア 3が停止し、蛍光 X線測定装置 10が所定の位置まで降下する。このとき榭 脂フィルム 16を移動させる駆動ローラー 18は停止している。そして、蛍光 X線測定装 置の測定窓 10aは、榭脂フィルム 16が介挿された状態で選別対象物の層 Seに接触 され、この状態で特定元素の濃度の測定が行われる。  [0061] When the fluorescent X-ray measurement apparatus 10 measures fluorescent X-rays, the belt conveyor 3 that conveys the selection object stops, and the fluorescent X-ray measurement apparatus 10 descends to a predetermined position. At this time, the driving roller 18 for moving the resin film 16 is stopped. Then, the measurement window 10a of the fluorescent X-ray measurement apparatus is brought into contact with the layer Se of the selection target object with the resin film 16 interposed, and the concentration of the specific element is measured in this state.
[0062] 選別対象物の層 Seと蛍光 X線測定装置 10の測定窓 10aとの間が離れてその距離 が大きいと、蛍光 X線強度が減衰して正確な測定ができない。このため、あらかじめ 選別対象物の層 Seの厚さと蛍光 X線測定装置 10の下降距離を調整し、榭脂フィル ム 16を間に挟んで測定窓 10aと選別対象物とを接触させる。また、榭脂フィルム 16を 測定窓 10aに接触した状態で支持することで、榭脂フィルム 16と測定窓 10aとの間へ 選別対象物 Seが侵入するのを防止することができる。  [0062] If the layer Se of the selection object is separated from the measurement window 10a of the fluorescent X-ray measuring apparatus 10 and the distance is large, the fluorescent X-ray intensity is attenuated and accurate measurement cannot be performed. Therefore, the thickness of the layer Se of the selection object and the descending distance of the fluorescent X-ray measurement apparatus 10 are adjusted in advance, and the measurement window 10a and the selection object are brought into contact with the resin film 16 therebetween. Further, by supporting the resin film 16 in contact with the measurement window 10a, it is possible to prevent the sorting object Se from entering between the resin film 16 and the measurement window 10a.
[0063] 蛍光 X線の測定終了後、蛍光 X線測定装置 10は上昇し、それと同時に駆動ローラ 一 18が回転することにより、榭脂フィルム 16が所定長さだけ移動し、測定窓 10aを覆 う位置に帯状の榭脂フィルムの新しい部分が供給される。また、選別対象物と接触し ていた部分はスクレーパー 20によって榭脂フィルム 16に付着している選別対象物が 取り除かれ、卷取ロール(図示せず)に搬送される。一方、ベルトコンベア 3は所定の 距離を移動するように駆動され、選別対象物を搬送する。このようにして、 1回の測定 毎に榭脂フィルム 16の新しい部分が選別対象物 Seと蛍光 X線測定装置 10の測定 窓 10aとの間に供給され、選別対象物中に含まれる特定元素の濃度の測定を繰り返 し継続して行うことができる。 [0063] After the measurement of the fluorescent X-rays, the fluorescent X-ray measuring apparatus 10 is raised, and at the same time, the driving roller 18 rotates to move the resin film 16 by a predetermined length and cover the measurement window 10a. A new part of the strip-shaped resin film is fed to the position. In addition, the portion that has been in contact with the object to be sorted is removed by the scraper 20 from the object to be sorted adhering to the resin film 16 and conveyed to a scooping roll (not shown). On the other hand, the belt conveyor 3 is driven to move a predetermined distance, and conveys the object to be sorted. In this way, each time a measurement is performed, a new portion of the resin film 16 is supplied between the selection object Se and the measurement window 10a of the fluorescent X-ray measurement apparatus 10, and the specific element contained in the selection object Repeated measurement of the concentration of Can be done continuously.
[0064] 本発明において使用する前記榭脂フィルムとしては、十分な強度を有するとともに、 蛍光 X線強度の減衰が少なぐかつ測定対象となる元素が含まれて 、な 、ものであ ればよい。例えば、ポリ塩化ビニル、ポリエチレン、ポリエステルおよびポリイミドのい ずれかが好ましぐその中でもポリエステルが機械的強度に優れているため特に好ま しい。また、使用する榭脂フィルムの厚さは、フィルムの材質や蛍光 X線強度の減衰 などとの関連を考慮して選定する必要がある。  [0064] The resin film used in the present invention is not limited as long as it has sufficient strength, has little attenuation of fluorescent X-ray intensity, and contains an element to be measured. . For example, any of polyvinyl chloride, polyethylene, polyester and polyimide is preferred, and polyester is particularly preferred because of its excellent mechanical strength. In addition, the thickness of the resin film to be used must be selected in consideration of the relationship with the film material and attenuation of fluorescent X-ray intensity.
[0065] 榭脂フィルムの厚みが蛍光 X線測定に与える影響については、次のような測定結 果が得られている。  [0065] Regarding the influence of the thickness of the resin film on the fluorescent X-ray measurement, the following measurement results have been obtained.
この測定は、鉛濃度 150mgZkgの土壌を、榭脂フィルムを介挿しない状態と、前 記 4種類の榭脂フィルムの厚みを変えて介挿した状態とで測定したものであり、その 結果を図 11に示す。この測定結果に示されるように、榭脂フィルムの厚みが大きくな るにしたがって、鉛濃度は低く測定されており、榭脂フィルムの厚み及び種類に応じ て補正を行う必要がある。そして、蛍光 X線測定装置には検出下限があり、測定値が 小さくなると補正を行っても正確な測定ができなくなる。このため、鉛濃度 150mgZk gの測定対象物を榭脂フィルムを介挿して測定したときに、測定値は lOOmgZkg程 度以下とならないようにする必要がある。したがって、図 11の結果から、正確な測定 値を得るためには、榭脂フィルムの厚みは 0. 3mm以下にする必要があり、 0. 2mm 以下が更に好ましいことがわかる。ただし、榭脂フィルムの機械的強度を考慮すると、 少なくとも 0. 1mmの厚みが必要である。  This measurement was conducted in a state where the soil with a lead concentration of 150 mgZkg was not inserted with a resin film and with a condition where the thickness of the four types of resin films was changed. Shown in 11. As shown in the measurement results, as the thickness of the resin film increases, the lead concentration is measured to be lower, and correction is necessary according to the thickness and type of the resin film. And the X-ray fluorescence measurement device has a lower detection limit, and if the measured value becomes small, accurate measurement cannot be performed even if correction is performed. For this reason, when a measurement object with a lead concentration of 150mgZkg is measured with a resin film, the measured value should not be less than about lOOmgZkg. Therefore, it can be seen from the results of FIG. 11 that in order to obtain an accurate measurement value, the thickness of the resin film needs to be 0.3 mm or less, and more preferably 0.2 mm or less. However, considering the mechanical strength of the resin film, the thickness should be at least 0.1 mm.
[0066] 前記搬出経路切換装置 11は、図 1に示すように、ベルトコンベア 3から排出された 選別対象物 Sfと接触する傾斜角度が可変となった板状の部材を有するものであり、 傾斜角度を変更することによってベルトコンベア 3から排出された選別対象物 Sfの落 下方向を変えるものである。そして、異なる方向に選別対象物を搬送する 2つの搬出 用ベルトコンベア 12、 13のいずれかの上に落下するように傾斜角度が設定される。 この搬出経路切換装置 11の動作は、前記蛍光 X線測定装置 10による測定結果に 基づき、制御装置 14によって制御されるものとなっている。つまり、蛍光 X線測定装 置 10による測定値力も制御装置 14が有するデータ処理部によって特定元素の濃度 が検知される。そして、この特定元素の濃度が所定の値より大きいと判定されたときに は、このデータが測定された位置の前後にある選別対象物 Sfがベルトコンベア 3の 端部から排出されるときに、高濃度の選別対象物を搬出するためのベルトコンベア 1 2に落下するように傾斜角度が設定される。また、特定元素の濃度が所定の値より小 さいと判定されたときには、測定位置付近にある選別対象物が低濃度の選別対象物 を搬出するためのベルトコンベア 13に落下するように傾斜角度が設定される。 As shown in FIG. 1, the carry-out path switching device 11 has a plate-like member with a variable inclination angle that comes into contact with the sorting object Sf discharged from the belt conveyor 3. By changing the angle, the falling direction of the sorting object Sf discharged from the belt conveyor 3 is changed. Then, the inclination angle is set so that it falls on one of the two conveyor belt conveyors 12 and 13 for transporting the sorting object in different directions. The operation of the carry-out path switching device 11 is controlled by the control device 14 based on the measurement result by the fluorescent X-ray measurement device 10. In other words, the measured value force of the fluorescent X-ray measurement device 10 is also measured by the data processing unit of the control device 14 in the concentration of the specific element Is detected. When it is determined that the concentration of the specific element is larger than a predetermined value, the sorting object Sf before and after the position where the data is measured is discharged from the end of the belt conveyor 3. The inclination angle is set so that it falls onto the belt conveyor 12 for carrying out the high concentration sorting object. In addition, when it is determined that the concentration of the specific element is lower than the predetermined value, the inclination angle is set so that the selection object near the measurement position falls on the belt conveyor 13 for carrying out the low concentration selection object. Is set.
なお、前記搬出経路切換装置 11は、蛍光 X線測定装置 10による 1回毎の測定値 カゝらこの測定が行われた位置と対応する部分の土壌毎に選別しても良いが、複数回 の測定が行われた領域毎に選別することもできる。つまり、ベルトコンベア上で所定 間隔をお 、て蛍光 X線測定装置による複数回の測定を行 、、これらの平均値に基づ V、て、これらの測定点を含む土壌を一括して搬送経路を選択するように選別すること ちでさる。  The carry-out path switching device 11 may be selected for each portion of the soil corresponding to the position where this measurement was performed, such as the measurement value for each time measured by the fluorescent X-ray measurement device 10, but may be a plurality of times. It is also possible to sort by the area where the measurement is performed. In other words, at a predetermined interval on the belt conveyor, the X-ray fluorescence measurement device performs a plurality of measurements, and based on the average value of these, the soil containing these measurement points is collectively transported. Sort by selecting to select.
[0067] また、搬出経路切換装置 11は、前記のように選別対象物の落下方向を規制する板 状の部材の他にも、様々な形態のものを採用することができ、例えば図 8に示すよう に、周回移動方向が切り換え可能となった短いベルトコンベア 15に選別対象物を一 且載置し、このベルトコンベアの周回移動方向によって載置された選別対象物の搬 出経路を切り換えることができる。つまり載置された選別対象物に含まれる特定元素 の濃度が高いときには、高濃度原材料搬出用のベルトコンベア 12に選別対象物が 載置されるように、この搬送経路切換用のベルトコンベア 15を駆動する。また、この搬 送経路切換用ベルトコンベア 15に載置された選別対象物に含まれる特定元素の濃 度が低いときには、このベルトコンベア 15の移動方向を逆転し、選別対象物が低濃 度原材料搬出用のベルトコンベア 13に載置されるように駆動することができる。  In addition to the plate-like member that regulates the falling direction of the sorting object as described above, various types of configurations can be adopted as the carry-out path switching device 11 as shown in FIG. As shown in the figure, the object to be sorted is placed on a short belt conveyor 15 that can be switched in the circumferential movement direction, and the delivery path of the sorting object placed in the circumferential movement direction of the belt conveyor is switched. Can do. That is, when the concentration of the specific element contained in the placed sorting object is high, the conveyor belt switching belt conveyor 15 is set so that the sorting object is placed on the belt conveyor 12 for carrying out the high-concentration raw material. To drive. Further, when the concentration of the specific element contained in the sorting object placed on the transport path switching belt conveyor 15 is low, the moving direction of the belt conveyor 15 is reversed so that the sorting object is a low-concentration raw material. It can be driven to be placed on the belt conveyor 13 for carrying out.
[0068] 前記のような選別装置では、特定元素を含む選別対象物をホッパー 2からベルトコ ンベア 3上に所定の断面形状に堆積し、搬送方向にほぼ均等に堆積して送り出すこ とができる。そして、堆積形状が適切に設定されていることにより、選別対象物を搬送 しながら一部を振動篩 5に導くことができる。振動篩 5は、搬送される選別対象物から 所定の粒径以下の選別対象物を篩い分けて、ベルトコンベア 3上の中央部に残すと ともに、粒径が所定値を超える選別対象物をベルトコンベア 3上の側部に押し出す。 これにより、ベルトコンベア 3を駆動しながら、選別対象物を篩い分けることができ、ベ ルトコンベア 3上で搬送される選別対象物の所定量毎に特定元素の濃度を小さい測 定誤差 (例えば 20%以内)で測定することが可能となる。このように測定された特定 元素の濃度に基づき、連続的にベルトコンベア 3から排出される選別対象物を選別し 、特定元素の濃度の高い選別対象物と特定元素の濃度の低い選別対象物とに分け て異なる方向に搬出することができる。したがって、効率の良い選別が可能となり、選 別された選別対象物に対してそれぞれの特定元素の濃度に応じた管理'利用ができ る。 [0068] In the sorting apparatus as described above, a sorting object including a specific element can be deposited in a predetermined cross-sectional shape from the hopper 2 onto the belt conveyor 3, and can be deposited and sent out almost uniformly in the transport direction. Then, when the accumulation shape is set appropriately, a part of the object can be guided to the vibrating screen 5 while conveying the object to be sorted. The vibrating sieve 5 screens the sorting object having a predetermined particle size or less from the sorting object to be conveyed and leaves it in the center of the belt conveyor 3 and also moves the sorting object having a particle size exceeding the predetermined value to the belt. Extrude to side on conveyor 3. Thus, while driving the belt conveyer 3, sorted objects can the sieving, base belt conveyor 3 measuring on small concentration of a specific element for each predetermined amount of sorting objects conveyed by Teigosa (e.g. 20% Within). Based on the concentration of the specific element measured in this way, the selection objects to be discharged from the belt conveyor 3 are continuously selected, and the selection object having a high concentration of the specific element and the selection object having a low concentration of the specific element are selected. It can be carried out in different directions. Therefore, efficient sorting is possible, and management according to the concentration of each specific element can be used for the selected sorting target.
実施例 1  Example 1
[0069] (重金属汚染土壌-鉛)  [0069] (Heavy metal contaminated soil-lead)
鉛汚染土壌を用いた選別試験の結果の一例を表 1に示した。これらは、鉛汚染土 壌を約 200kg単位で選別するための測定を行ったものであり、約 200kgの鉛汚染土 壌毎にベルトコンベア上で 5回の蛍光 X線測定を所定間隔で行った。すなわちベルト コンベア上で約 200kgが搬送される毎に 5回の蛍光 X線測定を順次に行い、この平 均値に基づいて、この約 200kgの鉛汚染土壌の搬送先を判別し、搬送経路切換装 置で選別を行った。そして、約 200kgの鉛汚染土壌は 5つを準備し、それぞれにつ いて上記試験を行った結果力 表 1における試験 No. 1〜5に相当するものである。 鉛汚染土壌の場合、土壌汚染対策を行うか否かの基準値が例えば 150mgZkgと される。本装置では、測定誤差を 20%程度、すなわち 150± 30mgZkgの測定誤差 とすることができる。このため、選別する際は鉛濃度が 120mgZkg以下であれば浄 化不要、それを超えれば浄化必要と ヽつたような選別基準を設定することができる。  Table 1 shows an example of the results of sorting tests using lead-contaminated soil. These measurements were made to sort out lead-contaminated soil in units of about 200 kg, and five fluorescent X-ray measurements were taken at predetermined intervals on the belt conveyor for each 200 kg of lead-contaminated soil. . That is, every time approximately 200 kg is transported on the belt conveyor, X-ray fluorescence measurement is performed five times in sequence, and based on this average value, the transport destination of this approximately 200 kg of lead-contaminated soil is determined, and the transport path is switched. Sorting was performed with the equipment. About 200 kg of lead-contaminated soil was prepared, and the result of performing the above test for each was equivalent to Test Nos. 1 to 5 in Table 1. In the case of lead-contaminated soil, the standard value for determining whether or not to take measures against soil contamination is, for example, 150 mgZkg. With this equipment, the measurement error can be about 20%, that is, 150 ± 30 mgZkg. Therefore, when sorting, it is possible to set a sorting standard that indicates that purification is not necessary if the lead concentration is 120 mgZkg or less, and that purification is necessary if the lead concentration is exceeded.
[0070] [表 1]  [0070] [Table 1]
Figure imgf000022_0001
Figure imgf000022_0001
注 )〇の場合は浄化不要、 Xの場合は浄化必要を示している [0071] 表 1から、本発明の選別装置を用いた重金属汚染土壌の選別が可能であることが わかる。また、従来は 100m3毎の汚染土壌に対して 5地点で採取混合されたサンプ ルから国や公的団体により定められたィ匕学分析法に基づいてその代表値を得ている 力 本発明の選別装置では、 200kg単位で 5回の蛍光 X線測定して代表値を得てい ることから、重金属類を見つけ出す確率も、上記従来の方法と比較しても数百倍高い 。ただし、選別単位となる対象物の量や蛍光 X線測定回数は、前記の限りではない。 実施例 2 Note) ○ indicates that no purification is required, and X indicates that purification is required. [0071] From Table 1, it can be seen that heavy metal contaminated soil can be sorted using the sorting apparatus of the present invention. Conventionally the force present invention achieved a representative value based on the I匕学analysis defined from samples taken mixed with 5 points by national or public organizations against contaminated soil per 100 m 3 In this sorter, the representative value is obtained by measuring X-ray fluorescence five times in units of 200 kg, so the probability of finding heavy metals is several hundred times higher than the conventional method. However, the amount of the target object as a selection unit and the number of X-ray fluorescence measurements are not limited to the above. Example 2
[0072] (ニッケル鉱石-ニッケル)  [0072] (nickel ore-nickel)
ニッケル鉱石を用いたて前述の実施例 1と同様に選別試験を実施した。結果の一 例を表 2に示した。ニッケル鉱石の場合、低品位ではニッケル含有量が 1. 5%程度 であり、従来技術では製鍊できな力つたが、近年、製鍊技術の向上により製鍊可能と なったことで、低品位と高品位のニッケル鉱石を効率良く選別する必要がある。例え ば、含有量 1. 5%で選別する場合、本装置では、測定誤差を 1. 5±0. 3%程度とす ることができ、選別する際はニッケル濃度が 1. 2%以下であれば低品位、それより上 であれば高品位などといったような選別基準を設けることができる。  A sorting test was conducted in the same manner as in Example 1 above using nickel ore. An example of the results is shown in Table 2. In the case of nickel ore, the nickel content is about 1.5% at low grades, and it was impossible to make iron with the conventional technology. It is necessary to select high-quality nickel ore efficiently. For example, when sorting with a content of 1.5%, this device can reduce the measurement error to about 1.5 ± 0.3%. When sorting, the nickel concentration should be 1.2% or less. Selection criteria such as low grade if there is high quality and high grade if it is higher can be set.
[0073] [表 2]  [0073] [Table 2]
Figure imgf000023_0001
Figure imgf000023_0001
表 2から、本発明の選別装置を用いたニッケル鉱石の選別が可能であることがわか る。また、ニッケル鉱石の場合、現行では、数万 tの鉱石の中から数十 tから数百 t単 位でサンプリングを実施し、粉砕するとともに均一に混合されたものの所定量を分割 して取り出す。そして、これを JIS規格に準じた分析を行うことで、その代表値を得て いるが、前記のように本発明の選別装置では、 200kg単位で 5回の蛍光 X線測定を 行って代表値を得ていることから、より効率の良い選別が可能となる。 Table 2 shows that nickel ore can be sorted using the sorting apparatus of the present invention. In the case of nickel ore, at present, sampling is carried out from tens of thousands tons of tens of tons to hundreds of t, pulverized and evenly mixed, and a predetermined amount is divided and taken out. And by analyzing this according to the JIS standard, the representative value is obtained. However, as described above, in the sorting apparatus of the present invention, since the fluorescent X-ray measurement is performed five times in units of 200 kg to obtain the representative value, more efficient sorting is possible.
実施例 3  Example 3
[0075] (飛灰-重金属類) [0075] (Fly ash-heavy metals)
飛灰 (フライアッシュ)を用いて前述の実施例 1および 2と同様に選別試験を実施し た。結果の一例を表 3に示した。飛灰をセメント製造の代替原料とする場合の重金属 類に対する基準値の一例も表 3に示した。  A sorting test was conducted in the same manner as in Examples 1 and 2 using fly ash. An example of the results is shown in Table 3. Table 3 also shows an example of standard values for heavy metals when fly ash is used as an alternative raw material for cement production.
[0076] [表 3] [0076] [Table 3]
Figure imgf000024_0001
Figure imgf000024_0001
注 1 )基準値および選別基準は、数 未 で る。  Note 1) There are no reference values and selection criteria.
注 2)〇の場合は受入可、 Xの場合は受入不可を示している c Note 2) 〇 indicates acceptable, X indicates unacceptable c
[0077] 本発明の選別装置では同時に複数の元素分析が可能であり、前記表 3からもわか るように飛灰の選別が可能である。飛灰の場合、複数の元素に対する基準があるた め、一つでも基準に満たないものがあれば、判定は不合格とした。 [0077] In the sorting apparatus of the present invention, a plurality of elemental analyzes can be performed at the same time, and fly ash can be sorted as shown in Table 3. In the case of fly ash, there are criteria for multiple elements, so if any one of them does not meet the criteria, the judgment was rejected.
実施例 4  Example 4
[0078] (溶融スラグ-重金属類)  [0078] (molten slag-heavy metals)
溶融スラグを用いて前述の実施例 1から 3までと同様に選別試験を実施した。結果 の一例を表 4に示した。溶融スラグをアスファルト混合物用の細骨材やコンクリート用 細骨材などとして資源化を図る際、重金属の含有量が選別基準の一つとなる。  A screening test was performed in the same manner as in Examples 1 to 3 above using molten slag. An example of the results is shown in Table 4. When recycling molten slag as resources such as fine aggregates for asphalt mixes and fine aggregates for concrete, the content of heavy metals is one of the selection criteria.
[0079] [表 4] Pb基準値 [0079] [Table 4] Pb reference value
試験 Pb  Exam Pb
No. 選別基準 Pb実測値  No. Selection criteria Pb measured value
判定  Judgment
「mg/ksl 「mg/kgl 「mg/kgl  "Mg / ksl" mg / kgl "mg / kgl
1 1 10 〇  1 1 10 ○
2 150 X  2 150 X
3 150 120 160 X  3 150 120 160 X
4 190 X  4 190 X
5 1 10 〇  5 1 10 ○
注)〇の場合は使用可、 Xの場合は使用不可を示している。  Note) ○ indicates that it can be used, and X indicates that it cannot be used.
前記表 4から、本発明の選別装置を用いた溶融スラグの選別が可能であることがわ 力る。 From Table 4 above, it can be seen that it is possible to sort molten slag using the sorting apparatus of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 粉状もしくは粒状の物質、砂礫、土砂又は土壌であって特定元素を含む選別対象 物が載置され、該選別対象物を移動させる搬送手段と、  [1] A conveying means for moving a sorting object on which powdery or granular substances, gravel, earth and sand or soil containing a specific element are placed;
前記搬送手段によって移動中の選別対象物の少なくとも一部を前記搬送手段上で 篩い分ける篩い分け装置と、  A sieving device for sieving at least a part of the selection object being moved by the conveying means on the conveying means;
前記篩い分け装置を通過した選別対象物の上面を平坦に処理する層調整手段と 上面が平坦に処理された選別対象物の層に X線を照射し、発生した蛍光 X線を検 出することにより特定元素の濃度を検出する濃度検出手段と、  A layer adjusting means for flatly processing the upper surface of the selection object that has passed through the sieving device and a layer of the selection object whose upper surface is processed to be flat are irradiated with X-rays to detect the generated fluorescent X-rays. Concentration detecting means for detecting the concentration of the specific element by:
前記選別対象物の移動方向における前記 X線の照射位置の下流側に設けられ、 前記濃度検出手段の検出結果に基づいて前記選別対象物の搬送経路を切り換える 搬送経路切換手段と、を有することを特徴とする選別装置。  A transport path switching unit that is provided downstream of the X-ray irradiation position in the moving direction of the selection target, and switches the transport path of the selection target based on the detection result of the concentration detection unit. Characteristic sorting device.
[2] 前記篩い分け装置は、通過する選別対象物の粒径を、 1mmから 15mmの範囲内 で設定された値以下とするものであることを特徴とする請求項 1に記載の選別装置。  [2] The sorting device according to [1], wherein the sieving device has a particle size of the passing sorting object equal to or less than a value set within a range of 1 mm to 15 mm.
[3] 前記篩い分け装置は、前記搬送手段によって移動する選別対象物を篩い分ける位 置と、移動する選別対象物に接触しないように上昇した位置との間で移動可能となつ ていることを特徴とする請求項 1又は請求項 2に記載の選別装置。 [3] The sieving device is movable between a position for sieving the sorting object moved by the conveying means and a position raised so as not to contact the moving sorting object. The sorting apparatus according to claim 1 or 2, characterized by the above.
[4] 前記篩い分け装置は、前記搬送手段上で移動する選別対象物の層の幅方向にお ける中央部分に、粒径が所定値以下の選別対象物を残し、粒径が所定値を超える 選別対象物を幅方向における両端部に移動させるものであることを特徴とする請求 項 1から請求項 3までのいずれかに記載の選別装置。 [4] The sieving device leaves a selection object having a particle size equal to or less than a predetermined value in a central portion in the width direction of the layer of the selection object moving on the conveying means, and the particle size has a predetermined value. The sorting apparatus according to any one of claims 1 to 3, wherein the sorting object is moved to both ends in the width direction.
[5] 前記篩い分け装置は、粒径が所定値以下となった選別対象物の層の厚さが 15m m以上となるように設定されて!、ることを特徴とする請求項 1から請求項 4までの ヽず れかに記載の選別装置。 [5] The sieving device is set such that the thickness of the layer of the object to be sorted whose particle size is equal to or less than a predetermined value is 15 mm or more! Item 5. The sorting device according to any one of Items 4 to 4.
[6] 前記選別対象物の搬送方向における前記篩!、分け装置が設けられた位置の上流 側に設けられ、前記搬送手段上で移動する選別対象物の層の搬送方向と直角方向 の断面形状を所定の形状に調整する断面規制手段を有し、 [6] A cross-sectional shape in a direction perpendicular to the conveying direction of the layer of the sorting object provided on the upstream side of the position where the sieve and the separating device are provided in the conveying direction of the sorting object and moving on the conveying means Having a cross-section regulating means for adjusting the shape to a predetermined shape,
前記篩 、分け装置は、前記断面形状の一部を占める選別対象物につ 、て篩 、分 けを行うように設置されて 、ることを特徴とする請求項 1から請求項 5までの 、ずれか に記載の選別装置。 The sieving and separating device is used for sorting objects that occupy a part of the cross-sectional shape. The sorting apparatus according to claim 1, wherein the sorting apparatus is installed so as to perform the inspection.
[7] 前記断面規制手段は、搬送手段によって搬送される選別対象物の層の断面形状 を、上面の一部が盛り上げられた状態に調整するものであり、  [7] The cross-section restricting means adjusts the cross-sectional shape of the layer of the selection target object conveyed by the conveying means so that a part of the upper surface is raised.
前記篩い分け装置は前記選別対象物の層の盛り上げられた部分について篩い分 けを行うものであることを特徴とする請求項 6に記載の選別装置。  7. The sorting apparatus according to claim 6, wherein the sieving apparatus performs sieving on a raised portion of the layer of the sorting object.
[8] 前記篩 、分け装置で篩 、分けられた選別対象物の表面に水を噴霧するスプレーと 、前記選別対象物の搬送方向における前記スプレーが設けられた位置の上流側お よび下流側のいずれか一方又は双方に設けられ、選別対象物の含水率を測定する 水分計とを備え、前記スプレーにより水を噴霧された後の選別対象物の含水率を 5 〜20%に調整することを特徴とする請求項 1から 7までのいずれかに記載の選別装 置。  [8] A spray that sprays water on the surface of the sorted object to be sorted and separated by the sieve and the sorting device, and upstream and downstream of the position where the spray is provided in the conveying direction of the sorted object A moisture meter that is provided in either one or both and measures the moisture content of the sorting object, and adjusts the moisture content of the sorting object after spraying water by the spray to 5 to 20%. 8. The sorting apparatus according to claim 1, wherein the sorting apparatus is characterized in that
[9] 前記層調整手段は、選別対象物の層の表面を均すスクレーパーを備えていること を特徴とする請求項 1から 8までのいずれかに記載の原材料選別装置。  [9] The raw material sorting apparatus according to any one of [1] to [8], wherein the layer adjusting means includes a scraper for leveling the surface of the layer of the sorting object.
[10] 前記層調整手段は、前記篩い分け装置で篩い分けられた選別対象物の層の上面 を所定の圧力で填圧するローラーを備え、 [10] The layer adjusting means includes a roller for filling the upper surface of the layer of the object to be screened by the screening device with a predetermined pressure,
該ローラーが選別対象物の層の上面を押す圧力は、 20kPaから lOOkPaまでの範 囲内で設定されていることを特徴とする請求項 1から請求項 9までのいずれかに記載 の選別装置。  10. The sorting apparatus according to claim 1, wherein the pressure with which the roller presses the upper surface of the layer of the sorting object is set within a range from 20 kPa to lOOkPa.
[11] 前記濃度検出手段は、選別対象物の層の上面と蛍光 X線を取り入れる測定窓との 間に榭脂フィルムが介挿されており、特定元素の濃度の検出が繰り返し行われるの にともなって新たな榭脂フィルムを選別対象物の層の上面と蛍光 X線を取り入れる測 定窓との間に供給する榭脂フィルム供給装置を備えることを特徴とする請求項 1から 10までの 、ずれかに記載の選別装置。  [11] The concentration detection means includes a resin film interposed between the upper surface of the layer to be sorted and a measurement window for taking in fluorescent X-rays, so that the concentration of a specific element is repeatedly detected. A resin film supply device for supplying a new resin film between the upper surface of the layer to be sorted and the measurement window for taking in fluorescent X-rays is provided. Sorting device according to any of the above.
[12] 前記濃度検出手段は、選別対象物に対向して支持されるとともに進退が可能にな つており、選別対象物の搬送が停止された状態で前記測定窓を選別対象物に接触 させ、 X線の照射及び蛍光 X線の測定を行った後に選別対象物カゝら離隔されるもの であり、 前記測定窓が選別対象物から離隔された状態で、前記榭脂フィルム供給装置は、 帯状に連続した前記榭脂フィルムの位置を移動させ、前記搬送手段が駆動されるこ とを特徴とする請求項 11に記載の選別装置。 [12] The concentration detecting means is supported opposite to the sorting object and is capable of moving forward and backward, and brings the measurement window into contact with the sorting object in a state where the transportation of the sorting object is stopped, After X-ray irradiation and fluorescent X-ray measurement, the object to be sorted is separated. The said resin film supply apparatus moves the position of the said resin film continuous in the shape of a strip | belt in the state from which the said measurement window was separated from the selection target object, The said conveyance means is driven, It is characterized by the above-mentioned. Item 12. The sorting apparatus according to item 11.
[13] 前記榭脂フィルム供給装置は、前記榭脂フィルムの搬送方向における前記測定窓 の下流側で該榭脂フィルムがロール状に巻き取られる位置の上流側に、榭脂フィル ムに付着した選別対象物を剥離するスクレーパーを備えることを特徴とする請求項 1 2に記載の選別装置。 [13] The resin film supply device adheres to the resin film on the upstream side of the position where the resin film is wound in a roll shape on the downstream side of the measurement window in the conveyance direction of the resin film. 13. The sorting apparatus according to claim 12, further comprising a scraper that peels off the sorting object.
[14] 前記榭脂フィルムが、ポリ塩化ビニル、ポリエチレン、ポリエステル、ポリイミドの 、ず れかであることを特徴とする、請求項 11から請求項 13までのいずれかに記載の選別 装置。  [14] The sorting device according to any one of [11] to [13], wherein the resin film is any one of polyvinyl chloride, polyethylene, polyester, and polyimide.
PCT/JP2007/063682 2006-11-08 2007-07-09 Sorting device WO2008056465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501099A JP4138865B2 (en) 2006-11-08 2007-07-09 Sorting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-302737 2006-11-08
JP2006302737 2006-11-08

Publications (1)

Publication Number Publication Date
WO2008056465A1 true WO2008056465A1 (en) 2008-05-15

Family

ID=39364291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063682 WO2008056465A1 (en) 2006-11-08 2007-07-09 Sorting device

Country Status (3)

Country Link
JP (1) JP4138865B2 (en)
TW (1) TW200821054A (en)
WO (1) WO2008056465A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085118A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Method and apparatus for continuously analyzing cement raw material
WO2013006567A1 (en) * 2011-07-05 2013-01-10 Mba Polymers, Inc. Method for separation of plastic meterials derived from electronics shredder residue
JP2013137250A (en) * 2011-12-28 2013-07-11 Pan Pacific Copper Co Ltd Sample acquisition device and sample acquisition method
JP2014200723A (en) * 2013-04-03 2014-10-27 Jfeスチール株式会社 Separation method and separation device of ferromagnetic body
JP2014224783A (en) * 2013-05-17 2014-12-04 川崎重工業株式会社 Radioactivity measurement system and processing system for incineration ash
WO2014198488A1 (en) * 2013-06-14 2014-12-18 Siemens Aktiengesellschaft Method and device for separating primary ore containing rare earths
WO2015090334A1 (en) * 2013-12-20 2015-06-25 Flsmidth A/S Method and system for conveying a feed of high adhesion solids
CN105478373A (en) * 2016-01-28 2016-04-13 北矿机电科技有限责任公司 Ore intelligent sorting control system based on ray transmission recognition
JP2016168562A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Selection method of used refractory, and selector of used refractory
CN108067443A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and ore method for separating
CN108067439A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and its sorting plant and ore picking method
CN108067435A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and its transmitting device and ore transmission method
CN108067442A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore detection method, detection device and the ore screening installation with detection device
KR101898224B1 (en) * 2018-08-02 2018-09-12 케이씨코트렐 주식회사 Container type Coal Ash Transfer System
CN109100197A (en) * 2018-11-02 2018-12-28 江苏新锐环境监测有限公司 A kind of Soil K+adsorption conveying screening plant
DE102018133387A1 (en) 2018-12-21 2020-06-25 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
CN113458005A (en) * 2021-06-11 2021-10-01 安徽理工大学 Coal gangue X-ray identification system based on pure mineral simulation
WO2023198664A1 (en) * 2022-04-12 2023-10-19 Omya International Ag Automated belt sampler for sorting out impurities, method and use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060612A1 (en) 2009-11-18 2011-05-26 山东天能电力科技有限公司 Automatic separator for impurities contained in raw coal
CN108126911B (en) * 2017-12-30 2018-12-07 扬州海纳尔液压设备有限公司 A kind of garbage classification equipment
JP7192457B2 (en) * 2018-12-07 2022-12-20 井関農機株式会社 Rice husk sorter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144582U (en) * 1979-04-03 1980-10-17
JPS61132324U (en) * 1985-02-08 1986-08-18
JPH01156120U (en) * 1988-04-21 1989-10-26
JP2003166956A (en) * 2001-11-30 2003-06-13 Sumitomo Metal Mining Co Ltd Soil-screening apparatus and method
JP2003311216A (en) * 2002-04-25 2003-11-05 Sumitomo Metal Ind Ltd Method for sorting grain size of raw material and sorter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144582U (en) * 1979-04-03 1980-10-17
JPS61132324U (en) * 1985-02-08 1986-08-18
JPH01156120U (en) * 1988-04-21 1989-10-26
JP2003166956A (en) * 2001-11-30 2003-06-13 Sumitomo Metal Mining Co Ltd Soil-screening apparatus and method
JP2003311216A (en) * 2002-04-25 2003-11-05 Sumitomo Metal Ind Ltd Method for sorting grain size of raw material and sorter

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085118A (en) * 2008-09-29 2010-04-15 Mitsubishi Materials Corp Method and apparatus for continuously analyzing cement raw material
WO2013006567A1 (en) * 2011-07-05 2013-01-10 Mba Polymers, Inc. Method for separation of plastic meterials derived from electronics shredder residue
US8899422B2 (en) 2011-07-05 2014-12-02 Mba Polymers, Inc. Methods, systems, and devices for enrichment of plastic materials derived from electronics shredder residue
JP2013137250A (en) * 2011-12-28 2013-07-11 Pan Pacific Copper Co Ltd Sample acquisition device and sample acquisition method
JP2014200723A (en) * 2013-04-03 2014-10-27 Jfeスチール株式会社 Separation method and separation device of ferromagnetic body
JP2014224783A (en) * 2013-05-17 2014-12-04 川崎重工業株式会社 Radioactivity measurement system and processing system for incineration ash
WO2014198488A1 (en) * 2013-06-14 2014-12-18 Siemens Aktiengesellschaft Method and device for separating primary ore containing rare earths
WO2015090334A1 (en) * 2013-12-20 2015-06-25 Flsmidth A/S Method and system for conveying a feed of high adhesion solids
JP2016168562A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Selection method of used refractory, and selector of used refractory
CN105478373A (en) * 2016-01-28 2016-04-13 北矿机电科技有限责任公司 Ore intelligent sorting control system based on ray transmission recognition
CN108067443A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and ore method for separating
CN108067439A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and its sorting plant and ore picking method
CN108067435A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore screening installation and its transmitting device and ore transmission method
CN108067442A (en) * 2016-11-18 2018-05-25 浙江力拓机电科技有限公司 Ore detection method, detection device and the ore screening installation with detection device
KR101898224B1 (en) * 2018-08-02 2018-09-12 케이씨코트렐 주식회사 Container type Coal Ash Transfer System
CN109100197A (en) * 2018-11-02 2018-12-28 江苏新锐环境监测有限公司 A kind of Soil K+adsorption conveying screening plant
DE102018133387A1 (en) 2018-12-21 2020-06-25 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
DE102018133387B4 (en) 2018-12-21 2024-04-11 Leibniz-Institut für Photonische Technologien e. V. SPECIFIC NANOPARTICLE SORTER AND METHOD FOR SORTING NANOPARTICLES
CN113458005A (en) * 2021-06-11 2021-10-01 安徽理工大学 Coal gangue X-ray identification system based on pure mineral simulation
WO2023198664A1 (en) * 2022-04-12 2023-10-19 Omya International Ag Automated belt sampler for sorting out impurities, method and use

Also Published As

Publication number Publication date
JPWO2008056465A1 (en) 2010-02-25
TW200821054A (en) 2008-05-16
JP4138865B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4138865B2 (en) Sorting device
WO2008065793A1 (en) Specific element detecting apparatus
US8517177B2 (en) Systems and methods for recovering materials from soil
JP3698255B2 (en) Soil sorting device and soil sorting method
CN108855587B (en) Construction waste screening and separating method
JP2009512552A (en) Dissimilar material classification processing system and apparatus
JP5979357B2 (en) Rubble sorting system and rubble sorting method
US11278914B2 (en) Method for sorting soil
AU744012B2 (en) Process for separating radioactive and hazardous metal contaminants from soils
JP2011098297A (en) Device and method of sorting soil, and soil cleaning facilities
KR101952538B1 (en) Crushing plant system for manufacturing construction materials
US7780011B2 (en) Mobile metal reclamation soil processing apparatus and related methods
JP2024506688A (en) Plant and method for sorting scrap
EP0170301A2 (en) A method and an apparatus for processing domestic refuse
JP2009180636A (en) Separation apparatus, separating method and method for manufacturing material
KR20050031104A (en) A dividing equipment of waste aggregate for reuse
JP3088954B2 (en) Reactor fuel pellet sorting equipment
KR100971723B1 (en) Waste separation system
JPH11253833A (en) Separation of contaminant and washing device
CN212215829U (en) Building rubbish soil prosthetic devices
JP6552172B2 (en) Contaminant supply device and contaminant separation device
CN1556668A (en) Method and installation for irradiating bulk material
JP6464590B2 (en) Contaminant purification system
CN107175197A (en) Building waste screening is except the pretreatment method of soil
CN208427374U (en) Mineralized waste separation system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008501099

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07790503

Country of ref document: EP

Kind code of ref document: A1