JP3059403B2 - X-ray analysis method and apparatus - Google Patents

X-ray analysis method and apparatus

Info

Publication number
JP3059403B2
JP3059403B2 JP9193649A JP19364997A JP3059403B2 JP 3059403 B2 JP3059403 B2 JP 3059403B2 JP 9193649 A JP9193649 A JP 9193649A JP 19364997 A JP19364997 A JP 19364997A JP 3059403 B2 JP3059403 B2 JP 3059403B2
Authority
JP
Japan
Prior art keywords
sample
virtual
intensity
component
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9193649A
Other languages
Japanese (ja)
Other versions
JPH1082749A (en
Inventor
由行 片岡
衛一 古澤
繁生 鎌田
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP9193649A priority Critical patent/JP3059403B2/en
Publication of JPH1082749A publication Critical patent/JPH1082749A/en
Application granted granted Critical
Publication of JP3059403B2 publication Critical patent/JP3059403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主要成分の蛍光X
線の強度と、散乱X線の強度との強度比による検量線を
用いて、分析対象試料における主要成分の含有率を求め
るX線分析方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X
The present invention relates to an X-ray analysis method and apparatus for determining the content of a main component in a sample to be analyzed using a calibration curve based on an intensity ratio between the intensity of the X-ray and the intensity of the scattered X-ray.

【0002】[0002]

【従来の技術】鉱物試料における主成分である金属、例
えば鉄鉱石における鉄の含有率を求める方法として、組
成が既知の標準試料について、鉄の蛍光X線の強度と鉄
の含有率との相関関係を検量線としてあらかじめ求めて
おき、分析対象試料から発生する鉄の蛍光X線の強度に
この検量線を適用して、分析対象試料における鉄の含有
率を求めるX線分析方法がある。ここで、単に鉄の蛍光
X線の強度による検量線を用いるよりも、鉄の蛍光X線
の強度と、同時に発生するコンプトン散乱線等の散乱X
線の強度との強度比による検量線を用いる方が、試料で
ある鉄鉱石に含まれる共存元素による鉄の蛍光X線の吸
収の影響を少なくできることが知られている。なお、検
量線とは、グラフ化されたものに限らず、式で表された
ものをも含む。
2. Description of the Related Art As a method for determining the content of metal as a main component in a mineral sample, for example, iron ore, a correlation between the intensity of fluorescent X-rays of iron and the iron content of a standard sample having a known composition is known. There is an X-ray analysis method in which the relationship is obtained in advance as a calibration curve, and the calibration curve is applied to the intensity of the fluorescent X-rays of iron generated from the sample to be analyzed to determine the iron content in the sample to be analyzed. Here, rather than simply using a calibration curve based on the intensity of the fluorescent X-rays of iron, the intensity of the fluorescent X-rays of iron and the scatter X
It is known that the use of a calibration curve based on the intensity ratio with respect to the intensity of the line can reduce the influence of absorption of fluorescent X-rays of iron by coexisting elements contained in the iron ore as a sample. Note that the calibration curve is not limited to a graph, but also includes a graph represented by an equation.

【0003】さらにこの影響を少なくして正確な分析を
行うべく、蛍光X線の吸収に関する補正係数を用いて補
正した検量線を適用する分析方法がある。ここで、鉄に
ついての検量線と共存成分についての検量線の繰り返し
計算により、分析対象試料における鉄の含有率および共
存成分の含有率が求められるのであるが、共存成分につ
いての検量線は、共存元素から発生する蛍光X線の強度
そのものによる検量線であり、補正係数には公知の理論
値が用いられる。一方、鉄についての検量線は、前述し
たように鉄の蛍光X線と散乱X線との強度比による検量
線であり、用いるべき補正係数として適切な理論値が知
られておらず、多数の鉄鉱石である標準試料について測
定算出した鉄の蛍光X線と散乱X線との強度比と、各標
準試料の既知である組成とから、重回帰計算法で求めて
いる。
[0003] In order to further reduce the influence and perform accurate analysis, there is an analysis method in which a calibration curve corrected using a correction coefficient relating to the absorption of fluorescent X-rays is applied. Here, by repeatedly calculating the calibration curve for iron and the calibration curve for coexisting components, the content of iron and the content of coexisting components in the sample to be analyzed are obtained. This is a calibration curve based on the intensity of the fluorescent X-ray generated from the element itself, and a known theoretical value is used as the correction coefficient. On the other hand, the calibration curve for iron is a calibration curve based on the intensity ratio between the fluorescent X-rays and the scattered X-rays of iron as described above, and an appropriate theoretical value is not known as a correction coefficient to be used. It is obtained by a multiple regression calculation method from the intensity ratio between the fluorescent X-rays and the scattered X-rays of iron measured and calculated for the iron ore standard sample and the known composition of each standard sample.

【0004】[0004]

【発明が解決しようとする課題】ところが、鉱物試料に
おいては、各試料間で組成に一定の傾向がある場合が多
く、組成がランダムに変化した標準試料を用意すること
は困難である。したがって、そのような組成の近似した
標準試料から重回帰計算法で求められる補正係数も信頼
性の低いものとなり、正確な分析ができない。
However, in mineral samples, the composition tends to be constant among the samples in many cases, and it is difficult to prepare a standard sample whose composition changes randomly. Therefore, the correction coefficient obtained by the multiple regression calculation method from a standard sample having such an approximate composition becomes low in reliability, and accurate analysis cannot be performed.

【0005】本発明は前記従来の問題に鑑みてなされた
もので、主要成分の蛍光X線の強度と、散乱X線の強度
との強度比による検量線を用いて、分析対象試料におけ
る主要成分の含有率を求めるX線分析方法および装置に
おいて、現実の標準試料を用いずに信頼性の高い補正係
数が求められ、正確な分析ができる方法および装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and uses the calibration curve based on the intensity ratio of the intensity of the fluorescent X-ray of the main component to the intensity of the scattered X-ray to obtain the main component in the sample to be analyzed. An object of the present invention is to provide an X-ray analysis method and an apparatus for determining the content ratio of, in which a highly reliable correction coefficient is obtained without using an actual standard sample, and an accurate analysis is possible.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の方法では、まず、分析対象試料を、蛍光
X線と散乱X線との強度比による検量線を求める主要成
分と、共存成分とからなるものと仮定して、共存成分の
主要成分に対する吸収に関する補正係数を、分析対象試
料の組成を仮定して理論計算により算出する。そして、
分析対象試料から測定算出した強度比に、補正係数を用
いた検量線を適用し、分析対象試料における主要成分の
含有率を求める。
In order to achieve the above object, according to the method of the first aspect, a sample to be analyzed is first analyzed by using a main component for obtaining a calibration curve based on an intensity ratio between fluorescent X-rays and scattered X-rays. And a coexisting component, and a correction coefficient for the absorption of the coexisting component with respect to the main component is calculated by theoretical calculation assuming the composition of the sample to be analyzed. And
A calibration curve using a correction coefficient is applied to the intensity ratio measured and calculated from the sample to be analyzed to determine the content of the main component in the sample to be analyzed.

【0007】請求項1の方法によれば、標準試料の組成
を仮定して理論的に補正係数を求めるので、現実の標準
試料を用いずに信頼性の高い補正係数が求められ、分析
対象試料における主要成分の含有率を正確に求めること
ができる。
According to the first aspect of the present invention, since the correction coefficient is theoretically obtained by assuming the composition of the standard sample, a highly reliable correction coefficient is obtained without using the actual standard sample, and the analysis target sample is obtained. Can be accurately determined.

【0008】請求項2の装置は、まず、試料が固定され
る試料台と、試料に1次X線を照射するX線源と、試料
から発生する蛍光X線および散乱X線の強度を測定する
検出手段とを備えている。また、組成が既知で相異なる
複数の標準試料について、1次X線を照射したときに標
準試料中の主要成分から発生する蛍光X線の強度と標準
試料から発生する散乱X線の強度との強度比からあらか
じめ求められた、それら強度比と標準試料における主要
成分の含有率との相関関係を検量線として記憶する検量
線記憶手段を備えている。
According to a second aspect of the present invention, a sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, and the intensity of fluorescent X-rays and scattered X-rays generated from the sample are measured. Detection means for performing the detection. Further, for a plurality of standard samples having different compositions, the intensity of the fluorescent X-ray generated from the main component in the standard sample and the intensity of the scattered X-ray generated from the standard sample when the primary X-ray is irradiated are described. There is provided a calibration curve storage means for storing, as a calibration curve, a correlation between the intensity ratio and the content of the main component in the standard sample, which is obtained in advance from the intensity ratio.

【0009】ここで、分析対象試料を、蛍光X線と散乱
X線との強度比による検量線を求める主要成分と、共存
成分とからなるものと仮定する。この装置は、そのよう
に仮定された分析対象試料について、共存成分の主要成
分に対する吸収に関する補正係数を、仮定された分析対
象試料の組成に基づいて理論計算により算出して記憶す
る補正手段を備えている。
Here, it is assumed that the sample to be analyzed is composed of a main component for obtaining a calibration curve based on an intensity ratio between fluorescent X-rays and scattered X-rays, and a coexisting component. This apparatus is provided with correction means for calculating and storing a correction coefficient relating to absorption of the coexisting component to the main component by theoretical calculation based on the assumed composition of the analysis target sample for the analysis target sample thus assumed. ing.

【0010】また、この装置は、前記分析対象試料に、
前記X線源から1次X線を照射させ、分析対象試料中の
主要成分から発生する蛍光X線の強度と分析対象試料か
ら発生する散乱X線の強度とを前記検出手段に測定さ
せ、両強度の比を算出して記憶する測定手段と、前記測
定手段に記憶された強度比に、前記補正手段に記憶され
た補正係数を用いて前記検量線記憶手段に記憶された検
量線を適用し、分析対象試料における主要成分の含有率
を求める含有率算出手段とを備えている。請求項2の装
置によれば、前記請求項1の方法と同様の作用効果があ
る。
[0010] In addition, the apparatus includes:
Irradiating primary X-rays from the X-ray source, and causing the detection means to measure the intensity of fluorescent X-rays generated from main components in the sample to be analyzed and the intensity of scattered X-rays generated from the sample to be analyzed. Measuring means for calculating and storing the intensity ratio, and applying the calibration curve stored in the calibration curve storing means to the intensity ratio stored in the measuring means using the correction coefficient stored in the correcting means. Content calculating means for determining the content of the main component in the sample to be analyzed. According to the device of the second aspect, the same operation and effect as those of the method of the first aspect are obtained.

【0011】請求項3の方法では、まず、分析対象試料
を、蛍光X線と散乱X線との強度比による検量線を求め
る主要成分と、共存成分とからなるものと仮定して、共
存成分のうち1つをベース成分として指定し、他の共存
成分を加補正成分とし、その分析対象試料として代表的
な組成を有する第1仮想試料と、第1仮想試料と比較し
主要成分およびベース成分の含有率のみが一定量だけ異
なる第2仮想試料とを仮定し、第1および第2仮想試料
から発生する主要成分の蛍光X線と散乱X線の理論強度
の比と、第1および第2仮想試料における主要成分の含
有率との相関関係を仮想検量線として求める。
In the method according to the third aspect, it is assumed that the sample to be analyzed is composed of a main component for obtaining a calibration curve based on an intensity ratio of the fluorescent X-ray and the scattered X-ray and a coexisting component. One of which is designated as a base component, the other coexisting component is a correction component, and a first virtual sample having a typical composition as a sample to be analyzed, a main component and a base component are compared with the first virtual sample. Is assumed to be a second virtual sample that differs only by a certain amount, and the ratio of the theoretical intensity of the fluorescent X-ray and the scattered X-ray of the main component generated from the first and second virtual samples to the first and second The correlation with the content of the main component in the virtual sample is determined as a virtual calibration curve.

【0012】次に、第1仮想試料と比較し1つの加補正
成分およびベース成分の含有率のみが一定量だけ異なる
第3仮想試料を加補正成分ごとに仮定し、第3仮想試料
から発生する主要成分の蛍光X線と散乱X線の理論強度
の比と仮想検量線とから、代表的な組成を基準として補
正する仮想補正係数を算出する。さらに、その仮想補正
係数から、主要成分およびベース成分のみからなる組成
を基準として補正する基準補正係数を算出する。そし
て、分析対象試料から測定算出した強度比に、基準補正
係数を用いた検量線を適用し、分析対象試料における主
要成分の含有率を求める。
Next, a third virtual sample which differs from the first virtual sample by a certain amount in only the content of one additive component and the base component by a fixed amount is assumed for each additive component, and is generated from the third virtual sample. From the ratio of the theoretical intensity of the fluorescent X-ray and the scattered X-ray of the main component and the virtual calibration curve, a virtual correction coefficient for correcting based on the representative composition is calculated. Further, from the virtual correction coefficient, a reference correction coefficient for correcting based on a composition consisting of only the main component and the base component is calculated. Then, a calibration curve using a reference correction coefficient is applied to the intensity ratio measured and calculated from the sample to be analyzed, and the content of the main component in the sample to be analyzed is obtained.

【0013】請求項3の方法によれば、標準試料の組成
を分析対象試料として代表的な組成に仮定して理論的に
補正係数を求めるので、分析対象試料における主要成分
の含有率をより正確に求めることができる。
According to the third aspect of the present invention, since the correction coefficient is theoretically determined by assuming the composition of the standard sample as a typical composition as the sample to be analyzed, the content of the main component in the sample to be analyzed can be more accurately determined. Can be sought.

【0014】請求項4の方法では、請求項3の方法にお
いて、主要成分を複数とし、各主要成分について、他の
主要成分を加補正成分に含めて前記仮想補正係数を算出
し、その仮想補正係数から前記基準補正係数を算出す
る。
According to a fourth aspect of the present invention, in the method of the third aspect, a plurality of main components are set, and for each main component, the other main component is included in an additional correction component to calculate the virtual correction coefficient. The reference correction coefficient is calculated from the coefficient.

【0015】請求項4の方法によれば、請求項3の方法
において、蛍光X線と散乱X線との強度比による検量線
を求める主要成分を複数として、各主要成分について理
論的に補正係数を求めるので、分析対象試料における主
要成分の含有率をよりいっそう正確に求めることができ
る。
According to a fourth aspect of the present invention, in the method of the third aspect, a plurality of main components for obtaining a calibration curve based on an intensity ratio between the fluorescent X-rays and the scattered X-rays are provided, and a correction coefficient is theoretically calculated for each main component. Is determined, the content of the main component in the sample to be analyzed can be determined more accurately.

【0016】請求項5の装置は、まず、前記請求項2の
装置と同様に、試料台と、X線源と、検出手段と、検量
線記憶手段とを備えている。ここで、分析対象試料を、
蛍光X線と散乱X線との強度比による検量線を求める主
要成分と、共存成分とからなるものと仮定して、共存成
分のうち1つをベース成分として指定し、他の共存成分
を加補正成分とし、その分析対象試料として代表的な組
成を有する第1仮想試料を仮定する。
An apparatus according to a fifth aspect of the present invention includes a sample stage, an X-ray source, a detecting means, and a calibration curve storing means, as in the apparatus according to the second aspect. Here, the sample to be analyzed is
Assuming that a main component for obtaining a calibration curve based on the intensity ratio of fluorescent X-rays and scattered X-rays and a coexisting component, one of the coexisting components is designated as a base component, and the other coexisting components are added. A first virtual sample having a typical composition as a sample to be analyzed is assumed as a correction component.

【0017】この装置は、第1仮想試料について、その
仮定された組成に基づいて、第1仮想試料中の主要成分
から発生する蛍光X線の理論強度と、第1仮想試料から
発生する散乱X線の理論強度とを計算し、両強度の比を
算出して第1仮想強度比とし、前記第1仮想試料と比較
し主要成分およびベース成分の含有率のみが一定量だけ
異なる第2仮想試料を仮定し、その仮定した組成に基づ
いて、第2仮想試料中の主要成分から発生する蛍光X線
の理論強度と、第2仮想試料から発生する散乱X線の理
論強度とを計算し、両強度の比を算出して第2仮想強度
比とし、前記第1および第2仮想強度比と第1および第
2仮想試料における主要成分の含有率との相関関係を仮
想検量線として求めて記憶する仮想検量線作成手段を備
えている。
According to this apparatus, the theoretical intensity of the fluorescent X-ray generated from the main component in the first virtual sample and the scattered X-ray generated from the first virtual sample are determined based on the assumed composition. The first virtual intensity ratio is calculated by calculating the theoretical intensity of the line and the ratio of both intensities, and the second virtual sample is different from the first virtual sample only in the content of the main component and the base component by a certain amount. Is calculated, and based on the assumed composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the second virtual sample and the theoretical intensity of the scattered X-ray generated from the second virtual sample are calculated. The intensity ratio is calculated as a second virtual intensity ratio, and the correlation between the first and second virtual intensity ratios and the contents of the main components in the first and second virtual samples is obtained and stored as a virtual calibration curve. A virtual calibration curve creating means is provided.

【0018】さらに、この装置は、前記第1仮想試料と
比較し1つの加補正成分およびベース成分の含有率のみ
が一定量だけ異なる第3仮想試料を加補正成分ごとに仮
定し、その仮定した組成に基づいて、第3仮想試料中の
主要成分から発生する蛍光X線の理論強度と、第3仮想
試料から発生する散乱X線の理論強度とを計算し、両強
度の比を算出して第3仮想強度比とし、その第3仮想強
度比に前記仮想検量線作成手段に記憶された仮想検量線
を適用して、第3仮想試料における主要成分の含有率を
求め、その求めた第3仮想試料における主要成分の含有
率を、前記第1仮想試料における主要成分の含有率に一
致させるように、前記代表的な組成を基準として補正す
る仮想補正係数を加補正成分ごとに算出し、その仮想補
正係数から、主要成分およびベース成分のみからなる組
成を基準として補正する基準補正係数を算出して記憶す
る基準補正係数算出手段を備えている。
Further, the apparatus assumes a third virtual sample for each of the additive components, which differs from the first virtual sample only in the content of one additive component and the base component by a fixed amount. Based on the composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the third virtual sample and the theoretical intensity of the scattered X-ray generated from the third virtual sample are calculated, and the ratio between the two intensities is calculated. The third virtual intensity ratio is used. The virtual calibration curve stored in the virtual calibration curve creating means is applied to the third virtual intensity ratio to determine the content of the main component in the third virtual sample. In order to match the content of the main component in the virtual sample with the content of the main component in the first virtual sample, a virtual correction coefficient for correcting based on the representative composition is calculated for each additive component, From the virtual correction factor, Min and only composition comprising a base component by calculating a reference correction coefficient for correcting a reference and a reference correction coefficient calculation means for storing.

【0019】さらにまた、前記分析対象試料に、前記X
線源から1次X線を照射させ、分析対象試料中の主要成
分から発生する蛍光X線の強度と分析対象試料から発生
する散乱X線の強度とを前記検出手段に測定させ、両強
度の比を算出して記憶する測定手段と、前記測定手段に
記憶された強度比に、前記基準補正係数算出手段に記憶
された基準補正係数を用いて前記検量線記憶手段に記憶
された検量線を適用し、分析対象試料における主要成分
の含有率を求める含有率算出手段とを備えている。請求
項5の装置によれば、前記請求項3の方法と同様の作用
効果がある。
Furthermore, the sample to be analyzed may further include the X
A primary X-ray is irradiated from a radiation source, and the detection means measures the intensity of fluorescent X-rays generated from the main component in the sample to be analyzed and the intensity of scattered X-rays generated from the sample to be analyzed. Measuring means for calculating and storing the ratio, and for the intensity ratio stored in the measuring means, the calibration curve stored in the calibration curve storing means using the reference correction coefficient stored in the reference correction coefficient calculating means. And a content calculating means for calculating the content of the main component in the sample to be analyzed. According to the apparatus of the fifth aspect, the same operation and effect as those of the method of the third aspect are obtained.

【0020】請求項6の装置は、請求項5の装置におい
て、主要成分が複数であって、前記基準補正係数算出手
段が、各主要成分について、他の主要成分を加補正成分
に含めて前記仮想補正係数を算出し、その仮想補正係数
から前記基準補正係数を算出するものである。請求項6
の装置によれば、前記請求項4の方法と同様の作用効果
がある。
According to a sixth aspect of the present invention, in the apparatus of the fifth aspect, wherein the main component includes a plurality of main components, and the reference correction coefficient calculating means includes, for each main component, another main component included in an additional correction component. A virtual correction coefficient is calculated, and the reference correction coefficient is calculated from the virtual correction coefficient. Claim 6
According to the device of the fourth aspect, the same operation and effect as those of the method of the fourth aspect are obtained.

【0021】請求項7の方法では、まず、分析対象試料
を、蛍光X線と散乱X線との強度比による検量線を求め
る主要成分と、共存成分とからなるものと仮定して、共
存成分のうち1つをベース成分として指定し、他の共存
成分を加補正成分とし、主要成分とベース成分とからな
る組成を有する第1仮想試料と、第1仮想試料と比較し
主要成分およびベース成分の含有率が一定量だけ異なる
第2仮想試料とを仮定し、第1および第2仮想試料から
発生する主要成分の蛍光X線と散乱X線の理論強度の比
と、第1および第2仮想試料における主要成分の含有率
との相関関係を仮想検量線として求める。
In the method according to the seventh aspect, it is assumed that the sample to be analyzed is composed of a main component for obtaining a calibration curve based on an intensity ratio of the fluorescent X-ray and the scattered X-ray and a coexisting component. Is designated as a base component, the other coexisting component is an additional component, a first virtual sample having a composition consisting of a main component and a base component, and a main component and a base component compared with the first virtual sample. Is assumed to be different from the second virtual sample by a certain amount, the ratio of the theoretical intensity of the fluorescent X-ray and the scattered X-ray of the main component generated from the first and second virtual samples to the first and second virtual samples The correlation with the content of the main component in the sample is determined as a virtual calibration curve.

【0022】次に、第1仮想試料と比較し1つの加補正
成分およびベース成分の含有率のみが一定量だけ異なる
第3仮想試料を加補正成分ごとに仮定し、第3仮想試料
から発生する主要成分の蛍光X線と散乱X線の理論強度
の比と仮想検量線とから、補正係数を算出する。そし
て、分析対象試料から測定算出した強度比に、補正係数
を用いた検量線を適用し、分析対象試料における主要成
分の含有率を求める。
Next, as compared with the first virtual sample, a third virtual sample in which only the contents of one additive component and the base component differ by a fixed amount is assumed for each additive component, and is generated from the third virtual sample. A correction coefficient is calculated from the ratio of the theoretical intensity of the fluorescent X-ray and the scattered X-ray of the main component and the virtual calibration curve. Then, a calibration curve using a correction coefficient is applied to the intensity ratio measured and calculated from the sample to be analyzed to determine the content of the main component in the sample to be analyzed.

【0023】請求項7の方法によれば、分析対象試料と
しての代表的な組成ではなく、主要成分とベース成分と
からなる組成を仮定してこれに基づいて理論的に直接に
補正係数を求めるので、請求項1の方法による作用効果
をより簡便に得ることができる。
According to the method of the present invention, a correction coefficient is theoretically directly obtained based on the assumption of a composition consisting of a main component and a base component instead of a typical composition as a sample to be analyzed. Therefore, the function and effect of the method of claim 1 can be more easily obtained.

【0024】請求項8の方法では、請求項7の方法にお
いて、主要成分を複数とし、各主要成分について、他の
主要成分を加補正成分に含めて前記補正係数を算出す
る。
According to an eighth aspect of the present invention, in the method of the seventh aspect, a plurality of main components are used, and for each main component, the other main component is included in an additional correction component to calculate the correction coefficient.

【0025】請求項8の方法によれば、請求項7の方法
において、蛍光X線と散乱X線との強度比による検量線
を求める主要成分を複数として、各主要成分について理
論的に補正係数を求めるので、分析対象試料における主
要成分の含有率をより正確に求めることができる。
According to the method of claim 8, in the method of claim 7, a plurality of main components for obtaining a calibration curve based on the intensity ratio between the fluorescent X-rays and the scattered X-rays are provided, and a correction coefficient is theoretically calculated for each main component. Is determined, the content of the main component in the sample to be analyzed can be determined more accurately.

【0026】請求項9の装置は、まず、前記請求項2の
装置と同様に、試料台と、X線源と、検出手段と、検量
線記憶手段とを備えている。ここで、分析対象試料を、
蛍光X線と散乱X線との強度比による検量線を求める主
要成分と、共存成分とからなるものと仮定して、共存成
分のうち1つをベース成分として指定し、他の共存成分
を加補正成分とし、主要成分とベース成分からなる第1
仮想試料を仮定する。
An apparatus according to a ninth aspect includes a sample stage, an X-ray source, detection means, and a calibration curve storage means, as in the apparatus according to the second aspect. Here, the sample to be analyzed is
Assuming that a main component for obtaining a calibration curve based on the intensity ratio of fluorescent X-rays and scattered X-rays and a coexisting component, one of the coexisting components is designated as a base component, and the other coexisting components are added. The first component consisting of a main component and a base component as a correction component
Assume a virtual sample.

【0027】この装置は、第1仮想試料について、その
仮定された組成に基づいて、第1仮想試料中の主要成分
から発生する蛍光X線の理論強度と、第1仮想試料から
発生する散乱X線の理論強度とを計算し、両強度の比を
算出して第1仮想強度比とし、前記第1仮想試料と比較
し主要成分およびベース成分の含有率が一定量だけ異な
る第2仮想試料を仮定し、その仮定した組成に基づい
て、第2仮想試料中の主要成分から発生する蛍光X線の
理論強度と、第2仮想試料から発生する散乱X線の理論
強度とを計算し、両強度の比を算出して第2仮想強度比
とし、前記第1および第2仮想強度比と第1および第2
仮想試料における主要成分の含有率との相関関係を仮想
検量線として求めて記憶する仮想検量線作成手段を備え
ている。
According to this apparatus, the theoretical intensity of the fluorescent X-ray generated from the main component in the first virtual sample and the scattered X-ray generated from the first virtual sample are determined based on the assumed composition. The theoretical intensity of the line is calculated, the ratio of the two intensities is calculated to be the first virtual intensity ratio, and the second virtual sample in which the contents of the main component and the base component differ by a fixed amount from the first virtual sample is calculated. Assuming, based on the assumed composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the second virtual sample and the theoretical intensity of the scattered X-ray generated from the second virtual sample are calculated. Is calculated as a second virtual intensity ratio, and the first and second virtual intensity ratios and the first and second virtual intensity ratios are calculated.
There is provided a virtual calibration curve creating means for obtaining and storing a correlation with the content of the main component in the virtual sample as a virtual calibration curve.

【0028】さらに、この装置は、前記第1仮想試料と
比較し1つの加補正成分およびベース成分の含有率のみ
が一定量だけ異なる第3仮想試料を加補正成分ごとに仮
定し、その仮定した組成に基づいて、第3仮想試料中の
主要成分から発生する蛍光X線の理論強度と、第3仮想
試料から発生する散乱X線の理論強度とを計算し、両強
度の比を算出して第3仮想強度比とし、その第3仮想強
度比に前記仮想検量線作成手段に記憶された仮想検量線
を適用して、第3仮想試料における主要成分の含有率を
求め、その求めた第3仮想試料における主要成分の含有
率を、前記第1仮想試料における主要成分の含有率に一
致させるように、補正する補正係数を加補正成分ごとに
算出して記憶する補正係数算出手段を備えている。
Further, in this apparatus, a third virtual sample in which only one additive component and a base component differ from the first virtual sample by a fixed amount is assumed for each additive component. Based on the composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the third virtual sample and the theoretical intensity of the scattered X-ray generated from the third virtual sample are calculated, and the ratio between the two intensities is calculated. The third virtual intensity ratio is used. The virtual calibration curve stored in the virtual calibration curve creating means is applied to the third virtual intensity ratio to determine the content of the main component in the third virtual sample. A correction coefficient calculating means is provided for calculating and storing a correction coefficient to be corrected for each additive component so that the content of the main component in the virtual sample matches the content of the main component in the first virtual sample. .

【0029】さらにまた、前記分析対象試料に、前記X
線源から1次X線を照射させ、分析対象試料中の主要成
分から発生する蛍光X線の強度と分析対象試料から発生
する散乱X線の強度とを前記検出手段に測定させ、両強
度の比を算出して記憶する測定手段と、前記測定手段に
記憶された強度比に、前記補正係数算出手段に記憶され
た補正係数を用いて前記検量線記憶手段に記憶された検
量線を適用し、分析対象試料における主要成分の含有率
を求める含有率算出手段とを備えている。請求項9の装
置によれば、前記請求項7の方法と同様の作用効果があ
る。
Further, the sample to be analyzed is provided with the X
A primary X-ray is irradiated from a radiation source, and the detection means measures the intensity of fluorescent X-rays generated from the main component in the sample to be analyzed and the intensity of scattered X-rays generated from the sample to be analyzed. Measuring means for calculating and storing the ratio, and applying the calibration curve stored in the calibration curve storing means to the intensity ratio stored in the measuring means, using the correction coefficient stored in the correction coefficient calculating means. Content calculating means for determining the content of the main component in the sample to be analyzed. According to the device of the ninth aspect, the same operation and effect as those of the method of the seventh aspect are obtained.

【0030】請求項10の装置は、請求項9の装置にお
いて、主要成分が複数であって、前記補正係数算出手段
が、各主要成分について、他の主要成分を加補正成分に
含めて前記補正係数を算出するものである。請求項10
の装置によれば、前記請求項8の方法と同様の作用効果
がある。
According to a tenth aspect of the present invention, in the device of the ninth aspect, there are a plurality of main components, and the correction coefficient calculating means includes, for each main component, another main component included in an additional correction component. A coefficient is calculated. Claim 10
According to this device, the same operation and effect as those of the method according to the eighth aspect are obtained.

【0031】[0031]

【発明の実施の形態】以下、本発明の第1実施形態の方
法について説明する。まず、この方法に用いる装置につ
いて、図1にしたがって説明する。この装置は、まず、
試料3,13が固定される試料台8と、試料3,13に
1次X線2を照射するX線源1と、試料3,13から発
生する蛍光X線6および散乱X線9の強度を測定する検
出手段10とを備えている。検出手段10は、試料3,
13から発生した2次X線4を分光する分光器5と、分
光器5で分光された蛍光X線6およびコンプトン散乱X
線6ごとにその強度を測定する検出器7からなる。ま
た、この装置は、組成が既知で相異なる複数の標準試料
13について、1次X線2を照射したときに標準試料1
3中の主要成分から発生する蛍光X線6の強度と標準試
料13から発生する散乱X線9の強度との強度比からあ
らかじめ求められた、それら強度比と標準試料13にお
ける主要成分の含有率との相関関係を検量線として記憶
する検量線記憶手段11を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method according to a first embodiment of the present invention will be described. First, an apparatus used in this method will be described with reference to FIG. This device, first,
A sample table 8 on which the samples 3 and 13 are fixed, an X-ray source 1 for irradiating the samples 3 and 13 with primary X-rays 2, and the intensity of fluorescent X-rays 6 and scattered X-rays 9 generated from the samples 3 and 13 And detection means 10 for measuring the The detection means 10 includes the sample 3,
A spectroscope 5 for dispersing the secondary X-rays 4 generated from the X-ray 13, a fluorescent X-ray 6 and a Compton scatter X
Each line 6 comprises a detector 7 for measuring its intensity. In addition, this apparatus is configured such that when a primary X-ray 2 is irradiated on a plurality of standard samples 13 having different compositions,
3, the intensity ratio of the fluorescent X-rays 6 generated from the main components and the intensity ratio of the scattered X-rays 9 generated from the standard sample 13 are determined in advance. And a calibration curve storage means 11 for storing the correlation with the calibration curve.

【0032】この装置は、以下の第1仮想強度比算出手
段13、第2仮想強度比算出手段14および相関関係作
成手段15を含む仮想検量線作成手段12を備えてい
る。ここで、操作者は、分析対象試料3を、蛍光X線6
と散乱X線9との強度比による検量線を求める主要成分
と、共存成分とからなるものと仮定して、共存成分のう
ち1つをベース成分として指定し、他の共存成分を加補
正成分とし、その分析対象試料3として代表的な組成を
有する第1仮想試料を仮定して仮想検量線作成手段12
に入力する。
This apparatus is provided with a virtual calibration curve creating means 12 including a first virtual intensity ratio calculating means 13, a second virtual intensity ratio calculating means 14, and a correlation creating means 15 described below. Here, the operator converts the sample 3 to be analyzed into fluorescent X-rays 6.
One of the coexisting components is designated as a base component, and the other coexisting components are added and corrected components, assuming that a main component for obtaining a calibration curve based on the intensity ratio of the scattered X-ray 9 and the coexisting components is specified. Assuming a first virtual sample having a typical composition as the sample 3 to be analyzed, the virtual calibration curve creating means 12
To enter.

【0033】第1仮想強度比算出手段13は、その第1
仮想試料について、仮定された組成に基づいて、第1仮
想試料中の主要成分から発生する蛍光X線の理論強度
と、第1仮想試料から発生する散乱X線の理論強度とを
計算し、両強度の比を算出して第1仮想強度比とする。
第2仮想強度比算出手段14は、前記第1仮想試料と比
較し主要成分およびベース成分の含有率のみが一定量だ
け異なる第2仮想試料を仮定し、その仮定した組成に基
づいて、第2仮想試料中の主要成分から発生する蛍光X
線の理論強度と、第2仮想試料から発生する散乱X線の
理論強度とを計算し、両強度の比を算出して第2仮想強
度比とする。相関関係作成手段15は、前記第1および
第2仮想強度比と第1および第2仮想試料における主要
成分の含有率との相関関係を仮想検量線として求めて記
憶する。
The first virtual intensity ratio calculating means 13 calculates the first
For the virtual sample, the theoretical intensity of fluorescent X-rays generated from the main components in the first virtual sample and the theoretical intensity of scattered X-rays generated from the first virtual sample are calculated based on the assumed composition. The ratio of the intensities is calculated and used as a first virtual intensity ratio.
The second imaginary intensity ratio calculating means 14 assumes a second imaginary sample in which only the contents of the main component and the base component differ by a fixed amount from the first imaginary sample, and based on the assumed composition, Fluorescence X generated from main components in virtual sample
The theoretical intensity of the X-rays and the theoretical intensity of the scattered X-rays generated from the second virtual sample are calculated, and the ratio between the two intensities is calculated as the second virtual intensity ratio. The correlation creating means 15 obtains and stores a correlation between the first and second virtual intensity ratios and the contents of the main components in the first and second virtual samples as a virtual calibration curve.

【0034】さらに、この装置は、以下の第3仮想強度
比算出手段17、仮想補正係数算出手段18および補正
係数変換手段19を含む基準補正係数算出手段16を備
えている。第3仮想強度比算出手段17は、前記第1仮
想試料と比較し1つの加補正成分およびベース成分の含
有率のみが一定量だけ異なる第3仮想試料を加補正成分
ごとに仮定し、その仮定した組成に基づいて、第3仮想
試料中の主要成分から発生する蛍光X線の理論強度と、
第3仮想試料から発生する散乱X線の理論強度とを計算
し、両強度の比を算出して第3仮想強度比とする。仮想
補正係数算出手段18は、その第3仮想強度比に前記仮
想検量線作成手段12に記憶された仮想検量線を適用し
て、第3仮想試料における主要成分の含有率を求め、そ
の求めた第3仮想試料における主要成分の含有率を、前
記第1仮想試料における主要成分の含有率に一致させる
ように、前記代表的な組成を基準として補正する仮想補
正係数を加補正成分ごとに算出する。補正係数変換手段
19は、その仮想補正係数から、主要成分およびベース
成分のみからなる組成を基準として補正する基準補正係
数を算出して記憶する。
Further, this apparatus is provided with a reference correction coefficient calculating means 16 including a third virtual intensity ratio calculating means 17, a virtual correction coefficient calculating means 18 and a correction coefficient converting means 19 described below. The third virtual intensity ratio calculating means 17 assumes, for each of the correction components, a third virtual sample in which only the content rates of the one correction component and the base component differ by a fixed amount from the first virtual sample. The theoretical intensity of the fluorescent X-rays generated from the main components in the third virtual sample based on the obtained composition,
The theoretical intensity of the scattered X-ray generated from the third virtual sample is calculated, and the ratio between the two is calculated as the third virtual intensity ratio. The virtual correction coefficient calculation means 18 applies the virtual calibration curve stored in the virtual calibration curve creation means 12 to the third virtual intensity ratio to determine the content of the main component in the third virtual sample, and determines the content. A virtual correction coefficient for correcting based on the representative composition is calculated for each additive component such that the content of the main component in the third virtual sample matches the content of the main component in the first virtual sample. . The correction coefficient conversion unit 19 calculates and stores, from the virtual correction coefficient, a reference correction coefficient for correcting based on a composition consisting of only the main component and the base component.

【0035】さらにまた、この装置は、以下の測定手段
20と含有率算出手段21とを備えている。測定手段2
0は、前記分析対象試料3に、前記X線源1から1次X
線2を照射させ、分析対象試料3中の主要成分から発生
する蛍光X線6の強度と分析対象試料3から発生する散
乱X線9の強度とを前記検出手段10に測定させ、両強
度の比を算出して記憶する。含有率算出手段21は、前
記測定手段20に記憶された強度比に、前記基準補正係
数算出手段16に記憶された基準補正係数を用いて前記
検量線記憶手段11に記憶された検量線を適用し、分析
対象試料3における主要成分の含有率を求める。
This apparatus further comprises the following measuring means 20 and content calculating means 21. Measuring means 2
0 indicates that the X-ray source 1
The sample 2 is irradiated with the X-ray 2 and the intensity of the fluorescent X-ray 6 generated from the main component in the sample 3 to be analyzed and the intensity of the scattered X-ray 9 generated from the sample 3 to be analyzed are measured by the detecting means 10. Calculate and store the ratio. The content rate calculation means 21 applies the calibration curve stored in the calibration curve storage means 11 to the intensity ratio stored in the measurement means 20 using the reference correction coefficient stored in the reference correction coefficient calculation means 16. Then, the content of the main component in the sample 3 to be analyzed is obtained.

【0036】なお、この装置においては、主要成分が複
数の場合には、前記基準補正係数算出手段16が、各主
要成分について、他の主要成分を加補正成分に含めて前
記仮想補正係数を算出し、その仮想補正係数から前記基
準補正係数を算出するものである。また、前記仮想検量
線作成手段12および前記基準補正係数算出手段16
は、この装置の補正手段23を構成している。さらに、
前記検量線記憶手段11、前記補正手段23、前記測定
手段20および前記含有率算出手段21は、この装置の
制御手段22を構成している。
In this apparatus, when there are a plurality of main components, the reference correction coefficient calculating means 16 calculates the virtual correction coefficient for each main component by including other main components in the additional correction component. Then, the reference correction coefficient is calculated from the virtual correction coefficient. The virtual calibration curve creating means 12 and the reference correction coefficient calculating means 16
Constitute the correction means 23 of this device. further,
The calibration curve storing means 11, the correcting means 23, the measuring means 20, and the content calculating means 21 constitute a control means 22 of the apparatus.

【0037】この装置を用いて、第1実施形態の方法で
は、以下のように、分析対象試料3における主要成分の
含有率を求める。分析対象試料3が鉄鉱石である場合を
例にとって説明する。まず、分析対象試料3を、試料台
8に取り付けて、測定手段20により、X線源1から発
生させた1次X線2を照射して、発生した2次X線4を
分光器5に入射させ、分光された蛍光X線6およびコン
プトン散乱X線6ごとにその強度を、検出器7で測定す
る。ここで、一般には、分析対象試料3に、主成分たる
金属元素や共存元素が、一形態の酸化物としてのみ含ま
れる場合には、酸化物として取扱いその含有率を分析
し、元素単体としてのみ含まれる場合には、元素単体と
して取扱いその含有率を分析する。本実施形態において
は、Fe O,Fe23 等異なる形態で鉄を含む鉄鉱石を
分析対象試料3として簡単に取り扱うために、主要成分
を鉄単体と仮定して鉄の含有率を分析する。具体的に
は、分析対象試料3を、鉄単体である主要成分と、共存
成分のうちの加補正成分すなわち二酸化珪素、酸化カル
シウム等と、共存成分のうちベース成分として指定する
残分すなわち酸素とからなるものと仮定する。
Using this apparatus, in the method of the first embodiment, the content of the main component in the sample 3 to be analyzed is obtained as follows. The case where the analysis target sample 3 is iron ore will be described as an example. First, the sample 3 to be analyzed is attached to the sample table 8, the primary X-rays 2 generated from the X-ray source 1 are irradiated by the measuring means 20, and the generated secondary X-rays 4 are applied to the spectroscope 5. The intensity of each of the incident fluorescent X-rays 6 and the Compton scattered X-rays 6 is measured by the detector 7. Here, in general, when a metal element or a coexisting element as a main component is contained only as an oxide in one form in the analysis target sample 3, it is treated as an oxide and its content is analyzed. If it is included, treat it as a single element and analyze its content. In the present embodiment, Fe O, to handle easily iron ore containing iron as the analysis sample 3 with Fe 2 O 3, etc. different forms, the major component assuming iron alone analyze the iron content . Specifically, the sample 3 to be analyzed is divided into a main component that is a simple substance of iron, an additive component among coexisting components, such as silicon dioxide and calcium oxide, and a residue specified as a base component among coexisting components, that is, oxygen. Suppose that

【0038】なお、本発明で主要成分とは、蛍光X線と
散乱X線との強度比による検量線を求めるものをいい、
加補正成分とは、蛍光X線による検量線を求めるものを
いい、その含有率の分析値は主要成分の分析値の補正に
用いられる。また、主要成分は、分析対象試料3におい
て、必ずしも1つとは限らず、例えば、本実施形態の方
法においては、酸化マンガンを加補正成分として取り扱
うが、蛍光X線と散乱X線との強度比による検量線を求
めて主要成分として取り扱う方が、全体として正確な分
析ができるのであれば、鉄以外に酸化マンガンをも主要
成分としてもよい。
In the present invention, the main component means a component for which a calibration curve is obtained based on the intensity ratio between fluorescent X-rays and scattered X-rays.
The additive component refers to a component for obtaining a calibration curve based on X-ray fluorescence, and the analysis value of the content is used to correct the analysis value of the main component. The main component is not always limited to one in the sample 3 to be analyzed. For example, in the method of the present embodiment, manganese oxide is treated as an additional component, but the intensity ratio between fluorescent X-rays and scattered X-rays is determined. If a calibration curve is obtained and treated as a main component, manganese oxide other than iron may be used as a main component as long as accurate analysis can be performed as a whole.

【0039】さて、鉄についての検量線(次式(1))
と鉄からみた共存元素iを含む加補正成分についての検
量線(次式(2))の繰り返し計算により、分析対象試
料3における鉄の含有率WFeおよび加補正成分の含有率
i が求められる。なお、式(2)にいう共存元素j
は、元素iからみた共存元素jであり、鉄も含まれる。
Now, a calibration curve for iron (formula (1))
And by repeated calculation of the calibration curve for pressure correction component containing coexisting elements i viewed from iron (equation (2)), the content W i of content W Fe and pressure correction component of iron in the analysis sample 3 is determined Can be Note that the coexisting element j in the formula (2)
Is a coexisting element j as viewed from the element i, and includes iron.

【0040】[0040]

【数1】 (Equation 1)

【0041】[0041]

【数2】 (Equation 2)

【0042】ここで、式(1)は鉄と酸素のみからなる
組成を基準とした検量線(以下、後述する仮想検量線と
区別するため、基準検量線という。)を表す式であり、
本実施形態の方法では検量線記憶手段11に記憶されて
おり、右辺の第1かっこ内の式は、その基準検量線によ
る未補正の鉄の含有率を示し、基準検量線定数a,b,
cを含んでいる。第2かっこ内の式は、鉄の蛍光X線6
の吸収に関する補正項であり、鉄と酸素のみからなる組
成を基準として補正する、共存元素jの鉄に対する基準
補正係数αj を含んでいる。従来の方法では、標準試料
13を測定して、基準検量線定数a,b,cと基準補正
定数αj のいずれも実験的に求めていた。本発明は、こ
の基準補正係数αj を、現実の標準試料13を用いず
に、標準試料を仮定して理論的に求める点に特徴があ
る。なお、式(1)において、簡単のため、αFej と表
記すべきところをαj と、aFe,bFe,cFeをa,b,
cと、添字Feを略して表記している。
Here, equation (1) is an equation representing a calibration curve based on a composition consisting only of iron and oxygen (hereinafter referred to as a reference calibration curve to distinguish it from a virtual calibration curve described later).
In the method of the present embodiment, the expression in the first parenthesis on the right side is stored in the calibration curve storage means 11, and indicates the uncorrected iron content by the reference calibration curve, and the reference calibration curve constants a, b, and
c. The expression in the second bracket is the fluorescent X-ray of iron 6
Is a correction term relating to absorption of iron, and includes a reference correction coefficient α j for iron of coexisting element j, which is corrected based on a composition consisting only of iron and oxygen. In the conventional method, the standard sample 13 was measured, and both the standard calibration curve constants a, b, and c and the standard correction constant α j were experimentally obtained. The present invention is characterized in that the reference correction coefficient α j is theoretically obtained on the assumption of a standard sample without using the actual standard sample 13. In Equation (1), for the sake of simplicity, what should be expressed as α Fej is α j , and a Fe , b Fe , and c Fe are a, b, and
c and the subscript Fe are abbreviated.

【0043】本実施形態の方法では、分析対象試料3で
ある鉄鉱石として代表的な組成を有して鉄の含有率がW
Fem である第1仮想試料を仮定し、仮想検量線作成手段
12により、その仮定した組成に基づいて、第1仮想試
料中の鉄から発生する蛍光X線の理論強度と、第1仮想
試料から発生するコンプトン散乱X線の理論強度とを計
算し、両強度の比を算出して第1仮想強度比T1Feとす
る。この理論強度の計算は、従来より、いわゆるファン
ダメンタルパラメータ法において行われているものであ
る。また、第1仮想試料と比較し、鉄の含有率が一定量
ΔWFeだけ多く、酸素の含有率がその分ΔWFeだけ少な
く、その他の含有率は変わらない第2仮想試料を仮定
し、その仮定した組成に基づいて、同様に第2仮想強度
T2Feを算出する。そして、第1および第2仮想強度
T1FeT2Feと、第1および第2仮想試料における
鉄の含有率WFem ,WFem +ΔWFeとの相関関係を、直
線である仮想検量線として、次式(3)の形で求める。
この仮想検量線は、代表的な組成を基準とするものであ
り、仮想検量線作成手段12により、求められ、記憶さ
れる。なお、添字T は仮想に基づく数値であることを意
味する。
In the method of the present embodiment, the iron ore as the sample 3 to be analyzed has a typical composition and the iron content is W
Assuming a first virtual sample which is a Fem , the virtual calibration curve creating means 12 calculates the theoretical intensity of the fluorescent X-rays generated from iron in the first virtual sample and the first virtual sample based on the assumed composition. The theoretical intensity of the generated Compton scattered X-rays is calculated, and the ratio between the two is calculated as a first virtual intensity ratio T1 IFe . The calculation of the theoretical strength has been conventionally performed by a so-called fundamental parameter method. Also, as compared with the first virtual sample, a second virtual sample is assumed in which the iron content is higher by a certain amount ΔW Fe , the oxygen content is lower by ΔW Fe by that amount, and the other contents are unchanged. Similarly, the second virtual intensity ratio T2 IFe is calculated based on the assumed composition. The correlation between the first and second virtual intensity ratios T1 IFe and T2 IFe and the iron contents W Fem and W Fem + ΔW Fe in the first and second virtual samples is represented by a straight line virtual calibration curve. In the form of the following equation (3).
This virtual calibration curve is based on a representative composition, and is obtained and stored by the virtual calibration curve creating means 12. Note that the subscript T means a numerical value based on a hypothesis.

【0044】[0044]

【数3】 (Equation 3)

【0045】さらに、基準補正係数算出手段16によ
り、第1仮想試料と比較し、1つの加補正成分たとえば
二酸化珪素の含有率が一定量ΔWSiだけ多く、酸素の含
有率がΔWSiだけ少なく、その他の含有率は変わらない
第3仮想試料を仮定し、その仮定した組成に基づいて、
前記と同様に第3仮想強度比T3Feを算出し、その第3
仮想強度比T3Feに前記仮想検量線すなわち式(3)を
適用して、第3仮想試料における鉄の含有率 TFeを求
める。第3仮想試料の鉄の含有率は、第1仮想試料と同
じ含有率で仮定しており、第3仮想試料は、加補正成分
において二酸化珪素のみΔWSiだけ多いことから、珪素
の鉄に対する仮想補正係数 TαSiを次式(4)から求め
る。このとき、WFe=WFem である。
Further, the reference correction coefficient calculating means 16 compares the first correction sample with the first virtual sample, so that the content of one additional correction component, for example, silicon dioxide, is larger by a certain amount ΔW Si and the content of oxygen is smaller by ΔW Si , Assuming a third virtual sample in which the other contents do not change, based on the assumed composition,
The third virtual intensity ratio T3 I Fe is calculated in the same manner as described above, and the third
The above-mentioned virtual calibration curve, that is, equation (3) is applied to the virtual intensity ratio T3 I Fe to determine the iron content T X Fe in the third virtual sample. The iron content of the third virtual sample is assumed to be the same as the iron content of the first virtual sample. Since the third virtual sample is larger in the additive component by only ΔW Si than silicon dioxide, the virtual content of silicon with respect to iron is The correction coefficient T α Si is obtained from the following equation (4). At this time, W Fe = W Fem .

【0046】[0046]

【数4】 (Equation 4)

【0047】同様にして、加補正成分ごとに、第3仮想
試料を仮定し、代表的な組成を基準として補正する、鉄
に対する仮想補正係数 Tαj を、次式(5)から求め
る。
[0047] Similarly, for each pressure correction component, assuming the third virtual samples, corrected on the basis of the typical composition, the virtual correction coefficient T alpha j to iron is obtained from the following equation (5).

【0048】[0048]

【数5】 (Equation 5)

【0049】なお、第3仮想試料における共存元素jを
含む加補正成分の含有率Wj は、第1仮想試料すなわち
代表的な組成における同成分の含有率Wjmとは、次式
(6)の関係にある。
It should be noted that the content W j of the additive component containing the coexisting element j in the third virtual sample is the same as the content W jm of the same component in the first virtual sample, that is, the representative composition, expressed by the following equation (6). In a relationship.

【0050】[0050]

【数6】 (Equation 6)

【0051】この式(6)を式(5)に代入すると、次
式(7)のように変形できる。
By substituting equation (6) into equation (5), the following equation (7) can be obtained.

【0052】[0052]

【数7】 (Equation 7)

【0053】ここで、式(7)の TFeと第1かっこの
積に注目し、式(5)と比較してみると、 TFeは、あ
る試料についての、代表的な組成を基準とする仮想検量
線による未補正の鉄の含有率であり、第1かっこ内の式
は、その試料が、代表的な組成よりも共存元素jを含む
加補正成分の含有率がWjmだけ少ない、すなわち加補正
成分を含まないものであり、それに応じた補正を加える
ことを意味している。つまり、この TFeと第1かっこ
の積は、鉄と酸素のみからなる試料の補正後の鉄の含有
率を表し、さらに換言すると、次式(8)に示すよう
に、加補正成分も含み得る分析対象試料3についての、
鉄と酸素のみからなる組成を基準とする基準検量線によ
る未補正の鉄の含有率XFeである。
Here, paying attention to the product of T x Fe of the formula (7) and the first parenthesis, and comparing it with the formula (5), the T x Fe is a typical composition of a certain sample. The uncorrected iron content based on the reference virtual calibration curve. The expression in the first parenthesis indicates that the sample has a content of the added component containing the coexisting element j which is smaller than the representative composition by W jm. It is small, that is, does not include an additional correction component, and means that a correction corresponding thereto is added. That is, the product of T x Fe and the first parenthesis represents the corrected iron content of the sample consisting of only iron and oxygen. In other words, as shown in the following equation (8), the additive component is also Regarding the sample 3 to be analyzed,
A composition consisting only of iron and oxygen, which is content X Fe iron uncorrected by the reference calibration curve as a reference.

【0054】[0054]

【数8】 (Equation 8)

【0055】したがって、このXFeは、次式(9)に示
すように、式(1)の右辺の第1かっこ内の式と同一で
ある。
Therefore, as shown in the following equation (9), X Fe is the same as the equation in the first parenthesis on the right side of equation (1).

【0056】[0056]

【数9】 (Equation 9)

【0057】また、式(7)と式(1)とはどちらも補
正後の鉄の含有率WFeを表すから、式(7)は、次式
(10)のように置くことによって、次式(11)のよ
うに変形できる。
Since both equations (7) and (1) represent the corrected iron content W Fe , equation (7) can be expressed by the following equation (10). It can be transformed as in equation (11).

【0058】[0058]

【数10】 (Equation 10)

【0059】[0059]

【数11】 [Equation 11]

【0060】すなわち、基準補正係数算出手段16によ
り、式(10)を用いて、鉄の蛍光X線6の吸収に関し
て、代表的な組成を基準として補正する仮想補正係数 T
αjおよび代表的な組成における加補正成分の含有率W
jmから、鉄および酸素のみからなる組成を基準として補
正する基準補正係数αj が求められ、記憶される。な
お、加補正成分についての検量線すなわち式(2)にお
ける補正係数αijには、前述した従来の方法と同様に、
公知の理論値が用いられる。また、前述したように、式
(1)における基準検量線定数a,b,cは、従来の方
法と同様に実験的に求められ、検量線記憶手段11に記
憶されている。式(2)における検量線定数ai
i ,ci も、同様に実験的に求められる。
That is, the virtual correction coefficient T for correcting the absorption of the fluorescent X-rays 6 of iron with reference to the representative composition by the reference correction coefficient calculating means 16 using equation (10).
α j and content W of additive component in typical composition
From jm , a reference correction coefficient α j for correcting based on a composition consisting of only iron and oxygen is obtained and stored. Note that the calibration curve for the additive component, that is, the correction coefficient α ij in the equation (2),
A known theoretical value is used. Further, as described above, the reference calibration curve constants a, b, and c in the equation (1) are experimentally obtained as in the conventional method, and are stored in the calibration curve storage unit 11. The calibration curve constants a i ,
b i and c i are similarly obtained experimentally.

【0061】したがって、鉄についての基準検量線(式
(1))と加補正成分についての検量線(式(2))が
表され、含有率算出手段21により、測定された鉄の蛍
光X線強度とコンプトン散乱X線強度との強度比I
Fe(測定手段20により算出、記憶されている)と、測
定された元素iの蛍光X線強度Ii とに、それぞれ式
(1)、式(2)を適用し、両式の繰り返し計算によ
り、分析対象試料3における鉄の含有率WFeおよび加補
正成分の含有率Wi が求められる。
Accordingly, a reference calibration curve (Equation (1)) for iron and a calibration curve (Equation (2)) for the correction component are expressed, and the fluorescent X-rays of iron measured by the content calculating means 21. Ratio I between intensity and Compton scattered X-ray intensity
Equations (1) and (2) are applied to Fe (calculated and stored by the measuring means 20) and the measured fluorescent X-ray intensity I i of the element i, respectively, and the two equations are repeatedly calculated. the content W i of content W Fe and pressure correction component of iron in the analysis sample 3 is obtained.

【0062】なお、例えば、酸化マンガンをも主要成分
として取り扱う場合には、基準補正係数算出手段16に
より、鉄および酸化マンガンの各主要成分について基準
補正係数αj を算出する。その際、他の主要成分を加補
正成分に含めて前記仮想補正係数 Tαj を算出する。す
なわち、酸化マンガンについて基準補正係数αMnj を算
出する際には、鉄も加補正成分と同様に取り扱い Tα
MnFeも含めて仮想補正係数 TαMnj を算出し、鉄につい
て基準補正係数αFej を算出する際には、酸化マンガン
も加補正成分と同様に取り扱って TαFeMnも含めて仮想
補正係数 TαFejを算出する。
For example, when manganese oxide is also treated as a main component, the reference correction coefficient calculating means 16 calculates a reference correction coefficient α j for each of the main components of iron and manganese oxide. At this time, the virtual correction coefficient T αj is calculated by including other main components in the additional correction component. That is, when calculating the reference correction coefficient α Mnj for manganese oxide, iron is treated in the same manner as the additional correction component, and T α
When calculating the virtual correction coefficient T α Mnj including MnFe and calculating the reference correction coefficient α Fej for iron, the manganese oxide is treated in the same manner as the additional correction component, and the virtual correction coefficient T α including T FeMn is also included. Calculate Fej .

【0063】この第1実施形態の方法により求められた
鉄鉱石における鉄の蛍光X線6の吸収についての基準補
正係数αj を、共存元素jを含む加補正成分ごとに次の
表1に示す。
The reference correction coefficient α j for the absorption of the fluorescent X-ray 6 of iron in the iron ore obtained by the method of the first embodiment is shown in the following Table 1 for each additional correction component including the coexisting element j. .

【0064】[0064]

【表1】 [Table 1]

【0065】さらに、鉄鉱石たる分析対象試料No.1
およびNo.2における鉄の含有率WFeについて、化学
分析による標準値、表1の基準補正係数αj による第1
実施形態の方法の分析値、重回帰計算法で求めた補正係
数による従来法の分析値を次の表2に示す。表2から、
第1実施形態の方法によれば、従来法に比べ、鉄の含有
率WFeがより正確に求められることが明らかである。
Further, the iron ore sample No. 1
And No. The iron content W Fe in Example 2 was determined based on the standard value obtained by chemical analysis and the first correction factor α j shown in Table 1.
Table 2 below shows the analysis values of the method of the embodiment and the analysis values of the conventional method based on the correction coefficients obtained by the multiple regression calculation method. From Table 2,
According to the method of the first embodiment, it is clear that the iron content W Fe can be determined more accurately than in the conventional method.

【0066】[0066]

【表2】 [Table 2]

【0067】このように、第1実施形態の方法によれ
ば、標準試料の組成を分析対象試料として代表的な組成
に仮定して理論的に基準補正係数αj を求めるので、現
実の標準試料を用いずに信頼性の高い基準補正係数αj
が求められ、各試料間3で組成に一定の傾向がある鉄鉱
石においても、鉄の含有率WFeを正確に求めることがで
きる。また、主要成分を複数とする場合には、各主要成
分について理論的に補正係数を求めるので、分析対象試
料3における主要成分の含有率をいっそう正確に求める
ことができる。
As described above, according to the method of the first embodiment, the standard correction coefficient α j is theoretically obtained by assuming the composition of the standard sample as a typical composition as a sample to be analyzed. A highly reliable reference correction coefficient α j without using
Is obtained, and the iron content W Fe can be accurately obtained even in an iron ore in which the composition tends to be constant among the samples 3. When a plurality of main components are used, the correction coefficient is theoretically obtained for each main component, so that the content of the main component in the analysis target sample 3 can be obtained more accurately.

【0068】次に、本発明の第2実施形態の方法につい
て説明する。まず、この方法に用いる装置について、図
2にしたがって説明する。この装置は、前記第1実施形
態の方法に用いる装置と比べると、仮定され入力される
第1仮想試料が、分析対象試料として代表的な組成を有
するのではなく、主要成分とベース成分からなる点と、
基準補正係数算出手段16(図1)に代えて、以下の補
正係数算出手段24を備える点でのみ異なっており、他
の点については同様であるので、相当する部分に同一番
号を付して説明を省略する。補正係数算出手段24は、
以下の第3仮想強度比算出手段17および補正係数演算
手段25を含んでいる。
Next, a method according to the second embodiment of the present invention will be described. First, an apparatus used in this method will be described with reference to FIG. In this apparatus, as compared with the apparatus used in the method of the first embodiment, the first virtual sample assumed and input does not have a typical composition as a sample to be analyzed, but includes a main component and a base component. Points and
The only difference is that the following correction coefficient calculating means 24 is provided in place of the reference correction coefficient calculating means 16 (FIG. 1), and the other points are the same. Description is omitted. The correction coefficient calculating means 24
It includes the following third virtual intensity ratio calculating means 17 and correction coefficient calculating means 25.

【0069】第3仮想強度比算出手段17は、前記第1
仮想試料と比較し1つの加補正成分およびベース成分の
含有率のみが一定量だけ異なる第3仮想試料を加補正成
分ごとに仮定し、その仮定した組成に基づいて、第3仮
想試料中の主要成分から発生する蛍光X線の理論強度
と、第3仮想試料から発生する散乱X線の理論強度とを
計算し、両強度の比を算出して第3仮想強度比とする。
補正係数演算手段25は、その第3仮想強度比に前記仮
想検量線作成手段12に記憶された仮想検量線を適用し
て、第3仮想試料における主要成分の含有率を求め、そ
の求めた第3仮想試料における主要成分の含有率を、前
記第1仮想試料における主要成分の含有率に一致させる
ように、補正する補正係数を加補正成分ごとに算出して
記憶する。
The third virtual intensity ratio calculating means 17 calculates the first virtual intensity ratio
Assuming a third virtual sample for each additive component in which only the content of one additive component and the base component differ from the virtual sample by a fixed amount, and based on the assumed composition, the third virtual sample in the third virtual sample The theoretical intensity of the fluorescent X-ray generated from the component and the theoretical intensity of the scattered X-ray generated from the third virtual sample are calculated, and the ratio between the two intensities is calculated as the third virtual intensity ratio.
The correction coefficient calculation means 25 applies the virtual calibration curve stored in the virtual calibration curve creation means 12 to the third virtual intensity ratio, determines the content of the main component in the third virtual sample, and A correction coefficient to be corrected is calculated and stored for each additive component so that the content of the main component in the three virtual samples matches the content of the main component in the first virtual sample.

【0070】なお、この装置においても、主要成分が複
数の場合には、前記補正係数算出手段24は、各主要成
分について、他の主要成分を加補正成分に含めて前記補
正係数を算出するものである。また、前記仮想検量線作
成手段12および前記補正係数算出手段24は、この装
置の補正手段26を構成している。さらに、前記検量線
記憶手段11、前記補正手段26、前記測定手段20お
よび前記含有率算出手段21は、この装置の制御手段2
7を構成している。
Also in this apparatus, when there are a plurality of main components, the correction coefficient calculating means 24 calculates the correction coefficients for each main component by including other main components in the additional correction components. It is. The virtual calibration curve creating means 12 and the correction coefficient calculating means 24 constitute a correcting means 26 of the apparatus. Further, the calibration curve storing means 11, the correcting means 26, the measuring means 20, and the content calculating means 21 are provided in the control means 2 of this apparatus.
7.

【0071】この装置を用いて、第2実施形態の方法で
は、以下のように、分析対象試料3における主要成分の
含有率を求める。やはり、分析対象試料3が鉄鉱石であ
る場合を例にとって説明する。分析対象試料3について
の蛍光X線6およびコンプトン散乱X線6の強度測定
や、主要成分、共存成分、加補正成分およびベース成分
(残分)の取扱いについては、第1実施形態の方法と同
様である。なお、第2実施形態の方法でも、前述の式
(1)を用いるが、後述するように、仮想補正係数と基
準補正係数の区別がない。
Using this apparatus, in the method of the second embodiment, the content of the main component in the sample 3 to be analyzed is obtained as follows. Again, the case where the analysis target sample 3 is iron ore will be described as an example. The intensity measurement of the fluorescent X-ray 6 and the Compton scattered X-ray 6 for the analysis target sample 3 and the handling of the main component, the coexisting component, the correction component, and the base component (residue) are the same as those in the first embodiment. It is. Although the above-described equation (1) is used in the method of the second embodiment, there is no distinction between the virtual correction coefficient and the reference correction coefficient, as described later.

【0072】第2実施形態の方法では、分析対象試料3
である鉄鉱石として鉄と酸素の2元系で鉄の含有率がW
Fem である第1仮想試料を仮定し、仮想検量線作成手段
12により、その仮定した組成に基づいて、第1仮想試
料中の鉄から発生する蛍光X線の理論強度と、第1仮想
試料から発生するコンプトン散乱X線の理論強度とを計
算し、両強度の比を算出して第1仮想強度比T1Feとす
る。この理論強度の計算は、従来より、いわゆるファン
ダメンタルパラメータ法において行われているものであ
る。また、第1仮想試料と比較し、鉄の含有率が一定量
ΔWFeだけ多く、酸素の含有率がその分ΔWFeだけ少な
い第2仮想試料を仮定し、その仮定した組成に基づい
て、同様に第2仮想強度比T2Feを算出する。そして、
第1および第2仮想強度比T1FeT2Feと、第1およ
び第2仮想試料における鉄の含有率WFem ,WFem +Δ
Feとの相関関係を、直線である仮想検量線として、前
式(3)の形で求める。第2実施形態の方法において
は、式(3)の TFeは、主要成分たる鉄とベース成分
たる酸素とからなる2元系の組成を基準とする仮想検量
線による未補正の鉄の含有率である。この仮想検量線
は、仮想検量線作成手段12により、求められ、記憶さ
れる。
In the method of the second embodiment, the analysis target sample 3
Iron ore is a binary system of iron and oxygen, and the iron content is W
Assuming a first virtual sample which is a Fem , the virtual calibration curve creating means 12 calculates the theoretical intensity of the fluorescent X-rays generated from iron in the first virtual sample and the first virtual sample based on the assumed composition. The theoretical intensity of the generated Compton scattered X-rays is calculated, and the ratio between the two is calculated as a first virtual intensity ratio T1 IFe . The calculation of the theoretical strength has been conventionally performed by a so-called fundamental parameter method. Further, as compared with the first virtual sample, a second virtual sample in which the iron content is higher by a certain amount ΔW Fe and the oxygen content is lower by ΔW Fe by that amount is assumed, and based on the assumed composition, Next , the second virtual intensity ratio T2 IFe is calculated. And
First and second virtual intensity ratio and T1 I Fe, T2 I Fe, the iron content in the first and second virtual sample W Fem, W Fem + Δ
The correlation with W Fe is determined in the form of equation (3) as a virtual calibration curve that is a straight line. In the method of the second embodiment, T x Fe in the formula (3) is an uncorrected iron content based on a virtual calibration curve based on a binary system composed of iron as a main component and oxygen as a base component. Rate. This virtual calibration curve is obtained and stored by the virtual calibration curve creating means 12.

【0073】さらに、補正係数算出手段24により、第
1仮想試料と比較して、1つの加補正成分たとえば二酸
化珪素が含有率において一定量ΔWSiだけ含まれ、酸素
の含有率がΔWSiだけ少なく、その他の含有率は変わら
ない第3仮想試料を仮定し、その仮定した組成に基づい
て、前記と同様に第3仮想強度比T3Feを算出し、その
第3仮想強度比T3Feに前記仮想検量線すなわち式
(3)を適用して、第3仮想試料における鉄の含有率 T
Feを求める。なお、第2実施形態の方法においては、
第1仮想試料は、加補正成分を全く含まないから、前記
一定量ΔWSiは、二酸化珪素に関して、第3仮想試料の
含有率そのものであると同時に、第1仮想試料の含有率
との差でもある。第3仮想試料の鉄の含有率は、第1仮
想試料と同じ含有率で仮定しており、第3仮想試料は、
加補正成分において二酸化珪素のみがΔWSiだけ含まれ
ていることから、珪素の鉄に対する仮想補正係数 TαSi
を前式(4)から求める。このとき、WFe=WFem であ
る。
[0073] Further, the correction coefficient calculating unit 24, as compared with the first virtual samples, one pressure correction component for example silicon dioxide contains predetermined amount [Delta] W Si in content, the content of oxygen is only [Delta] W Si less , assuming a third virtual samples unchanged other content, based on the assumed composition, third calculating a virtual intensity ratio T3 I Fe in the same manner as described above, in the third virtual intensity ratio T3 I Fe Applying the virtual calibration curve, ie, equation (3), the iron content T in the third virtual sample
Find X Fe . In the method of the second embodiment,
Since the first virtual sample does not contain any additive component, the constant amount ΔW Si is the content itself of the third virtual sample with respect to silicon dioxide, and at the same time, the difference from the content of the first virtual sample. is there. The iron content of the third virtual sample is assumed to be the same as that of the first virtual sample.
Since only silicon dioxide is included in the additive component only in ΔW Si, a virtual correction coefficient T α Si
Is obtained from the above equation (4). At this time, W Fe = W Fem .

【0074】同様にして、加補正成分ごとに、第3仮想
試料を仮定し、鉄に対する補正係数αj を、前式(5)
Tαj として求める。なお、第2実施形態の方法にお
いては、式(5)のΔWj も、共存元素jを含む加補正
成分に関して、第3仮想試料の含有率そのものであると
同時に、第1仮想試料の含有率との差でもある。すなわ
ち、補正係数算出手段24により、補正係数αj が求め
られ、記憶される。以降、含有率算出手段21により、
分析対象試料3における鉄の含有率WFeおよび加補正成
分の含有率Wi が求められるまでの手順は、第1実施形
態の方法と同様である。このように、第2実施形態の方
法では、分析対象試料3である鉄鉱石として、鉄と酸素
の2元系である第1、第2仮想試料を仮定して、簡便に
求めた補正係数αj を、実際の分析対象試料3に適用す
る検量線すなわち式(1)に直接用いる。第2実施形態
の方法によれば、分析対象試料3としての代表的な組成
ではなく、主要成分とベース成分とからなる組成を仮定
してこれに基づいて理論的に直接に補正係数αj を求め
るので、第1実施形態の方法に近似した作用効果をより
簡便に得ることができる。
Similarly, assuming a third virtual sample for each additive component, the correction coefficient α j for iron is calculated by the equation (5)
As T α j . In the method according to the second embodiment, ΔW j in the equation (5) is the content itself of the third virtual sample with respect to the additive component including the coexisting element j, and at the same time, the content ratio of the first virtual sample. It is also the difference. That is, the correction coefficient α j is obtained and stored by the correction coefficient calculation means 24. Thereafter, by the content rate calculating means 21,
Procedure to content W i of content W Fe and pressure correction component of iron in the analysis sample 3 is required is the same as the method of the first embodiment. As described above, in the method of the second embodiment, as the iron ore that is the analysis target sample 3, the first and second virtual samples that are binary systems of iron and oxygen are assumed, and the correction coefficient α that is easily obtained is used. j is directly used in the calibration curve applied to the actual sample 3 to be analyzed, that is, the equation (1). According to the method of the second embodiment, the correction coefficient α j is theoretically directly directly based on the composition of the main component and the base component on the assumption of the composition consisting of the main component and the base component instead of the typical composition as the sample 3 to be analyzed. Since it is obtained, an operation effect similar to the method of the first embodiment can be obtained more easily.

【0075】なお、例えば、酸化マンガンをも主要成分
として取り扱う場合には、補正係数算出手段24によ
り、鉄および酸化マンガンの各主要成分について補正係
数αjを算出する。その際、他の主要成分を加補正成分
に含めて補正係数αj を算出する。すなわち、酸化マン
ガンについて補正係数αMnj を算出する際には、鉄も加
補正成分と同様に取り扱いαMnFeも含めて補正係数α
Mnj を算出し、鉄について補正係数αFej を算出する際
には、酸化マンガンも加補正成分と同様に取り扱ってα
FeMnも含めて補正係数αFej を算出する。このように、
主要成分を複数とする場合には、各主要成分について理
論的に補正係数αj を求めるので、分析対象試料3にお
ける主要成分の含有率をより正確に求めることができ
る。
For example, when manganese oxide is also handled as a main component, the correction coefficient calculating means 24 calculates a correction coefficient α j for each of the main components of iron and manganese oxide. At this time, the correction coefficient α j is calculated by including the other main components in the additive component. That is, when calculating the correction coefficient alpha Mnj for manganese oxide, iron also including handling alpha MnFe like the pressure correction component correction coefficient alpha
When calculating Mnj and calculating the correction coefficient α Fej for iron, manganese oxide is treated in the same manner as the correction component and α
The correction coefficient α Fej is calculated including FeMn . in this way,
When there are a plurality of main components, the correction coefficient α j is theoretically obtained for each main component, so that the content of the main component in the analysis target sample 3 can be obtained more accurately.

【0076】なお、第1、第2の実施形態の方法では、
Fe O,Fe23 等異なる形態で鉄を含む鉄鉱石を分析
対象試料3としたため、鉄単体を主要成分とし、共存成
分のうち残分となる酸素をベース成分とし、他の共存成
分(二酸化珪素、酸化カルシウム等)を加補正成分とし
たが、例えば、Cu Oのみの形態で銅を含む銅鉱石が分
析対象試料3である場合には、残分となる成分はない
が、酸化第2銅(Cu O)を主要成分とし、共存成分の
うち二酸化珪素をベース成分とし、他の共存成分を加補
正成分とすればよい。この場合は、ベース成分である二
酸化珪素も、加補正成分と同様に検量線(式(2))で
分析される。また、本発明は、鉄鉱石や銅精鉱等の鉱物
試料に限らず、広い対象に適用できるものである。
Note that, in the methods of the first and second embodiments,
Fe O, due to the analysis sample 3 iron ore containing iron Fe 2 O 3, etc. different forms, the elementary iron as a main component, oxygen which is a residue of the coexisting components based components, other coexisting components ( Although silicon dioxide, calcium oxide, etc.) were used as correction components, for example, when the copper ore containing copper in the form of CuO alone is the sample 3 to be analyzed, there is no residual component, but Copper (CuO) may be used as the main component, silicon dioxide among the coexisting components may be used as the base component, and the other coexisting components may be used as the correction component. In this case, the base component, silicon dioxide, is also analyzed by the calibration curve (Equation (2)), similarly to the correction component. The present invention is not limited to mineral samples such as iron ore and copper concentrate, and can be applied to a wide range of objects.

【0077】[0077]

【発明の効果】以上詳細に説明したように、請求項1ま
たは2の発明によれば、標準試料の組成を仮定して理論
的に補正係数を求めるので、現実の標準試料を用いずに
信頼性の高い補正係数が求められ、分析対象試料におけ
る主要成分の含有率を正確に求めることができる。
As described above in detail, according to the first or second aspect of the present invention, since the correction coefficient is theoretically obtained by assuming the composition of the standard sample, the reliability can be obtained without using the actual standard sample. Thus, a highly-correctable correction coefficient is determined, and the content of the main component in the sample to be analyzed can be accurately determined.

【0078】また、請求項3または5の発明によれば、
標準試料の組成を分析対象試料として代表的な組成に仮
定して理論的に補正係数を求めるので、分析対象試料に
おける主要成分の含有率をより正確に求めることができ
る。
According to the third or fifth aspect of the present invention,
Since the correction coefficient is theoretically determined by assuming the composition of the standard sample as a typical composition as the sample to be analyzed, the content of the main component in the sample to be analyzed can be determined more accurately.

【0079】さらに、請求項4または6の発明によれ
ば、請求項3または5の発明において、蛍光X線と散乱
X線との強度比による検量線を求める主要成分を複数と
して、各主要成分について理論的に補正係数を求めるの
で、分析対象試料における主要成分の含有率をよりいっ
そう正確に求めることができる。
Further, according to the invention of claim 4 or 6, in the invention of claim 3 or 5, a plurality of main components for obtaining a calibration curve based on an intensity ratio between fluorescent X-rays and scattered X-rays are set, and Since the correction coefficient is theoretically determined for, the content of the main component in the sample to be analyzed can be determined more accurately.

【0080】さらにまた、請求項7または9の発明によ
れば、分析対象試料としての代表的な組成ではなく、主
要成分とベース成分とからなる組成を仮定してこれに基
づいて理論的に直接に補正係数を求めるので、請求項1
または2の発明による作用効果をより簡便に得ることが
できる。
Furthermore, according to the invention of claim 7 or 9, instead of a typical composition as a sample to be analyzed, a composition consisting of a main component and a base component is assumed, and theoretically directly based on the composition. Claim 1
Alternatively, the function and effect according to the second aspect of the invention can be more easily obtained.

【0081】さらにまた、請求項8または10の発明に
よれば、請求項7または9の発明において、蛍光X線と
散乱X線との強度比による検量線を求める主要成分を複
数として、各主要成分について理論的に補正係数を求め
るので、分析対象試料における主要成分の含有率をより
正確に求めることができる。
Further, according to the invention of claim 8 or 10, in the invention of claim 7 or 9, each of the main components for obtaining a calibration curve based on the intensity ratio between the fluorescent X-ray and the scattered X-ray is plural, and Since the correction coefficient is theoretically determined for the component, the content of the main component in the sample to be analyzed can be determined more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の方法に用いるX線分析
装置を示す正面図である。
FIG. 1 is a front view showing an X-ray analyzer used for a method according to a first embodiment of the present invention.

【図2】本発明の第2実施形態の方法に用いるX線分析
装置を示す正面図である。
FIG. 2 is a front view showing an X-ray analyzer used for a method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線源、2…1次X線、3…分析対象試料、6…蛍
光X線、8…試料台、9…散乱X線、10…検出手段、
11…検量線記憶手段、12…仮想検量線作成手段、1
3…標準試料、16…基準補正係数算出手段、20…測
定手段、21…含有率算出手段、23,26…補正手
段、24…補正係数算出手段。
DESCRIPTION OF SYMBOLS 1 ... X-ray source, 2 ... primary X-ray, 3 ... sample to be analyzed, 6 ... fluorescent X-ray, 8 ... sample stage, 9 ... scattered X-ray, 10 ... detection means,
11: calibration curve storage means, 12: virtual calibration curve creation means, 1
3 ... standard sample, 16 ... reference correction coefficient calculation means, 20 ... measurement means, 21 ... content rate calculation means, 23, 26 ... correction means, 24 ... correction coefficient calculation means.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−306168(JP,A) 特開 平9−269305(JP,A) 越智寛友他、「けい光X線分析法によ るガラスの分析−鉛ガラスにおける共存 元素補正−」、島津評論、1981、Vo l.38,No.1,p13−19 (58)調査した分野(Int.Cl.7,DB名) G01N 23/22 - 23/227 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-306168 (JP, A) JP-A-9-269305 (JP, A) Hirotomo Ochi et al., "Glass by X-ray fluorescence analysis" Of Shimadzu -Correction of coexisting elements in lead glass- ", Shimadzu review, 1981, Vol. 38, No. 1, p13-19 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 23/22-23/227 JICST file (JOIS)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成が既知で相異なる複数の標準試料に
1次X線を照射して、標準試料中の主要成分から発生す
る蛍光X線の強度と、標準試料から発生する散乱X線の
強度とを測定し、両強度の比を算出し、 それら強度比と標準試料における主要成分の含有率との
相関関係を検量線としてあらかじめ求めておき、 分析対象試料に1次X線を照射して、分析対象試料中の
主要成分から発生する蛍光X線の強度と、分析対象試料
から発生する散乱X線の強度とを測定し、両強度の比を
算出し、 その強度比に前記検量線を適用して、分析対象試料にお
ける主要成分の含有率を求めるX線分析方法において、 分析対象試料を、前記蛍光X線と散乱X線との強度比に
よる検量線を求める主要成分と、共存成分とからなるも
のと仮定し、 共存成分の主要成分に対する吸収に関する補正係数を、
分析対象試料の組成を仮定して理論計算により算出し、 前記分析対象試料から測定算出した強度比に、前記補正
係数を用いた検量線を適用し、分析対象試料における主
要成分の含有率を求めることを特徴とするX線分析方
法。
1. A method of irradiating primary X-rays to a plurality of standard samples having different compositions and having different compositions, the intensity of fluorescent X-rays generated from main components in the standard sample and the intensity of scattered X-rays generated from the standard sample. Measure the intensity and calculate the ratio of the two intensities, determine the correlation between the intensity ratio and the content of the main component in the standard sample in advance as a calibration curve, and irradiate the sample to be analyzed with primary X-rays. Then, the intensity of the fluorescent X-rays generated from the main components in the sample to be analyzed and the intensity of the scattered X-rays generated from the sample to be analyzed are measured, and the ratio between the two intensities is calculated. An X-ray analysis method for determining the content of a main component in a sample to be analyzed by applying the method, wherein the sample to be analyzed is a main component for obtaining a calibration curve based on an intensity ratio between the fluorescent X-ray and the scattered X-ray; Assuming that The correction factor for the absorption of minute,
Calculate by theoretical calculation assuming the composition of the sample to be analyzed, apply a calibration curve using the correction coefficient to the intensity ratio measured and calculated from the sample to be analyzed, and determine the content of the main component in the sample to be analyzed. An X-ray analysis method comprising:
【請求項2】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線および散乱X線の強度を測定
する検出手段と、 組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の主要成分から発生する
蛍光X線の強度と標準試料から発生する散乱X線の強度
との強度比からあらかじめ求められた、それら強度比と
標準試料における主要成分の含有率との相関関係を検量
線として記憶する検量線記憶手段と、 蛍光X線と散乱X線との強度比による検量線を求める主
要成分と、共存成分とからなると仮定された分析対象試
料について、共存成分の主要成分に対する吸収に関する
補正係数を、仮定された分析対象試料の組成に基づいて
理論計算により算出して記憶する補正手段と、 前記分析対象試料に、前記X線源から1次X線を照射さ
せ、分析対象試料中の主要成分から発生する蛍光X線の
強度と分析対象試料から発生する散乱X線の強度とを前
記検出手段に測定させ、両強度の比を算出して記憶する
測定手段と、 前記測定手段に記憶された強度比に、前記補正手段に記
憶された補正係数を用いて前記検量線記憶手段に記憶さ
れた検量線を適用し、分析対象試料における主要成分の
含有率を求める含有率算出手段とを備えたX線分析装
置。
2. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays and scattered X-rays generated from the sample, For a plurality of known and different standard samples, the primary X
The ratio of the intensity of the fluorescent X-rays generated from the main components in the standard sample to the intensity of the scattered X-rays generated from the standard sample when irradiated with the X-rays is calculated in advance. Curve storage means for storing the correlation with the content of the sample as a calibration curve, a main component for obtaining a calibration curve based on the intensity ratio of fluorescent X-rays and scattered X-rays, and an analysis target sample assumed to comprise coexisting components Correction means for calculating and storing a correction coefficient relating to absorption of a main component of a coexisting component to a main component by theoretical calculation based on an assumed composition of a sample to be analyzed; X-rays are irradiated, and the detection means measures the intensity of fluorescent X-rays generated from the main components in the sample to be analyzed and the intensity of scattered X-rays generated from the sample to be analyzed, and calculates the ratio between the two intensities. Applying the calibration curve stored in the calibration curve storage means using the correction coefficient stored in the correction means to the intensity ratio stored in the measurement means, An X-ray analysis apparatus comprising: a content calculation unit for determining a content of a component.
【請求項3】 組成が既知で相異なる複数の標準試料に
1次X線を照射して、標準試料中の主要成分から発生す
る蛍光X線の強度と、標準試料から発生する散乱X線の
強度とを測定し、両強度の比を算出し、 それら強度比と標準試料における主要成分の含有率との
相関関係を検量線としてあらかじめ求めておき、 分析対象試料に1次X線を照射して、分析対象試料中の
主要成分から発生する蛍光X線の強度と、分析対象試料
から発生する散乱X線の強度とを測定し、両強度の比を
算出し、 その強度比に前記検量線を適用して、分析対象試料にお
ける主要成分の含有率を求めるX線分析方法において、 分析対象試料を、前記蛍光X線と散乱X線との強度比に
よる検量線を求める主要成分と、共存成分とからなるも
のと仮定し、 共存成分のうち1つをベース成分として指定し、他の共
存成分を加補正成分とし、 その分析対象試料として代表的な組成を有する第1仮想
試料を仮定し、その仮定した組成に基づいて、第1仮想
試料中の主要成分から発生する蛍光X線の理論強度と、
第1仮想試料から発生する散乱X線の理論強度とを計算
し、両強度の比を算出して第1仮想強度比とし、 第1仮想試料と比較し主要成分およびベース成分の含有
率のみが一定量だけ異なる第2仮想試料を仮定し、その
仮定した組成に基づいて、第2仮想試料中の主要成分か
ら発生する蛍光X線の理論強度と、第2仮想試料から発
生する散乱X線の理論強度とを計算し、両強度の比を算
出して第2仮想強度比とし、 第1および第2仮想強度比と第1および第2仮想試料に
おける主要成分の含有率との相関関係を仮想検量線とし
て求め、 第1仮想試料と比較し1つの加補正成分およびベース成
分の含有率のみが一定量だけ異なる第3仮想試料を加補
正成分ごとに仮定し、その仮定した組成に基づいて、第
3仮想試料中の主要成分から発生する蛍光X線の理論強
度と、第3仮想試料から発生する散乱X線の理論強度と
を計算し、両強度の比を算出して第3仮想強度比とし、 その第3仮想強度比に前記仮想検量線を適用して、第3
仮想試料における主要成分の含有率を求め、 その求めた第3仮想試料における主要成分の含有率を、
前記第1仮想試料における主要成分の含有率に一致させ
るように、前記代表的な組成を基準として補正する仮想
補正係数を加補正成分ごとに算出し、 その仮想補正係数から、主要成分およびベース成分のみ
からなる組成を基準として補正する基準補正係数を算出
し、 前記分析対象試料から測定算出した強度比に、前記基準
補正係数を用いた検量線を適用し、分析対象試料におけ
る主要成分の含有率を求めることを特徴とするX線分析
方法。
3. A method of irradiating primary X-rays to a plurality of standard samples having different compositions and different in intensity, the intensity of fluorescent X-rays generated from main components in the standard sample and the intensity of scattered X-rays generated from the standard sample. Measure the intensity and calculate the ratio of the two intensities, determine the correlation between the intensity ratio and the content of the main component in the standard sample in advance as a calibration curve, and irradiate the sample to be analyzed with primary X-rays. Then, the intensity of the fluorescent X-rays generated from the main components in the sample to be analyzed and the intensity of the scattered X-rays generated from the sample to be analyzed are measured, and the ratio between the two intensities is calculated. An X-ray analysis method for determining the content of a main component in a sample to be analyzed by applying the method, wherein the sample to be analyzed is a main component for obtaining a calibration curve based on an intensity ratio between the fluorescent X-ray and the scattered X-ray; Assuming that One as a base component, the other coexisting component as an additive component, and assuming a first virtual sample having a typical composition as a sample to be analyzed, based on the assumed composition, Theoretical intensity of fluorescent X-rays generated from the main components of
The theoretical intensity of the scattered X-rays generated from the first virtual sample is calculated, and the ratio of the two intensities is calculated as the first virtual intensity ratio. Compared with the first virtual sample, only the content of the main component and the base component is reduced. Assuming a second virtual sample that differs by a certain amount, based on the assumed composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the second virtual sample and the scattered X-ray generated from the second virtual sample are calculated. The theoretical intensity is calculated, and the ratio of the two intensities is calculated as a second virtual intensity ratio. The correlation between the first and second virtual intensity ratios and the contents of the main components in the first and second virtual samples is virtually calculated. Determined as a calibration curve, a third virtual sample in which only one additive component and a base component differ from the first virtual sample by a fixed amount for each additive component is assumed, and based on the assumed composition, Fireflies generated from main components in the third virtual sample The theoretical intensity of X-rays and the theoretical intensity of scattered X-rays generated from the third virtual sample are calculated, and the ratio between the two intensities is calculated as a third virtual intensity ratio. Apply a line to the third
The content of the main component in the virtual sample is obtained, and the content of the main component in the obtained third virtual sample is calculated as
A virtual correction coefficient to be corrected based on the representative composition is calculated for each additive component so as to match the content of the main component in the first virtual sample, and a main component and a base component are calculated from the virtual correction coefficient. A reference correction coefficient for correcting based on the composition consisting of only the components is calculated, and a calibration curve using the reference correction coefficient is applied to the intensity ratio measured and calculated from the sample to be analyzed, and the content of the main component in the sample to be analyzed. X-ray analysis method, characterized in that:
【請求項4】 請求項3において、 主要成分が複数であって、 各主要成分について、他の主要成分を加補正成分に含め
て前記仮想補正係数を算出し、その仮想補正係数から前
記基準補正係数を算出するX線分析方法。
4. The virtual correction coefficient according to claim 3, wherein a plurality of main components are included, and for each main component, the virtual correction coefficient is calculated by including another main component in an additional correction component. X-ray analysis method for calculating coefficients.
【請求項5】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線および散乱X線の強度を測定
する検出手段と、 組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の主要成分から発生する
蛍光X線の強度と標準試料から発生する散乱X線の強度
との強度比からあらかじめ求められた、それら強度比と
標準試料における主要成分の含有率との相関関係を検量
線として記憶する検量線記憶手段と、 蛍光X線と散乱X線との強度比による検量線を求める主
要成分と、共存成分とからなると仮定された分析対象試
料であって、共存成分のうち1つがベース成分として指
定され、他の共存成分が加補正成分とされ、その分析対
象試料として代表的な組成を有すると仮定された第1仮
想試料について、その仮定された組成に基づいて、第1
仮想試料中の主要成分から発生する蛍光X線の理論強度
と、第1仮想試料から発生する散乱X線の理論強度とを
計算し、両強度の比を算出して第1仮想強度比とし、前
記第1仮想試料と比較し主要成分およびベース成分の含
有率のみが一定量だけ異なる第2仮想試料を仮定し、そ
の仮定した組成に基づいて、第2仮想試料中の主要成分
から発生する蛍光X線の理論強度と、第2仮想試料から
発生する散乱X線の理論強度とを計算し、両強度の比を
算出して第2仮想強度比とし、前記第1および第2仮想
強度比と第1および第2仮想試料における主要成分の含
有率との相関関係を仮想検量線として求めて記憶する仮
想検量線作成手段と、 前記第1仮想試料と比較し1つの加補正成分およびベー
ス成分の含有率のみが一定量だけ異なる第3仮想試料を
加補正成分ごとに仮定し、その仮定した組成に基づい
て、第3仮想試料中の主要成分から発生する蛍光X線の
理論強度と、第3仮想試料から発生する散乱X線の理論
強度とを計算し、両強度の比を算出して第3仮想強度比
とし、その第3仮想強度比に前記仮想検量線作成手段に
記憶された仮想検量線を適用して、第3仮想試料におけ
る主要成分の含有率を求め、その求めた第3仮想試料に
おける主要成分の含有率を、前記第1仮想試料における
主要成分の含有率に一致させるように、前記代表的な組
成を基準として補正する仮想補正係数を加補正成分ごと
に算出し、その仮想補正係数から、主要成分およびベー
ス成分のみからなる組成を基準として補正する基準補正
係数を算出して記憶する基準補正係数算出手段と、 前記分析対象試料に、前記X線源から1次X線を照射さ
せ、分析対象試料中の主要成分から発生する蛍光X線の
強度と分析対象試料から発生する散乱X線の強度とを前
記検出手段に測定させ、両強度の比を算出して記憶する
測定手段と、 前記測定手段に記憶された強度比に、前記基準補正係数
算出手段に記憶された基準補正係数を用いて前記検量線
記憶手段に記憶された検量線を適用し、分析対象試料に
おける主要成分の含有率を求める含有率算出手段とを備
えたX線分析装置。
5. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, a detecting means for measuring the intensity of fluorescent X-rays and scattered X-rays generated from the sample, For a plurality of known and different standard samples, the primary X
The ratio of the intensity of the fluorescent X-rays generated from the main components in the standard sample to the intensity of the scattered X-rays generated from the standard sample when irradiated with the X-rays is calculated in advance. Curve storage means for storing the correlation with the content of the sample as a calibration curve, a main component for obtaining a calibration curve based on the intensity ratio of fluorescent X-rays and scattered X-rays, and an analysis target sample assumed to comprise coexisting components Where one of the coexisting components is designated as a base component, the other coexisting component is an additional component, and the first virtual sample is assumed to have a typical composition as a sample to be analyzed. Based on the composition obtained, the first
The theoretical intensity of the fluorescent X-rays generated from the main components in the virtual sample and the theoretical intensity of the scattered X-rays generated from the first virtual sample are calculated, and the ratio between the two intensities is calculated as the first virtual intensity ratio. Assuming a second virtual sample in which only the contents of the main component and the base component differ by a certain amount compared to the first virtual sample, the fluorescence generated from the main component in the second virtual sample is based on the assumed composition. The theoretical intensity of X-rays and the theoretical intensity of scattered X-rays generated from the second virtual sample are calculated, and the ratio between the two intensities is calculated as a second virtual intensity ratio. Virtual calibration curve creating means for obtaining and storing a correlation with the content of the main component in the first and second virtual samples as a virtual calibration curve, and comparing the first virtual sample with one of the additive component and the base component. The third virtual trial in which only the content differs by a certain amount The theoretical intensity of fluorescent X-rays generated from the main components in the third virtual sample and the theoretical intensity of scattered X-rays generated from the third virtual sample are determined based on the assumed composition. Is calculated, and the ratio between the two intensities is calculated as a third virtual intensity ratio. The virtual calibration curve stored in the virtual calibration curve creating means is applied to the third virtual intensity ratio to calculate the third virtual intensity ratio. The content of the main component is determined, and the content of the main component in the third virtual sample is corrected based on the representative composition so as to match the content of the main component in the first virtual sample. A reference correction coefficient calculating means for calculating a virtual correction coefficient for each additive component, calculating and storing a reference correction coefficient for correcting the composition based on only the main component and the base component from the virtual correction coefficient, For target samples Irradiating primary X-rays from the X-ray source, and causing the detection means to measure the intensity of fluorescent X-rays generated from main components in the sample to be analyzed and the intensity of scattered X-rays generated from the sample to be analyzed. Measuring means for calculating and storing the ratio of the two intensities; and the intensity ratio stored in the measuring means, stored in the calibration curve storing means using the reference correction coefficient stored in the reference correction coefficient calculating means. An X-ray analysis apparatus including: a content rate calculating unit that applies a calibration curve to determine a content rate of a main component in a sample to be analyzed.
【請求項6】 請求項5において、 主要成分が複数であって、 前記基準補正係数算出手段が、各主要成分について、他
の主要成分を加補正成分に含めて前記仮想補正係数を算
出し、その仮想補正係数から前記基準補正係数を算出す
るものであるX線分析装置。
6. The virtual correction coefficient according to claim 5, wherein a plurality of main components are provided, and the reference correction coefficient calculating means calculates the virtual correction coefficient for each main component by including another main component in an additional correction component. An X-ray analyzer for calculating the reference correction coefficient from the virtual correction coefficient.
【請求項7】 組成が既知で相異なる複数の標準試料に
1次X線を照射して、標準試料中の主要成分から発生す
る蛍光X線の強度と、標準試料から発生する散乱X線の
強度とを測定し、両強度の比を算出し、 それら強度比と標準試料における主要成分の含有率との
相関関係を検量線としてあらかじめ求めておき、 分析対象試料に1次X線を照射して、分析対象試料中の
主要成分から発生する蛍光X線の強度と、分析対象試料
から発生する散乱X線の強度とを測定し、両強度の比を
算出し、 その強度比に前記検量線を適用して、分析対象試料にお
ける主要成分の含有率を求めるX線分析方法において、 分析対象試料を、前記蛍光X線と散乱X線との強度比に
よる検量線を求める主要成分と、共存成分とからなるも
のと仮定し、 共存成分のうち1つをベース成分として指定し、他の共
存成分を加補正成分とし、 主要成分とベース成分とからなる組成を有する第1仮想
試料を仮定し、その仮定した組成に基づいて、第1仮想
試料中の主要成分から発生する蛍光X線の理論強度と、
第1仮想試料から発生する散乱X線の理論強度とを計算
し、両強度の比を算出して第1仮想強度比とし、 第1仮想試料と比較し主要成分およびベース成分の含有
率が一定量だけ異なる第2仮想試料を仮定し、その仮定
した組成に基づいて、第2仮想試料中の主要成分から発
生する蛍光X線の理論強度と、第2仮想試料から発生す
る散乱X線の理論強度とを計算し、両強度の比を算出し
て第2仮想強度比とし、 第1および第2仮想強度比と第1および第2仮想試料に
おける主要成分の含有率との相関関係を仮想検量線とし
て求め、 第1仮想試料と比較し1つの加補正成分およびベース成
分の含有率のみが一定量だけ異なる第3仮想試料を加補
正成分ごとに仮定し、その仮定した組成に基づいて、第
3仮想試料中の主要成分から発生する蛍光X線の理論強
度と、第3仮想試料から発生する散乱X線の理論強度と
を計算し、両強度の比を算出して第3仮想強度比とし、 その第3仮想強度比に前記仮想検量線を適用して、第3
仮想試料における主要成分の含有率を求め、 その求めた第3仮想試料における主要成分の含有率を、
前記第1仮想試料における主要成分の含有率に一致させ
るように、補正する補正係数を加補正成分ごとに算出
し、 前記分析対象試料から測定算出した強度比に、前記補正
係数を用いた検量線を適用し、分析対象試料における主
要成分の含有率を求めることを特徴とするX線分析方
法。
7. A method of irradiating primary X-rays to a plurality of standard samples having different compositions and having different intensities, the intensity of fluorescent X-rays generated from main components in the standard sample and the intensity of scattered X-rays generated from the standard sample. Measure the intensity and calculate the ratio of the two intensities, determine the correlation between the intensity ratio and the content of the main component in the standard sample in advance as a calibration curve, and irradiate the sample to be analyzed with primary X-rays. Then, the intensity of the fluorescent X-rays generated from the main components in the sample to be analyzed and the intensity of the scattered X-rays generated from the sample to be analyzed are measured, and the ratio between the two intensities is calculated. An X-ray analysis method for determining the content of a main component in a sample to be analyzed by applying the method, wherein the sample to be analyzed is a main component for obtaining a calibration curve based on an intensity ratio between the fluorescent X-ray and the scattered X-ray; Assuming that One as a base component, the other coexisting component as an additive component, assuming a first virtual sample having a composition consisting of a main component and a base component, and calculating the first virtual sample based on the assumed composition. Theoretical intensity of fluorescent X-rays generated from the main components of
The theoretical intensity of the scattered X-rays generated from the first virtual sample is calculated, and the ratio of the two intensities is calculated to be the first virtual intensity ratio. Compared with the first virtual sample, the content of the main component and the base component is constant. Assuming a second virtual sample that differs by an amount, based on the assumed composition, the theoretical intensity of the fluorescent X-ray generated from the main component in the second virtual sample and the theoretical intensity of the scattered X-ray generated from the second virtual sample And a ratio between the two intensities is calculated as a second virtual intensity ratio. The correlation between the first and second virtual intensity ratios and the contents of the main components in the first and second virtual samples is virtually calibrated. A third virtual sample, which is different from the first virtual sample by only a certain amount in the content of one additive component and a base component by a fixed amount, is assumed for each additive component, and based on the assumed composition, Fluorescence X generated from main components in 3 virtual samples Is calculated, and the theoretical intensity of the scattered X-ray generated from the third virtual sample is calculated, and the ratio between the two intensities is calculated as the third virtual intensity ratio. The virtual calibration curve is added to the third virtual intensity ratio. Apply, third
The content of the main component in the virtual sample is obtained, and the content of the main component in the obtained third virtual sample is calculated as
A correction coefficient to be corrected is calculated for each additive component so as to match the content of the main component in the first virtual sample, and a calibration curve using the correction coefficient is calculated for the intensity ratio measured and calculated from the sample to be analyzed. An X-ray analysis method comprising: calculating a content of a main component in a sample to be analyzed by applying the method.
【請求項8】 請求項7において、 主要成分が複数であって、 各主要成分について、他の主要成分を加補正成分に含め
て前記補正係数を算出するX線分析方法。
8. The X-ray analysis method according to claim 7, wherein there are a plurality of main components, and for each of the main components, the other main components are included in an additional correction component to calculate the correction coefficient.
【請求項9】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線および散乱X線の強度を測定
する検出手段と、 組成が既知で相異なる複数の標準試料について、1次X
線を照射したときに標準試料中の主要成分から発生する
蛍光X線の強度と標準試料から発生する散乱X線の強度
との強度比からあらかじめ求められた、それら強度比と
標準試料における主要成分の含有率との相関関係を検量
線として記憶する検量線記憶手段と、 蛍光X線と散乱X線との強度比による検量線を求める主
要成分と、共存成分とからなると仮定された分析対象試
料であって、共存成分のうち1つがベース成分として指
定され、他の共存成分が加補正成分とされ、主要成分と
ベース成分とからなる組成を有すると仮定された第1仮
想試料について、その仮定された組成に基づいて、第1
仮想試料中の主要成分から発生する蛍光X線の理論強度
と、第1仮想試料から発生する散乱X線の理論強度とを
計算し、両強度の比を算出して第1仮想強度比とし、前
記第1仮想試料と比較し主要成分およびベース成分の含
有率が一定量だけ異なる第2仮想試料を仮定し、その仮
定した組成に基づいて、第2仮想試料中の主要成分から
発生する蛍光X線の理論強度と、第2仮想試料から発生
する散乱X線の理論強度とを計算し、両強度の比を算出
して第2仮想強度比とし、前記第1および第2仮想強度
比と第1および第2仮想試料における主要成分の含有率
との相関関係を仮想検量線として求めて記憶する仮想検
量線作成手段と、 前記第1仮想試料と比較し1つの加補正成分およびベー
ス成分の含有率のみが一定量だけ異なる第3仮想試料を
加補正成分ごとに仮定し、その仮定した組成に基づい
て、第3仮想試料中の主要成分から発生する蛍光X線の
理論強度と、第3仮想試料から発生する散乱X線の理論
強度とを計算し、両強度の比を算出して第3仮想強度比
とし、その第3仮想強度比に前記仮想検量線作成手段に
記憶された仮想検量線を適用して、第3仮想試料におけ
る主要成分の含有率を求め、その求めた第3仮想試料に
おける主要成分の含有率を、前記第1仮想試料における
主要成分の含有率に一致させるように、補正する補正係
数を加補正成分ごとに算出して記憶する補正係数算出手
段と、 前記分析対象試料に、前記X線源から1次X線を照射さ
せ、分析対象試料中の主要成分から発生する蛍光X線の
強度と分析対象試料から発生する散乱X線の強度とを前
記検出手段に測定させ、両強度の比を算出して記憶する
測定手段と、 前記測定手段に記憶された強度比に、前記補正係数算出
手段に記憶された補正係数を用いて前記検量線記憶手段
に記憶された検量線を適用し、分析対象試料における主
要成分の含有率を求める含有率算出手段とを備えたX線
分析装置。
9. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays and scattered X-rays generated from the sample, For a plurality of known and different standard samples, the primary X
The ratio of the intensity of the fluorescent X-rays generated from the main components in the standard sample to the intensity of the scattered X-rays generated from the standard sample when irradiated with the X-rays is calculated in advance. Curve storage means for storing the correlation with the content of the sample as a calibration curve, a main component for obtaining a calibration curve based on the intensity ratio of fluorescent X-rays and scattered X-rays, and an analysis target sample assumed to comprise coexisting components Where one of the coexisting components is designated as a base component, the other coexisting component is an additive component, and the first virtual sample is assumed to have a composition consisting of a main component and a base component. Based on the composition obtained, the first
The theoretical intensity of the fluorescent X-rays generated from the main components in the virtual sample and the theoretical intensity of the scattered X-rays generated from the first virtual sample are calculated, and the ratio between the two intensities is calculated as the first virtual intensity ratio. Assuming a second virtual sample in which the contents of the main component and the base component differ from the first virtual sample by a fixed amount, based on the assumed composition, the fluorescence X generated from the main component in the second virtual sample is determined. The theoretical intensity of the X-rays and the theoretical intensity of the scattered X-ray generated from the second virtual sample are calculated, and the ratio between the two intensities is calculated as the second virtual intensity ratio. Virtual calibration curve creating means for obtaining and storing a correlation with the content of the main component in the first and second virtual samples as a virtual calibration curve, and comparing the first virtual sample with one additional correction component and base component A third virtual sample whose ratio differs only by a certain amount Assumed for each additive component, the theoretical intensity of fluorescent X-rays generated from the main component in the third virtual sample and the theoretical intensity of scattered X-rays generated from the third virtual sample are determined based on the assumed composition. Calculating the ratio of the two intensities to obtain a third virtual intensity ratio, and applying the virtual calibration curve stored in the virtual calibration curve creating means to the third virtual intensity ratio to obtain a main component in the third virtual sample. Is calculated, and a correction coefficient to be corrected is calculated for each additive component so that the obtained main component content in the third virtual sample matches the obtained main component content in the first virtual sample. Correction factor calculating means for storing and storing the sample to be analyzed; irradiating the sample to be analyzed with primary X-rays from the X-ray source; And the intensity of the scattered X-rays Measuring means for calculating and storing the ratio of the two intensities, and the intensity ratio stored in the measuring means, stored in the calibration curve storing means using the correction coefficient stored in the correction coefficient calculating means. An X-ray analysis apparatus comprising: a content calculating means for applying a calibration curve to obtain a content of a main component in a sample to be analyzed.
【請求項10】 請求項9において、 主要成分が複数であって、 前記補正係数算出手段が、各主要成分について、他の主
要成分を加補正成分に含めて前記補正係数を算出するも
のであるX線分析装置。
10. The method according to claim 9, wherein the main component is plural, and the correction coefficient calculating means calculates the correction coefficient for each main component by including another main component in an additional correction component. X-ray analyzer.
JP9193649A 1996-07-18 1997-07-18 X-ray analysis method and apparatus Expired - Fee Related JP3059403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193649A JP3059403B2 (en) 1996-07-18 1997-07-18 X-ray analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20921896 1996-07-18
JP8-209218 1996-07-18
JP9193649A JP3059403B2 (en) 1996-07-18 1997-07-18 X-ray analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH1082749A JPH1082749A (en) 1998-03-31
JP3059403B2 true JP3059403B2 (en) 2000-07-04

Family

ID=26507998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193649A Expired - Fee Related JP3059403B2 (en) 1996-07-18 1997-07-18 X-ray analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3059403B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346433B4 (en) 2003-10-07 2006-05-11 Bruker Axs Gmbh Analytical method for determining crystallographic phases of a measurement sample
EP2333529B1 (en) * 2009-09-07 2013-10-16 Rigaku Corporation X-ray fluorescence analyzing method
JP6944730B2 (en) * 2020-02-12 2021-10-06 株式会社リガク Quantitative analysis method, quantitative analysis program and fluorescent X-ray analyzer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
越智寛友他、「けい光X線分析法によるガラスの分析−鉛ガラスにおける共存元素補正−」、島津評論、1981、Vol.38,No.1,p13−19

Also Published As

Publication number Publication date
JPH1082749A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US7702067B2 (en) Measurement of lead by X-ray fluorescence
JPH10123071A (en) Method and equipment for x ray analysis
US6041096A (en) Method and apparatus for total reflection X-ray fluorescence spectroscopy
EP4105649A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JPH06174665A (en) Element analysis method
JP3059403B2 (en) X-ray analysis method and apparatus
US7231324B2 (en) Techniques for analyzing data generated by instruments
JP2928688B2 (en) Pollution element analysis method and device
JP5874108B2 (en) X-ray fluorescence analyzer
JP3569734B2 (en) X-ray fluorescence analyzer
JP2645227B2 (en) X-ray fluorescence analysis method
JP2732460B2 (en) X-ray fluorescence analysis method
JP4279983B2 (en) X-ray fluorescence analyzer
JP3132678B2 (en) Thin film sample thickness measurement and elemental quantitative analysis method
JP2009074954A (en) Fluorescent x-ray analyzer and program used therein
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JPH08334481A (en) X-ray fluorescent analysis
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
JPH07113770A (en) Fluorescent x-ray analyzing method
JPH0484743A (en) Quantitative analysis method by x-ray spectroscopy
JP2645226B2 (en) X-ray fluorescence analysis method
JP3455659B2 (en) X-ray fluorescence analysis method and apparatus
JPH0798287A (en) Deriving method for correlation expression between intensity of fluorescent x-ray and content of element
JP3399861B2 (en) X-ray analyzer
JPH1164254A (en) Fluorescent x-ray analysis and analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees