JP5337832B2 - X-ray analysis method and apparatus - Google Patents

X-ray analysis method and apparatus Download PDF

Info

Publication number
JP5337832B2
JP5337832B2 JP2011057019A JP2011057019A JP5337832B2 JP 5337832 B2 JP5337832 B2 JP 5337832B2 JP 2011057019 A JP2011057019 A JP 2011057019A JP 2011057019 A JP2011057019 A JP 2011057019A JP 5337832 B2 JP5337832 B2 JP 5337832B2
Authority
JP
Japan
Prior art keywords
intensity
content
calibration curve
ignition loss
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011057019A
Other languages
Japanese (ja)
Other versions
JP2012032372A (en
Inventor
井上  稔
真央 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2011057019A priority Critical patent/JP5337832B2/en
Publication of JP2012032372A publication Critical patent/JP2012032372A/en
Application granted granted Critical
Publication of JP5337832B2 publication Critical patent/JP5337832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、石灰中の強熱減量の含有率を求めるX線分析方法およびその装置に関する。   The present invention relates to an X-ray analysis method for determining the content of ignition loss in lime and an apparatus therefor.

本願明細書において石灰とは、生石灰(主成分は酸化カルシウムCaO)、消石灰(主成分は水酸化カルシウムCa(OH))および石灰石(主成分は炭酸カルシウムCaCO)をいう。石灰石を熱分解して生石灰を製造しており、製造された生石灰中の強熱減量の管理が重要であり、下記の公定法によって定量されている。本願明細書において、強熱減量とは試料が強熱されたことによって生じる減量をいい、この減量を重量百分率(mass%)で表示したものを強熱減量の含有率という。 In this specification, lime means quick lime (main component is calcium oxide CaO), slaked lime (main component is calcium hydroxide Ca (OH) 2 ), and limestone (main component is calcium carbonate CaCO 3 ). Limestone is pyrolyzed to produce quick lime, and it is important to manage the ignition loss in the produced quick lime, which is quantified by the following official method. In the specification of the present application, the loss on ignition means a weight loss caused by the ignition of the sample, and the weight loss (mass%) expressed as the weight loss is referred to as the content of ignition loss.

公定法であるJIS R9011 2006 「石灰の試験方法」では、石灰石以外の石灰について規定し、強熱減量は石灰を1050℃で恒量になるまで時間をかけて強熱し、この石灰を秤量しその減量によって求めている。石灰石については、JIS M8850 1994 「石灰石分析方法」(上記JIS法と加熱過程に少し違いがある。)に規定されている方法によって同様に求めている。二酸化炭素の含有率は赤外線吸収法または容量法で求められている。また、生石灰の場合、生石灰の水分吸収劣化を示す数値として、強熱減量時に揮発する水分(HO)の含有率を扱うが、水分の含有率は、上記の方法によって求められた強熱減量の含有率から二酸化炭素(CO)の含有率を差し引いて求められている。このように、強熱減量の含有率は二酸化炭素の含有率と強熱減量時に揮発する水分の含有率とを加算したものとなる。以下、強熱減量時に揮発する水分を強熱減量中の水分と称する。石灰の主成分であるCaOやその他の成分であるMgO、SiO、Al、Fe、P、Sなどは蛍光X線分析方法によって定量されている。 The official method JIS R9011 2006 "Testing method of lime" specifies lime other than limestone, and the loss on ignition is ignited over time until the lime reaches a constant weight at 1050 ° C. Seeking by About limestone, it is calculated | required similarly by the method prescribed | regulated to JISM88501994 "limestone analysis method" (There is a little difference in the said JIS method and a heating process.). The carbon dioxide content is determined by the infrared absorption method or the volume method. In the case of quicklime, the content of moisture (H 2 O) that volatilizes during ignition loss is treated as a numerical value indicating the moisture absorption deterioration of quicklime, but the moisture content is determined by the above method. It is obtained by subtracting the carbon dioxide (CO 2 ) content from the weight loss content. Thus, the content rate of ignition loss is the sum of the content rate of carbon dioxide and the content rate of water that volatilizes during ignition loss. Hereinafter, the water that volatilizes during ignition loss is referred to as moisture during ignition loss. CaO, which is the main component of lime, and MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S, etc., which are other components, are quantified by a fluorescent X-ray analysis method.

一方、石灰石等を熱分解して生石灰を製造し石灰原料とする場合、製造しつつある石灰原料中の酸化カルシウムの焼成具合を管理するために、炉前にて短時間(10分未満)に石灰原料中の酸化カルシウムの含有率(濃度)を測定している蛍光X線分析方法がある(特許文献1)。   On the other hand, when producing lime raw material by pyrolyzing limestone or the like to produce lime raw material, in order to manage the firing condition of calcium oxide in the lime raw material being produced, in a short time (less than 10 minutes) in front of the furnace There is a fluorescent X-ray analysis method that measures the content (concentration) of calcium oxide in a lime raw material (Patent Document 1).

この蛍光X線分析方法は、主成分である酸化カルシウムと二酸化炭素の含有率が既知の石灰原料からなる標準試料に1次X線を照射し、カルシウムから発生する蛍光X線強度を検出し、試料から発生するコンプトン散乱線の強度を検出し、前記蛍光X線強度と前記コンプトン散乱線の強度との比と、酸化カルシウムの含有率との相関を示す検量線を作成して、石灰原料に1次X線を照射し、カルシウムから発生する蛍光X線強度を検出し、試料から発生するコンプトン散乱線の強度を検出し、前記蛍光X線強度と前記コンプトン散乱線の強度との比を求め、前記検量線を用いて酸化カルシウムの含有率を検出する石灰原料中の酸化カルシウムの含有率検出方法である。   This fluorescent X-ray analysis method irradiates a standard sample made of a lime raw material with a known content of calcium oxide and carbon dioxide as main components, detects the intensity of fluorescent X-rays generated from calcium, Detecting the intensity of the Compton scattered radiation generated from the sample, creating a calibration curve indicating the correlation between the ratio of the fluorescent X-ray intensity and the intensity of the Compton scattered radiation and the content of calcium oxide. Irradiate primary X-ray, detect fluorescent X-ray intensity generated from calcium, detect intensity of Compton scattered radiation generated from sample, and obtain ratio of fluorescent X-ray intensity and intensity of Compton scattered radiation The method for detecting the content of calcium oxide in a lime raw material, wherein the content of calcium oxide is detected using the calibration curve.

特開平7−306168号公報JP-A-7-306168

この特許文献1には、Rh−Kαコンプトン散乱線の強度が、試料中の二酸化炭素の含有率ときわめてよい相関をもつことに着目し、Rh−Kαコンプトン散乱線の強度によって試料中の二酸化炭素の含有率を求めることが記載されており、石灰原料は主成分であるCaOと第2成分であるCOとが2元系をなすという考えに基づいている。この特許文献1には、X線分析方法による二酸化炭素の定量方法について記載されているが、強熱減量そのものおよび強熱減量中の水分の定量については記載されていない。 This Patent Document 1 focuses on the fact that the intensity of the Rh-Kα Compton scattered radiation has a very good correlation with the content of carbon dioxide in the sample, and the carbon dioxide in the sample depends on the intensity of the Rh-Kα Compton scattered radiation. The lime raw material is based on the idea that CaO as the main component and CO 2 as the second component form a binary system. This Patent Document 1 describes a method for determining carbon dioxide by an X-ray analysis method, but does not describe ignition loss itself or determination of moisture during ignition loss.

そこで、X線分析方法による強熱減量および強熱減量中の水分の定量方法について、生石灰について実験(詳細については後述する)を行った結果、生石灰中の強熱減量の含有率とコンプトン散乱線の強度、特にRh−Kαコンプトン散乱線の強度とがよい相関をもつことを見出した。併せて、Rh−Kαコンプトン散乱線の強度は、強熱減量中の水分の含有率が一定であれば二酸化炭素の含有率ときわめてよい相関をもつが、水分の含有率が変動すると二酸化炭素の含有率とは相関せず、Rh−Kαコンプトン散乱線を用いて二酸化炭素の含有率を精度よく求めることができないことが分かった。したがって、従来の技術では、石灰中の強熱減量の含有率を短時間で精度よく求めることができない。   Therefore, as a result of experiments on quick lime (details will be described later) on the ignition loss and the method for determining moisture in ignition loss by the X-ray analysis method, the content of ignition loss in quick lime and Compton scattered rays It was found that there is a good correlation with the intensity of the Rh-Kα Compton scattered radiation. In addition, the intensity of the Rh-Kα Compton scattered radiation has a very good correlation with the carbon dioxide content if the water content in ignition loss is constant, but if the water content varies, the intensity of carbon dioxide It did not correlate with the content rate, and it was found that the content rate of carbon dioxide could not be determined accurately using Rh-Kα Compton scattered radiation. Therefore, with the conventional technique, the content of ignition loss in lime cannot be obtained accurately in a short time.

本発明は、前記従来の問題に鑑みてなされたもので、石灰中の強熱減量の含有率を短時間で精度よく求めることができるX線分析方法およびその装置を提供することを目的とする。   This invention is made | formed in view of the said conventional problem, and it aims at providing the X-ray-analysis method and apparatus which can obtain | require the content rate of the ignition loss in lime accurately in a short time. .

前記目的を達成するために、本発明の第1構成のX線分析方法は、強熱減量の含有率が既知の石灰からなる標準試料に1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を検出し、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線を作成し、石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度を検出し、前記強熱減量の検量線を用いて前記未知試料中の強熱減量の含有率を求める。   In order to achieve the above object, the X-ray analysis method of the first configuration of the present invention generates a primary X-ray by irradiating a standard sample made of lime with a known loss ratio of ignition loss from the standard sample. Detect the intensity of Compton scattered radiation, create a calibration curve for ignition loss showing the correlation between the detected intensity of Compton scattered radiation and the content of ignition loss, and irradiate unknown samples made of lime with primary X-rays Then, the intensity of the Compton scattered radiation generated from the unknown sample is detected, and the ignition loss content in the unknown sample is determined using the ignition loss calibration curve.

本発明の第1構成のX線分析方法によれば、石灰の強熱減量の含有率を短時間で精度よく求めることができる。   According to the X-ray analysis method of the first configuration of the present invention, the content of ignition loss of lime can be obtained accurately in a short time.

本発明の第2構成のX線分析方法は、強熱減量および二酸化炭素の含有率が既知の石灰からなる標準試料に1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成し、石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、前記強熱減量の検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求め、この求めた強熱減量の含有率から求めた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を求める。   The X-ray analysis method according to the second configuration of the present invention irradiates a standard sample made of lime with known loss of ignition and carbon dioxide content with primary X-rays, and the intensity of Compton scattered radiation generated from the standard sample. And a C-Kα ray intensity, a calibration curve for loss on ignition showing the correlation between the intensity of the detected Compton scattered ray and the content of loss on ignition, and the detected C-Kα ray intensity and carbon dioxide A carbon dioxide calibration curve showing a correlation with the content rate is created, and an unknown sample made of lime is irradiated with primary X-rays to detect the intensity of Compton scattered radiation and C-Kα radiation generated from the unknown sample. The ignition loss and the carbon dioxide calibration curve are used to obtain the ignition loss and carbon dioxide content in the unknown sample, respectively, and the carbon dioxide obtained from the obtained ignition loss content. Subtracting the content of Request moisture content in ignition loss of knowledge samples.

本発明の第2構成のX線分析方法によれば、第1構成のX線分析方法に加え、さらに石灰の強熱減量中の二酸化炭素と水分の含有率を短時間で精度よく求めることができる。   According to the X-ray analysis method of the second configuration of the present invention, in addition to the X-ray analysis method of the first configuration, the carbon dioxide and moisture content in the ignition loss of lime can be obtained accurately in a short time. it can.

本発明の第3構成のX線分析方法は、強熱減量の含有率が既知の石灰からなる標準試料に1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を検出し、
強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる補正用標準試料または石灰の仮想補正用標準試料を用いて、前記少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を求め、前記検出したコンプトン散乱線の強度および前記求めたマトリックス補正係数を用いて強熱減量の補正検量線を作成し、石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度、および、C、Mg、Si、Al、Fe、P、Sのうち前記少なくとも一つの成分に対応する蛍光X線の強度を検出し、前記強熱減量の補正検量線を用いて前記未知試料中の強熱減量の含有率を求める。本願明細書において石灰の仮想補正用標準試料とは、理論マトリックス補正係数を求めるために石灰の組成を仮定した仮想の試料をいう。
The X-ray analysis method according to the third configuration of the present invention irradiates a standard sample made of lime whose ignition loss content is known, and detects the intensity of Compton scattered rays generated from the standard sample. ,
For correction of the loss of ignition loss and lime having a known content of at least one of carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S Using a standard sample or a standard sample for virtual correction of lime, for correcting the calibration curve of ignition loss indicating the correlation between the intensity of Compton scattered radiation and the content of ignition loss for the influence of the at least one component A correction calibration curve for loss on ignition is created using the detected Compton scattered radiation intensity and the obtained matrix correction coefficient, and an unknown sample made of lime is irradiated with primary X-rays, Detecting the intensity of Compton scattered radiation generated from the unknown sample and the intensity of fluorescent X-rays corresponding to the at least one component among C, Mg, Si, Al, Fe, P, and S; Determining the content rate of loss on ignition in said unknown sample by using a correction calibration curve of loss on ignition. In the present specification, the lime virtual correction standard sample refers to a virtual sample that assumes a lime composition in order to obtain a theoretical matrix correction coefficient.

本発明の第3構成のX線分析方法によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、強熱減量の含有率をより優れた正確さで分析することができる。   According to the X-ray analysis method of the third configuration of the present invention, the accuracy of the ignition loss calibration curve is improved by performing matrix correction, and the ignition loss content rate is analyzed with better accuracy. Can do.

本発明の第4構成のX線分析方法は、強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料に1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、前記標準試料または石灰の仮想標準試料を用いて、二酸化炭素の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を求め、前記検出したコンプトン散乱線の強度および前記求めたマトリックス補正係数を用いて強熱減量の補正検量線を作成するとともに、前記検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成し、石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、前記強熱減量の補正検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求め、この求めた強熱減量の含有率から求めた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を求める。   The X-ray analysis method according to the fourth configuration of the present invention irradiates a standard sample made of lime with a known loss ratio of ignition loss and carbon dioxide content with a primary X-ray and generates Compton scattering generated from the standard sample. The intensity of the line and the intensity of the C-Kα line are detected, and the correlation between the intensity of Compton scattered radiation and the content of ignition loss is shown for the influence of carbon dioxide using the standard sample or the virtual standard sample of lime. A matrix correction coefficient for correcting the calibration curve for ignition loss is obtained, and a correction calibration curve for ignition loss is created using the intensity of the detected Compton scattered radiation and the obtained matrix correction coefficient, and the detection is performed. A calibration curve of carbon dioxide showing the correlation between the intensity of the C-Kα ray and the carbon dioxide content is prepared, and an unknown sample made of lime is irradiated with primary X-rays, and the Compton powder generated from the unknown sample Detecting the intensity of turbulent lines and the intensity of C-Kα lines, and using the calibration curve for ignition loss and the calibration curve for carbon dioxide, respectively, determine the ignition loss and carbon dioxide content in the unknown sample, By subtracting the carbon dioxide content obtained from the obtained ignition loss content, the moisture content in the ignition loss of the unknown sample is obtained.

本発明の第4構成のX線分析方法によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、二酸化炭素と水分の含有率をより優れた正確さで分析することができる。   According to the X-ray analysis method of the fourth configuration of the present invention, the accuracy of the calibration curve for loss on ignition is improved by performing matrix correction, and the carbon dioxide and moisture content are analyzed with better accuracy. be able to.

本発明の第5構成のX線分析装置は、試料に1次X線を照射するX線源と、前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、を備えるX線分析装置であって、強熱減量の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線を作成する検量線作成手段と、石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の検量線によって前記未知試料中の強熱減量の含有率を求める定量手段と、を備える。   The X-ray analyzer of the fifth configuration of the present invention includes an X-ray source that irradiates a sample with primary X-rays, and an intensity of secondary X-rays generated from the sample irradiated with primary X-rays from the X-ray source. An X-ray analysis apparatus comprising: a detection means for detecting the primary X-ray from the X-ray source to a standard sample made of lime whose ignition loss is known; A calibration curve creating means for detecting the intensity of the Compton scattered radiation to be detected by the detection means and creating a calibration curve for ignition loss indicating a correlation between the intensity of the detected Compton scattered radiation and the content of ignition loss; and lime Irradiating the unknown sample consisting of primary X-rays from the X-ray source, detecting the intensity of Compton scattered radiation generated from the unknown sample with the detection means, and the ignition loss created by the calibration curve creation means Obtain the content of loss on ignition in the unknown sample using the calibration curve Comprising a quantity means.

本発明の第5構成のX線分析装置によれば、石灰の強熱減量の含有率を短時間で精度よく求めることができる。   According to the X-ray analyzer of the fifth configuration of the present invention, the content of ignition loss of lime can be obtained accurately in a short time.

本発明の第6構成のX線分析装置は、試料に1次X線を照射するX線源と、前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、を備えるX線分析装置であって、強熱減量および二酸化炭素の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成する検量線作成手段と、石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の検量線および二酸化炭素の検量線によって前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求める定量手段と、前記定量手段によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を算出する水分算出手段と、を備える。   The X-ray analyzer of the sixth configuration of the present invention includes an X-ray source that irradiates a sample with primary X-rays, and an intensity of secondary X-rays generated from the sample irradiated with primary X-rays from the X-ray source. An X-ray analyzer comprising: a standard sample made of lime whose ignition loss and carbon dioxide content are known, and the standard X-ray is irradiated from the X-ray source, A calibration curve for loss on ignition showing the correlation between the intensity of Compton scattered rays and the content of ignition loss detected by the detection means by detecting the intensity of Compton scattered rays and C-Kα rays generated from the sample. And a calibration curve creating means for creating a calibration curve of carbon dioxide showing a correlation between the intensity of the detected C-Kα ray and the carbon dioxide content, and primary X-ray from the X-ray source to an unknown sample made of lime The intensity of Compton scattered radiation generated from the unknown sample and The intensity of C-Kα rays is detected by the detection means, and the ignition loss and carbon dioxide content in the unknown sample is determined by the calibration curve for ignition loss and the calibration curve for carbon dioxide created by the calibration curve creation means. Quantitative means for determining the rate respectively, and moisture for calculating the moisture content in the ignition loss of the unknown sample by subtracting the carbon dioxide content determined from the ignition loss content determined by the quantitative means Calculating means.

本発明の第6構成のX線分析装置によれば、第1構成のX線分析装置に加え、さらに石灰の強熱減量中の二酸化炭素と水分の含有率を短時間で精度よく求めることができる。   According to the X-ray analyzer of the sixth configuration of the present invention, in addition to the X-ray analyzer of the first configuration, the carbon dioxide and moisture content in the ignition loss of lime can be obtained accurately in a short time. it can.

本発明の第7構成のX線分析装置は、試料に1次X線を照射するX線源と、前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、を備えるX線分析装置であって、強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる補正用標準試料または石灰の仮想補正用標準試料を用いて、前記少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を算出する補正係数算出手段と、強熱減量の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、その検出したコンプトン散乱線の強度および前記補正係数算出手段によって算出されたマトリックス補正係数を用いて強熱減量の補正検量線を作成する検量線作成手段と、石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度、および、C、Mg、Si、Al、Fe、P、Sのうち前記少なくとも一つの成分に対応する蛍光X線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の補正検量線を用いて前記未知試料中の強熱減量の含有率を求める定量手段と、を備える。 The X-ray analyzer of the seventh configuration of the present invention includes an X-ray source that irradiates a sample with primary X-rays, and an intensity of secondary X-rays generated from the sample irradiated with primary X-rays from the X-ray source. An X-ray analysis apparatus comprising: a detection means for detecting the content of ignition loss, and carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S Using a correction standard sample made of lime whose content of at least one component is known or a virtual correction standard sample of lime, the intensity of Compton scattered radiation and loss on ignition are measured for the influence of the at least one component. A correction coefficient calculating means for calculating a matrix correction coefficient for correcting a calibration curve of ignition loss showing a correlation with the content rate, and a standard sample made of lime with a known ignition loss content rate from the X-ray source Irradiated with primary X-ray and generated from the standard sample A calibration curve for detecting a loss of ignition loss using the detection means and a matrix correction coefficient calculated by the correction coefficient calculation means. An X-ray source that irradiates an unknown sample made of lime with a primary X-ray from an X-ray source, and the intensity of Compton scattered rays generated from the unknown sample; and C, Mg, Si, Al, Fe, P, The intensity of the fluorescent X-ray corresponding to the at least one component of S is detected by the detection means, and the intensity in the unknown sample is detected using the calibration curve for loss on ignition created by the calibration curve creation means. And a quantitative means for obtaining the content of heat loss.

本発明の第7構成のX線分析装置によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、強熱減量の含有率をより優れた正確さで分析することができる。   According to the X-ray analyzer of the seventh configuration of the present invention, by performing matrix correction, the accuracy of the calibration curve for ignition loss is improved, and the content of ignition loss is analyzed with better accuracy. Can do.

本発明の第8構成のX線分析装置は、試料に1次X線を照射するX線源と、前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、を備えるX線分析装置であって、強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料または石灰の仮想標準試料を用いて、二酸化炭素の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を算出する補正係数算出手段と、前記標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検出したコンプトン散乱線の強度および前記補正係数算出手段によって算出されたマトリックス補正係数を用いて強熱減量の補正検量線を作成するとともに、前記検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成する検量線作成手段と、を備える。   The X-ray analyzer of the eighth configuration of the present invention includes an X-ray source that irradiates a sample with primary X-rays, and an intensity of secondary X-rays generated from the sample irradiated with primary X-rays from the X-ray source. An X-ray analyzer comprising: a standard sample made of lime with a known loss of ignition loss and a known carbon dioxide content or a virtual standard sample of lime. A correction coefficient calculation means for calculating a matrix correction coefficient for correcting a calibration curve for loss on ignition indicating a correlation between the intensity of Compton scattered radiation and the content of ignition loss, and the X-ray A primary X-ray is irradiated from a source, the intensity of Compton scattered radiation and C-Kα radiation generated from the standard sample are detected by the detection means, and the intensity of the detected Compton scattered radiation and the correction coefficient are calculated. Calculated by means A calibration curve creating means for creating a calibration curve for loss on ignition using a Rix correction coefficient and creating a calibration curve for carbon dioxide showing a correlation between the intensity of the detected C-Kα ray and the content of carbon dioxide And comprising.

本発明の第8構成のX線分析装置は、さらに、石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の補正検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求める定量手段と、前記定量手段によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を算出する水分算出手段と、を備える。   The X-ray analyzer of the eighth configuration of the present invention further irradiates an unknown sample made of lime with primary X-rays from the X-ray source, and the intensity of Compton scattered rays generated from the unknown sample and C-Kα rays. Is detected by the detection means, and the ignition loss and the carbon dioxide content in the unknown sample using the calibration curve for ignition loss and the calibration curve for carbon dioxide created by the calibration curve creation means. And a moisture calculation for calculating the moisture content in the ignition loss of the unknown sample by subtracting the carbon dioxide content obtained from the ignition loss content obtained by the quantitative means. Means.

本発明の第8構成のX線分析装置によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、二酸化炭素と水分の含有率をより優れた正確さで分析することができる。   According to the X-ray analyzer of the eighth configuration of the present invention, the accuracy of the calibration curve for loss on ignition is improved by performing matrix correction, and the carbon dioxide and moisture content are analyzed with better accuracy. be able to.

本発明の第1実施形態のX線分析装置を示す概略図である。1 is a schematic diagram showing an X-ray analysis apparatus according to a first embodiment of the present invention. 同実施形態における強熱減量の含有率を求めるための検量線を示す図である。It is a figure which shows the calibration curve for calculating | requiring the content rate of the ignition loss in the same embodiment. 同実施形態における二酸化炭素の含有率を求めるための検量線を示す図である。It is a figure which shows the calibration curve for calculating | requiring the content rate of the carbon dioxide in the same embodiment. 実験によって求めた強熱減量の含有率とRh−Kαコンプトン散乱線のX線強度との相関を示す図である。It is a figure which shows the correlation with the content rate of the ignition loss calculated | required by experiment, and the X-ray intensity of a Rh-K (alpha) Compton scattered ray. 同第2実施形態のX線分析装置を示す概略図である。It is the schematic which shows the X-ray analyzer of the 2nd embodiment. 強熱減量の理論標準試料とRh−Kαコンプトン散乱線の理論X線強度とによって作成した検量線を示す図である。It is a figure which shows the calibration curve created with the theoretical standard sample of ignition loss, and the theoretical X-ray intensity of Rh-Kα Compton scattered radiation. 強熱減量の理論標準試料とRh−Kαトムソン散乱線の理論X線強度とによって作成した検量線を示す図である。It is a figure which shows the calibration curve created with the theoretical standard sample of ignition loss, and the theoretical X-ray intensity of Rh-Kα Thomson scattered radiation. 二酸化炭素の含有率とRh−Kαコンプトン散乱線の理論X線強度との相関を示す図である。It is a figure which shows the correlation with the content rate of a carbon dioxide, and the theoretical X-ray intensity of a Rh-K (alpha) Compton scattered ray. 同第3実施形態のX線分析装置を示す概略図である。It is the schematic which shows the X-ray analyzer of 3rd Embodiment. 同実施形態における強熱減量の含有率を求めるための補正検量線を示す図である。It is a figure which shows the correction | amendment calibration curve for calculating | requiring the content rate of the ignition loss in the same embodiment. 同実施形態における強熱減量の含有率を求めるためのマトリックス未補正検量線を示す図である。It is a figure which shows the matrix uncorrected calibration curve for calculating | requiring the content rate of the ignition loss in the same embodiment. 同第4実施形態のX線分析装置を示す概略図である。It is the schematic which shows the X-ray analyzer of 4th Embodiment.

以下、本発明の第1実施形態の分析方法について説明する。まず、この分析方法に用いるX線分析装置の構成について、図1にしたがって説明する。この装置は、試料台8に載置された、生石灰などの石灰からなる試料Sに、ロジウム(Rh)X線管などのX線源1から1次X線2を照射して、発生する2次X線4の強度を検出手段9で測定する蛍光X線分析装置などのX線分析装置である。2次X線4には、1次X線2が試料Sに照射されて発生する蛍光X線、コンプトン散乱線、トムソン散乱線などが含まれる。検出手段9は、試料Sから発生した2次X線4が入射されて測定対象の2次X線6を回折するフッ化リチウム(LiF)などの分光素子5と、その回折された2次X線6の強度を測定する検出器7とを含む。分光素子5と検出器7とは、図示しないゴニオメータにより、分光素子5で分光される2次X線6の波長を変えながらその2次X線6が検出器7に入射するように、一定の角度関係を保って回動される。   The analysis method according to the first embodiment of the present invention will be described below. First, the structure of the X-ray analyzer used for this analysis method is demonstrated according to FIG. This apparatus is generated by irradiating a primary S-ray 2 from an X-ray source 1 such as a rhodium (Rh) X-ray tube onto a sample S made of lime such as quick lime placed on a sample stage 8 2 An X-ray analyzer such as a fluorescent X-ray analyzer that measures the intensity of the next X-ray 4 with the detection means 9. The secondary X-ray 4 includes fluorescent X-rays, Compton scattered rays, Thomson scattered rays and the like generated when the sample X is irradiated with the primary X-rays 2. The detection means 9 includes a spectroscopic element 5 such as lithium fluoride (LiF) that receives the secondary X-ray 4 generated from the sample S and diffracts the secondary X-ray 6 to be measured, and the diffracted secondary X-ray. And a detector 7 for measuring the intensity of the line 6. The spectroscopic element 5 and the detector 7 are fixed by a goniometer (not shown) so that the secondary X-ray 6 is incident on the detector 7 while changing the wavelength of the secondary X-ray 6 dispersed by the spectroscopic element 5. It is rotated while maintaining the angular relationship.

この装置は、以下の検量線作成手段11、定量手段12および水分算出手段13を備える。検量線作成手段11は、強熱減量および二酸化炭素の含有率が既知の石灰からなる標準試料SにX線源1から1次X線2を照射し、標準試料Sから発生する2次X線4を分光素子5で分光させたコンプトン散乱線6Aの強度およびC−Kα線6Bの強度を検出器7で検出して、検出したコンプトン散乱線6Aの強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線6Bの強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成し、作成されたそれぞれの検量線を記憶する。定量手段12は、石灰からなる未知試料SにX線源1から1次X線2を照射し、未知試料Sから発生する2次X線4を分光素子5で分光させたコンプトン散乱線6Aの強度およびC−Kα線6Bの強度を検出器7で検出して、検量線作成手段11によって作成、記憶された強熱減量の検量線および二酸化炭素の検量線を、それぞれ適用して未知試料S中の強熱減量および二酸化炭素の含有率をそれぞれ求める。水分算出手段13は、定量手段12によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて未知試料Sの強熱減量中の水分の含有率を算出する。すなわち、第1実施形態の方法は、石灰からなる試料中の強熱減量、二酸化炭素および強熱減量中の水分の含有率を求めるX線分析方法である。   This apparatus includes the following calibration curve creation means 11, quantification means 12, and moisture calculation means 13. The calibration curve creating means 11 irradiates the standard sample S made of lime with known loss of ignition and carbon dioxide content with the primary X-ray 2 from the X-ray source 1 and generates secondary X-rays generated from the standard sample S. The intensity of the Compton scattered line 6A and the intensity of the C-Kα line 6B obtained by separating 4 with the spectroscopic element 5 are detected by the detector 7, and the correlation between the detected intensity of the Compton scattered line 6A and the content of ignition loss is detected. And a calibration curve of carbon dioxide showing a correlation between the intensity of the detected C-Kα line 6B and the content of carbon dioxide, and each of the created calibration curves is stored. The quantification unit 12 irradiates the unknown sample S made of lime with the primary X-ray 2 from the X-ray source 1, and the Compton scattered ray 6 </ b> A obtained by causing the spectroscopic element 5 to split the secondary X-ray 4 generated from the unknown sample S. The detector 7 detects the intensity and the intensity of the C-Kα line 6B, and applies the calibration curve for ignition loss and the calibration curve for carbon dioxide, which are created and stored by the calibration curve creation means 11, respectively. Determine the loss on ignition and the carbon dioxide content. The moisture calculation means 13 calculates the moisture content in the ignition loss of the unknown sample S by subtracting the carbon dioxide content obtained from the ignition loss content obtained by the quantification means 12. That is, the method of the first embodiment is an X-ray analysis method for obtaining the ignition loss in a sample made of lime, carbon dioxide, and the moisture content in the ignition loss.

この装置を用いた第1実施形態の分析方法においては、図1における石灰からなる試料S中の強熱減量から発生するコンプトン散乱線6Aの強度、たとえば1次X線2を発生するX線源1にロジウム(Rh)X線管を用いたときにはRh−Kαコンプトン散乱線6Aの強度が、試料S中の強熱減量の含有率ときわめてよい相関をもつことに着目し、Rh−Kαコンプトン散乱線6Aの強度によって試料S中の強熱減量の含有率を求めることとした。本発明に先立って行った実験によって求めた強熱減量の含有率とRh−Kαコンプトン散乱線のX線強度との相関を図4に示す。この図4によるとRh−Kαコンプトン散乱線6Aの強度と強熱減量の含有率とが直線比例関係になっていることが分かる。   In the analysis method of the first embodiment using this apparatus, the intensity of the Compton scattered ray 6A generated from the loss of ignition in the sample S made of lime in FIG. 1, for example, an X-ray source that generates primary X-rays 2 is used. Note that when a rhodium (Rh) X-ray tube is used for 1, the intensity of the Rh-Kα Compton scattering line 6A has a very good correlation with the content of ignition loss in the sample S, Rh-Kα Compton scattering The content of ignition loss in the sample S was determined by the intensity of the line 6A. FIG. 4 shows the correlation between the ignition loss content obtained by the experiment conducted prior to the present invention and the X-ray intensity of the Rh-Kα Compton scattered radiation. According to FIG. 4, it can be seen that the intensity of the Rh-Kα Compton scattered ray 6A and the content of ignition loss are in a linear proportional relationship.

第1実施形態においては、まず、図1に示すように、強熱減量と二酸化炭素の含有率が既知の石灰からなる標準試料Sを複数個用いて、これらの標準試料SにX線源1から1次X線2を照射して、強熱減量から発生するRh−Kαコンプトン散乱線6Aの強度と二酸化炭素の構成元素である炭素(C)から発生する蛍光X線すなわちC−Kα線6Bの強度とを検出器7にて検出し、検出したコンプトン散乱線6Aの強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線6Bの強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を検量線作成手段11で作成し、それぞれを記憶する。図2に作成された強熱減量の検量線を示す。C−Kα線6Bの強度と二酸化炭素の構成元素である炭素(C)の含有率との相関と、C−Kα線6Bの強度と二酸化炭素の含有率との相関とはともに直線比例関係であり、図3に二酸化炭素の検量線を示す。前記石灰からなる標準試料とは、生石灰中の強熱減量、二酸化炭素および強熱減量中の水分の含有率がJIS R9011 2006 「石灰の試験方法」によって求められた試料をいう。   In the first embodiment, first, as shown in FIG. 1, a plurality of standard samples S made of lime with known ignition loss and carbon dioxide content are used, and the X-ray source 1 is used for these standard samples S. Is irradiated with primary X-rays 2 and the intensity of Rh-Kα Compton scattered radiation 6A generated from ignition loss and fluorescent X-rays generated from carbon (C) which is a constituent element of carbon dioxide, that is, C-Kα rays 6B. Is detected by a detector 7, and a calibration curve for ignition loss showing a correlation between the intensity of the detected Compton scattered ray 6A and the content of ignition loss, and the intensity of the detected C-Kα line 6B A calibration curve for carbon dioxide showing a correlation with the carbon dioxide content is created by the calibration curve creating means 11 and stored. FIG. 2 shows the calibration curve for ignition loss created. The correlation between the intensity of the C-Kα line 6B and the content of carbon (C), which is a constituent element of carbon dioxide, and the correlation between the intensity of the C-Kα line 6B and the content of carbon dioxide are both linearly proportional. Yes, a calibration curve for carbon dioxide is shown in FIG. The standard sample made of lime refers to a sample in which the ignition loss in quicklime, carbon dioxide, and the moisture content in the ignition loss are determined by JIS R9011 2006 “Testing method of lime”.

次に、図1に示すように、未知試料SにX線源1から1次X線2が照射され、強熱減量から発生するRh−Kαコンプトン散乱線6Aの強度と二酸化炭素の構成元素である炭素から発生するC−Kα線6Bの強度とが検出器7にて検出され、定量手段12によって各検出強度に検量線作成手段11が記憶した対応する検量線(図2および3)が適用されて、強熱減量および二酸化炭素の含有率(mass%)が求められる。   Next, as shown in FIG. 1, the unknown sample S is irradiated with the primary X-ray 2 from the X-ray source 1, and the intensity of the Rh-Kα Compton scattered ray 6A generated from ignition loss and the constituent elements of carbon dioxide are The intensity of the C-Kα line 6B generated from a certain carbon is detected by the detector 7, and the corresponding calibration curve (FIGS. 2 and 3) stored by the calibration curve creation means 11 is applied to each detected intensity by the quantification means 12. Thus, ignition loss and carbon dioxide content (mass%) are required.

次に、定量手段12によって求められた強熱減量の含有率(mass%)から二酸化炭素の含有率が差し引かれて、強熱減量中の水分の含有率(mass%)が水分算出手段13によって算出される。   Next, the carbon dioxide content is subtracted from the ignition loss content (mass%) obtained by the quantitative means 12, and the moisture content (mass%) in the ignition loss is calculated by the moisture calculation means 13. Calculated.

本実施形態の方法によれば、試料Sから発生するRh−Kαコンプトン散乱線6Aの強度とC−Kα線6Bの強度とのみを検出するだけで、石灰中の強熱減量、二酸化炭素、強熱減量中の水分のそれぞれの含有率を短時間で精度よく求めることができる。さらに、石灰の主成分であるCaOやその他の成分であるMgO、SiO、Al、Fe、P、Sなどは、従来から蛍光X線分析によって定量されているので、JIS R9011 2006 「石灰の試験方法」で規定されている石灰中の全ての成分を蛍光X線分析によって定量することができる。 According to the method of this embodiment, only the intensity of the Rh-Kα Compton scattered ray 6A and the intensity of the C-Kα ray 6B generated from the sample S is detected, and the ignition loss in lime, carbon dioxide, strong Each content rate of the water | moisture content in heat loss can be calculated | required accurately in a short time. Furthermore, CaO, which is the main component of lime, and MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S, etc., which are other components, have been conventionally quantified by fluorescent X-ray analysis. Therefore, all the components in the lime prescribed | regulated by JISR9011 2006 "the test method of lime" can be quantified by a fluorescent X ray analysis.

以下に本発明の第2実施形態の分析方法について説明する。まず、この方法に用いる装置を図5に示す。この装置は、図1に示すX線分析装置と同様に、X線源1、試料台8、分光素子5、検出手段9、検量線作成手段11および定量手段12を備えているが、水分算出手段13は備えず、石灰からなる試料中の強熱減量の含有率を求める蛍光X線分析装置などのX線分析装置である。   The analysis method according to the second embodiment of the present invention will be described below. First, an apparatus used in this method is shown in FIG. Similar to the X-ray analysis apparatus shown in FIG. 1, this apparatus includes an X-ray source 1, a sample stage 8, a spectroscopic element 5, a detection means 9, a calibration curve creation means 11 and a quantification means 12, but calculates moisture. Means 13 is not provided, but is an X-ray analyzer such as a fluorescent X-ray analyzer for obtaining the content of ignition loss in a sample made of lime.

この装置を用いて、第2実施形態の分析方法では、強熱減量が既知の石灰からなる標準試料Sを複数個用いて、これらの標準試料SにX線源1から1次X線2を照射して、強熱減量から発生するRh−Kαコンプトン散乱線6Aの強度を検出器7にて検出し、検出したコンプトン散乱線6Aの強度と強熱減量の含有率との相関を示す強熱減量の検量線を検量線作成手段11で作成し、記憶する。図2に作成された強熱減量の検量線を示す。   Using this apparatus, in the analysis method of the second embodiment, a plurality of standard samples S made of lime with known ignition loss are used, and primary X-rays 2 from the X-ray source 1 are applied to these standard samples S. Irradiation is performed to detect the intensity of the Rh-Kα Compton scattered ray 6A generated from the loss of ignition by the detector 7, and the ignition shows the correlation between the intensity of the detected Compton scattered ray 6A and the content of ignition loss. A calibration curve for weight reduction is created by the calibration curve creating means 11 and stored. FIG. 2 shows the calibration curve for ignition loss created.

未知試料SにX線源1から1次X線2が照射され、強熱減量から発生するRh−Kαコンプトン散乱線6Aの強度が検出器7にて検出され、定量手段12によって各検出強度に検量線作成手段11が記憶した検量線(図2)が適用されて、強熱減量の含有率(mass%)が求められる。   The unknown sample S is irradiated with the primary X-ray 2 from the X-ray source 1, and the intensity of the Rh-Kα Compton scattered ray 6 A generated from the ignition loss is detected by the detector 7. The calibration curve (FIG. 2) stored by the calibration curve creation means 11 is applied to determine the ignition loss content rate (mass%).

本実施形態の方法によれば、試料Sから発生するRh−Kαコンプトン散乱線6Aの強度を検出して、石灰中の強熱減量の含有率を短時間で精度よく求めることができる。   According to the method of this embodiment, the intensity of the Rh-Kα Compton scattered ray 6A generated from the sample S can be detected, and the content of ignition loss in lime can be accurately determined in a short time.

次に、本発明に先立って行った実験および理論的検証について説明する。強熱減量、二酸化炭素および強熱減量中の水分の含有率が既知の標準試料を用いて、Rh−Kαコンプトン散乱線の強度と強熱減量の含有率との相関について調べた。強熱減量が0.63〜10.07mass%の範囲にある複数の標準試料を用い、測定したRh−Kαコンプトン散乱線の強度をプロットした検量線を図4に示す。図4に示すようにRh−Kαコンプトン散乱線の強度は強熱減量の含有率と極めてよい直線関係が得られ、正確度は0.33mass%であった。   Next, experiments and theoretical verification conducted prior to the present invention will be described. The correlation between the intensity of the Rh-Kα Compton scattered radiation and the content of ignition loss was examined using a standard sample whose ignition loss, carbon dioxide, and moisture content in ignition loss were known. FIG. 4 shows a calibration curve in which the intensity of the measured Rh-Kα Compton scattered radiation is plotted using a plurality of standard samples whose ignition loss is in the range of 0.63 to 10.07 mass%. As shown in FIG. 4, the intensity of Rh-Kα Compton scattered radiation had a very good linear relationship with the content of ignition loss, and the accuracy was 0.33 mass%.

この実験結果を検証するために理論的検証を行ったので、それについて説明する。強熱減量が1.0〜11.0mass%の範囲にあり、元素が均一に分布し、共存元素の影響なども考慮した試料を理論標準試料とし、蛍光X線分析FP法に基づくソフトウエアを用いてRh−Kαコンプトン散乱線とRh−Kαトムソン散乱線との理論X線強度を求めて作成した検量線を図6と図7に示す。図6がRh−Kαコンプトン散乱線の検量線であり、図7がRh−Kαトムソン散乱線の検量線である。Rh−Kαコンプトン散乱線の検量線の相関係数は0.9993であり、Rh−Kαトムソン散乱線の検量線の相関係数は0.9988である。Rh−Kαコンプトン散乱線の検量線はRh−Kαトムソン散乱線の検量線に比べて高勾配であり、Rh−Kαコンプトン散乱線の検量線が好ましい。   A theoretical verification was performed to verify the experimental results. Software based on the X-ray fluorescence analysis FP method with a loss of ignition in the range of 1.0 to 11.0 mass%, with the elements uniformly distributed and considering the influence of coexisting elements as the theoretical standard sample 6 and 7 show calibration curves created by using the theoretical X-ray intensities of the Rh-Kα Compton scattered ray and the Rh-Kα Thomson scattered ray. FIG. 6 is a calibration curve of Rh-Kα Compton scattered radiation, and FIG. 7 is a calibration curve of Rh-Kα Thomson scattering radiation. The correlation coefficient of the calibration curve of Rh-Kα Compton scattered radiation is 0.9993, and the correlation coefficient of the calibration curve of Rh-Kα Thomson scattered radiation is 0.9988. The calibration curve of the Rh-Kα Compton scattering line has a higher gradient than the calibration curve of the Rh-Kα Thomson scattering line, and the calibration curve of the Rh-Kα Compton scattering line is preferable.

次に、上記と同様にして二酸化炭素の含有率が0〜10mss%の範囲の理論標準試料についてRh−Kαコンプトン散乱線の理論X線強度との相関を求めた結果を図8に示す。強熱減量中の水分の含有率が一定で1.0mass%であると、二酸化炭素の含有率とRh−Kαコンプトン散乱線の理論X線強度とはよい相関を示している。図8における二酸化炭素の含有率2mass%の位置の縦軸方向のプロット点は、含有率2.0mass%の二酸化炭素からのRh−Kαコンプトン散乱線の理論X線強度が水分の含有率(下方から順に、0、0.5、1.0、1.5、2.0、2.5mass%)に応じて変化することを表している。すなわち、強熱減量中の水分の含有率が一定であれば二酸化炭素の含有率とRh−Kαコンプトン散乱線の理論X線強度とはよい相関を示すが、水分の含有率が変化すると、良好な相関を示さない。したがって、Rh−Kαコンプトン散乱線を用いて二酸化炭素の含有率を精度よく求めることはできない。   Next, FIG. 8 shows the result of obtaining the correlation with the theoretical X-ray intensity of the Rh-Kα Compton scattered radiation for the theoretical standard sample having the carbon dioxide content in the range of 0 to 10 mss% in the same manner as described above. When the moisture content during ignition loss is constant and 1.0 mass%, the carbon dioxide content and the theoretical X-ray intensity of Rh-Kα Compton scattered radiation show a good correlation. The plot point of the vertical axis | shaft direction of the position of the carbon dioxide content rate of 2 mass% in FIG. 8 is the theoretical X-ray intensity of the Rh-Kα Compton scattered ray from the carbon dioxide content of 2.0 mass%. In order from 0, 0.5, 1.0, 1.5, 2.0, 2.5 mass%). That is, if the moisture content during ignition loss is constant, the carbon dioxide content and the theoretical X-ray intensity of the Rh-Kα Compton scattered radiation show a good correlation, but if the moisture content changes, it is good. No significant correlation. Therefore, the carbon dioxide content cannot be determined accurately using Rh-Kα Compton scattered radiation.

そのため、本発明においては二酸化炭素の含有率を求めるにはRh−Kαコンプトン散乱線を使用せずに、二酸化炭素の構成元素である炭素の含有率をC−Kα線を用いて求め、その含有率を換算して二酸化炭素の含有率を求めている。   Therefore, in the present invention, in order to determine the content of carbon dioxide, the content of carbon, which is a constituent element of carbon dioxide, is determined using C-Kα rays without using Rh-Kα Compton scattered radiation. The carbon dioxide content is calculated by converting the rate.

特許文献1にRh−Kαコンプトン散乱線の強度によって試料中の二酸化炭素の含有率(濃度)を求めることが記載されているが、この文献には水分の含有率について記載されていない。これは、原料石灰石の表面の付着水は100℃を越えた段階で既に揮発し、原料からの持ち込み水分は存在せず、炉前での生石灰は水分を含んでいない試料となり、二酸化炭素の含有率とRh−Kαコンプトン散乱線の強度とがよい相関を示したと思われる。   Patent Document 1 describes that the content (concentration) of carbon dioxide in a sample is determined based on the intensity of Rh-Kα Compton scattered radiation, but this document does not describe the moisture content. This is because the water adhering to the surface of the raw limestone has already volatilized at the stage where the temperature exceeds 100 ° C, there is no moisture brought in from the raw material, the quick lime in front of the furnace becomes a sample that does not contain water, and contains carbon dioxide The rate and the intensity of Rh-Kα Compton scattered radiation seem to show a good correlation.

以下に本発明の第3実施形態の分析方法について説明する。まず、この方法に用いる装置を図9に示す。この装置は、図1に示すX線分析装置と同様に、X線源1、試料台8、分光素子5、検出手段9、検量線作成手段11、定量手段12および水分算出手段13を備えており、さらに補正係数算出手段14を備え、マトリックス補正をすることによって石灰からなる試料S中の強熱減量、二酸化炭素および強熱減量中の水分の含有率を求める蛍光X線分析装置である。   The analysis method according to the third embodiment of the present invention will be described below. First, an apparatus used for this method is shown in FIG. Similar to the X-ray analyzer shown in FIG. 1, this apparatus includes an X-ray source 1, a sample stage 8, a spectroscopic element 5, a detection means 9, a calibration curve creation means 11, a quantification means 12, and a moisture calculation means 13. The X-ray fluorescence analyzer further includes a correction coefficient calculation means 14 and calculates the loss of ignition in the sample S made of lime, carbon dioxide, and the moisture content in the loss of ignition by performing matrix correction.

補正係数算出手段14は、強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる補正用標準試料または石灰の仮想補正用標準試料のコンプトン散乱線4の強度を用いて、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を算出する。 The correction coefficient calculation means 14 has a content ratio of ignition loss and a content ratio of at least one component of carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , and S. Carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 using the intensity of the Compton scattering line 4 of a known standard sample for correction made of lime or a standard sample for virtual correction of lime. A matrix correction coefficient is calculated for correcting the calibration curve of ignition loss indicating the correlation between the intensity of Compton scattered radiation and the content of ignition loss with respect to the influence of at least one component of S.

検量線作成手段11は、強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料SにX線源1から1次X線2を照射し、前記標準試料Sから発生するコンプトン散乱線6Aの強度およびC−Kα線6Bの強度を検出手段9で検出して、補正係数算出手段14によって算出されたマトリックス補正係数を用いて強熱減量の補正検量線を作成するとともに、検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成して作成された強熱減量の補正検量線および二酸化炭素の検量線を記憶する。   The calibration curve creating means 11 irradiates the standard sample S made of lime with a known loss ratio of ignition loss and carbon dioxide content with the primary X-ray 2 from the X-ray source 1 and generates from the standard sample S. The detection means 9 detects the intensity of the Compton scattered ray 6A and the intensity of the C-Kα line 6B, creates a calibration curve for ignition loss using the matrix correction coefficient calculated by the correction coefficient calculation means 14, The calibration curve for ignition loss and the calibration curve for carbon dioxide created by creating a calibration curve for carbon dioxide showing the correlation between the intensity of the detected C-Kα line and the content of carbon dioxide are stored.

定量手段12は、石灰からなる未知試料SにX線源1から1次X線2を照射し、未知試料Sから発生するコンプトン散乱線6Aの強度およびC−Kα線6Bの強度を検出手段9で検出して、検量線作成手段11によって作成された強熱減量の補正検量線および二酸化炭素の検量線を、それぞれ適用して未知試料S中の強熱減量および二酸化炭素の含有率をそれぞれ求める。水分算出手段13は、第1実施形態と同様に未知試料Sの強熱減量中の水分の含有率を算出する。   The quantification unit 12 irradiates the unknown sample S made of lime with the primary X-ray 2 from the X-ray source 1 and detects the intensity of the Compton scattered ray 6A and the intensity of the C-Kα ray 6B generated from the unknown sample S. The calibration loss curve for ignition loss and the calibration curve for carbon dioxide created by the calibration curve creating means 11 are applied respectively to obtain the ignition loss and carbon dioxide content in the unknown sample S. . The moisture calculation means 13 calculates the moisture content in the ignition loss of the unknown sample S as in the first embodiment.

第3実施形態の分析方法においては、まず、強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料SにX線源1から1次X線2を照射し、標準試料Sから発生するコンプトン散乱線6Aの強度およびC−Kα線6Bの強度を検出手段9で検出する。次に、石灰の組成を次のように仮定した石灰の仮想補正用標準試料を用いて図9に示す装置の補正係数算出手段14に理論マトリックス補正係数を算出させる。例えば、石灰試料をHOとCaOの2元系と考え、含有率が6mass%の強熱減量を基準として、共存成分であるMgO、SiO、Al、Fe、P、Sおよび二酸化炭素の含有率を変化させて補正係数算出手段14に理論マトリックス補正係数を算出させる。算出によって求められた理論マトリックス補正係数を表1に示す。 In the analysis method of the third embodiment, first, a standard sample S made of lime whose ignition loss and carbon dioxide content is known is irradiated with primary X-rays 2 from the X-ray source 1 and the standard sample. The detection means 9 detects the intensity of the Compton scattered radiation 6A generated from S and the intensity of the C-Kα radiation 6B. Next, the theoretical matrix correction coefficient is calculated by the correction coefficient calculation means 14 of the apparatus shown in FIG. 9 using the lime virtual correction standard sample assuming the lime composition as follows. For example, a lime sample is considered to be a binary system of H 2 O and CaO, and the coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P are based on an ignition loss of 6 mass%. The correction coefficient calculation means 14 calculates the theoretical matrix correction coefficient by changing the contents of 2 O 5 , S and carbon dioxide. Table 1 shows theoretical matrix correction coefficients obtained by calculation.

理論マトリックス補正係数の算出には、例えば下記の(1)式を用いる。   For example, the following equation (1) is used to calculate the theoretical matrix correction coefficient.

Figure 0005337832
Figure 0005337832

Figure 0005337832
Figure 0005337832

検量線作成手段11に、検出手段9で検出したコンプトン散乱線6Aの強度と補正係数算出手段14で算出された理論マトリックス補正係数とを用いて強熱減量の補正検量線を作成させるとともに、検出手段9で検出したC−Kα線6Bの強度を用いて二酸化炭素の検量線を作成させ、記憶させる。作成された強熱減量の補正検量線を図10に示す。図10の強熱減量の補正検量線において、横軸は強熱減量の含有率(mass%)、縦軸はRh−Kαコンプトン散乱線強度である。この強熱減量の補正検量線の正確度は0.146mass%である。   The calibration curve creation means 11 creates a correction calibration curve for ignition loss using the intensity of the Compton scattered ray 6A detected by the detection means 9 and the theoretical matrix correction coefficient calculated by the correction coefficient calculation means 14, and also detects the calibration curve. A calibration curve for carbon dioxide is created and stored using the intensity of the C-Kα line 6B detected by the means 9. FIG. 10 shows the created calibration curve for loss on ignition. In the calibration curve for ignition loss in FIG. 10, the horizontal axis represents the ignition loss content (mass%), and the vertical axis represents the Rh-Kα Compton scattered radiation intensity. The accuracy of the calibration curve for the loss on ignition is 0.146 mass%.

定量手段12は、石灰からなる未知試料SにX線源1から1次X線2を照射し、未知試料Sから発生する2次X線4を分光素子5で分光させたコンプトン散乱線6Aの強度、C−Kα線6Bの強度および、Mg、Si、Al、Fe、P、Sの蛍光X線の強度を検出器7で検出して、検量線作成手段11によって作成、記憶された強熱減量の補正検量線および二酸化炭素の検量線を、それぞれ適用して未知試料S中の強熱減量および二酸化炭素の含有率をそれぞれ求める。水分算出手段13は、定量手段12によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて未知試料Sの強熱減量中の水分の含有率を算出する。すなわち、第3実施形態の方法は、石灰からなる試料中の強熱減量の含有率を、共存成分であるMgO、SiO、Al、Fe、P、Sおよび二酸化炭素のマトリックス補正を行って求めるとともに二酸化炭素および強熱減量中の水分の含有率を求めるX線分析方法である。 The quantification unit 12 irradiates the unknown sample S made of lime with the primary X-ray 2 from the X-ray source 1, and the Compton scattered ray 6 </ b> A obtained by causing the spectroscopic element 5 to split the secondary X-ray 4 generated from the unknown sample S. The intensity, the intensity of the C-Kα ray 6B, and the intensity of fluorescent X-rays of Mg, Si, Al, Fe, P, and S are detected by the detector 7, and the ignition is created and stored by the calibration curve creating means 11 The weight loss correction calibration curve and the carbon dioxide calibration curve are respectively applied to determine the ignition loss in the unknown sample S and the carbon dioxide content. The moisture calculation means 13 calculates the moisture content in the ignition loss of the unknown sample S by subtracting the carbon dioxide content obtained from the ignition loss content obtained by the quantification means 12. That is, according to the method of the third embodiment, the content of ignition loss in a sample made of lime is determined by coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S and This is an X-ray analysis method for obtaining a carbon dioxide matrix correction and obtaining the content of carbon dioxide and moisture in ignition loss.

図10に示す強熱減量の補正検量線を評価するために、共存成分であるMgO、SiO、Al、Fe、P、Sおよび二酸化炭素のマトリックス補正を行わない強熱減量の検量線を作成して比較した。MgO、SiO、Al、Fe、P、Sおよび二酸化炭素の含有率が下記の表2に示す範囲にある石灰標準試料Sを用いて、検量線作成手段11によって強熱減量の検量線を作成した。作成された強熱減量のマトリックス未補正検量線を図11に示す。このマトリックス未補正検量線の正確度は0.172mass%であった。上記で求めた図10のマトリックス補正検量線の正確度は0.146mass%であり、マトリックス補正を行うことによって検量線の正確度が向上することが分かった。このように、第3実施形態の分析方法によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、強熱減量、二酸化炭素および水分の含有率をより優れた正確さで分析することができる。 In order to evaluate the correction calibration curve for the loss on ignition shown in FIG. 10, matrix correction of coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S and carbon dioxide was performed. A calibration curve of no ignition loss was created and compared. Using the lime standard sample S in which the contents of MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S and carbon dioxide are in the ranges shown in Table 2 below, a calibration curve creation means 11 A calibration curve for loss on ignition was created. The prepared matrix uncorrected calibration curve for ignition loss is shown in FIG. The accuracy of this matrix uncorrected calibration curve was 0.172 mass%. The accuracy of the matrix correction calibration curve of FIG. 10 obtained above is 0.146 mass%, and it was found that the accuracy of the calibration curve is improved by performing matrix correction. As described above, according to the analysis method of the third embodiment, by performing matrix correction, the accuracy of the calibration curve for ignition loss is improved, and the ignition loss, carbon dioxide and moisture content ratios are more excellent and accurate. Now you can analyze.

Figure 0005337832
Figure 0005337832

第3実施形態の分析方法では、MgO、SiO、Al、Fe、P、Sおよび二酸化炭素のマトリックス補正を行ったが、これらの成分のうち少なくとも一つの成分、例えば二酸化炭素のみについて、マトリックス補正を行ってもよい。 In the analysis method of the third embodiment, matrix correction of MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S and carbon dioxide was performed, but at least one of these components For example, matrix correction may be performed only for carbon dioxide.

以下に本発明の第4実施形態の分析方法について説明する。まず、この方法に用いる装置を図12に示す。この装置は、図9に示すX線分析装置と同様に、X線源1、試料台8、分光素子5、検出手段9、検量線作成手段11、定量手段12および補正係数算出手段14を備えているが、水分算出手段13を備えず、石灰からなる試料S中の強熱減量の含有率を求める蛍光X線分析装置である。   The analysis method according to the fourth embodiment of the present invention will be described below. First, an apparatus used for this method is shown in FIG. Similar to the X-ray analyzer shown in FIG. 9, this apparatus includes an X-ray source 1, a sample stage 8, a spectroscopic element 5, a detecting means 9, a calibration curve creating means 11, a quantifying means 12 and a correction coefficient calculating means 14. However, it is a fluorescent X-ray analyzer that does not include the moisture calculation means 13 and calculates the content of ignition loss in the sample S made of lime.

第4実施形態の分析方法においては、まず、強熱減量の含有率が既知の石灰からなる標準試料SにX線源1から1次X線2を照射し、標準試料Sから発生するコンプトン散乱線6Aの強度を検出手段9で検出する。次に、第3実施形態と同様にして、補正係数算出手段14に、共存成分のMgO、SiO、Al、Fe、P、Sおよび二酸化炭素のマトリックス補正係数を算出させる。検量線作成手段11に、検出手段9で検出したコンプトン散乱線6Aの強度と補正係数算出手段14で算出された理論マトリックス補正係数とを用いて強熱減量の補正検量線を作成させ、記憶させる。定量手段12は、検量線作成手段11によって作成、記憶された強熱減量の補正検量線によって未知試料S中の強熱減量の含有率を求める。すなわち、第4実施形態の方法は、マトリックス補正を行って石灰からなる試料中の強熱減量の含有率を求めるX線分析方法である。 In the analysis method of the fourth embodiment, first, Compton scattering generated from the standard sample S by irradiating the standard sample S made of lime with a known loss ratio of ignition loss with the primary X-ray 2 from the X-ray source 1. The detection means 9 detects the intensity of the line 6A. Next, in the same manner as in the third embodiment, the correction coefficient calculation means 14 has a matrix correction coefficient of coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S and carbon dioxide. Is calculated. The calibration curve creation means 11 creates and stores a correction calibration curve for ignition loss using the intensity of the Compton scattered ray 6A detected by the detection means 9 and the theoretical matrix correction coefficient calculated by the correction coefficient calculation means 14. . The quantification unit 12 obtains the content of ignition loss in the unknown sample S by using the calibration curve for ignition loss created and stored by the calibration curve creation unit 11. That is, the method of the fourth embodiment is an X-ray analysis method for obtaining the content of ignition loss in a sample made of lime by performing matrix correction.

第4実施形態の方法によれば、マトリックス補正をすることによって強熱減量の検量線の正確度が向上し、強熱減量の含有率をより優れた正確さで分析することができる。   According to the method of the fourth embodiment, the accuracy of the calibration curve for ignition loss is improved by performing matrix correction, and the content of ignition loss can be analyzed with better accuracy.

なお、強熱減量、二酸化炭素とともに共存成分のMgO、SiO、Al、Fe、PおよびSを同時に分析してもよい。その分析方法は、強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる標準試料に1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度、および、C、Mg、Si、Al、Fe、P、Sのうち、前記少なくとも一つの成分に対応する蛍光X線の強度を検出し、石灰からなる補正用標準試料または石灰の仮想補正用標準試料のコンプトン散乱線の強度を用いて、前記少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を求め、前記検出したコンプトン散乱線の強度および前記求めたマトリックス補正係数を用いて強熱減量の補正検量線および検出した前記少なくとも一つの成分に対応する蛍光X線の強度を用いて前記少なくとも一つの成分の検量線を作成し、石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度、および、前記少なくとも一つの成分に対応する蛍光X線の強度を検出し、前記強熱減量の補正検量線および前記少なくとも一つの成分の検量線を用いて前記未知試料中の強熱減量の含有率および前記少なくとも一つの成分の含有率を求める。 The coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S may be analyzed simultaneously with ignition loss and carbon dioxide. The analysis method is known in that the content of ignition loss and the content of at least one component of carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 , S are known. A standard sample made of lime is irradiated with primary X-rays, and the intensity of Compton scattered radiation generated from the standard sample and the at least one component among C, Mg, Si, Al, Fe, P, and S The intensity of the Compton scattered ray is detected with respect to the influence of the at least one component by detecting the intensity of the corresponding fluorescent X-ray and using the Compton scattered ray intensity of the correction standard sample made of lime or the virtual correction standard sample of lime. The matrix correction coefficient for correcting the calibration curve for ignition loss indicating the correlation between the content of ignition loss and the ignition loss is obtained, and the intensity of the detected Compton scattered ray and the obtained matrix correction factor are obtained. Is used to create a calibration curve for the at least one component using the corrected calibration curve for loss on ignition and the intensity of the fluorescent X-ray corresponding to the detected at least one component. Irradiating a line, detecting the intensity of Compton scattered radiation generated from the unknown sample, and the intensity of fluorescent X-rays corresponding to the at least one component, and correcting the ignition loss calibration curve and the at least one component Is used to determine the content of ignition loss and the content of the at least one component in the unknown sample.

さらに、強熱減量、二酸化炭素および強熱減量中の水分とともに、主成分であるCaO、共存成分のMgO、SiO、Al、Fe、PおよびSを同時に分析してもよい。 Furthermore, together with ignition loss, carbon dioxide and moisture in ignition loss, the main component CaO, coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S are analyzed simultaneously. May be.

強熱減量、二酸化炭素および強熱減量中の水分とともに、主成分であるCaO、共存成分のMgO、SiO、Al、Fe、PおよびSを、上記のように同時に分析することによって、石灰分析において必要とされる全ての成分を蛍光X線分析装置で正確に定量することができる。 Along with ignition loss, carbon dioxide and moisture in ignition loss, the main component CaO, coexisting components MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S are as described above. By analyzing simultaneously, all components required in the lime analysis can be accurately quantified with a fluorescent X-ray analyzer.

なお、第3実施形態では理論マトリックス補正係数を求めるのに算出式として上記の(1)式を用いたが、公知の他の算出式を用いてもよいし、石灰からなる補正用標準試料を用いて補正係数算出手段14に回帰計算によりマトリックス補正係数を算出させて求めてもよい。また、補正係数算出手段14を使用せずに、別途、理論X線強度を計算し、設定した石灰の仮想補正用標準試料の含有率との関係から手計算方式で理論マトリックス補正係数を求めてもよい。   In the third embodiment, the above formula (1) is used as a calculation formula to obtain the theoretical matrix correction coefficient. However, another known calculation formula may be used, or a correction standard sample made of lime is used. Alternatively, the correction coefficient calculation unit 14 may calculate the matrix correction coefficient by regression calculation. Further, the theoretical X-ray intensity is calculated separately without using the correction coefficient calculating means 14, and the theoretical matrix correction coefficient is obtained by a manual calculation method from the relationship with the content rate of the set lime virtual correction standard sample. Also good.

第1〜第4実施形態の方法で用いた装置は、波長分散型の蛍光X線分析装置として説明したが、エネルギー分散型の蛍光X線分析装置でもよい。   The apparatus used in the methods of the first to fourth embodiments has been described as a wavelength dispersive fluorescent X-ray analyzer, but may be an energy dispersive fluorescent X-ray analyzer.

なお、本実施形態では1次X線2を発生するX線源1としてロジウムX線管を用いたが、本発明においては、ロジウムX線管に限らず、ターゲットがモリブデンやパラジウム等で形成されたX線管を用いることができる。   In the present embodiment, a rhodium X-ray tube is used as the X-ray source 1 that generates the primary X-ray 2. However, in the present invention, the target is not limited to the rhodium X-ray tube, and the target is formed of molybdenum, palladium, or the like. An X-ray tube can be used.

また、本実施形態では試料として生石灰について説明したが、石灰石、消石灰、タンカル(炭酸カルシウム)などについても本発明は適用できる。   Moreover, although quick lime was demonstrated as a sample in this embodiment, this invention is applicable also to limestone, slaked lime, tancal (calcium carbonate), etc.

1 X線源
2 1次X線
4、6 2次X線
9 検出手段
11 検量線作成手段
12 定量手段
13 水分算出手段
14 補正係数算出手段
S 試料
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 4, 6 Secondary X-ray 9 Detection means 11 Calibration curve creation means 12 Determination means 13 Moisture calculation means 14 Correction coefficient calculation means S Sample

Claims (8)

強熱減量の含有率が既知の石灰からなる標準試料に1次X線を照射し、
前記標準試料から発生するコンプトン散乱線の強度を検出し、
検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線を作成し、
石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度を検出し、
前記強熱減量の検量線を用いて前記未知試料中の強熱減量の含有率を求めるX線分析方法。
Irradiate a standard sample made of lime with a known loss of ignition loss with primary X-rays,
Detecting the intensity of Compton scattered radiation generated from the standard sample,
Create a calibration curve for ignition loss showing the correlation between the intensity of the detected Compton scattered radiation and the content of ignition loss,
Irradiating an unknown sample made of lime with primary X-rays, detecting the intensity of Compton scattered radiation generated from the unknown sample,
An X-ray analysis method for obtaining a content of ignition loss in the unknown sample by using the calibration curve for ignition loss.
強熱減量および二酸化炭素の含有率が既知の石灰からなる標準試料に1次X線を照射し、
前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、
検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成し、
石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、
前記強熱減量の検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求め、
この求めた強熱減量の含有率から求めた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を求めるX線分析方法。
Irradiate primary X-rays to a standard sample made of lime with known loss on ignition and carbon dioxide content,
Detecting the intensity of Compton scattered radiation and C-Kα radiation generated from the standard sample,
A calibration curve for ignition loss showing the correlation between the intensity of the detected Compton scattered radiation and the content of ignition loss, and a calibration of carbon dioxide showing the correlation between the intensity of the detected C-Kα ray and the content of carbon dioxide Create a line
Irradiating an unknown sample made of lime with primary X-rays to detect the intensity of Compton scattered rays and C-Kα rays generated from the unknown sample,
Using the calibration curve for ignition loss and the calibration curve for carbon dioxide, the ignition loss and the carbon dioxide content in the unknown sample were determined, respectively.
An X-ray analysis method for obtaining a moisture content in ignition loss of the unknown sample by subtracting the obtained carbon dioxide content from the obtained ignition loss content.
試料に1次X線を照射するX線源と、
前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、
を備えるX線分析装置であって、
強熱減量の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線を作成する検量線作成手段と、
石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の検量線によって前記未知試料中の強熱減量の含有率を求める定量手段と、
を備えるX線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for detecting the intensity of secondary X-rays generated from a sample irradiated with primary X-rays from the X-ray source;
An X-ray analyzer comprising:
A standard sample made of lime with a known loss ratio of ignition loss was irradiated with primary X-rays from the X-ray source, and the intensity of Compton scattered rays generated from the standard sample was detected by the detection means, and detected. A calibration curve creation means for creating a calibration curve for ignition loss showing a correlation between the intensity of Compton scattered radiation and the content of ignition loss;
An intense sample created by the calibration curve creating means by irradiating an unknown sample made of lime with primary X-rays from the X-ray source, detecting the intensity of Compton scattered radiation generated from the unknown sample with the detecting means A quantitative means for determining the content of ignition loss in the unknown sample by a calibration curve for weight loss;
An X-ray analyzer comprising:
試料に1次X線を照射するX線源と、
前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、
を備えるX線分析装置であって、
強熱減量および二酸化炭素の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、検出したコンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線、および検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成する検量線作成手段と、
石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の検量線および二酸化炭素の検量線によって前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求める定量手段と、
前記定量手段によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を算出する水分算出手段と、
を備えるX線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for detecting the intensity of secondary X-rays generated from a sample irradiated with primary X-rays from the X-ray source;
An X-ray analyzer comprising:
A standard sample made of lime with known loss on ignition and carbon dioxide content is irradiated with primary X-rays from the X-ray source, and the intensity of Compton scattered radiation and the intensity of C-Kα rays generated from the standard sample are measured. A calibration curve for loss on ignition showing a correlation between the intensity of the Compton scattered ray detected and the content of loss on ignition detected by the detection means, and the intensity of the detected C-Kα ray and the content of carbon dioxide A calibration curve creation means for creating a calibration curve of carbon dioxide showing the correlation of
A calibration curve is created by irradiating an unknown sample made of lime with primary X-rays from the X-ray source, and detecting the intensity of Compton scattered rays and C-Kα rays generated from the unknown sample with the detection means. Quantification means for determining the ignition loss and carbon dioxide content in the unknown sample by the calibration curve for ignition loss and the calibration curve for carbon dioxide created by the means,
Moisture calculating means for calculating the moisture content in ignition loss of the unknown sample by subtracting the carbon dioxide content determined from the ignition loss content determined by the quantitative means;
An X-ray analyzer comprising:
強熱減量の含有率が既知の石灰からなる標準試料に1次X線を照射し、
前記標準試料から発生するコンプトン散乱線の強度を検出し、
強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる補正用標準試料または石灰の仮想補正用標準試料を用いて、前記少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を求め、
前記検出したコンプトン散乱線の強度および前記求めたマトリックス補正係数を用いて強熱減量の補正検量線を作成し、
石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度、および、C、Mg、Si、Al、Fe、P、Sのうち前記少なくとも一つの成分に対応する蛍光X線の強度を検出し、
前記強熱減量の補正検量線を用いて前記未知試料中の強熱減量の含有率を求めるX線分析方法。
Irradiate a standard sample made of lime with a known loss of ignition loss with primary X-rays,
Detecting the intensity of Compton scattered radiation generated from the standard sample,
For correction of the loss of ignition loss and lime having a known content of at least one of carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S Using a standard sample or a standard sample for virtual correction of lime, for correcting the calibration curve of ignition loss indicating the correlation between the intensity of Compton scattered radiation and the content of ignition loss for the influence of the at least one component Find the matrix correction factor of
Create a calibration curve for loss on ignition using the intensity of the detected Compton scattered radiation and the matrix correction factor obtained,
Irradiate an unknown sample made of lime with primary X-rays, corresponding to the intensity of Compton scattered radiation generated from the unknown sample and the at least one component of C, Mg, Si, Al, Fe, P, S Detecting the intensity of fluorescent X-rays
An X-ray analysis method for obtaining the content of ignition loss in the unknown sample using the calibration curve for ignition loss.
強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料に1次X線を照射し、
前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、
前記標準試料または石灰の仮想標準試料を用いて、二酸化炭素の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を求め、
前記検出したコンプトン散乱線の強度および前記求めたマトリックス補正係数を用いて強熱減量の補正検量線を作成するとともに、前記検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成し、
石灰からなる未知試料に1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を検出し、
前記強熱減量の補正検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求め、
この求めた強熱減量の含有率から求めた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を求めるX線分析方法。
Irradiate a standard sample made of lime with a known loss of ignition loss and carbon dioxide content with primary X-rays,
Detecting the intensity of Compton scattered radiation and C-Kα radiation generated from the standard sample,
Matrix correction factor for correction of ignition loss calibration curve showing correlation between Compton scattered radiation intensity and ignition loss content for the effect of carbon dioxide using said standard sample or lime virtual reference sample Seeking
A correction calibration curve for ignition loss is created using the intensity of the detected Compton scattered radiation and the obtained matrix correction coefficient, and the correlation between the intensity of the detected C-Kα ray and the carbon dioxide content is shown. Create a calibration curve for carbon dioxide,
Irradiating an unknown sample made of lime with primary X-rays to detect the intensity of Compton scattered rays and C-Kα rays generated from the unknown sample,
Using the corrected calibration curve for ignition loss and the calibration curve for carbon dioxide, the ignition loss and carbon dioxide content in the unknown sample were determined,
An X-ray analysis method for obtaining a moisture content in ignition loss of the unknown sample by subtracting the obtained carbon dioxide content from the obtained ignition loss content.
試料に1次X線を照射するX線源と、
前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、
を備えるX線分析装置であって、
強熱減量の含有率、および、二酸化炭素、MgO、SiO、Al、Fe、P、Sのうち少なくとも一つの成分の含有率が既知の石灰からなる補正用標準試料または石灰の仮想補正用標準試料を用いて、前記少なくとも一つの成分の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を算出する補正係数算出手段と、
強熱減量の含有率が既知の石灰からなる標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度を前記検出手段で検出して、その検出したコンプトン散乱線の強度および前記補正係数算出手段によって算出されたマトリックス補正係数を用いて強熱減量の補正検量線を作成する検量線作成手段と、
石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度、および、C、Mg、Si、Al、Fe、P、Sのうち前記少なくとも一つの成分に対応する蛍光X線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の補正検量線を用いて前記未知試料中の強熱減量の含有率を求める定量手段と、
を備えるX線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for detecting the intensity of secondary X-rays generated from a sample irradiated with primary X-rays from the X-ray source;
An X-ray analyzer comprising:
For correction of the loss of ignition loss and lime having a known content of at least one of carbon dioxide, MgO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , P 2 O 5 and S Using a standard sample or a standard sample for virtual correction of lime, for correcting the calibration curve of ignition loss indicating the correlation between the intensity of Compton scattered radiation and the content of ignition loss for the influence of the at least one component Correction coefficient calculation means for calculating the matrix correction coefficient of
A standard sample made of lime whose ignition loss content is known is irradiated with primary X-rays from the X-ray source, and the intensity of Compton scattered radiation generated from the standard sample is detected by the detection means, and the detection is performed. Calibration curve creation means for creating a corrected calibration curve for loss on ignition using the intensity of the Compton scattered radiation and the matrix correction coefficient calculated by the correction coefficient calculation means;
Irradiating an unknown sample made of lime with primary X-rays from the X-ray source, the intensity of Compton scattered rays generated from the unknown sample, and at least one of C, Mg, Si, Al, Fe, P, and S The intensity of fluorescent X-rays corresponding to one component is detected by the detection means, and the ignition loss content in the unknown sample using the calibration curve for ignition loss created by the calibration curve creation means Quantification means for obtaining
An X-ray analyzer comprising:
試料に1次X線を照射するX線源と、
前記X線源から1次X線が照射された試料から発生する2次X線の強度を検出する検出手段と、
を備えるX線分析装置であって、
強熱減量の含有率および二酸化炭素の含有率が既知の石灰からなる標準試料または石灰の仮想標準試料を用いて、二酸化炭素の影響について、コンプトン散乱線の強度と強熱減量の含有率との相関を示す強熱減量の検量線の補正のためのマトリックス補正係数を算出する補正係数算出手段と、
前記標準試料に前記X線源から1次X線を照射し、前記標準試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検出したコンプトン散乱線の強度および前記補正係数算出手段によって算出されたマトリックス補正係数を用いて強熱減量の補正検量線を作成するとともに、前記検出したC−Kα線の強度と二酸化炭素の含有率との相関を示す二酸化炭素の検量線を作成する検量線作成手段と、
石灰からなる未知試料に前記X線源から1次X線を照射し、前記未知試料から発生するコンプトン散乱線の強度およびC−Kα線の強度を前記検出手段で検出して、前記検量線作成手段によって作成された強熱減量の補正検量線および二酸化炭素の検量線を用いて前記未知試料中の強熱減量および二酸化炭素の含有率をそれぞれ求める定量手段と、
前記定量手段によって求められた強熱減量の含有率から求められた二酸化炭素の含有率を差し引いて前記未知試料の強熱減量中の水分の含有率を算出する水分算出手段と、
を備えるX線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for detecting the intensity of secondary X-rays generated from a sample irradiated with primary X-rays from the X-ray source;
An X-ray analyzer comprising:
Using a standard sample of lime with known loss of ignition loss and carbon dioxide or a virtual reference sample of lime, the effect of carbon dioxide on the intensity of Compton scattered radiation and the loss of ignition loss A correction coefficient calculating means for calculating a matrix correction coefficient for correcting the calibration curve of ignition loss indicating correlation;
The standard sample is irradiated with primary X-rays from the X-ray source, the intensity of Compton scattered radiation and C-Kα radiation generated from the standard sample is detected by the detection means, and the detected Compton scattered radiation is detected. A correction calibration curve for ignition loss is created using the matrix correction coefficient calculated by the intensity and the correction coefficient calculation means, and the correlation between the detected C-Kα line intensity and the carbon dioxide content is shown. A calibration curve creation means for creating a calibration curve for carbon dioxide;
A calibration curve is created by irradiating an unknown sample made of lime with primary X-rays from the X-ray source, and detecting the intensity of Compton scattered rays and C-Kα rays generated from the unknown sample with the detection means. Quantification means for determining the ignition loss and carbon dioxide content in the unknown sample using the calibration loss curve and the carbon dioxide calibration curve created by the means,
Moisture calculating means for calculating the moisture content in ignition loss of the unknown sample by subtracting the carbon dioxide content determined from the ignition loss content determined by the quantitative means;
An X-ray analyzer comprising:
JP2011057019A 2010-06-29 2011-03-15 X-ray analysis method and apparatus Active JP5337832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057019A JP5337832B2 (en) 2010-06-29 2011-03-15 X-ray analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010147235 2010-06-29
JP2010147235 2010-06-29
JP2011057019A JP5337832B2 (en) 2010-06-29 2011-03-15 X-ray analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2012032372A JP2012032372A (en) 2012-02-16
JP5337832B2 true JP5337832B2 (en) 2013-11-06

Family

ID=45845928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057019A Active JP5337832B2 (en) 2010-06-29 2011-03-15 X-ray analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP5337832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715526B (en) 2014-06-23 2021-01-11 日商昭和電工氣體產品股份有限公司 Beading device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415685B2 (en) 2019-03-27 2024-01-17 住友金属鉱山株式会社 Analysis method for ore samples
CN111272794A (en) * 2020-04-03 2020-06-12 重庆国际复合材料股份有限公司 X-ray fluorescence testing method for calcined mineral raw material
CN114166880A (en) * 2021-11-17 2022-03-11 酒泉钢铁(集团)有限责任公司 Method for detecting primary and secondary elements in coal or coke
CN115639233B (en) * 2022-10-17 2024-05-10 青海西钢特殊钢科技开发有限公司 Method for analyzing lanthanum and cerium content in blast furnace molten iron

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532756B2 (en) * 1973-12-17 1978-01-31
JP3059339B2 (en) * 1994-05-12 2000-07-04 理学電機工業株式会社 X-ray analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715526B (en) 2014-06-23 2021-01-11 日商昭和電工氣體產品股份有限公司 Beading device

Also Published As

Publication number Publication date
JP2012032372A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
Markowicz An overview of quantification methods in energy-dispersive X-ray fluorescence analysis
JP5337832B2 (en) X-ray analysis method and apparatus
JP2008268076A (en) Non-destructive discrimination method, and device
EP2085772B8 (en) Apparatus and method for X-ray fluorescence analysis of a mineral sample
WO2015056304A1 (en) X-ray fluorescence analysis method and x-ray fluorescence analysis device
JP2011075542A (en) Fluorescent x-ray analysis method
JP4725350B2 (en) Transmission X-ray measurement method
JP2010223908A (en) Fluorescent x-ray analysis method
JP6944730B2 (en) Quantitative analysis method, quantitative analysis program and fluorescent X-ray analyzer
WO2015056305A1 (en) X-ray fluorescence analysis method and x-ray fluorescence analysis device
JP6762734B2 (en) Quantitative X-ray analysis and ratio correction method
CN105612417B (en) Method and apparatus for X-ray transmission measurement and x-ray fluorescence measurement progress calorific value estimation using dual energy
JP5874108B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
Hallak et al. A new method for matrix corrections by radioisotope excited x‐ray fluorescence
JP5481752B2 (en) X-ray fluorescence analyzer
da COSTA et al. Development and characterization of a portable total reflection X-ray fluorescence system using a waveguide for trace elements analysis
JP4834613B2 (en) X-ray fluorescence analyzer and method
JP3059339B2 (en) X-ray analysis method
JP5618240B2 (en) Quantitative analysis method
Inoue et al. A new methodical approach based on Compton scattering and XRF: quantitative analysis of CO2 and loss on ignition in quicklime
WO2022091597A1 (en) Fluorescent x-ray analysis device
Torok et al. EX-SITU PORTABLE X-RAY FLUORESCENCE SPECTROMETRY FOR THE MAJOR ELEMENTS DETERMINATION IN SILICATE GEOLOGICAL SAMPLES USING MATRIX-MATCHING STANDARDS FOR CALIBRATION.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250