JP7405446B2 - Parts processing equipment, parts processing system, parts processing method - Google Patents

Parts processing equipment, parts processing system, parts processing method Download PDF

Info

Publication number
JP7405446B2
JP7405446B2 JP2021203045A JP2021203045A JP7405446B2 JP 7405446 B2 JP7405446 B2 JP 7405446B2 JP 2021203045 A JP2021203045 A JP 2021203045A JP 2021203045 A JP2021203045 A JP 2021203045A JP 7405446 B2 JP7405446 B2 JP 7405446B2
Authority
JP
Japan
Prior art keywords
component
processing
temperature
parts
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021203045A
Other languages
Japanese (ja)
Other versions
JP2022043161A (en
Inventor
▲しょう▼二郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKIM Corp
Original Assignee
AKIM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKIM Corp filed Critical AKIM Corp
Priority to JP2021203045A priority Critical patent/JP7405446B2/en
Publication of JP2022043161A publication Critical patent/JP2022043161A/en
Application granted granted Critical
Publication of JP7405446B2 publication Critical patent/JP7405446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Specific Conveyance Elements (AREA)

Description

本発明は、様々な部品を処理する工程、例えば電子部品の温度特性を検査する検査工程に好適な部品処理システムに関する。 The present invention relates to a component processing system suitable for processing various components, for example, an inspection process for inspecting the temperature characteristics of electronic components.

IoT社会(Internet of Things)と呼ばれる、様々な製品がネットワークに接続されることで、情報交換を行い、相互に制御する社会が、近い将来やってくると言われている。このIoT社会では、周囲の環境の変化を測定するセンサが重要であり、例えば温度測定をおこなうサーミスタ素子や、加速度を測定する加速度センサといった検出器が代表的なものである。また現在、電気製品の多くには、すでに制御のための電子回路が組み込まれており、その周波数や時間の基準として水晶振動子が利用されている。 It is said that a society called the Internet of Things (IoT), in which various products will be connected to networks to exchange information and control each other, will arrive in the near future. In this IoT society, sensors that measure changes in the surrounding environment are important, and typical detectors include a thermistor element that measures temperature and an acceleration sensor that measures acceleration. Moreover, many electrical products now already have electronic circuits built in for control, and crystal oscillators are used as the frequency and time standards.

上記の水晶振動子やサーミスタ素子は、温度に対してその物性を大きく変化させるため、部品として出荷する前に、温度特性の評価、検査をすることが必要である。これらの部品は、大量に使用され、且つ、極めて小さなパッケージに実装されているため、検査装置と呼ばれる自動で特性を測定、評価する装置で検査される。 Since the physical properties of the above-mentioned crystal resonators and thermistor elements change significantly with temperature, it is necessary to evaluate and inspect their temperature characteristics before shipping them as parts. Since these parts are used in large quantities and are packaged in extremely small packages, they are inspected using a device called an inspection device that automatically measures and evaluates their characteristics.

従来、電気的性質の温度特性評価のための検査装置は、ターレット型の回転搬送装置により部品を搬送して、その経路上に測定装置を配置して順次検査をおこなっていくものが知られている(例えば、特許文献1参照)。 Conventionally, inspection equipment for evaluating temperature characteristics of electrical properties has been known to transport parts using a turret-type rotary transport device, and sequentially perform tests by placing measuring devices along the path. (For example, see Patent Document 1).

この際、ターレット側の回転搬送装置によって電子部品が回転している最中に、各電子部品は所定の温度に温度制御される。例えば、図13に従来の部品の特性検査装置301を示す。部品315が載置されるターレットテーブル310は、ターレットテーブル回転軸312を中心として、回転駆動される。部品315は、部品供給装置325から供給される。ターレットテーブル310が回転して、部品315が例えば第一温度制御領域340を通過する間に、部品315の温度は所定の第一温度に安定する。そして第一温度における部品の特性、例えば電気抵抗の値が、第一測定領域335の第一測定装置によって測定される。更にターレットテーブル310は回転して、部品315が第二温度制御領域350を通過する間に、部品315の温度は所定の第二温度に安定する。そして第二温度における部品の特性、例えば電気抵抗の値が、第二測定領域345の第二測定装置によって測定される。最後に部品315は収納ボックス330に回収される。 At this time, each electronic component is temperature-controlled to a predetermined temperature while the electronic component is being rotated by the rotary conveyance device on the turret side. For example, FIG. 13 shows a conventional component characteristic inspection apparatus 301. The turret table 310 on which the component 315 is placed is driven to rotate around a turret table rotation axis 312. The parts 315 are supplied from a parts supply device 325. While the turret table 310 rotates and the component 315 passes through, for example, a first temperature control region 340, the temperature of the component 315 stabilizes at a predetermined first temperature. A characteristic of the component, such as a value of electrical resistance, at the first temperature is then measured by the first measuring device in the first measuring region 335. Further, the turret table 310 rotates so that the temperature of the component 315 stabilizes at a predetermined second temperature while the component 315 passes through the second temperature control area 350. Then, a characteristic of the component at the second temperature, for example, a value of electrical resistance, is measured by a second measuring device in a second measuring region 345. Finally, the parts 315 are collected into the storage box 330.

特許第3777395号Patent No. 3777395

しかし、被測定物である部品は、小型ではあるが熱容量を持つため、所定の温度に制御されるまで時間がかかる。特に複数の測定ポイント、すなわち例えば0℃以下の測定ポイントと、80℃測定ポイントという2点で出力特性を測る場合、それぞれの温度に安定させるまでの時間がそれぞれ異なるため、搬送装置の搬送速度は、できる限り遅い方に合わせなければならない。また、測定温度(測定ポイント)を増やそうとすると、ターレットテーブルを大きくする必要があり、装置全体が大型化するという問題もある。 However, although the component to be measured is small, it has a heat capacity, so it takes time to control the temperature to a predetermined temperature. In particular, when measuring output characteristics at multiple measurement points, for example, a measurement point below 0°C and a measurement point at 80°C, the time it takes to stabilize at each temperature is different, so the transport speed of the transport device is , we must adjust to the slower one as much as possible. Furthermore, if an attempt is made to increase the number of temperature measurements (measurement points), the turret table must be made larger, which causes the problem that the entire device becomes larger.

本発明は、上記課題を鑑みてなされたものであり、単位時間あたりの処理能力が高い部品処理システムの供給を目的とする。 The present invention has been made in view of the above problems, and aims to provide a parts processing system with high processing capacity per unit time.

上記目的を達成する本発明は、複数の部品保持機構によって複数の部品を保持して、環状の搬送経路の一部に沿って、複数の前記部品を同時に搬送するターレット型回転搬送装置と、前記搬送経路に配置されて、前記部品を前記部品保持機構に供給する部品供給領域と、前記搬送経路における前記部品供給領域の下流側に位置する処理領域に配置されて、前記部品に対して所定の処理を施す処理装置と、前記搬送経路における前記処理領域の下流側に配置されて、前記部品を搬出する部品搬出領域と、を備えることを特徴とする部品処理システムである。 To achieve the above object, the present invention provides a turret-type rotary conveyance device that holds a plurality of parts by a plurality of component holding mechanisms and simultaneously conveys the plurality of parts along a part of an annular conveyance path; A component supply area is disposed on the conveyance path and supplies the component to the component holding mechanism; This is a parts processing system characterized by comprising a processing device that performs processing, and a parts delivery area that is arranged downstream of the processing area on the transport path and transports the parts.

上記部品処理システムに関連して、前記処理装置は、前記部品を移動させる移動機構と、前記移動機構による前記部品の移動経路に配置されて、前記部品保持機構から解放される前記部品を受入れる受入領域と、前記移動経路における前記受入領域の下流側に配置されて、前記所定の処理が施された後の前記部品を前記部品保持機構に回収させる回収領域と、前記移動経路における前記受入領域から前記回収領域までの間に配置されて、前記部品に対して前記所定の行為を行う行為部と、を有して構成され、前記受入領域と前記回収領域は互いに異なった位置に配置されることを特徴とする。 In relation to the above component processing system, the processing device includes a moving mechanism that moves the component, and a receiving mechanism that is disposed on a moving path of the component by the moving mechanism and receives the component released from the component holding mechanism. a collection area that is disposed downstream of the receiving area on the moving route and causes the component holding mechanism to collect the parts after the predetermined processing; and a collecting area from the receiving area on the moving route. an action unit disposed between the collecting area and performing the predetermined action on the parts, and the receiving area and the collecting area are arranged at different positions from each other. It is characterized by

本手段によれば、ターレット型回転搬送装置とは独立して、処理装置の移動機構が部品を移動させる。したがってターレット型回転搬送装置の搬送速度と、処理装置における部品の移送速度を異ならせることができるという効果を奏する。これと同時に、ターレット型回転搬送装置の搬送経路と、処理装置の移動経路が互いに独立するので、処理の為に移動経路を長くしたとしても、搬送経路は長くならないという利点がある。例えば、処理装置において部品について温度特性の評価を行う場合、部品の温度が安定するまで時間がかかる。この場合、部品を受入領域から回収領域の間でゆっくりと移動させたり、移動距離を長くして長い距離を移動させたりすることで、処理装置内において、温度安定化の為の時間を独立して確保できる。結果、部品処理システム全体の処理速度を上げることが可能になるという効果を奏し得る。 According to this means, the moving mechanism of the processing device moves the parts independently of the turret-type rotary conveyance device. Therefore, it is possible to make the transport speed of the turret-type rotary transport device different from the transport speed of parts in the processing device. At the same time, since the transport path of the turret-type rotary transport device and the movement path of the processing device are independent of each other, there is an advantage that even if the movement path is lengthened for processing, the transport path does not become longer. For example, when evaluating the temperature characteristics of a component in a processing device, it takes time for the temperature of the component to stabilize. In this case, by moving the parts slowly between the receiving area and the collecting area, or by moving the parts over a longer distance, the time for temperature stabilization within the processing equipment can be increased independently. It can be secured by As a result, it is possible to achieve the effect of increasing the processing speed of the entire parts processing system.

本手段によれば、処理装置において、搬送される部品を受け入れる受入領域と、処理が完了した部品を回収する回収領域が、異なった位置に配置されるので、処理装置への部品の受入と、処理装置からの部品の回収が独立に並行しておこなえるため、処理速度を向上させ得るという優れた効果を奏する。 According to this means, in the processing device, the receiving area for receiving the transported parts and the collection area for collecting the processed parts are arranged at different positions, so that the receiving area of the processing device and the collecting area for collecting the processed parts are arranged at different positions. Since parts can be collected independently and in parallel from the processing equipment, this has the excellent effect of improving processing speed.

上記部品処理システムに関連して、複数の前記部品保持機構の各々は、前記部品を保持する部品保持具を複数備え、複数の前記部品保持具によって保持可能な複数の前記部品同士の間隔と、前記処理装置における前記受入領域と前記回収領域の間隔が略一致していることを特徴とする。 In relation to the above component processing system, each of the plurality of component holding mechanisms includes a plurality of component holders that hold the components, and an interval between the plurality of components that can be held by the plurality of component holders; The processing apparatus is characterized in that the receiving area and the collecting area of the processing device are spaced approximately the same.

本手段によれば、ターレット型回転搬送装置に配置される部品保持機構の各々が備える複数の部品保持具の間隔と、処理領域における、受入領域と回収領域の間隔が一致しているので、ターレット型回転搬送装置の回転によって搬送されてきた部品保持機構が、一方の部品保持具に保持された部品を受入領域に配置されると、自然に、他方の部品保持具が、回収領域に配置される。結果、部品の受入と回収を円滑にでき得るという優れた効果を奏する。 According to this means, since the interval between the plurality of component holders provided in each of the component holding mechanisms disposed in the turret-type rotary conveyance device matches the interval between the receiving area and the collecting area in the processing area, the turret When the component holding mechanism that has been conveyed by the rotation of the mold rotation conveyance device places the component held by one component holder in the receiving area, the other component holder is naturally placed in the collection area. Ru. As a result, the excellent effect of facilitating the acceptance and collection of parts is achieved.

上記部品処理システムに関連して、前記受入領域と前記回収領域の間隔は、前記処理装置の前記移動経路において移動される複数の前記部品同士の間隔の略整数倍に設定されることを特徴とする。 In relation to the above parts processing system, the interval between the receiving area and the collecting area is set to be approximately an integral multiple of the interval between the plurality of parts moved on the moving path of the processing device. do.

上記部品処理システムに関連して、前記搬送経路に沿って隣り合う複数の前記部品保持機構の間隔に対して、前記部品保持機構の各々が有する複数の前記部品保持具によって保持可能な複数の前記部品同士の間隔が狭いことを特徴とする。 In relation to the above component processing system, the plurality of component holding mechanisms that can be held by the component holders each of the component holding mechanisms have, with respect to the distance between the plurality of component holding mechanisms adjacent to each other along the transport path, It is characterized by narrow spacing between parts.

上記部品処理システムに関連して、前記処理領域において、前記部品保持機構の第一の前記部品保持具が前記部品を前記受入領域で解放し、前記部品保持機構の第二の前記部品保持具が前記部品を前記回収領域から回収することを特徴とする。 In connection with the above component processing system, in the processing area, a first of the component holders of the component holding mechanism releases the component in the receiving area, and a second of the component holders of the component holding mechanism releases the component in the receiving area. The method is characterized in that the parts are collected from the collection area.

上記部品処理システムに関連して、前記搬送経路における部品供給領域の下流側に位置する第一処理領域に配置されて、前記部品に対して所定の第一処理を施す第一処理装置と、前記搬送経路における前記第一処理領域の下流側に位置する第二処理領域に配置されて、前記部品に対して所定の第二処理を施す第二処理装置と、を備え、前記部品保持機構の各々は、前記第一処理領域において、第一の前記部品保持具によって前記部品を前記第一処理装置の前記受入領域に解放し、第二の前記部品保持具によって前記部品を前記第一処理装置の前記回収領域から回収するように構成され、前記部品保持機構の各々は、前記第二処理領域において、第二の前記部品保持具によって前記第一処理領域で回収した前記部品を前記第二処理装置の前記受入領域に解放し、第一の前記部品保持具によって前記部品を前記第二処理装置の前記回収領域から回収するように構成されることを特徴とする。 In relation to the parts processing system, a first processing device is arranged in a first processing area located downstream of a parts supply area in the transport path and performs a predetermined first processing on the parts; a second processing device that is disposed in a second processing area located downstream of the first processing area in the conveyance path and performs a predetermined second processing on the component, and each of the component holding mechanisms In the first processing area, a first component holder releases the component into the receiving area of the first processing device, and a second component holder releases the component into the first processing device. Each of the component holding mechanisms is configured to collect the components from the first processing region, and each of the component holding mechanisms collects the components collected in the first processing region using the second component holder in the second processing region. The first component holder is configured to release the component into the receiving area of the second processing device and collect the component from the recovery area of the second processing device.

本手段によれば、上流側の第一処理装置と下流側の第二処理装置が、相対的に逆の関係で配置される。このようにすると、複数の処理装置で各種処理を同時並行で進める場合に、上流側に配置された第一処理装置において回収保持された部品を、下流側に配置された第二処理装置に解放する際に、部品保持機構内において部品保持具の位置を変える必要が無い。そのため部品保持機構を耐久性のある単純な構造にすることができ、コスト的にも安価にすることができるという優れた効果を奏する。 According to this means, the first processing device on the upstream side and the second processing device on the downstream side are arranged in a relatively opposite relationship. In this way, when various processes are performed simultaneously in multiple processing devices, parts collected and held in the first processing device located upstream are released to the second processing device located downstream. When doing so, there is no need to change the position of the component holder within the component holding mechanism. Therefore, the component holding mechanism can be made into a durable and simple structure, and the cost can be reduced, which is an excellent effect.

上記部品処理システムに関連して、前記第一処理装置の前記受入領域の位置は、前記第一処理領域で停止する第一の前記部品保持具に対応し、前記第一処理装置の前記回収領域の位置は、前記第一処理領域で停止する第二の前記部品保持具に対応し、前記第二処理装置の前記受入領域の位置は、前記第二処理領域で停止する第二の前記部品保持具に対応し、前記第二処理装置の前記回収領域の位置は、前記第二処理領域で停止する第一の前記部品保持具に対応することを特徴とする。 In relation to the above-mentioned parts processing system, the position of the receiving area of the first processing device corresponds to the first part holder that stops in the first processing area, and the position of the receiving area of the first processing device corresponds to the collecting area of the first processing device. The position corresponds to the second part holder that stops in the first processing area, and the position of the receiving area of the second processing device corresponds to the second part holder that stops in the second processing area. The position of the recovery area of the second processing device corresponds to the first component holder that stops in the second processing area.

上記部品処理システムに関連して、前記部品保持機構の各々は、前記部品供給領域において、第一の前記部品保持具によって前記部品を保持し、 In relation to the above component processing system, each of the component holding mechanisms holds the component by the first component holder in the component supply area;

第二の前記部品保持具では前記部品を保持しないことを特徴とする。 The second component holder is characterized in that it does not hold the component.

上記部品処理システムに関連して、前記部品保持機構は、前記処理領域において、複数の前記部品保持具による前記部品の解放と前記部品の回収を略同時に行うことを特徴とする。 In relation to the above component processing system, the component holding mechanism is characterized in that in the processing area, the plurality of component holders release the component and recover the component substantially simultaneously.

上記部品処理システムに関連して、前記部品保持機構は、前記処理領域の前記受入領域及び前記回収領域に対して、複数の前記部品保持具を互いに独立して接近・離反可能に案内する案内機構を備えることを特徴とする。 In relation to the above component processing system, the component holding mechanism is a guide mechanism that guides the plurality of component holders toward and away from each other independently of the receiving area and the collecting area of the processing area. It is characterized by having the following.

本手段によれば、部品を保持する部品保持具が、互いに独立して移動できるので、解放動作(受入動作)と回収動作を個別に微調整できるという優れた効果を奏する。 According to this means, since the component holders that hold the components can be moved independently of each other, there is an excellent effect that the releasing operation (accepting operation) and the collecting operation can be finely adjusted individually.

上記部品処理システムに関連して、前記受入領域で前記部品を解放する際の前記部品保持具と前記受入領域の接近距離と、前記回収領域で前記部品を回収する際の前記部品保持具と前記回収領域の接近距離が、互いに異なることを特徴とする。 In relation to the above parts processing system, the approach distance between the part holder and the receiving area when releasing the part in the receiving area, and the approach distance between the part holder and the receiving area when collecting the part in the collecting area. A feature is that the approach distances of the collection areas are different from each other.

上記手段によれば、部品を受入領域へ解放する場合における、部品保持具による部品の最適な保持位置と、部品を回収領域から回収する場合における、部品保持具による部品の最適な保持位置を個別に異ならせているので、載置部への部品の解放と、載置部からの部品の回収のミスを低減できるという優れた効果を奏する。 According to the above means, the optimal holding position of the component by the component holder when releasing the component to the receiving area and the optimal holding position of the component by the component holder when collecting the component from the collection area are determined individually. Since the parts are different from each other, it is possible to reduce errors in releasing parts to the placing part and collecting parts from the placing part, which is an excellent effect.

上記部品処理システムに関連して、回収時の前記接近距離は、解放時の前記接近距離より小さいことを特徴とする。 The above-mentioned parts processing system is characterized in that the approach distance during retrieval is smaller than the approach distance during release.

本発明者らの新たな知見では、部品保持具が部品を解放する際は、部品を載置部(受入領域)に押し付けないように、微妙に部品を浮かした状態で解放する方が好ましい。部品を載置部に押し付けてしまうと、部品保持具と部品の間に吸着圧や静電気等が生じて、部品保持具と部品が離れにくくなる。一方、部品保持具が部品を回収する際は、載置部(回収領域)の部品に部品保持具を積極的に押し付けることが好ましい。部品保持具と部品の間に吸着圧や静電気等が生じやすく、部品保持具による部品の保持確率を高めることができる。 According to the new findings of the present inventors, when the component holder releases the component, it is preferable to release the component in a slightly floating state so as not to press the component against the placement section (receiving area). If the component is pressed against the mounting section, suction pressure, static electricity, etc. will be generated between the component holder and the component, making it difficult to separate the component holder and the component. On the other hand, when the component holder collects the component, it is preferable to actively press the component holder against the component on the mounting section (recovery area). Adsorption pressure, static electricity, etc. are likely to occur between the component holder and the component, and the probability of the component being held by the component holder can be increased.

上記部品処理システムに関連して、前記ターレット型回転搬送装置から独立して前記搬送経路上の前記処理領域に固定配置される昇降付勢機構を備え、前記昇降付勢機構は、前記部品保持機構の複数の前記部品保持具を付勢して、前記案内機構によって前記部品保持具を変位させることを特徴とする。 In connection with the above component processing system, an elevation biasing mechanism is provided that is fixedly disposed in the processing area on the transportation path independently of the turret-type rotary transport device, and the elevation biasing mechanism is configured to control the component holding mechanism. The plurality of component holders are biased and the component holders are displaced by the guide mechanism.

上記部品処理システムに関連して、前記部品保持具の各々は、前記部品を保持する保持端と、前記保持端と一体となって移動する受け部と、を有してなり、複数の前記部品保持具を付勢する前記昇降付勢機構は、複数の前記受け部と対向して配置され、前記受け部と当接して前記保持端を移動させる複数の係合部を備えることを特徴とする。 In relation to the above component processing system, each of the component holders has a holding end that holds the component and a receiving part that moves integrally with the holding end, and each of the component holders The elevating and lowering biasing mechanism that biases the holder includes a plurality of engaging portions that are disposed opposite to the plurality of receiving portions and move the holding end by coming into contact with the receiving portions. .

本手段によれば、部品保持具と昇降付勢機構が、それぞれ互いに対向して係合する受け部と係合部を備えるので、係合部から受け部に対して押圧力を伝達することが可能になり、部品保持具における部品保持端を適切に移動させることが可能になるという優れた効果を奏する。 According to this means, since the component holder and the lifting biasing mechanism each include a receiving portion and an engaging portion that engage with each other in opposition to each other, it is possible to transmit a pressing force from the engaging portion to the receiving portion. This has the excellent effect of making it possible to appropriately move the component holding end of the component holder.

上記部品処理システムに関連して、前記昇降付勢機構は、複数の前記係合部による前記受け部の移動ストロークが互いに異なるように設定されることを特徴とする。 In relation to the above component processing system, the lifting biasing mechanism is characterized in that the movement strokes of the receiving part by the plurality of engaging parts are set to be different from each other.

本手段によれば、昇降付勢機構の各係合部の移動ストロークで、個別に、解放(受入)側の部品保持具の移動量と、回収側の部品保持具の移動量を設定できるので、同一の部品保持具について、部品回収の機能と、部品解放の機能の切り替えが昇降付勢機構によって可能になる。 According to this means, the amount of movement of the component holder on the release (receiving) side and the amount of movement of the component holder on the collection side can be individually set in the movement stroke of each engaging portion of the lifting biasing mechanism. For the same component holder, switching between a component collection function and a component release function is made possible by the lifting biasing mechanism.

上記部品処理システムに関連して、前記処理装置における前記移動機構は、前記部品がそれぞれ個別に載置される載置部を複数有する載置プレートと、前記載置プレートに熱を移送する熱移送部材と、前記熱移送部材と前記載置プレートを一体として、プレート回転軸を中心として回転させる回転駆動部と、を有することを特徴とする。 In relation to the above component processing system, the moving mechanism in the processing device includes a mounting plate having a plurality of mounting sections on which the components are individually mounted, and a heat transfer mechanism that transfers heat to the mounting plate. and a rotation drive unit that rotates the heat transfer member and the mounting plate integrally around a plate rotation axis.

部品について温度特性の評価を行う場合、部品を所定の温度にするために、載置プレートと部品との間で熱交換をおこなう。なお、載置プレートに対しては、熱移送部材(例えばペルチェ素子)によって熱(温熱・冷熱)を供給する。従来、熱移送部材は固定配置されており、この熱移送部材に対して、載置プレートが移動することで、この載置プレート自体が部品と共に温度制御される構造となっていた。この構造の場合、熱移送部材による温度制御対象となる部材(つまり、載置プレートと部品の双方)の熱容量が大きくなるため、温度が安定するまでに時間を要する。 When evaluating the temperature characteristics of a component, heat exchange is performed between the mounting plate and the component in order to bring the component to a predetermined temperature. Note that heat (hot and cold) is supplied to the mounting plate by a heat transfer member (for example, a Peltier element). Conventionally, the heat transfer member has been arranged in a fixed manner, and by moving the mounting plate with respect to the heat transfer member, the temperature of the mounting plate itself and the components is controlled. In this structure, the heat capacity of the members whose temperature is controlled by the heat transfer member (that is, both the mounting plate and the component) is large, so it takes time for the temperature to stabilize.

そこで上記手段では、部品が載置される載置プレートと熱移送部材を、回転駆動部によって一体となって回転させる。このようにすると、載置プレートと熱移送部材の相対移動が生じないので、載置プレートと熱移送部材が、全体として、部品の温度制御を行うための蓄熱体となる。結果、載置プレートに載置される部品を、目標温度に素早く温度制御することが可能となるという利点が得られる。 Therefore, in the above means, the mounting plate on which the component is mounted and the heat transfer member are rotated together by the rotation drive section. In this way, there is no relative movement between the mounting plate and the heat transfer member, so that the mounting plate and the heat transfer member as a whole serve as a heat storage body for controlling the temperature of the component. As a result, it is possible to quickly control the temperature of the components placed on the mounting plate to the target temperature.

上記部品処理システムに関連して、前記行為部は、前記部品の出力特性を測定する測定装置と、前記測定装置によって測定されたデータを処理する計算機と、を有することを特徴とする。 In relation to the above component processing system, the action unit is characterized in that it has a measuring device that measures output characteristics of the component, and a computer that processes data measured by the measuring device.

上記部品処理システムに関連して、前記計算機は、複数の前記載置部の温度のばらつきに関する温度分布情報を予め記憶することを特徴とする。 In relation to the above-mentioned component processing system, the above-mentioned computer is characterized in that temperature distribution information regarding temperature variations of the plurality of above-mentioned placement parts is stored in advance.

熱移送部材と載置プレートを一体的に移動させる場合、熱移送部材自体の温度分布のばらつきや、熱移送部材と載置プレートの温度伝達面の接触状態のばらつきや、載置プレートの肉厚のばらつきなどで、載置プレートの中において温度が不均一となる可能性が高い。したがって、載置プレートに形成される複数の載置部(例えば凹部状のポケット)に、複数の部品を収容して、各部品を所定の温度に制御しようとしても、複数の載置部の間で安定化する目標温度は、載置部毎に異なることになる。換言すると、熱移送部材を一定の基準温度に温度制御すると、各載置部の温度は一義的に決定するが、各載置部間でばらつく。 When the heat transfer member and the mounting plate are moved together, there may be variations in the temperature distribution of the heat transfer member itself, variations in the contact state between the temperature transfer surfaces of the heat transfer member and the mounting plate, and the thickness of the mounting plate. There is a high possibility that the temperature will become non-uniform within the mounting plate due to variations in temperature. Therefore, even if a plurality of components are accommodated in a plurality of mounting portions (for example, recessed pockets) formed on a mounting plate and an attempt is made to control each component to a predetermined temperature, the temperature between the plurality of mounting portions The target temperature to be stabilized at is different for each mounting section. In other words, when the temperature of the heat transfer member is controlled to a constant reference temperature, the temperature of each mounting portion is uniquely determined, but it varies among the mounting portions.

そこで本手段では、複数の載置部にサーミスタ(温度センサ)を配置することで、載置部間の温度のばらつきに関する温度分布情報を予め収集して、計算機に記憶させておく。この温度分布情報を利用すれば、部品の温度が収束(安定化)したときの実際の温度を、その部品が載置されている載置部を識別することで、高精度に推測することが可能になる。結果、例えば部品の温度特性を評価する場合に、部品の正確な温度に基づいて評価ができるという優れた効果を奏する。 Therefore, in the present means, by arranging thermistors (temperature sensors) on a plurality of placing parts, temperature distribution information regarding temperature variations among the placing parts is collected in advance and stored in the computer. By using this temperature distribution information, it is possible to estimate with high accuracy the actual temperature when the temperature of a component converges (stabilizes) by identifying the mounting section on which the component is placed. It becomes possible. As a result, for example, when evaluating the temperature characteristics of a component, an excellent effect can be achieved in that the evaluation can be performed based on the accurate temperature of the component.

上記部品処理システムに関連して、前記計算機は、前記受入領域で前記載置部が受け入れた前記部品が前記行為部に到達した時の前記部品の温度に関する情報を、前記温度分布情報を参照して算出することを特徴とする。 In relation to the above component processing system, the computer refers to the temperature distribution information to obtain information regarding the temperature of the component when the component received by the placement section in the receiving area reaches the action section. It is characterized in that it is calculated based on

本手段によれば、温度分布情報を利用して、部品の到達温度を算出できる。例えば、温度分布情報として、第一載置部が+0.1℃、第二載置部が-0.1℃、第三載置部が+0.05℃となる場合であって、熱移送部材を80℃に制御すると、計算機は、第一載置部が80.1℃、第二載置部が79.9℃、第三載置部が80.05℃になると算出する。結果、各載置部の部品の安定化温度を正確に推測できる。 According to this means, the reached temperature of the component can be calculated using the temperature distribution information. For example, if the temperature distribution information is +0.1°C in the first placing part, -0.1°C in the second placing part, and +0.05°C in the third placing part, the heat transfer member When the temperature is controlled to 80°C, the computer calculates that the temperature of the first mounting part is 80.1°C, the second mounting part is 79.9°C, and the third mounting part is 80.05°C. As a result, it is possible to accurately estimate the stabilization temperature of the components on each mounting section.

上記部品処理システムに関連して、前記移動機構は、前記部品が前記受入領域から前記行為部に到達するまでに必要な移動時間と比較して、前記部品の温度が目標温度で安定するまでの時間である温度制御時間の方が短いことを特徴とする。 In relation to the above component processing system, the moving mechanism is configured to take a time required for the temperature of the component to stabilize at a target temperature compared to a travel time required for the component to reach the processing section from the receiving area. It is characterized in that the temperature control time is shorter.

本手段によれば、処理装置において部品が受入領域から行為部まで移動する間に、部品の温度が所定の温度(各載置部の安定化温度)に達して安定化させることができる。 According to this means, the temperature of the component can reach a predetermined temperature (the stabilization temperature of each mounting section) and be stabilized while the component moves from the receiving area to the action section in the processing device.

本発明の部品処理システムによれば、部品の搬送速度が部品の処理速度に律速されることがなくなるので、生産効率が向上するという優れた効果を奏し得る。 According to the parts processing system of the present invention, since the transport speed of parts is no longer limited by the processing speed of parts, it is possible to achieve an excellent effect of improving production efficiency.

本発明の実施形態に係る部品処理システムの側面図である。1 is a side view of a parts processing system according to an embodiment of the present invention. 部品処理システムの平面図である。FIG. 2 is a plan view of the parts processing system. (A)乃至(C)は、各領域に固定配置される昇降付勢機構に対して、ターレット型回転搬送装置によって部品保持機構が回転する状態を示す平面図である。(A) to (C) are plan views showing a state in which a component holding mechanism is rotated by a turret-type rotary conveyance device with respect to an elevation biasing mechanism fixedly arranged in each region. (A)は処理領域に配置された温度安定化装置の平面図であり、(B)は同温度安定化装置の測定部の側面部分断面図である。(A) is a plan view of a temperature stabilization device disposed in a processing region, and (B) is a side partial sectional view of a measuring section of the temperature stabilization device. (A)は温度安定化装置に備えられる載置プレートの平面図であり、(B)は温度安定化装置の側面断面図である。(A) is a plan view of a mounting plate provided in the temperature stabilization device, and (B) is a side sectional view of the temperature stabilization device. (A)は載置プレートの複数の載置部について温度バラツキがあることを説明する平面図であり、(B)は各載置部について、目標温度と実測値の間の差を示す対応図表である。(A) is a plan view illustrating the fact that there is temperature variation among multiple placement parts of the placement plate, and (B) is a corresponding chart showing the difference between the target temperature and the actual measured value for each placement part. It is. (A)及び(B)は本部品処理システムに備えられる、昇降付勢機構と部品保持機構の側面断面図である。(A) and (B) are side sectional views of an elevation biasing mechanism and a component holding mechanism provided in the present component processing system. (A)及び(B)は、昇降付勢機構の係合部と、部品保持機構の受け部が係合する前後の状態を表す側面断面図である。(A) and (B) are side sectional views showing states before and after the engaging portion of the lifting biasing mechanism and the receiving portion of the component holding mechanism are engaged. (A)乃至(C)は、部品保持機構が、部品の回収と部品の解放を行う状態を表す側面断面図である。(A) to (C) are side sectional views showing states in which the component holding mechanism collects and releases components. (A)乃至(F)は、部品保持機構が複数の処理領域間を移動しながら、部品の回収と解放を行う動作を示す断面図である。(A) to (F) are cross-sectional views showing operations in which the component holding mechanism collects and releases components while moving between a plurality of processing areas. (A)は、各領域に固定配置される昇降付勢機構に対して、ターレット型回転搬送装置によって部品保持機構が回転する状態を示す平面図であり、(B)は部品供給領域における昇降付勢機構と部品保持機構の動作を示す断面図であり、(C)は第一処理領域における昇降付勢機構と部品保持機構の動作を示す断面図であり、(D)は第二処理領域における昇降付勢機構と部品保持機構の動作を示す断面図であり、(E)は第三処理領域における昇降付勢機構と部品保持機構の動作を示す断面図であり、(F)は部品搬出領域における昇降付勢機構と部品保持機構の動作を示す断面図である。(A) is a plan view showing a state in which a component holding mechanism is rotated by a turret-type rotary conveyance device with respect to a lifting biasing mechanism fixedly arranged in each area, and (B) is a plan view showing a state in which a lifting biasing mechanism is rotated in a parts supply area. FIG. 3C is a cross-sectional view showing the operation of the biasing mechanism and the component holding mechanism; FIG. FIG. 6 is a sectional view showing the operation of the lifting biasing mechanism and the component holding mechanism; (E) is a sectional view showing the operation of the lifting biasing mechanism and the component holding mechanism in the third processing area; and (F) is a sectional view showing the operation of the lifting biasing mechanism and the component holding mechanism in the third processing area; FIG. 3 is a sectional view showing the operation of the lifting biasing mechanism and the component holding mechanism in FIG. (A)及び(B)は、第一乃至第三処理領域における載置テーブルの回転方向を説明する平面図である。(A) and (B) are plan views illustrating the rotation direction of the mounting table in the first to third processing areas. 従来の部品処理システムの平面図である。FIG. 1 is a plan view of a conventional parts processing system.

以下、本発明の実施の形態を添付図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1~図12は発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。なお、各図において一部の構成を適宜省略して、図面を簡略化する。そして、部の大きさ、形状、厚みなどを適宜誇張して表現する。 FIGS. 1 to 12 are examples of embodiments of the invention, and in the drawings, parts denoted by the same reference numerals represent the same parts. Note that in each figure, some components are omitted as appropriate to simplify the drawings. Then, the size, shape, thickness, etc. of the part are appropriately exaggerated and expressed.

図1は、本発明の第一実施形態に係る部品処理システム1の説明図である。本部品処理システム1は、例えばサーミスタ素子について、出力の温度依存性を評価するために用いられる。部品処理システム1は、カバーとなる筐体30を備える。部品処理システム1は、略円盤状のターレット型回転搬送装置10を備え、ターレット型回転搬送装置10は、ターレットテーブル回転軸15を中心にして、ターレットテーブル駆動装置20によって回転駆動される。ターレット型回転搬送装置10は、自身のターレットテーブル12の周縁において、等間隔に固定配置される複数の部品保持機構45を有する。ターレット型回転搬送装置10とは独立して設けられる架台35には、昇降付勢機構40が複数設けられる。後述する部品供給領域51や、処理領域52等において、部品保持機構45は、昇降付勢機構40と協働して、部品の回収(保持)、及び/又は、解放をおこなう。 FIG. 1 is an explanatory diagram of a parts processing system 1 according to a first embodiment of the present invention. The component processing system 1 is used, for example, to evaluate the temperature dependence of the output of a thermistor element. The component processing system 1 includes a housing 30 that serves as a cover. The component processing system 1 includes a substantially disc-shaped turret-type rotary conveyance device 10 , and the turret-type rotary conveyance device 10 is rotationally driven by a turret table drive device 20 around a turret table rotation axis 15 . The turret-type rotary conveyance device 10 has a plurality of component holding mechanisms 45 fixedly arranged at equal intervals on the periphery of its own turret table 12. A plurality of lifting biasing mechanisms 40 are provided on the pedestal 35 that is provided independently of the turret-type rotary conveyance device 10 . In a component supply area 51, a processing area 52, etc., which will be described later, the component holding mechanism 45 cooperates with the lifting biasing mechanism 40 to recover (hold) and/or release components.

制御装置25は、CPU、RAM、ROM、ハードディスクドライブ等の記憶装置などから構成され、ターレット型回転搬送装置10による部品の搬送制御、部品保持機構45による部品の解放・回収制御、部品の処理(出力測定)制御など各種制御を実行する。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。RAMはCPUの作業領域、記憶領域として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。 The control device 25 is composed of storage devices such as a CPU, RAM, ROM, and hard disk drive, and controls the transportation of components by the turret-type rotary transportation device 10, the release and collection control of components by the component holding mechanism 45, and the processing of components ( Executes various controls such as output measurement) control. The CPU is a so-called central processing unit, and executes various programs to realize various functions. RAM is used as a work area and storage area for the CPU, and ROM stores an operating system and programs executed by the CPU.

図2は、部品処理システム1を上面から見た説明図である。部品処理システム1は、ターレット型回転搬送装置10の周囲に配置される合計12個の部品保持機構45によって部品を保持し、環状の搬送経路に沿って複数の部品を同時搬送する。搬送経路上には、部品を部品保持機構45に供給する部品供給領域51と、部品供給領域51の下流側に配置されて、部品に対して所定の処理を施す処理領域52と、処理領域52のさらに下流側に配置されて、部品を搬出する部品搬出領域53が構成される。 FIG. 2 is an explanatory diagram of the parts processing system 1 viewed from above. The component processing system 1 holds components by a total of 12 component holding mechanisms 45 arranged around the turret-type rotary conveyance device 10, and simultaneously conveys a plurality of components along an annular conveyance path. On the conveyance path, there are a component supply area 51 that supplies components to the component holding mechanism 45, a processing area 52 that is arranged downstream of the component supply area 51 and performs predetermined processing on the components, and a processing area 52. A component unloading area 53 is disposed further downstream of the retracting section 50 and is configured to unload the components.

搬送経路上には、処理領域52として、第一処理領域52Aと、第二処理領域52Bと、第三処理領域52Cが形成されている。更に、第一処理領域52Aの上流側には、第一姿勢調整領域70Aが形成され、第二処理領域52Bと第三処理領域52Cの間には、第二姿勢調整領域70Bが形成される。また、搬送経路上には、部品搬出領域53として、第一部品搬出領域53Aと第二部品搬出領域53Bが形成されている。この第一部品搬出領域53Aと第二部品搬出領域53Bの間には、第三姿勢調整領域70Cが形成される。第一乃至第三姿勢調整領域70A~70Cは、「部品の姿勢を整える」という処理を実行するという観点では、本発明における部品処理領域の概念に含めることも可能である。その場合は、本部品処理システム1は、第一乃至第三姿勢調整領域70A~70Cと、第一乃至第三処理領域52A~52Cの合計6か所の処理領域を有することになる。なお、各領域には、ターレット型回転搬送装置10の部品保持機構45が、まとめて同時に停止可能な位置に形成される。 On the conveyance path, a first processing region 52A, a second processing region 52B, and a third processing region 52C are formed as processing regions 52. Further, a first attitude adjustment area 70A is formed upstream of the first processing area 52A, and a second attitude adjustment area 70B is formed between the second processing area 52B and the third processing area 52C. Further, on the conveyance path, a first component discharge area 53A and a second component discharge area 53B are formed as a component discharge area 53. A third attitude adjustment area 70C is formed between the first component carry-out area 53A and the second component carry-out area 53B. The first to third attitude adjustment areas 70A to 70C can be included in the concept of a component processing area in the present invention from the viewpoint of executing a process of "adjusting the attitude of a component". In that case, the component processing system 1 will have a total of six processing areas: first to third attitude adjustment areas 70A to 70C and first to third processing areas 52A to 52C. Note that in each area, the component holding mechanisms 45 of the turret-type rotary conveyance device 10 are formed at positions where they can be stopped all at the same time.

なお図2では、架台35に固定された昇降付勢機構40についての記載を省略している。 Note that in FIG. 2, the description of the lifting biasing mechanism 40 fixed to the pedestal 35 is omitted.

部品供給領域51では、自動部品供給装置65(例えばパーツフィーダ)によって部品が供給される。ターレット型回転搬送装置10は、矢印R向きに回転駆動され、部品供給領域51で部品保持機構45に保持された部品は、反時計回りに各領域を経て、部品搬出領域53で搬出される。途中の処理領域52では、例えば部品の電気抵抗値の温度特性を測定する処理が行われる。第一乃至第三位置調整領域70A~70Cには、それぞれ、位置調整装置71が配置されており、部本保持機構45によって保持される部品の向き(保持軸に対する周方向の角度)が高精度に調整されると同時に、更に、部品の中心位置が所定の位置(保持軸と一致する位置)となるように位置決めされる。予め部品の姿勢を移御することで、下流側の各領域に対して、高精度に部品を解放できる。 In the parts supply area 51, parts are supplied by an automatic parts supply device 65 (for example, a parts feeder). The turret-type rotary conveyance device 10 is rotationally driven in the direction of arrow R, and the components held by the component holding mechanism 45 in the component supply area 51 are transported counterclockwise through each area to the component delivery area 53. In the intermediate processing area 52, for example, a process of measuring the temperature characteristics of the electrical resistance value of the component is performed. A position adjustment device 71 is arranged in each of the first to third position adjustment areas 70A to 70C, and the orientation of the parts held by the parts holding mechanism 45 (angle in the circumferential direction with respect to the holding axis) is adjusted with high accuracy. At the same time, the center position of the component is positioned at a predetermined position (a position that coincides with the holding axis). By shifting the posture of the parts in advance, the parts can be released with high precision to each region on the downstream side.

第一位置調整領域70Aで中心位置と周方向の向きを調整された部品は、まず、第一処理領域52Aに搬送される。第一処理領域52Aには、低温用処理装置75が配設される。この低温用処理装置75は、例えば、部品が25℃となる場合の電気抵抗値の出力特性が測定される。25℃は、大気温度に近いことから、予熱工程を省略できる。部品は、低温用処理装置75内で25℃に安定化された後に測定される。測定後、部品は部品保持機構45によって回収されて、次の第二処理領域52Bに搬送される。 The component whose center position and circumferential direction have been adjusted in the first position adjustment area 70A is first transported to the first processing area 52A. A low temperature processing device 75 is disposed in the first processing area 52A. In this low-temperature processing device 75, for example, the output characteristics of the electrical resistance value when the temperature of the component is 25° C. are measured. Since 25° C. is close to atmospheric temperature, the preheating step can be omitted. The parts are measured after being stabilized at 25° C. in a cryoprocessor 75. After the measurement, the parts are collected by the parts holding mechanism 45 and transported to the next second processing area 52B.

第二処理領域52Bには、予熱処理装置80が設置されており、部品が加熱されて所定の温度に制御される。具体的に、予熱処理装置80の下流側の第三処理領域52Cで、部品を安定化させる温度が例えば80℃だとすれば、予熱処理装置80では、部品が例えば50℃になるように予熱制御される。 A preheating device 80 is installed in the second processing area 52B, and the parts are heated and controlled to a predetermined temperature. Specifically, if the temperature at which the parts are stabilized in the third processing area 52C on the downstream side of the preheating device 80 is, for example, 80°C, the preheating device 80 preheats the parts to, for example, 50°C. controlled.

予熱処理が完了した後、予熱装置80から部品保持機構45によって回収された部品は、下流側の第二位置調整領域70Bで、中心位置と周方向の向きを調整された後、次の第三処理領域52Cに搬送される。 After the preheating process is completed, the parts collected from the preheating device 80 by the part holding mechanism 45 are adjusted in center position and circumferential direction in the downstream second position adjustment area 70B, and then moved to the next third position. It is transported to the processing area 52C.

第三処理領域52Cには、高温用処理装置85が配設される。この高温用処理装置85は、部品が80℃になるように制御されてから、電気抵抗値の出力特性が測定される。なお、第一及び第三処理領域52A、52Cでは、部品に対する行為として、加熱又は冷却を含めた温度制御処理と、部品の出力を測定する測定処理の双方が実行される。また第二処理領域52Cでは、部品に対する行為として、加熱又は冷却を含めた温度制御処理のみが実行される。 A high temperature processing device 85 is disposed in the third processing region 52C. This high-temperature processing device 85 is controlled so that the temperature of the component is 80° C., and then the output characteristics of the electrical resistance value are measured. Note that in the first and third processing areas 52A and 52C, both temperature control processing including heating or cooling and measurement processing for measuring the output of the component are performed as actions on the component. In the second processing area 52C, only temperature control processing including heating or cooling is performed on the parts.

高温用処理装置85による測定終了後、部品は部品保持機構45によって回収されて、部品保持機構45により部品第一搬出領域53Aに搬送され、一部の部品(ここでは、計測結果で不良と判定された部品)が収納ボックス90に搬出される。また残りの正規部品は、第一搬出領域53Aを通過して、下流側の位置調整装置70Cで、周方向の向きと水平方向位置を調整された後、部品保持機構45で第二部品搬出領域53Bに運ばれて、供給リール5に巻かれている梱包用の樹脂テープに搬出され、部品がパッケージングされる。 After the measurement by the high-temperature processing device 85 is completed, the components are collected by the component holding mechanism 45 and transported by the component holding mechanism 45 to the first component unloading area 53A. parts) are carried out to the storage box 90. The remaining regular parts pass through the first unloading area 53A, have their circumferential direction and horizontal position adjusted by the downstream position adjustment device 70C, and then move to the second parts unloading area by the component holding mechanism 45. 53B, the parts are carried out onto a packaging resin tape wound around the supply reel 5, and the parts are packaged.

なお、第一処理領域52A及び第三処理領域52Cでは、プローブを用いて部品の測定を行う必要性から、部品に高い位置決め精度が要求される。従って、上流側に第一及び第二位置調整領域70A、70Bが確保されている。同様に、第二部品搬出領域53では、正規部品をパッケージンする為に、部品に高い位置決め精度が要求される。従って、上流側に第三位置調整領域70Cが確保されている。 Note that in the first processing area 52A and the third processing area 52C, high positioning accuracy is required for the parts due to the necessity of measuring the parts using a probe. Therefore, first and second position adjustment areas 70A and 70B are secured on the upstream side. Similarly, in the second component delivery area 53, high positioning accuracy is required for the components in order to package the regular components. Therefore, the third position adjustment area 70C is secured on the upstream side.

図3(A)~図3(C)を参照して、ターレット型回転搬送装置10の全体動作を説明する。図3(A)~図3(C)において、ターレット型回転搬送装置10は、12個の部品保持機構H1~H12を備える。架台35には、各領域に対応させて、合計9つの昇降付勢機構40A~40Iが固定設置される。第一昇降付勢機構40Aは部品供給領域51上に固定され、第二昇降付勢装置40Bは第一姿勢調整領域70A上に固定され、第三昇降付勢装置40Cは第一処理領域52A上に固定され、第四昇降付勢装置40Dは第二処理領域52B上に固定され、第五昇降付勢装置40Eは第二姿勢調整領域70B上に固定され、第六昇降付勢装置40Fは第三処理領域52C上に固定され、第七昇降付勢装置40Gは第一部品搬出領域53A上に固定され、第八昇降付勢装置40Hは第三姿勢調整領域70C上に固定され、第九昇降付勢装置40Iは第二部品搬出領域53B上に固定される。 The overall operation of the turret-type rotary conveyance device 10 will be described with reference to FIGS. 3(A) to 3(C). In FIGS. 3(A) to 3(C), the turret-type rotary conveyance device 10 includes twelve component holding mechanisms H1 to H12. A total of nine lifting biasing mechanisms 40A to 40I are fixedly installed on the pedestal 35 in correspondence with each area. The first lifting biasing mechanism 40A is fixed on the parts supply area 51, the second lifting biasing device 40B is fixed on the first posture adjustment area 70A, and the third lifting biasing device 40C is fixed on the first processing area 52A. The fourth elevation biasing device 40D is fixed on the second processing area 52B, the fifth elevation biasing device 40E is fixed on the second posture adjustment region 70B, and the sixth elevation biasing device 40F is fixed on the second attitude adjustment region 70B. The seventh lifting biasing device 40G is fixed on the third processing area 52C, the seventh lifting biasing device 40G is fixed on the first component delivery area 53A, the eighth lifting biasing device 40H is fixed on the third attitude adjustment area 70C, and the ninth lifting biasing device 40G is fixed on the third attitude adjustment area 70C. The biasing device 40I is fixed on the second component delivery area 53B.

図3(A)は、ターレット型回転搬送装置10が一時停止した状態を示しており、第六部品保持機構H6が部品供給領域51上に停止され、第八部品保持機構H8が第一姿勢調整領域70A上に停止され、第九部品保持機構H9が第一処理領域52A上に停止され、第十部品保持機構H10が第二処理領域52B上に停止され、第十一部品保持機構H11が第二姿勢調整領域70B上に停止され、第十二部品保持機構H12が第三処理領域52C上に停止され、第一部品保持機構H1が第一部品搬出領域53A上に停止され、第二部品保持機構H2が第三姿勢調整領域70C上に停止され、第四部品保持機構H4が第二部品搬出領域53B上に停止される。これらの各領域で、昇降付勢機構40A~40Iが稼働することで、部品を上下動させながら、その目的に応じた各種動作が同時並行で実行される。 FIG. 3(A) shows a state in which the turret-type rotary conveyance device 10 is temporarily stopped, the sixth component holding mechanism H6 is stopped above the component supply area 51, and the eighth component holding mechanism H8 is in the first posture adjustment state. The ninth component holding mechanism H9 is stopped on the first processing area 52A, the tenth component holding mechanism H10 is stopped on the second processing area 52B, and the eleventh component holding mechanism H11 is stopped on the second processing area 52B. The twelfth component holding mechanism H12 is stopped on the two-position adjustment area 70B, the twelfth component holding mechanism H12 is stopped on the third processing area 52C, the first component holding mechanism H1 is stopped on the first component unloading area 53A, and the second component holding mechanism The mechanism H2 is stopped on the third attitude adjustment area 70C, and the fourth component holding mechanism H4 is stopped on the second component delivery area 53B. In each of these regions, the lifting biasing mechanisms 40A to 40I are operated, thereby moving the parts up and down and simultaneously performing various operations depending on the purpose.

図3(A)の状態において、各領域での動作(処理)が完了したら、ターレット型回転搬送装置10が30度回転しながら部品を搬送し、図3(B)に示す状態で停止する。この回転角度は、隣接する部品保持機構H1~H12の配置角度(30度)と一致する。その結果、第五部品保持機構H5が部品供給領域51上に停止され、第七部品保持機構H7が第一姿勢調整領域70A上に停止され、第八部品保持機構H8が第一処理領域52A上に停止され、第九部品保持機構H9が第二処理領域52B上に停止され、第十部品保持機構H10が第二姿勢調整領域70B上に停止され、第十一部品保持機構H11が第三処理領域52C上に停止され、第十二部品保持機構H12が第一部品搬出領域53A上に停止され、第一部品保持機構H1が第三姿勢調整領域70C上に停止され、第三部品保持機構H3が第二部品搬出領域53B上に停止される。これらの各領域で、昇降付勢機構40A~40Iが稼働することで、部品を上下動させながら、その目的に応じた各種動作が同時並行で実行される。 When the operation (processing) in each area is completed in the state shown in FIG. 3(A), the turret-type rotary transport device 10 transports the parts while rotating 30 degrees, and stops in the state shown in FIG. 3(B). This rotation angle matches the arrangement angle (30 degrees) of the adjacent component holding mechanisms H1 to H12. As a result, the fifth component holding mechanism H5 is stopped above the component supply area 51, the seventh component holding mechanism H7 is stopped above the first attitude adjustment area 70A, and the eighth component holding mechanism H8 is stopped above the first processing area 52A. The ninth component holding mechanism H9 is stopped on the second processing area 52B, the tenth component holding mechanism H10 is stopped on the second attitude adjustment area 70B, and the eleventh component holding mechanism H11 is stopped on the second processing area 52B. The twelfth component holding mechanism H12 is stopped on the first component carrying-out area 53A, the first component holding mechanism H1 is stopped on the third attitude adjustment area 70C, and the third component holding mechanism H3 is stopped on the third attitude adjustment area 70C. is stopped on the second component carry-out area 53B. In each of these regions, the lifting biasing mechanisms 40A to 40I are operated, thereby moving the parts up and down and simultaneously performing various operations depending on the purpose.

図3(B)の状態において、各領域での動作(処理)が完了したら、ターレット型回転搬送装置10が更に30度回転しながら部品を搬送し、図3(C)に示す状態で停止する。 When the operation (processing) in each area is completed in the state shown in FIG. 3(B), the turret-type rotary transport device 10 transports the parts while rotating further by 30 degrees, and stops in the state shown in FIG. 3(C). .

上記図3(A)~図3(C)の動作が繰り返されることで、部品供給領域51から部品が順次供給され、全ての部品は、各領域を順番に移動しながら所望の処理が施されて、第一部品搬出領域53A又は第二部品搬出領域53Bから搬出される。 By repeating the operations shown in FIGS. 3(A) to 3(C) above, parts are sequentially supplied from the parts supply area 51, and all parts are subjected to desired processing while moving through each area in order. Then, the parts are carried out from the first parts carrying-out area 53A or the second parts carrying-out area 53B.

次に図4及び図5を参照して、処理領域52に配置される低温用処理装置75、予熱処理装置80、高温用処理装置85について説明する。なお、これらの処理装置は内部構造が互いに類似する為、ここでは、低温用処理装置75の構造について詳細に説明し、他の処理装置80、85の説明の一部を書略する。 Next, with reference to FIGS. 4 and 5, the low-temperature processing device 75, preheating processing device 80, and high-temperature processing device 85 arranged in the processing region 52 will be described. Note that since these processing apparatuses have similar internal structures, the structure of the low-temperature processing apparatus 75 will be described in detail here, and a part of the description of the other processing apparatuses 80 and 85 will be omitted.

図4(A)に示すように、低温用処理装置75は、温度安定化装置125を備える。この温度安定化装置125は、部品を移動させる移動機構と、部品の温度を制御する温度安定化機構を兼ねている。つまり、温度安定化装置125は、本発明における移動機構と、部品に対して加熱・冷却を行う熱移送とを兼ねる。温度安定化装置125は載置プレート50を備える。この載置プレート50は、後述する熱移送部材130と一体となって、載置プレート回転軸55を中心として、部品を載置した状態で回転移動する。 As shown in FIG. 4(A), the low temperature processing device 75 includes a temperature stabilizing device 125. This temperature stabilizing device 125 serves both as a moving mechanism for moving parts and a temperature stabilizing mechanism for controlling the temperature of the parts. In other words, the temperature stabilizing device 125 serves both as a moving mechanism in the present invention and as a heat transfer device that heats and cools components. The temperature stabilization device 125 includes a mounting plate 50. The mounting plate 50 rotates around a mounting plate rotation axis 55 in a state in which the component is mounted, integrally with a heat transfer member 130 to be described later.

載置プレート50は、被測定物である部品がそれぞれ個別に載置される凹部である複数の載置部100有する。ここでは、載置プレート50の周方向に沿って、均等間隔で、合計32個の載置部100が形成されている。載置プレート50が回転することによって、載置部100が移動する環状の軌跡が、いわゆる部品の移動経路となる。 The mounting plate 50 has a plurality of mounting parts 100, each of which is a recessed part on which a component to be measured is individually mounted. Here, a total of 32 mounting portions 100 are formed at equal intervals along the circumferential direction of the mounting plate 50. As the mounting plate 50 rotates, the annular locus along which the mounting section 100 moves becomes a so-called component movement path.

なお、低温用処理装置75における載置部100(凹部)の内寸は、部品の外寸と略一致することが好ましい。このようにすると、載置部100内での部品の位置ずれが抑制されるので、測定部95まで移動する間に、部品の位置がずれることを抑制できる。また、載置部100に対して部品を搭載する時に、部品に高い位置精度が要求される。従って、図3に示すように、低温用処理装置75(第一処理領域52A)や高温用処理装置85(第三処理領域52C)の上流側には、部品の保持精度を高めるために、第一姿勢調整領域70A及び第二姿勢調整領域70Bが用意される。 In addition, it is preferable that the inner dimension of the mounting part 100 (recessed part) in the low-temperature processing apparatus 75 substantially corresponds to the outer dimension of the component. In this way, the displacement of the component within the mounting section 100 is suppressed, so that the displacement of the component during movement to the measurement section 95 can be suppressed. Furthermore, when mounting components on the mounting section 100, high positional accuracy is required for the components. Therefore, as shown in FIG. 3, on the upstream side of the low-temperature processing device 75 (first processing region 52A) and the high-temperature processing device 85 (third processing region 52C), a One attitude adjustment area 70A and a second attitude adjustment area 70B are prepared.

一方、第二処理領域52Bに配置される予熱処理装置80では、部品の温度制御のみを実行すれば良く、測定部による測定行為を省略できるので、載置プレート50上の部品に高い位置精度が要求されない。従って、載置プレート50の載置部100(凹部)の内寸は、部品の外寸よりも比較的大きく設定することが好ましい。このようにすると、載置部100に対して部品を搭載する時に、部品に高い位置精度が要求されないので、上流側の姿勢調整領域も省略することが出来る。 On the other hand, the preheating device 80 disposed in the second processing area 52B only needs to control the temperature of the components, and the measuring operation by the measuring unit can be omitted, so that the components on the mounting plate 50 can be positioned with high accuracy. Not required. Therefore, it is preferable that the inner dimensions of the mounting portion 100 (recessed portion) of the mounting plate 50 are set to be relatively larger than the outer dimensions of the component. In this way, when a component is mounted on the mounting section 100, high positional accuracy is not required for the component, so the attitude adjustment region on the upstream side can also be omitted.

載置プレート50の上面に形成される移動経路上には、固定領域として、測定部95が配置される測定領域54と、測定部95の上流側に位置して部品保持機構45から部品が解放される受入領域97と、測定部95の下流側に位置して、測定部95で測定された後の部品の回収をする回収領域99が形成される。また、受入領域97と回収領域99は互いに異なった位置に配置される。 On the movement path formed on the upper surface of the mounting plate 50, there is a measurement area 54 where the measurement unit 95 is arranged as a fixed area, and a measurement area 54 where the measurement unit 95 is located upstream from which the component is released from the component holding mechanism 45. A receiving area 97 is formed, and a collecting area 99 is located downstream of the measuring part 95 and collects parts measured by the measuring part 95. Furthermore, the receiving area 97 and the collecting area 99 are arranged at different positions.

測定部95は、本発明における部品に所定の行為(ここでは出力測定行為)を行う行為部である。図4(B)に示されるように、部品115の電極120に電気的な接触を行う測定プローブ110を有する。測定プローブ110は、載置プレート50の面に対して垂直方向に昇降する。被測定対象の部品115が、測定領域54において、測定部95における測定プローブ110の直下まで来ると、載置プレート50の回転が止まり、測定プローブ110が降下して電極120と接触する。そして測定装置105で特性を測定した後、測定プローブ110が上昇し、載置プレート50が再び回転して、次の部品115が測定プローブ110の直下に移動する。 The measurement unit 95 is an action unit that performs a predetermined action (here, an output measurement action) on the component in the present invention. As shown in FIG. 4B, it has a measurement probe 110 that makes electrical contact with an electrode 120 of a component 115. The measurement probe 110 moves up and down in a direction perpendicular to the surface of the mounting plate 50. When the component 115 to be measured comes directly below the measurement probe 110 in the measurement section 95 in the measurement region 54, the mounting plate 50 stops rotating and the measurement probe 110 descends and comes into contact with the electrode 120. After measuring the characteristics with the measuring device 105, the measuring probe 110 is raised, the mounting plate 50 is rotated again, and the next component 115 is moved directly below the measuring probe 110.

受入領域97において、載置プレート50の載置部100に載置された部品は、温度安定化装置125で回転移動している間に、所定の温度(ここでは25℃)まで制御され、測定部95において、その所定の温度における出力を測定した後、回収領域99に移動され、部品保持具により回収される。 In the receiving area 97, the components placed on the mounting portion 100 of the mounting plate 50 are controlled to a predetermined temperature (here, 25° C.) while being rotated by the temperature stabilizing device 125, and are measured. After measuring the output at a predetermined temperature in the section 95, the parts are moved to a collection area 99 and collected by a parts holder.

図4(A)に戻って、部品保持機構45は、部品を保持する為の2つの部品保持具145、150を備える。この一対の部品保持具145、150同士の間隔と、受入領域97と回収領域99に収納される部品115の中心同士間隔は一致しているため、一方の部品保持具が受入領域97で部品を解放しているときに、略同時に他方の保持具が回収領域99で部品を回収することができる。なお、ここでは、部品保持具145、150の間隔P(つまり受入領域97と回収領域99に収納される部品115の中心同士間隔)と、隣接する一対の載置部100の間隔Qが、略一致する場合を例示したが、本発明はこれに限定されない。例えば、受入領域97と回収領域99の間隔Pは、移動経路上で任意に選択される一対の電子部品(載置部100)の間隔と略一致していればよい。より具体的に、受入領域97と回収領域99の移動軌跡に沿った間隔は、隣接する部品115、115同士の間隔Qの整数倍に設定されていれば良い。 また、部品保持機構45内における一対の部品保持具145、150同士の間隔Pは、ターレット型回転搬送装置10の搬送経路に沿って隣り合う一対の部品保持機構45、45同士の間隔Sよりも大幅に狭い。この意味は、部品保持機構45内の一対の部品保持具145、150は、同時に部品115を保持して同時搬送するためのものではなく、搬送経路に沿って、部品保持具145、150を選択的に切り替えながら、どちらかの部品保持具によって部品を搬送するものだからである。なお、この低温用処理装置75では、部品保持機構45の第一部品保持具145が部品を解放し、第二部品保持具150が部品を吸引保持する。 Returning to FIG. 4(A), the component holding mechanism 45 includes two component holders 145 and 150 for holding components. Since the distance between the pair of component holders 145 and 150 is the same as the distance between the centers of the components 115 stored in the receiving area 97 and the collection area 99, one component holder holds the components in the receiving area 97. During the release, the other retainer can retrieve the component at the retrieval area 99 at approximately the same time. Note that here, the distance P between the component holders 145 and 150 (that is, the distance between the centers of the components 115 stored in the receiving area 97 and the collection area 99) and the distance Q between the pair of adjacent placement parts 100 are approximately Although the case where they match is illustrated, the present invention is not limited to this. For example, the spacing P between the receiving area 97 and the collecting area 99 may be approximately equal to the spacing between a pair of electronic components (placing portions 100) arbitrarily selected on the movement route. More specifically, the interval between the receiving area 97 and the collecting area 99 along the movement trajectory may be set to an integral multiple of the interval Q between adjacent parts 115, 115. Further, the distance P between the pair of component holders 145 and 150 in the component holding mechanism 45 is larger than the distance S between the pair of component holding mechanisms 45 and 45 adjacent to each other along the conveyance path of the turret-type rotary conveyance device 10. Significantly narrower. This means that the pair of component holders 145 and 150 in the component holding mechanism 45 are not intended to simultaneously hold and transport the components 115, but rather select the component holders 145 and 150 along the transport path. This is because the parts are transported by one of the parts holders while switching between them. In this low-temperature processing apparatus 75, the first component holder 145 of the component holding mechanism 45 releases the component, and the second component holder 150 suction-holds the component.

温度安定化装置125は、部品が受入領域97に解放された後、行為部である測定部95(測定領域54)に部品が到達するまでに必要な移動時間よりも、部品の温度が所定の温度に安定するまでの時間である温度制御時間が短い。即ち、部品が測定領域54に到達する前に、部品の温度は目標値で安定している。 The temperature stabilizing device 125 is configured to keep the temperature of the part at a predetermined value longer than the travel time required for the part to reach the measuring part 95 (measuring area 54), which is the action part, after the part is released into the receiving area 97. The temperature control time, which is the time it takes for the temperature to stabilize, is short. That is, before the part reaches the measurement area 54, the temperature of the part has stabilized at the target value.

図5(A)は、温度安定化装置125に備えられる載置プレート50の上面図である。図5(A)の場合には、載置プレート50は載置プレート回転軸55を中心として、上面から見て時計回りに回転する。 FIG. 5(A) is a top view of the mounting plate 50 provided in the temperature stabilizing device 125. In the case of FIG. 5A, the mounting plate 50 rotates clockwise about the mounting plate rotation axis 55 when viewed from above.

図5(B)は、温度安定化装置125の断面図である。温度安定化装置125は、複数の部品を同時に回転移動させる移動機構であり、部品がそれぞれ個別に載置される凹部である載置部100を複数有する略円盤状の載置プレート50と、載置プレート50に対して背面側に隣接して配置され、載置プレート50に熱を移送する熱移送部材130を備える。熱移送部材130の形状は、載置プレート50と略同型(略円盤状)であることが望ましいが、複数に分散配置されていても良い。熱移送部材130と載置プレート50は一体となって、載置プレート回転軸55を中心として、載置プレート駆動装置60により回転駆動される。なお、熱伝達効率を向上させるため、載置プレート50と熱移送部材130は、平面同士で接触していることが好ましく、間に熱伝導性シートなどを介在させても良い。 FIG. 5(B) is a cross-sectional view of the temperature stabilizing device 125. The temperature stabilizing device 125 is a moving mechanism that rotates and moves a plurality of components simultaneously, and includes a generally disc-shaped mounting plate 50 having a plurality of mounting portions 100, each of which is a concave portion on which each component is individually mounted. A heat transfer member 130 is provided which is arranged adjacent to the back side of the mounting plate 50 and transfers heat to the mounting plate 50. Although it is desirable that the shape of the heat transfer member 130 is substantially the same as that of the mounting plate 50 (substantially disc-shaped), the heat transfer member 130 may be disposed in a plurality of locations. The heat transfer member 130 and the mounting plate 50 are integrally driven to rotate around the mounting plate rotation axis 55 by the mounting plate driving device 60. Note that, in order to improve heat transfer efficiency, it is preferable that the mounting plate 50 and the heat transfer member 130 are in contact with each other on a plane basis, and a thermally conductive sheet or the like may be interposed therebetween.

熱移送部材130において、載置プレート50が隣接する側と逆側平面には、熱交換部135が設けられる。熱移送部材130は、ペルチェ素子であることが望ましい。したがって、例えば載置プレート50の温度を降下させて、常温よりも低い温度に部品を制御したい場合には、熱移送部材130の載置プレート50側が低温となり、熱交換部135側が高温になる。その場合は、熱交換部135から熱が放熱されやすいように、熱交換部135をファンで空冷したり、外部に設けられた熱交換器であるチラーから冷水を供給して水冷したりすることが望ましい。逆に載置プレート50の温度を上昇させて、部品を常温よりも高い温度に制御したい場合には、熱移送部材130の載置プレート50側が高温に、熱交換部135側が低温になる。この場合には、熱交換部135に熱水を接触させて温めることも考えられる。これらの温度制御は、温度制御装置137によって、例えばPID制御によっておこなわれるが、一般的な周知技術なので詳細説明は省略する。 In the heat transfer member 130, a heat exchange portion 135 is provided on a plane opposite to the side adjacent to the mounting plate 50. Preferably, the heat transfer member 130 is a Peltier element. Therefore, for example, when it is desired to lower the temperature of the mounting plate 50 and control the component to a temperature lower than normal temperature, the mounting plate 50 side of the heat transfer member 130 becomes low temperature, and the heat exchange part 135 side becomes high temperature. In that case, in order to facilitate heat dissipation from the heat exchange unit 135, the heat exchange unit 135 may be air-cooled with a fan or cooled by supplying cold water from a chiller, which is an external heat exchanger. is desirable. Conversely, when it is desired to raise the temperature of the mounting plate 50 and control the component to a temperature higher than normal temperature, the mounting plate 50 side of the heat transfer member 130 becomes high temperature, and the heat exchange part 135 side becomes low temperature. In this case, it is also possible to bring hot water into contact with the heat exchanger 135 to warm it. These temperature controls are performed by the temperature control device 137, for example, by PID control, but since this is a commonly known technique, detailed explanation will be omitted.

図6(A)は、載置プレート50の複数の載置部100について、温度バラツキがあることを説明する説明図である。処理装置52において処理される部品について温度特性の評価を行う場合、熱移送部材130の熱(温熱・冷熱)が、載置プレート50を介して載置部100に載置された部品に伝達される。載置プレート50自体も、肉厚等の要因で全体の温度が均一となる訳ではない。また、載置プレート50と熱移送部材130の間における熱接触も完全に均一とは限らない。ペルチェ素子となる熱移送部材130自体の全体の温度が均一となる訳ではない。したがって、部品を所定の温度にするべく温度制御装置137(図5参照)によって制御しようとしても、載置プレート50上の複数の載置部100の間で、実際に得られる温度は互いにばらつく。例えば、第一載置部215と、第七載置部220と、第十六載置部225では、載置プレート50を仮に80℃に制御しようとしても、すべての位置で正確に80℃にはならない。ただし、制御目標とする部品の設定温度は、例えば、80℃プラスマイナス0.5℃のように、所望の許容範囲を有していることから、複数の載置部100の間で温度がばらついたとしても、このバラツキ全体が、設定温度の許容範囲(許容帯域)内に収まっていれば良い。ただし、部品の出力特性を正確に測定するためには、ばらついた状態の実際の温度を、実測値として把握しなければならない。しかし、全ての載置部100に、リアルタイムに温度を計測するための温度計を個別に内蔵することは現実的ではない。 FIG. 6(A) is an explanatory diagram illustrating that there is temperature variation among the plurality of mounting portions 100 of the mounting plate 50. When evaluating the temperature characteristics of components processed in the processing device 52, the heat (hot and cold) of the heat transfer member 130 is transferred to the components placed on the placement section 100 via the placement plate 50. Ru. The temperature of the entire mounting plate 50 itself is not uniform due to factors such as wall thickness. Furthermore, the thermal contact between the mounting plate 50 and the heat transfer member 130 is not necessarily completely uniform. The temperature of the entire heat transfer member 130 itself, which serves as a Peltier element, is not uniform. Therefore, even if the temperature control device 137 (see FIG. 5) attempts to control the components to a predetermined temperature, the temperatures actually obtained will vary among the plurality of mounting sections 100 on the mounting plate 50. For example, in the first mounting section 215, the seventh mounting section 220, and the sixteenth mounting section 225, even if you try to control the mounting plate 50 at 80°C, it will be kept at exactly 80°C at all positions. Must not be. However, since the set temperature of the component that is the control target has a desired tolerance range, for example, 80 degrees Celsius plus or minus 0.5 degrees Celsius, the temperature may vary among the plurality of mounting sections 100. Even so, it is sufficient that the entire variation falls within the allowable range (tolerable band) of the set temperature. However, in order to accurately measure the output characteristics of a component, it is necessary to understand the varying actual temperature as an actual measurement value. However, it is not realistic to individually incorporate a thermometer for measuring temperature in real time in all the mounting units 100.

図6(B)は、各載置部について、目標温度と実測値の間の差を示す対応表である。この対応表は、本部品処理システム1が実稼働する前に、載置プレート50の温度を全体的に安定させてから、各載置部の温度のバラツキを実測することで得られる特性データとなる。つまり、温度安定化装置125の固有データとなる。例えば載置部No.1に相当する第一載置部215は、温度制御装置137の制御目標となる温度(目標温度)が0℃で安定化したとき、目標温度との差は+0.1℃(つまり実測値が0.1℃)となる。同様に、目標温度が25℃で安定化したとき、目標温度との差は+0.2℃(つまり実測値が25.2℃)であり、目標温度が80℃で安定化したとき、目標温度との差は-0.1℃(つまり実測値が79.9℃)となる。同様に全ての載置部について、それぞれ目標温度と実測値との差が対応表(データテーブル)として生成される。例えば載置部No.16に相当する第十六載置部225において、温度制御装置137の目標温度が80℃で安定化したとき、目標温度との差は+0.1℃、すなわち実測値は80.1℃である。このような対応表に関するデータテーブルを、制御装置25、温度制御装置137又は測定部95等、部品処理システム1のどこかに配置される計算機が記憶している。 FIG. 6(B) is a correspondence table showing the difference between the target temperature and the actual measurement value for each mounting portion. This correspondence table is based on characteristic data obtained by stabilizing the temperature of the mounting plate 50 as a whole before the component processing system 1 goes into actual operation, and then actually measuring the temperature variation of each mounting section. Become. In other words, the data is unique to the temperature stabilizing device 125. For example, placing section no. 1, when the temperature that is the control target of the temperature control device 137 (target temperature) is stabilized at 0°C, the difference from the target temperature is +0.1°C (that is, the actual measured value is 0.1℃). Similarly, when the target temperature stabilizes at 25°C, the difference from the target temperature is +0.2°C (that is, the actual measured value is 25.2°C), and when the target temperature stabilizes at 80°C, the target temperature The difference is -0.1°C (that is, the actual measured value is 79.9°C). Similarly, the difference between the target temperature and the actual measurement value is generated as a correspondence table (data table) for all the mounting units. For example, placing section no. When the target temperature of the temperature control device 137 is stabilized at 80°C in the sixteenth mounting portion 225 corresponding to No. 16, the difference from the target temperature is +0.1°C, that is, the actual measured value is 80.1°C. . A data table related to such a correspondence table is stored in a computer located somewhere in the parts processing system 1, such as the control device 25, the temperature control device 137, or the measurement unit 95.

このデータテーブルを適宜利用することで、本番稼働中の部品処理システム1において、全ての載置部100のそれぞれの部品の温度を高精度に推測できるので、部品115の電気的性質の温度特性評価を正確に行うことができる。例えば、実際に検査を行う部品がサーミスタ素子であって、温度制御装置137によって載置プレート50の温度を80℃に安定化制御した場合、データテーブルを参照すれば、第十六載置部225の実際の部品の温度は80.1℃になると推測できる。結果、測定領域54の測定部95で測定された抵抗値(電気的出力値)が、80.1℃相当を示せばこのサーミスタ素子は良品であると判定でき、抵抗値が80.1℃からずれた場合は、そのズレ量が、このサーミスタ素子の固有誤差となる。もちろん、この出力値から、例えば線形補間により80℃(評価基準温度)における測定値を逆算して、温度特性評価を行うことができる。 By appropriately using this data table, it is possible to estimate the temperature of each component on all the mounting sections 100 with high accuracy in the component processing system 1 in actual operation, so that the temperature characteristics of the electrical properties of the component 115 can be evaluated. can be done accurately. For example, if the component to be actually inspected is a thermistor element, and the temperature control device 137 stabilizes the temperature of the mounting plate 50 at 80°C, referring to the data table, the sixteenth mounting section 225 It can be estimated that the actual temperature of the parts is 80.1°C. As a result, if the resistance value (electrical output value) measured by the measuring part 95 of the measurement area 54 shows the equivalent of 80.1°C, it can be determined that this thermistor element is a good product. If there is a deviation, the amount of deviation becomes the inherent error of this thermistor element. Of course, the temperature characteristics can be evaluated by back calculating the measured value at 80° C. (evaluation reference temperature) from this output value, for example, by linear interpolation.

すなわち部品処理システム1は、熱移送部材130と載置プレート50と一緒に移動させる代わりとして、載置部の位置に応じて、載置プレート50全体の目標とする温度と、各載置部の実際の温度のズレ(即ち、これを総称すると、複数の載置部同士の温度のバラツキ)に関するデータテーブルを計算機が予め記憶することを特徴としている。 That is, instead of moving the heat transfer member 130 and the mounting plate 50 together, the component processing system 1 sets the target temperature of the entire mounting plate 50 and the target temperature of each mounting section according to the position of the mounting section. It is characterized in that the computer stores in advance a data table regarding actual temperature deviations (that is, collectively referred to as temperature variations among a plurality of mounting sections).

なお温度制御装置137は、CPU、RAM、ROM、ハードディスクドライブ等の記憶装置などから構成され、温度安定化装置125における温度制御等をおこなう。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。RAMはCPUの作業領域、記憶領域として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。温度制御装置137は温度安定化装置125ごとに設けられても良く、制御装置25(図1参照)と一体であっても良い。 The temperature control device 137 includes a CPU, a RAM, a ROM, a storage device such as a hard disk drive, etc., and controls the temperature in the temperature stabilization device 125. The CPU is a so-called central processing unit, and executes various programs to realize various functions. RAM is used as a work area and storage area for the CPU, and ROM stores an operating system and programs executed by the CPU. The temperature control device 137 may be provided for each temperature stabilization device 125, or may be integrated with the control device 25 (see FIG. 1).

なお、従来の部品処理システムでは、ターレット型回転搬送装置によって搬送中の部品を一時停止し、その状態まま、各部品に直接的に処理(所定行為)をおこなっていた。そのため、ターレット型回転搬送装置10による搬送速度が、各処理領域の処理速度(所定行為の速度)に律速されていた。一方、本部品処理システム1によれば、ターレット型回転搬送装置10の部品保持機構45から受け取った部品を、処理装置52が更に独立して移送して、所定の行為(出力特性の測定)を行う。結果、処理装置52における処理時間と、ターレット型回転搬送装置10の搬送速度を独立して設定できる。具体的には、載置部100に置かれた部品について温度特性の評価を行う場合、部品の熱容量のために所定の温度で安定するまで時間がかかるが、処理装置52内の受入領域97から測定領域(行為部)54までの移動経路を十分に確保することで、十分な時間によって各部品の温度の安定を図ることができる。それにも拘わらず、部品処理システム1全体の搬送速度の低下は招かないで済む。 In the conventional parts processing system, parts being transported by a turret-type rotary transport device are temporarily stopped, and each part is directly processed (predetermined action) in that state. Therefore, the conveyance speed by the turret-type rotary conveyance device 10 is limited by the processing speed (speed of a predetermined action) of each processing area. On the other hand, according to the present component processing system 1, the processing device 52 further independently transfers the components received from the component holding mechanism 45 of the turret-type rotary conveyance device 10, and performs a predetermined action (measurement of output characteristics). conduct. As a result, the processing time in the processing device 52 and the transport speed of the turret-type rotary transport device 10 can be set independently. Specifically, when evaluating the temperature characteristics of a component placed on the mounting section 100, it takes time to stabilize at a predetermined temperature due to the heat capacity of the component. By ensuring a sufficient travel path to the measurement area (action area) 54, it is possible to stabilize the temperature of each component over a sufficient period of time. Despite this, a reduction in the transport speed of the entire parts processing system 1 is not caused.

また本実施形態に係る部品処理システム1によれば、搬送される部品が解放される受入領域97と、処理が完了した部品を回収する回収領域99が、異なった位置に配置されるので、部品の処理装置52への解放と、部品の処理装置52からの回収が独立に並行しておこなえるため、処理速度を向上させ得るという優れた効果を奏する。 Further, according to the parts processing system 1 according to the present embodiment, the receiving area 97 where the transported parts are released and the collection area 99 where the parts that have been processed are collected are arranged at different positions. Since the release of components to the processing device 52 and the recovery of the components from the processing device 52 can be performed independently and in parallel, an excellent effect is achieved in that the processing speed can be improved.

本部品処理システム1によれば、ターレット型回転搬送装置10に配置される部品保持機構45が備える複数の部品保持具の間隔と、受入領域97と回収領域99の間隔が一致しているので、一方の部品保持具と、他方の部品保持具が、受入領域97と回収領域99に同時に位置決めできるので、円滑に部品の受け渡しができ得る。 According to the present component processing system 1, the intervals between the plurality of component holders included in the component holding mechanism 45 arranged in the turret-type rotary conveyance device 10 match the intervals between the receiving area 97 and the collecting area 99. Since one component holder and the other component holder can be simultaneously positioned in the receiving area 97 and the collecting area 99, parts can be transferred smoothly.

また、処理装置52において処理される部品について温度特性の評価を行う場合、部品を所定の温度にするために載置プレート50と載置された部品との間で熱交換をおこなう。このとき載置プレート50と、熱移送部材130の間が熱移送について不均一である可能性が高く、また載置プレート50と熱移送部材130の間における熱接触も完全に均一ではないことが多いと考えられる。したがって、部品を所定の温度にするべく温度制御装置137によって制御しようとしても、載置プレート50上の複数の載置部100それぞれについて、実際に得られる温度は、安定させたい所定の温度からずれてしまう。本発明の第一実施形態に係る部品処理システム1によれば、温度制御装置137が各々の載置部100に応じて、目標とする所定の温度と、実際に得られる温度のズレ量に関するデータを予め記憶しているので、例えば部品の温度特性を評価する場合に、部品の正確な温度を推測することができる。 Further, when evaluating the temperature characteristics of a component processed in the processing device 52, heat exchange is performed between the mounting plate 50 and the mounted component in order to bring the component to a predetermined temperature. At this time, there is a high possibility that the heat transfer between the mounting plate 50 and the heat transfer member 130 is not uniform, and the thermal contact between the mounting plate 50 and the heat transfer member 130 is also not completely uniform. It is thought that there are many. Therefore, even if the temperature control device 137 attempts to control the components to a predetermined temperature, the temperature actually obtained for each of the plurality of placement parts 100 on the placement plate 50 deviates from the predetermined temperature that is desired to be stabilized. It ends up. According to the component processing system 1 according to the first embodiment of the present invention, the temperature control device 137 collects data regarding the amount of deviation between the target predetermined temperature and the actually obtained temperature in accordance with each mounting section 100. Since it is stored in advance, the accurate temperature of the component can be estimated, for example, when evaluating the temperature characteristics of the component.

更に部品処理システム1によれば、処理装置52において部品が受入領域97から測定領域(行為部)54まで移動する間に、部品の温度が所定の温度に達して安定するので、所定の温度における部品の特性評価が可能になり、結果として部品についての正確な温度特性評価が可能になる。 Further, according to the parts processing system 1, the temperature of the parts reaches a predetermined temperature and becomes stable while the parts are moved from the receiving area 97 to the measurement area (acting part) 54 in the processing device 52. It becomes possible to evaluate the characteristics of the component, and as a result, it becomes possible to accurately evaluate the temperature characteristics of the component.

次に図7以降を参照して、部品処理システム1に備えられる、昇降付勢機構40と、部品保持機構45の動作につて詳細に説明する。図7に示すように、部品保持機構45は、例えば二つの部品保持具145、150を備える。ターレット型回転搬送装置10から独立して搬送経路上に固定配置される昇降付勢機構40は、部品保持機構45と係合して、部品保持具145、150を昇降させる。この際、部品保持具145、150の一つが部品を受入領域97に解放し、部品保持具145、150の他方が回収領域99から回収する。 Next, with reference to FIG. 7 and subsequent figures, the operations of the lifting biasing mechanism 40 and the component holding mechanism 45 provided in the component processing system 1 will be described in detail. As shown in FIG. 7, the component holding mechanism 45 includes, for example, two component holders 145 and 150. An elevating and lowering biasing mechanism 40, which is fixedly arranged on the transport path independently of the turret-type rotary transport device 10, engages with the component holding mechanism 45 to raise and lower the component holders 145 and 150. At this time, one of the component holders 145 and 150 releases the component into the receiving area 97, and the other of the component holders 145 and 150 collects the component from the collection area 99.

すなわち昇降付勢機構40と部品保持機構45は、第一処理領域52Aと、第二処理領域52Bと、第三処理領域52Cのそれぞれにおいて、互いに連携して部品の解放と回収をおこない、複数の低温用処理装置75、予熱処理装置80、高温用処理装置85の間での部品の授受を同時に実現する。具体的には、第一乃至第三処理領域52A、52B、52Cの三者間で同時に動作すると同時に、各処理領域において、部品の解放と回収も同時に動作する。 That is, the lifting biasing mechanism 40 and the component holding mechanism 45 cooperate with each other to release and recover components in each of the first processing area 52A, the second processing area 52B, and the third processing area 52C. Parts can be transferred between the low-temperature processing device 75, the preheating processing device 80, and the high-temperature processing device 85 at the same time. Specifically, the first to third processing areas 52A, 52B, and 52C operate simultaneously, and at the same time, parts release and collection operate simultaneously in each processing area.

昇降付勢機構40は、ターレット型回転搬送装置10から独立して架台35に固定され、搬送経路上の各処理領域52に対応して固定配置される。部品保持機構45はターレットテーブル12に固定され、ターレットテーブル12の回転運動に伴って、その位置を変える。昇降付勢機構40は、各処理領域52で一時停止する部品保持機構45と係合するのに適切な位置に設置される。 The lift biasing mechanism 40 is fixed to the pedestal 35 independently from the turret-type rotary conveyance device 10, and is fixedly arranged corresponding to each processing area 52 on the conveyance path. The component holding mechanism 45 is fixed to the turret table 12 and changes its position as the turret table 12 rotates. The lift biasing mechanism 40 is placed in an appropriate position to engage the component holding mechanism 45 that is paused at each processing area 52 .

具体的には昇降付勢機構40は、回転運動を行うモーター180と、モーター180の回転軸に係合して回転運動を直線往復運動に変換する斜板カム構造175と、斜板カム構造175において直線往復運動を伝達する軸部177と、軸部177に固定される回収用係合部155及び解放用係合部165を備える。従って、回収用係合部155及び解放用係合部165は、モーター180の回転動力によって、鉛直方向に往復運動自在となる。回収用係合部155及び解放用係合部165は、部品保持機構45の第一部品保持具145と第二部品保持具150を昇降させる。なお、軸部177は、鉛直方向上向きに弾性体(図示省略)で支持されており、斜板カム構造175の回転に従って鉛直方向に往復運動自在となる。勿論、エアシリンダや油圧シリンダ、電磁ソレノイド等の直動動力源によって、直接、軸部177を上下方向に駆動しても良い。 Specifically, the lift biasing mechanism 40 includes a motor 180 that performs rotational movement, a swash plate cam structure 175 that engages with the rotation shaft of the motor 180 to convert the rotational movement into linear reciprocating movement, and the swash plate cam structure 175. It includes a shaft portion 177 that transmits linear reciprocating motion, and a collection engagement portion 155 and a release engagement portion 165 that are fixed to the shaft portion 177. Therefore, the retrieval engaging portion 155 and the releasing engaging portion 165 are capable of reciprocating in the vertical direction by the rotational power of the motor 180. The collection engaging portion 155 and the releasing engaging portion 165 move the first component holder 145 and the second component holder 150 of the component holding mechanism 45 up and down. Note that the shaft portion 177 is supported vertically upward by an elastic body (not shown), and can freely reciprocate in the vertical direction as the swash plate cam structure 175 rotates. Of course, the shaft portion 177 may be directly driven in the vertical direction by a direct-acting power source such as an air cylinder, a hydraulic cylinder, or an electromagnetic solenoid.

図8に拡大して示すように、部品保持機構45は、第一部品保持具145と第二部品保持具150を有する。第一及び第二部品保持具145、150の一方は部品を載置部から回収し、他方は部品を載置部へ解放する。第一部品保持具145は、下端に部品を保持する第一保持端146を有する。第二部品保持具150は、下端に部品を保持する第二保持端151を有する。 As shown in an enlarged view in FIG. 8, the component holding mechanism 45 includes a first component holder 145 and a second component holder 150. One of the first and second component holders 145, 150 retrieves the component from the receiver, and the other releases the component to the receiver. The first component holder 145 has a first holding end 146 at its lower end that holds the component. The second component holder 150 has a second holding end 151 at the lower end that holds the component.

第一保持端145と第二保持端150は、それぞれ部品を解放、吸着するノズルの先端面となる。具体的には、第一部品保持具145と第二部品保持具150は中空のチューブ状(円筒状)であり、それぞれがダイヤフラムポンプ(図示省略)に接続されている。ダイヤフラムポンプは制御装置25によって制御され、部品を吸着する場合には第一部品保持具145及び/又は第二部品保持具150内部空間を減圧し、部品を解放する場合には第一部品保持具145及び/又は第二部品保持具150の内部空間を大気圧に戻す。 The first holding end 145 and the second holding end 150 serve as tip surfaces of a nozzle for releasing and sucking components, respectively. Specifically, the first component holder 145 and the second component holder 150 have a hollow tube shape (cylindrical shape), and each is connected to a diaphragm pump (not shown). The diaphragm pump is controlled by a control device 25, which reduces the pressure in the internal space of the first component holder 145 and/or the second component holder 150 when picking up a component, and reduces the pressure inside the first component holder 145 and/or the second component holder 150 when releasing a component. 145 and/or the internal space of the second component holder 150 is returned to atmospheric pressure.

部品保持機構45は、ターレットテーブル12に固定されるハウジング179と、ハウジング179に設けられて、第一部品保持具145を鉛直方向に移動自在に案内する第一案内部147と、第二部品保持具150を鉛直方向に移動自在に案内する第二案内部152と、第一部品保持具145を上方向に付勢する第一弾性部148と、第二部品保持具150を上方向に付勢する第二弾性部153を有する。なお、第一案内部147は、第一部品保持具145と並行に一体化される第一摺動軸145Aを摺動自在に案内する。第二案内部152は、第二部品保持具150と並行に一体化される第二摺動軸150Aを摺動自在に案内する。 The component holding mechanism 45 includes a housing 179 fixed to the turret table 12, a first guide section 147 that is provided in the housing 179 and guides the first component holder 145 movably in the vertical direction, and a second component holder. A second guide part 152 that guides the tool 150 movably in the vertical direction, a first elastic part 148 that urges the first component holder 145 upward, and a first elastic section 148 that urges the second component holder 150 upward. The second elastic part 153 has a second elastic part 153. Note that the first guide portion 147 slidably guides a first sliding shaft 145A that is integrated with the first component holder 145 in parallel. The second guide portion 152 slidably guides a second sliding shaft 150A that is integrated with the second component holder 150 in parallel.

これにより、第一及び第二部品保持具145、150は、鉛直方向に互いに独立して往復移動可能であり、かつ、外力が作用しない状態では、上昇側に付勢された状態で位置決めされる。以上の構成により、部品保持機構45は、第一部品保持具145と第二部品保持具150を互いに独立して鉛直方向に案内する案内機構を有することになる。なお、第一及び第二弾性部148、153は、例えば金属製のバネである。 As a result, the first and second component holders 145 and 150 can reciprocate vertically independently of each other, and are positioned in a state where they are biased toward the upward direction when no external force is applied. . With the above configuration, the component holding mechanism 45 has a guide mechanism that guides the first component holder 145 and the second component holder 150 in the vertical direction independently of each other. Note that the first and second elastic parts 148 and 153 are, for example, metal springs.

部品保持機構45は、第一保持端146(第一部品保持具145)と鉛直方向に連動する第一受け部160と、第二保持端151(第二部品保持具150)と鉛直方向に連動する第二受け部170を備える。第一受け部160及び第二受け部170は、鉛直方向の上方側に突出しており、昇降付勢機構40の回収用係合部155又は解放用係合部165と上下方向に係合する。 The component holding mechanism 45 includes a first receiving part 160 that vertically interlocks with the first holding end 146 (first component holder 145), and a first receiving part 160 that interlocks vertically with the second holding end 151 (second component holder 150). A second receiving part 170 is provided. The first receiving part 160 and the second receiving part 170 protrude upward in the vertical direction, and engage with the recovery engaging part 155 or the releasing engaging part 165 of the elevation biasing mechanism 40 in the vertical direction.

従って、昇降付勢機構40の回収用係合部155又は解放用係合部165により、第一受け部160又は第二受け部170が下方に押し下げられると、第一及び第二弾性部148、156の付勢力に抗して、第一及び第二部品保持具145、150が下降する。 Therefore, when the first receiving part 160 or the second receiving part 170 is pushed down by the recovery engaging part 155 or the releasing engaging part 165 of the lifting biasing mechanism 40, the first and second elastic parts 148, The first and second component holders 145 and 150 are lowered against the biasing force 156.

なお、図8(A)では、ノズル上昇時の静止状態として、第二受け部170が回収用係合部155と距離を空けて対向し、第一受け部160が解放用係合部165と距離を空けて対向する状態を例示している。このとき、部品保持機構45では、第一受け部160と第二受け部170の状態の高さは等しく設定される。 In addition, in FIG. 8(A), the second receiving part 170 faces the collecting engaging part 155 at a distance, and the first receiving part 160 faces the releasing engaging part 165 in the stationary state when the nozzle is raised. This example shows a state in which they face each other at a distance. At this time, in the component holding mechanism 45, the heights of the first receiving part 160 and the second receiving part 170 are set to be equal.

昇降付勢機構40では、回収用係合部155の下端(付勢面)と解放用係合部165の下端(付勢面)は、鉛直方向に異なる位置に設定されている。具体的に、回収用係合部155が、解放用係合部165と比較して鉛直方向の下方側に設定される。この高低差Dの分だけ、回収用係合部155の方が、解放用係合部165と比較して第一及び第二部品保持具145、150を下降させる移動ストローク(下方押し込み量)が大きくなる。 In the lift biasing mechanism 40, the lower end (biasing surface) of the collection engagement portion 155 and the lower end (biasing surface) of the release engagement portion 165 are set at different positions in the vertical direction. Specifically, the collection engagement part 155 is set on the lower side in the vertical direction compared to the release engagement part 165. By this height difference D, the movement stroke (downward pushing amount) for lowering the first and second component holders 145 and 150 is greater for the collection engagement portion 155 than for the release engagement portion 165. growing.

昇降付勢機構40は、より詳細に、軸部177に対して一体的に保持されたベース部178を備えており、このベース部178に対して、回収用係合部155と解放用係合部165が鉛直方向に調整自在に設置されている。なお、ここでは、ベース部178の雌ねじ孔に対して、雄ねじ体となる回収用係合部155と解放用係合部165が螺合しており、回収用係合部155と解放用係合部165を回動させることで、下端(付勢面)の位置を調整自在となっている。結果、昇降付勢機構40では、解放側や回収側の相違や、部品の厚みが変更された場合のように、その目的や役割に応じて、昇降付勢機構40の係合部の高さを変更できる。 More specifically, the elevating biasing mechanism 40 includes a base portion 178 that is integrally held with respect to a shaft portion 177, and a recovery engagement portion 155 and a release engagement portion are connected to the base portion 178. A portion 165 is installed so as to be freely adjustable in the vertical direction. Here, the retrieval engaging part 155 and the releasing engaging part 165, which are male threaded bodies, are screwed into the female threaded hole of the base part 178. By rotating the portion 165, the position of the lower end (biasing surface) can be adjusted. As a result, the height of the engaging portion of the lifting biasing mechanism 40 can be adjusted depending on the purpose and role of the lifting biasing mechanism 40, such as differences in the release side and recovery side, or when the thickness of parts is changed. can be changed.

図8(B)に示すように、昇降付勢機構40の軸部177が鉛直下向きに移動することで、解放用係合部165が対向する第一受け部160を下向きに押し、回収用係合部155が対向する第二受け部170を下向きに押す。この動きに伴い、第一受け部160及び第二受け部170にそれぞれ連接する第一保持端146及び第二保持端151が鉛直下向きに移動される。ノズル下降後の静止状態では、第一保持端146と第二保持端151に、上記高低差Dと同じ分だけの高低差Eが生じる。つまり、第一保持端146が、第二保持端151と比較して鉛直方向の上方側に位置決めされる。
すなわち、昇降付勢機構40は、第一保持端146及び第二保持端151の下降後の高さ制御も同時に実現可能となっている。
As shown in FIG. 8(B), when the shaft portion 177 of the lift biasing mechanism 40 moves vertically downward, the release engagement portion 165 pushes the opposing first receiving portion 160 downward, and the recovery engagement portion 165 pushes the opposing first receiving portion 160 downward. The joint portion 155 pushes the opposing second receiving portion 170 downward. With this movement, the first holding end 146 and the second holding end 151, which are connected to the first receiving part 160 and the second receiving part 170, respectively, are moved vertically downward. In the stationary state after the nozzle is lowered, a height difference E equal to the height difference D is generated between the first holding end 146 and the second holding end 151. That is, the first holding end 146 is positioned above the second holding end 151 in the vertical direction.
In other words, the elevation biasing mechanism 40 can simultaneously control the height of the first holding end 146 and the second holding end 151 after they are lowered.

このとき第一及び第二弾性部148、153は弾性変形によって収縮している。このため昇降付勢機構40の軸部177が鉛直上向きに移動する(図8(A)の状態に復帰する)場合には、第一保持端146及び第二保持端151も上昇して復帰する。なお、図8では、第二受け部170が回収用係合部155と対向し、第一受け部160が解放用係合部165と対向する状態を例示したが、図7(B)に示すように、昇降付勢機構40において、回収用係合部155と解放用係合部165を反対にすれば、第二受け部170が解放用係合部165と対向し、第一受け部160が回収用係合部155と対向できる。また、特に図示しないが、昇降付勢機構40において、回収用係合部155と解放用係合部165の一方を省略すれば、第一及び第二部品保持具145、150の一方のみに限定して、回収目的又は解放目的で昇降させることができる(図11(B)(F)参照)。 At this time, the first and second elastic parts 148 and 153 are contracted due to elastic deformation. Therefore, when the shaft portion 177 of the lift biasing mechanism 40 moves vertically upward (returns to the state shown in FIG. 8(A)), the first holding end 146 and the second holding end 151 also rise and return. . Although FIG. 8 illustrates a state in which the second receiving part 170 faces the collection engaging part 155 and the first receiving part 160 faces the releasing engaging part 165, the state shown in FIG. 7(B) As shown in FIG. can face the collection engagement part 155. Furthermore, although not particularly shown in the drawings, if one of the collection engagement part 155 and the release engagement part 165 is omitted in the lifting biasing mechanism 40, it is limited to only one of the first and second component holders 145 and 150. It can be raised and lowered for the purpose of recovery or release (see FIGS. 11(B) and 11(F)).

なお上記実施形態では、鉛直方向に直線往復運動を伝達する共通の軸部177によって、回収用係合部155及び解放用係合部165を一体的に上下動させる場合を例示したが、本発明はこれに限定されない。例えば、回収用係合部155及び解放用係合部165を独立させておき、回収用係合部155及び解放用係合部165の各々に対して、独立した直動機構を設けても良い。このようにすると、部品保持機構45の第一部品保持具145と第二部品保持具150を、回収用係合部155及び解放用係合部165によって、独立して昇降させることができる。また、その第一部品保持具145と第二部品保持具150の移動ストロークも、互いに独立した直動機構で個別に制御することができる。 In addition, in the above embodiment, the case where the collection engagement part 155 and the release engagement part 165 are integrally moved up and down by the common shaft part 177 that transmits linear reciprocating motion in the vertical direction is illustrated, but the present invention is not limited to this. For example, the retrieval engaging portion 155 and the releasing engaging portion 165 may be made independent, and an independent linear motion mechanism may be provided for each of the retrieving engaging portion 155 and the releasing engaging portion 165. . In this way, the first component holder 145 and the second component holder 150 of the component holding mechanism 45 can be raised and lowered independently by the collection engagement section 155 and the release engagement section 165. Further, the movement strokes of the first component holder 145 and the second component holder 150 can also be individually controlled by mutually independent linear motion mechanisms.

次に図9を参照して部品保持機構45による部品の回収動作及び部品の解放動作を説明する。ここでは、第一処理領域52Aにおいて、部品の回収及び解放を行う場合を例示する。 Next, referring to FIG. 9, the component collection operation and component release operation by the component holding mechanism 45 will be described. Here, a case where parts are collected and released in the first processing area 52A will be exemplified.

図9(A)は、部品保持機構45の第一部品保持具145が上流側工程(部品供給領域51)で部品172を吸着保持しており、ターレット型回転搬送装置10の回転によって、受入領域97の上方にその部品172を位置決めした状態となる。この際、載置プレート50の回転も停止し、受入領域97に位置決めされる載置部100が空孔となる。また、隣接する回収領域99に位置決めされる載置部100には、測定終了後の部品174が載置されている。勿論、残りの載置部100にも部品が載置されている。 In FIG. 9A, the first component holder 145 of the component holding mechanism 45 is sucking and holding a component 172 in the upstream process (component supply area 51), and the rotation of the turret-type rotary conveyance device 10 moves the component 172 into the receiving area. The part 172 is now positioned above the part 97. At this time, the rotation of the mounting plate 50 is also stopped, and the mounting portion 100 positioned in the receiving area 97 becomes a hole. Further, a component 174 after measurement is placed on a placing section 100 positioned in an adjacent collection area 99. Of course, components are also placed on the remaining placement sections 100.

図9(B)は、部品保持機構45が、部品の回収及び部品の解放をおこなう直前の状態となる。第二部品保持具150は、載置プレート50の載置部100に接近し、部品174を吸着保持して回収姿勢となっている。一方、第一部品保持具145は、空孔となる載置部100の上で、少し上方に離れた状態で部品172を保持しており、解放準備状態となっている。この際、第二保持端151は、載置部100に接近することで、部品174の上面と当接する。一方、第一保持端146は、第二保持端151よりも載置部100から上方に離反した場所に位置決めされる。部品174を吸着して回収したい場合には、部品174と第二保持端151がなるべく近接(接触)している方が回収しやすい。一方、第一保持端146が部品172を解放する場合は、第一保持端146と部品172の間に静電気を発生させないことが重要であり、第一保持端146によって部品172を載置部100に押し付けないことが、静電気の抑制に効果的である。 In FIG. 9B, the component holding mechanism 45 is in a state immediately before recovering and releasing the components. The second component holder 150 approaches the mounting portion 100 of the mounting plate 50, holds the component 174 by suction, and assumes a recovery posture. On the other hand, the first component holder 145 holds the component 172 on the mounting portion 100, which is a hole, in a state slightly upwardly separated, and is in a release preparation state. At this time, the second holding end 151 comes into contact with the upper surface of the component 174 by approaching the mounting section 100. On the other hand, the first holding end 146 is positioned at a location further upwardly away from the mounting section 100 than the second holding end 151 is. When it is desired to collect the component 174 by suction, it is easier to collect the component 174 if the component 174 and the second holding end 151 are as close to (in contact with) as possible. On the other hand, when the first holding end 146 releases the component 172, it is important not to generate static electricity between the first holding end 146 and the component 172. It is effective to suppress static electricity by not pressing it against the surface.

図9(B)の状態で、第一部品保持具145が、吸着用の負圧をカットすることで、部品172を載置部100内に落下させてから、第一及び第二部品保持具145、150を上昇させることで、図9(C)の状態となる。つまり、部品保持機構45は、載置プレート50上への部品の解放と、載置プレート50上からの部品の回収を略同時に行う。図9(C)では、昇降付勢機構40が軸部177を鉛直上向きに移動させる。回収された部品174は、第二部品保持具150に吸着された状態で鉛直方向上向きに移動される。勿論、第一部品保持具145から解放された部品172は、載置部100に載置されている。この後、第二部品保持具150が部品174を保持した状態で、ターレット型回転搬送装置10の回転によって、次の下流側の第二処理装置52Bへ移動すると、上流側の新たな部品保持機構45が、第一処理領域52Aの上方に移動してくる(図3(A)~図3(C)参照)。これと同時に、載置プレート50が矢印W方向に回転することで、部品172の回収によって空孔となった載置部100が受入領域97に位置決めされ、処理済となる次の部品174が、回収領域99に位置決めされる。この結果、図9(A)の状態に戻る。 In the state of FIG. 9(B), the first component holder 145 drops the component 172 into the mounting section 100 by cutting off the negative pressure for suction, and then the first and second component holders By raising 145 and 150, the state shown in FIG. 9(C) is achieved. In other words, the component holding mechanism 45 releases the component onto the mounting plate 50 and recovers the component from the mounting plate 50 almost simultaneously. In FIG. 9C, the lift biasing mechanism 40 moves the shaft portion 177 vertically upward. The collected component 174 is moved vertically upward while being attracted to the second component holder 150. Of course, the component 172 released from the first component holder 145 is placed on the placement section 100. Thereafter, when the second component holder 150 holds the component 174 and moves to the next downstream second processing device 52B by the rotation of the turret-type rotary conveyance device 10, a new component holding mechanism on the upstream side is moved. 45 moves above the first processing area 52A (see FIGS. 3(A) to 3(C)). At the same time, the mounting plate 50 rotates in the direction of the arrow W, so that the mounting section 100, which has become a hole due to the collection of the parts 172, is positioned in the receiving area 97, and the next processed part 174 is placed in the receiving area 97. It is positioned in the collection area 99. As a result, the state returns to the state shown in FIG. 9(A).

次に、図10を参照して、共通の部品保持機構45が、複数の処理領域52間を移動しながら、順番に部品を取り扱う動作について説明する。 Next, referring to FIG. 10, a description will be given of an operation in which the common component holding mechanism 45 sequentially handles components while moving between the plurality of processing areas 52.

図10(A)には、第一処理領域52Aにおいて、第三昇降付勢機構40Cと部品保持機構45が係合して、第一部品保持具145が第一処理領域52Aの解放領域97に部品172を解放し、第二部品保持具150が回収領域99の部品174を回収する。 In FIG. 10(A), the third lifting biasing mechanism 40C and the component holding mechanism 45 are engaged in the first processing area 52A, and the first component holder 145 is in the release area 97 of the first processing area 52A. The part 172 is released, and the second part holder 150 collects the part 174 in the collection area 99 .

その後、第三昇降付勢機構40Cと部品保持機構45が共に鉛直上向きに移動することで、第三昇降付勢機構40Cと部品保持機構45が離反して、図10(B)の状態となる。その後、ターレット型回転搬送装置10が回転することで、部品保持機構45に回収された部品174は、第二処理領域52Bへ搬送されて、図10(C)の状態となる。ちなみに、図10(B)の状態において、第一処理領域52Aの載置プレート50は、矢印の通り図中の右方向に移動することで、回収領域99で空となっている載置部100を、受け入れ領域97に移動させる。 Thereafter, as both the third lifting biasing mechanism 40C and the component holding mechanism 45 move vertically upward, the third lifting biasing mechanism 40C and the component holding mechanism 45 are separated, resulting in the state shown in FIG. 10(B). . Thereafter, as the turret-type rotary conveyance device 10 rotates, the components 174 collected by the component holding mechanism 45 are conveyed to the second processing area 52B, resulting in the state shown in FIG. 10(C). Incidentally, in the state shown in FIG. 10(B), the mounting plate 50 in the first processing area 52A is moved to the right in the figure as indicated by the arrow, so that the mounting plate 50 in the first processing area 52A is moved to the empty mounting section 100 in the collection area 99. is moved to the receiving area 97.

図10(C)では、第四昇降付勢機構40Dの直下に部品保持機構45が配置されることで、部品保持機構45の受け部と第四昇降付勢機構40Dの係合部が対向している。この状態で軸部177が鉛直下向きに移動すると、第四昇降付勢機構40Dの回収用係合部155と解放用係合部165が、部品保持機構45の受け部160、170を押圧することになり、その押圧力により、部品174を保持している第二部品保持具150と、部品を保持していない第一部品保持具145が、鉛直下向きに移動する。ここで、第四昇降付勢機構40Dの回収用係合部155と解放用係合部165の位置は、図10(A)の第三昇降付勢機構40Cの同一と相対的に逆になっている。すなわち、第二部品保持具150が解放用係合部165と対向し、第一部品保持具145が回収用係合部155と対向する。このような配置にすることで、第二処理領域52Bでは、第二部品保持具150が部品174を解放する作業を行い、第一部品保持具145が部品176を回収する作業を行う。なお、第二処理領域52Bの受け入れ領域97と回収領域99の位置も、第一処理領域52Aと相対的に逆になっている。 In FIG. 10(C), the component holding mechanism 45 is arranged directly below the fourth lifting biasing mechanism 40D, so that the receiving part of the component holding mechanism 45 and the engaging part of the fourth lifting biasing mechanism 40D face each other. ing. When the shaft portion 177 moves vertically downward in this state, the retrieval engaging portion 155 and the releasing engaging portion 165 of the fourth lifting biasing mechanism 40D press the receiving portions 160 and 170 of the component holding mechanism 45. The pressing force causes the second component holder 150 holding the component 174 and the first component holder 145 not holding the component to move vertically downward. Here, the positions of the retrieval engaging portion 155 and the releasing engaging portion 165 of the fourth lifting biasing mechanism 40D are relatively opposite to those of the third lifting biasing mechanism 40C in FIG. 10(A). ing. That is, the second component holder 150 faces the release engagement part 165, and the first component holder 145 faces the recovery engagement part 155. With this arrangement, in the second processing area 52B, the second component holder 150 performs the work of releasing the component 174, and the first component holder 145 performs the work of collecting the component 176. Note that the positions of the receiving area 97 and the collecting area 99 of the second processing area 52B are also relatively opposite to those of the first processing area 52A.

その後、図10(D)に示すように、部品保持機構45と第四昇降付勢機構40Dが係合して第二部品保持具150が保持していた部品174を、受け入れ領域97の載置部100に解放すると略同時に、第一部品保持具145が、回収領域99の載置部100から部品176を回収する。具体的には、第二部品保持具150が保持する部品174を載置部100の上方で少し浮かせた状態で、負圧を大気開放することで部品174を解放し、第一部品保持具145の吸着面を載置部100内の部品176に当接させた状態で、真空引き行うことで、部品176を吸着保持する。 Thereafter, as shown in FIG. 10(D), the component holding mechanism 45 and the fourth lifting biasing mechanism 40D engage, and the component 174 held by the second component holder 150 is placed in the receiving area 97. Substantially at the same time as the first component holder 145 releases the component 176 to the part 100, the first component holder 145 collects the component 176 from the mounting part 100 in the collection area 99. Specifically, with the component 174 held by the second component holder 150 floating slightly above the mounting section 100, the component 174 is released by releasing negative pressure to the atmosphere, and the component 174 is released by the first component holder 145. The component 176 is suctioned and held by performing vacuuming with the suction surface of the component 176 in contact with the component 176 inside the mounting section 100 .

その後、図10(E)に示すように、部品保持機構45に係合している第四昇降付勢機構の軸部177が鉛直上向きに移動することで、第一部品保持具145と第二部品保持具150が上昇して第四昇降付勢機構40Dと部品保持機構45が離反する。その後、ターレット型回転搬送装置10が回転することで、部品保持機構45が、部品176と共に次の第三処理領域52Cに移動して、図10(F)の状態となる。ちなみに、図10(E)の状態において、第二処理領域52Bの載置プレート50は、矢印の通り図中の左方向に移動することで、回収領域99で空となっている載置部100を、受け入れ領域97に移動させる。つまり、載置プレート50による部品の移動方向も、第一処理領域52Aとは相対的に逆となっている。 Thereafter, as shown in FIG. 10(E), the shaft portion 177 of the fourth elevating biasing mechanism that is engaged with the component holding mechanism 45 moves vertically upward, so that the first component holder 145 and the second The component holder 150 rises and the fourth lifting biasing mechanism 40D and the component holding mechanism 45 are separated. Thereafter, as the turret-type rotary conveyance device 10 rotates, the component holding mechanism 45 moves to the next third processing area 52C together with the component 176, resulting in the state shown in FIG. 10(F). Incidentally, in the state shown in FIG. 10(E), the mounting plate 50 in the second processing area 52B is moved to the left in the figure as indicated by the arrow, so that the mounting plate 50 in the second processing area 52B is moved to the empty mounting section 100 in the collection area 99. is moved to the receiving area 97. That is, the moving direction of the component by the mounting plate 50 is also relatively opposite to that of the first processing area 52A.

図10(F)の第三処理領域52Cでは、第六昇降付勢機構40Fの直下に部品保持機構45が配置されることで、部品保持機構45の受け部と第六昇降付勢機構40Fの係合部が対向している。第三処理領域52Cでの動作は、第一処理領域52Aの動作と同一又は類似するので、説明を省略する。 In the third processing area 52C in FIG. 10(F), the component holding mechanism 45 is arranged directly below the sixth lifting biasing mechanism 40F, so that the receiving part of the component holding mechanism 45 and the sixth lifting biasing mechanism 40F are connected to each other. The engaging parts are facing each other. The operation in the third processing area 52C is the same as or similar to the operation in the first processing area 52A, so a description thereof will be omitted.

このように、共通の部品保持機構45を第一乃至第三処理領域52A、52B、52Cの間で移動させつつ、第一乃至第三処理領域52A、52B、52Cの上方に別々の第三昇降付勢機構40Cと第四昇降付勢機構40Dと第六昇降補正機構40Fを配置することで、部品保持機構45を複雑な構造にすることなく、第一部品保持具145と第二部品保持具150の役割(吸着・解放)を容易に切り替えることができる。すなわち第一部品保持具145と第二部品保持具150移動ストロークの変更が、昇降付勢機構によって簡単に実現できる。 In this way, while moving the common component holding mechanism 45 between the first to third processing areas 52A, 52B, 52C, separate third lifting/lowering mechanisms are performed above the first to third processing areas 52A, 52B, 52C. By arranging the biasing mechanism 40C, the fourth elevating biasing mechanism 40D, and the sixth elevating correction mechanism 40F, the first component holder 145 and the second component holder The role of 150 (adsorption/release) can be easily switched. That is, the movement strokes of the first component holder 145 and the second component holder 150 can be easily changed by the lifting/lowering biasing mechanism.

ちなみに、部品を搬送するターレット型回転搬送装置10の重量的負荷は少ないほうが処理速度も上げやすく、また消費電力も少なくすむ。本部品処理システム1において、固定配置される昇降付勢機構40と、ターレット型回転搬送装置10が分割されているので、ターレット型回転搬送装置10の回転重量に、昇降付勢機構40が含まれない。結果、全体として処理速度も上げやすく、また消費電力も少なくすむという優れた効果を奏する。 Incidentally, the smaller the weight load on the turret-type rotary transport device 10 that transports the parts, the easier it is to increase the processing speed and to reduce power consumption. In this component processing system 1, the fixedly arranged lifting biasing mechanism 40 and the turret-type rotary conveyance device 10 are separated, so the rotating weight of the turret-type rotary conveyance device 10 does not include the lifting biasing mechanism 40. do not have. As a result, overall processing speed can be easily increased and power consumption can be reduced, which is an excellent effect.

また、部品処理システム1によれば、部品保持機構45における第一及び第二部品保持具145、150が、受入領域97と回収領域99に近接された際に、部品の解放と回収を略同時におこなう。また、部品を載置部100に解放する場合の第一及び第二部品保持具145、150と載置部100の底面までの距離と、部品を載置部100から回収する場合の第一及び第二部品保持具145、150と載置部100の底面までの距離とを変更することができるので、載置部100への部品の解放と、載置部からの部品の回収を適切に行うことができる。 Further, according to the component processing system 1, when the first and second component holders 145 and 150 in the component holding mechanism 45 are brought close to the receiving area 97 and the collecting area 99, the parts are released and collected almost simultaneously. Let's do it. Also, the distances between the first and second component holders 145, 150 and the bottom surface of the mounting section 100 when releasing the components onto the mounting section 100, and the distances between the first and second component holders 145, 150 and the bottom surface of the mounting section 100 when the components are recovered from the mounting section 100. Since the distance between the second component holders 145 and 150 and the bottom of the mounting section 100 can be changed, parts can be released to the mounting section 100 and collected from the mounting section appropriately. be able to.

また、部品処理システム1によれば、部品の回収する時における第一及び第二部品保持具145、150と載置部100の底面までの距離が、部品の解放する時における第一及び第二部品保持具145、150と載置部100の底面までの距離より小さい。結果、載置部100にある部品を回収しやすく、載置部100に部品を解放し易い状態を実現できる。なお、部品の解放する時において、第一及び第二部品保持具145、150と載置部100の底面までの距離を大きくすることにより、載置部100の底面から部品を少し浮いた状態で、自然落下させるように解放できるので、第一及び第二部品保持具145、150と部品の間の摩擦等による静電気が抑制され、解放精度が高くなる。なお、図中では、部品の底面と、載置部100の底面の距離(浮上距離)が、比較的大きく見えるように誇張表示しているが、実際は、浮上距離は部品の高さよりも小さく設定されることが好ましく、より望ましくは、部品高さの半分以下に設定する。例えば、近年の部品は微細化が進展し、例えば、1mm角以下(部品高さ1mm以下)のサイズとなる場合も多い。このような部品の浮上距離は、1mm以下であることが好ましく、より望ましくは0.5mm以下とする。 Further, according to the parts processing system 1, the distances between the first and second part holders 145, 150 and the bottom surface of the mounting section 100 when collecting the parts are the same as those between the first and second parts holders when the parts are released. It is smaller than the distance between the component holders 145 and 150 and the bottom surface of the mounting section 100. As a result, it is possible to realize a state in which it is easy to collect the components on the mounting section 100 and it is easy to release the components onto the mounting section 100. In addition, when releasing the component, by increasing the distance between the first and second component holders 145, 150 and the bottom surface of the mounting section 100, the component can be kept slightly floating from the bottom surface of the mounting section 100. Since the parts can be released so as to fall naturally, static electricity caused by friction between the first and second part holders 145, 150 and the parts can be suppressed, and the release accuracy can be increased. In the figure, the distance between the bottom surface of the component and the bottom surface of the mounting section 100 (floating distance) is exaggerated to make it appear relatively large, but in reality, the floating distance is set smaller than the height of the component. More preferably, it is set to less than half the height of the component. For example, in recent years, parts have become increasingly miniaturized, and often have a size of 1 mm square or less (component height of 1 mm or less). The flying distance of such a component is preferably 1 mm or less, more preferably 0.5 mm or less.

このように、本部品処理システム1によれば、第一及び第二部品保持具145、150の回収距離(回収時の移動ストローク)と解放距離(解放時の移動ストローク)を、昇降付勢機構の係合部のセッティング状態によって互いに異ならせたり、変更したり、微調整したりできる。つまり、共通の第一及び第二部品保持具145、150について、移動経路上の複数個所に配置される昇降付勢機構のセッティングによって、第一及び第二部品保持具145、150の一方が部品を回収して他方が部品を解放する状態と、第一及び第二部品保持具145、150の他方が部品を回収して一方が部品を解放する状態との機能の切り替えが簡単に可能となる。 As described above, according to the present component processing system 1, the collection distance (movement stroke at the time of collection) and release distance (movement stroke at the time of release) of the first and second component holders 145 and 150 are controlled by the lifting biasing mechanism. They can be made different, changed, or finely adjusted depending on the setting state of the engaging parts. In other words, with respect to the common first and second component holders 145 and 150, one of the first and second component holders 145 and 150 is attached to the component by setting the lifting biasing mechanisms arranged at a plurality of locations on the movement path. It is possible to easily switch the function between a state in which the other of the first and second component holders 145 and 150 collects the component and the other releases the component, and a state in which the other of the first and second component holders 145 and 150 collects the component and one releases the component. .

次に、図11を参照して、部品供給領域51、第一処理領域52A、第二処理領域52B、第三処理領域52C、第二部品搬出領域53Bにおいて、同時並行で処理が進む状態を説明する。ここでは、図11(A)に示すように、部品供給領域51に第一部品保持機構45Aが停止し、第一処理領域52Aに第四部品保持機構45Dが停止し、第二処理領域52Bに第五部品保持機構45Eが停止し、第三処理領域52Cに第七部品保持機構45Gが停止し、第二部品搬出領域53Bに第十一部品保持機構45Lが停止して、全てが同時に処理される状態を説明する。 Next, with reference to FIG. 11, a state in which processing progresses in parallel in the parts supply area 51, first processing area 52A, second processing area 52B, third processing area 52C, and second parts unloading area 53B will be explained. do. Here, as shown in FIG. 11(A), the first component holding mechanism 45A is stopped in the component supply area 51, the fourth component holding mechanism 45D is stopped in the first processing area 52A, and the fourth component holding mechanism 45D is stopped in the second processing area 52B. The fifth part holding mechanism 45E stops, the seventh part holding mechanism 45G stops in the third processing area 52C, and the eleventh part holding mechanism 45L stops in the second part carrying out area 53B, so that all the parts are processed at the same time. Explain the situation.

図11(B)に示す部品供給領域51では、第一部品保持機構45Aが、パーツフィーダ等によって供給される部品172を吸着保持する。ここでは、第一部品保持機構45Aの第一部品保持具145を利用して部品172を吸着しており、第二部品保持具150は使用しない。従って、上方に固定される第一昇降付勢機構40Aは、第一部品保持具145に対応した回収用係合部155を備えており、解放用係合部は省略されている。従って、第一昇降付勢機構40Aでは、第一部品保持具145のみを回収用移動ストロークで昇降させる。 In the component supply area 51 shown in FIG. 11(B), the first component holding mechanism 45A attracts and holds a component 172 supplied by a parts feeder or the like. Here, the first component holder 145 of the first component holding mechanism 45A is used to adsorb the component 172, and the second component holder 150 is not used. Therefore, the first lifting biasing mechanism 40A fixed upwardly includes a recovery engagement part 155 corresponding to the first component holder 145, and the release engagement part is omitted. Therefore, in the first elevating and lowering biasing mechanism 40A, only the first component holder 145 is moved up and down with the recovery movement stroke.

図11(C)に示す第一処理領域52Aでは、第四部品保持機構45Dが部品の回収と解放を行う。具体的に第四部品保持機構45Dでは、第一部品保持具145が部品供給領域51で吸着した部品172を解放し、第二部品保持具150が、第一処理領域52Aで所望の処理が完了した部品174を吸着回収する。 In the first processing area 52A shown in FIG. 11(C), the fourth component holding mechanism 45D collects and releases components. Specifically, in the fourth component holding mechanism 45D, the first component holder 145 releases the component 172 sucked in the component supply area 51, and the second component holder 150 completes the desired processing in the first processing area 52A. The parts 174 that have been removed are collected by suction.

図11(D)に示す第二処理領域52Bでは、第五部品保持機構42Eが部品の回収と解放を行う。具体的に第五部品保持機構42Eでは、第二部品保持具150が第一処理領域52Aで吸着した部品174を解放し、第一部品保持具145が、第二処理領域52Bで所望の処理が完了した部品176を吸着回収する。 In the second processing area 52B shown in FIG. 11(D), the fifth component holding mechanism 42E collects and releases components. Specifically, in the fifth component holding mechanism 42E, the second component holder 150 releases the component 174 sucked in the first processing area 52A, and the first component holder 145 performs the desired processing in the second processing area 52B. The completed parts 176 are collected by suction.

図11(E)に示す第三処理領域52Cでは、第七部品保持機構42Gが部品の回収と解放を行う。具体的に第七部品保持機構42Gでは、第一部品保持具145が第二処理領域52Bで吸着した部品176を解放し、第二部品保持具150が、第三処理領域52Cで所望の処理が完了した部品178を吸着回収する。 In the third processing area 52C shown in FIG. 11(E), the seventh component holding mechanism 42G collects and releases components. Specifically, in the seventh component holding mechanism 42G, the first component holder 145 releases the component 176 sucked in the second processing area 52B, and the second component holder 150 performs the desired processing in the third processing area 52C. The completed parts 178 are collected by suction.

図11(F)に示す第二部品搬出領域53Bでは、第十一部品保持機構45Lが、第三処理領域52Cで吸着した部品178を解放する。ここでは、第十一部品保持機構45Lの第二部品保持具150を利用して部品178を解放しており、第一部品保持具145は使用しない。従って、上方に固定される第九昇降付勢機構40Iは、第二部品保持具150に対応した解放用係合部165を備えており、回収用係合部は省略されている。従って、この第九昇降付勢機構40Iでは、第二部品保持具150のみを解放用移動ストロークで昇降させる。第二部品搬出領域53Bで搬出される部品178は、例えば、テーピング機械等によってパッケージングされる。 In the second component carry-out area 53B shown in FIG. 11(F), the eleventh component holding mechanism 45L releases the component 178 sucked in the third processing area 52C. Here, the second component holder 150 of the eleventh component holding mechanism 45L is used to release the component 178, and the first component holder 145 is not used. Therefore, the ninth lifting biasing mechanism 40I fixed upwardly includes a release engagement part 165 corresponding to the second component holder 150, and the collection engagement part is omitted. Therefore, in this ninth elevating and lowering biasing mechanism 40I, only the second component holder 150 is moved up and down with the release movement stroke. The parts 178 carried out in the second part carrying out area 53B are packaged by, for example, a taping machine or the like.

図12(A)には、ターレット型回転搬送装置10の搬送軌跡に沿って配置される第一乃至第三処理領域52A~53Cの低温用処理装置75、予熱処理装置80と、高温用処理装置85について、内部の移動機構による部品移動方向の相対関係を示す。図10や図11で説明したように、隣り合う処理領域の間においては、部品保持機構の第一部品保持具と第二部品保持具の役割(解放と回収)が逆転する。従って、低温用処理装置75、予熱処理装置80と、高温用処理装置85において、各々の載置プレート50が回転する方向が上流から下流に向かって順番に逆転する。 FIG. 12A shows a low-temperature processing device 75, a preheating processing device 80, and a high-temperature processing device of the first to third processing areas 52A to 53C arranged along the transport trajectory of the turret-type rotary transport device 10. Regarding No. 85, the relative relationship in the component movement direction by the internal movement mechanism is shown. As explained in FIGS. 10 and 11, the roles (release and recovery) of the first component holder and the second component holder of the component holding mechanism are reversed between adjacent processing areas. Therefore, in the low-temperature processing device 75, the preheating processing device 80, and the high-temperature processing device 85, the direction in which each mounting plate 50 rotates is reversed in order from upstream to downstream.

具体的に、低温用処理装置75の載置プレート50は時計回りに回転し、予熱処理装置80の載置プレート50は反時計回りに回転し、高温用処理装置85の載置プレート50は時計回りに回転する。このようにすることで、第一乃至第三領域52A~53Cにおいて、回収領域99と受入領域97を、上流から下流に向かって逆転させることができる。 Specifically, the mounting plate 50 of the low temperature processing device 75 rotates clockwise, the mounting plate 50 of the preheating processing device 80 rotates counterclockwise, and the mounting plate 50 of the high temperature processing device 85 rotates clockwise. rotate around. By doing so, in the first to third regions 52A to 53C, the collection region 99 and the receiving region 97 can be reversed from upstream to downstream.

なお、本発明では、隣接する処理領域における載置プレート50の回転方向が逆転する場合に限定されない。例えば、図12(B)に示すように、予熱処理装置80の載置プレート50が、ターレット型回転搬送装置10の環状の搬送経路の径方向内側に配設される場合は、予熱処理装置80の載置プレート50も、時計回りに回転させることになる。 Note that the present invention is not limited to the case where the rotation direction of the mounting plate 50 in adjacent processing areas is reversed. For example, as shown in FIG. 12(B), when the mounting plate 50 of the preheating treatment device 80 is disposed on the radially inner side of the annular conveyance path of the turret-type rotary conveyance device 10, the preheating treatment device 80 The mounting plate 50 will also be rotated clockwise.

即ち、本発明では、第一乃至第三領域52A~53Cにおいて、回収領域99と受入領域97の相対位置関係を、上流から下流に向かって交互に逆転させることができれば、各第一乃至第三領域52A~53Cにおける部品の移動方法は特に限定されない。つまり、各第一乃至第三領域52A~53Cでは、各受入領域97で受け入れた部品を、ターレット型回転搬送装置10の搬送経路から離反させるように移送して時間を確保しつつ、その移送経路中で所望の処理(熱処理や計測、外観検査など)を実行し、その後、ターレット型回転搬送装置10の搬送経路に戻るように移送して部品を回収領域99に到達させればよい。なお、図12では、各処理装置75、80、85が、部品を平面方向に環状に移動させる場合を例示したが、鉛直方向やその他の方向に移動させても良い。また、部品の移動経路が正円に限られず、四角や多角形等、様々な移動経路(移動軌跡)を採用できる。 That is, in the present invention, if the relative positional relationship between the collection area 99 and the receiving area 97 can be alternately reversed from upstream to downstream in the first to third areas 52A to 53C, each of the first to third areas 52A to 53C can be reversed. The method of moving parts in the regions 52A to 53C is not particularly limited. That is, in each of the first to third areas 52A to 53C, the parts received in each receiving area 97 are transferred away from the transfer path of the turret-type rotary transfer device 10, while securing time. Desired processing (heat treatment, measurement, visual inspection, etc.) is performed therein, and then the parts are transferred back to the transport path of the turret-type rotary transport device 10 to reach the collection area 99. Although FIG. 12 illustrates a case in which each of the processing devices 75, 80, and 85 moves a component in an annular manner in a planar direction, it may also move the component in a vertical direction or other directions. Further, the moving path of the component is not limited to a perfect circle, and various moving paths (trajectories) such as squares and polygons can be adopted.

このようにすると、複数の処理領域52(第一乃至第三領域52A~53C)がある場合に、上流側に配置された処理領域52において回収保持された部品を、下流側に配置された処理領域52で解放する際に、部品保持機構45内において第一及び第二部品保持具145、150の相対位置を変える必要が無い。そのため部品保持機構45を耐久性のある単純な構造にすることができ、コスト的にも安価にすることができるという優れた効果を奏する。 In this way, when there are multiple processing areas 52 (first to third areas 52A to 53C), parts collected and held in the processing area 52 located on the upstream side can be transferred to the processing area 52 located on the downstream side. When releasing in the region 52, there is no need to change the relative positions of the first and second component holders 145, 150 within the component holding mechanism 45. Therefore, the component holding mechanism 45 can be made into a durable and simple structure, and the cost can be reduced, which is an excellent effect.

尚、本発明の部品処理システムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the parts processing system of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

1 部品処理システム
5 供給リール
10 ターレット型回転搬送装置
12 ターレットテーブル
15 ターレットテーブル回転軸
20 ターレットテーブル駆動装置
25 制御装置
30 筐体
35 架台
40 昇降付勢機構
45 部品保持機構
50 載置プレート
51 部品供給領域
52 処理装置
53 部品搬出領域
54 測定領域
55 載置プレート回転軸
60 載置プレート駆動装置
65 自動部品供給装置
70 位置調整装置
75 低温用処理装置
80 予熱処理装置
85 高温用処理装置
90 収納ボックス
95 測定部
97 受入領域
99 回収領域
100 載置部
105 測定装置
110 測定プローブ
115 部品
120 電極
125 温度安定化装置
130 熱移送部材
135 熱交換部
137 温度制御装置
140 軸受け
145 第一部品保持具
146 第一保持端
150 第二部品保持具
151 第二保持端
155 回収用係合部
160 第一受け部
165 解放用係合部
170 第二受け部
172 部品
174 部品
175 斜板カム構造
180 モーター
190 弾性部
1 Parts processing system 5 Supply reel 10 Turret-type rotary conveyance device 12 Turret table 15 Turret table rotation axis 20 Turret table drive device 25 Control device 30 Housing 35 Frame 40 Lifting biasing mechanism 45 Parts holding mechanism 50 Placement plate 51 Parts supply Area 52 Processing device 53 Parts unloading area 54 Measurement area 55 Placing plate rotation axis 60 Placing plate drive device 65 Automatic parts supply device 70 Position adjustment device 75 Low temperature processing device 80 Preheating device 85 High temperature processing device 90 Storage box 95 Measuring part 97 Receiving area 99 Collection area 100 Placement part 105 Measuring device 110 Measuring probe 115 Component 120 Electrode 125 Temperature stabilizing device 130 Heat transfer member 135 Heat exchange part 137 Temperature control device 140 Bearing 145 First component holder 146 First Holding end 150 Second component holder 151 Second holding end 155 Retrieval engaging portion 160 First receiving portion 165 Release engaging portion 170 Second receiving portion 172 Part 174 Part 175 Swash plate cam structure 180 Motor 190 Elastic part

Claims (7)

部品の出力特性を測定する処理装置であって、
プレート回転軸を中心として、前記部品がそれぞれ個別に載置される載置部を周方向に複数有する載置プレートと、
前記載置プレートに熱を移送する熱移送部材と、
前記熱移送部材と前記載置プレートを相対移動させない状態で、前記熱移送部材及び前記載置プレートを、前記プレート回転軸を中心として回転させる回転駆動部と、
前記載置プレートによる前記部品の移動経路に配置されて、前記載置プレートによって温度調節される前記部品の出力特性を測定する測定装置と、を備え、
前記測定装置によって測定されたデータを処理する計算機を更に備え、
前記計算機は、複数の前記載置部の温度のばらつきに関する温度分布情報を予め記憶し、
前記計算機は、
前記載置部が受け入れた前記部品が前記測定装置に到達した時の前記部品の温度に関する情報を、前記温度分布情報を参照して算出する
ことを特徴とする部品処理装置。
A processing device for measuring output characteristics of a component,
a mounting plate having a plurality of mounting portions in the circumferential direction on which the components are individually mounted, centering on a plate rotation axis;
a heat transfer member that transfers heat to the placement plate;
a rotation drive unit that rotates the heat transfer member and the mounting plate around the plate rotation axis without relative movement between the heat transfer member and the mounting plate;
a measuring device that is placed in a movement path of the component by the mounting plate and measures the output characteristics of the component whose temperature is controlled by the mounting plate;
further comprising a computer that processes data measured by the measuring device,
The calculator stores in advance temperature distribution information regarding temperature variations in the plurality of mounting units,
The calculator is
A component processing device, characterized in that information regarding the temperature of the component received by the placement section when the component reaches the measuring device is calculated with reference to the temperature distribution information.
前記熱移送部材は、ペルチェ素子であることを特徴とする、
請求項1に記載の部品処理装置。
The heat transfer member is a Peltier element,
The parts processing apparatus according to claim 1.
前記載置プレートにおいて、
前記部品が前記載置部に載置されてから前記測定装置に到達するまでに必要な移動時間と比較して、前記載置部に載置されてから前記部品の温度が目標温度で安定するまでの時間である温度制御時間の方が短いことを特徴とする、
請求項1~請求項2のいずれか一項に記載の部品処理装置。
In the aforementioned mounting plate,
The temperature of the component is stabilized at the target temperature after being placed on the placement section compared to the travel time required from when the component is placed on the placement section until it reaches the measuring device. The temperature control time, which is the time until
The parts processing apparatus according to any one of claims 1 to 2.
複数の部品保持機構によって複数の部品を保持して、搬送経路の一部に沿って、複数の前記部品を同時に搬送する搬送装置と、
前記搬送経路に配置されて、前記部品を前記部品保持機構に供給する部品供給領域と、
前記搬送経路における前記部品供給領域の下流側に位置する処理領域に配置されて、前記部品に対して所定の処理を施す請求項1~3のいずれか一項に記載の処理装置と、
前記搬送経路における前記処理領域の下流側に配置されて、前記部品を搬出する部品搬出領域と、
を備え、
前記処理装置は、前記部品保持機構から解放される前記部品を前記載置部に受入れると共に、前記測定装置によって測定済みの前記部品を前記載置部から前記部品保持機構に回収させる
ことを特徴とする部品処理システム。
a transport device that holds a plurality of parts by a plurality of component holding mechanisms and transports the plurality of parts simultaneously along a part of a transport route;
a component supply area disposed on the conveyance path and supplying the component to the component holding mechanism;
The processing device according to any one of claims 1 to 3, wherein the processing device is arranged in a processing region located downstream of the component supply region in the transport path and performs a predetermined processing on the component;
a parts unloading area disposed on the downstream side of the processing area in the transport route and transporting the parts;
Equipped with
The processing device receives the component released from the component holding mechanism into the mounting section, and causes the component holding mechanism to recover the component that has been measured by the measuring device from the mounting section. parts processing system.
複数の部品保持機構によって複数の部品を保持して、搬送経路の一部に沿って、複数の前記部品を同時に搬送する搬送装置と、
前記搬送経路に配置されて、前記部品を前記部品保持機構に供給する部品供給領域と、
前記搬送経路における前記部品供給領域の下流側に位置する処理領域に配置されて、該搬送経路から独立した回転移動経路に沿って前記部品を搬送して、前記部品に対して所定の処理を施す処理装置と、
前記搬送経路における前記処理領域の下流側に配置されて、前記部品を搬出する部品搬出領域と、
を備え、
前記処理装置は、
前記部品がそれぞれ個別に載置される載置部を周方向に複数有し、自身が回転移動することで該部品を移動させる載置プレートと、
前記載置プレートに熱を移送することで、前記載置プレート全体を単一目標温度となるように制御する熱移送部材と、
前記部品保持機構によって前記載置プレートに載置される前記部品の前記回転移動経路に配置されて、前記載置プレートを介して温度調整される前記部品の出力特性を測定する測定装置と、
を有して構成され、
前記処理装置として、前記部品供給領域の下流側に位置する第一処理領域に配置される第一処理装置と、該第一処理領域の下流側に位置する第二処理領域に配置される第二処理装置と、を備えており、
前記第一処理装置において前記載置プレートを介して前記単一目標温度となるように温度調整される前記部品の第一温度と、前記第二処理装置において前記載置プレートを介して前記単一目標温度となるように温度調整される前記部品の第二温度が、互いに異なるように設定され、
前記部品は、前記第一処理装置と前記第二処理装置の双方において、前記測定装置によって出力測定される
ことを特徴とする部品処理システム。
a transport device that holds a plurality of parts by a plurality of component holding mechanisms and transports the plurality of parts simultaneously along a part of a transport route;
a component supply area disposed on the conveyance path and supplying the component to the component holding mechanism;
The component is disposed in a processing area located downstream of the component supply area in the transportation path, and the component is transported along a rotational movement path independent of the transportation path, and a predetermined process is performed on the component. a processing device;
a parts unloading area disposed on the downstream side of the processing area in the transport route and transporting the parts;
Equipped with
The processing device includes:
A mounting plate that has a plurality of mounting parts in the circumferential direction on which the components are individually mounted, and that moves the components by rotating itself;
a heat transfer member that controls the entire mounting plate to a single target temperature by transferring heat to the mounting plate;
a measuring device that measures an output characteristic of the component that is placed on the rotational movement path of the component that is placed on the placement plate by the component holding mechanism and whose temperature is adjusted via the placement plate;
It is composed of
The processing devices include a first processing device disposed in a first processing region located downstream of the component supply region, and a second processing device disposed in a second processing region located downstream of the first processing region. It is equipped with a processing device,
A first temperature of the component whose temperature is adjusted to the single target temperature in the first processing device via the mounting plate; The second temperatures of the components whose temperature is adjusted to the target temperature are set to be different from each other,
A component processing system, wherein the output of the component is measured by the measuring device in both the first processing device and the second processing device.
部品の出力特性を測定する処理方法であって、
プレート回転軸を中心として前記部品がそれぞれ個別に載置される載置部を周方向に複数有する載置プレートと、前記載置プレートに熱を移送することで前記載置プレートを温度調節する熱移送部材とを、相対移動させない状態で、前記熱移送部材及び前記載置プレートを、前記プレート回転軸を中心として回転させるようにし、
前記載置プレートによる前記部品の移動経路に、前記部品の出力特性を測定する測定装置を配置しておき、
前記熱移送部材によって温度調節される前記載置プレートの前記載置部に前記部品を載置して、前記載置プレートの回転によって前記部品を前記測定装置まで移送する間に前記載置プレートによって温度調節される前記部品の出力特性を、前記測定装置によって測定し、
前記測定装置によって測定されたデータを処理する計算機を更に備え、
前記計算機は、複数の前記載置部の温度のばらつきに関する温度分布情報を予め記憶し、
前記計算機は、
前記載置部が受け入れた前記部品が前記測定装置に到達した時の前記部品の温度に関する情報を、前記温度分布情報を参照して算出する
ことを特徴とする部品処理方法。
A processing method for measuring output characteristics of a component,
A mounting plate having a plurality of mounting portions in the circumferential direction on which the components are individually mounted around a rotation axis of the plate, and a heat adjusting device that adjusts the temperature of the mounting plate by transferring heat to the mounting plate. The heat transfer member and the mounting plate are rotated about the plate rotation axis without relative movement between the heat transfer member and the transfer member,
A measuring device for measuring output characteristics of the component is disposed on a movement path of the component by the mounting plate,
The component is placed on the placement portion of the placement plate whose temperature is controlled by the heat transfer member, and while the placement plate rotates to transfer the component to the measuring device, the placement plate Measuring the output characteristics of the temperature-controlled component with the measuring device,
further comprising a computer that processes data measured by the measuring device,
The calculator stores in advance temperature distribution information regarding temperature variations in the plurality of mounting units,
The calculator is
A component processing method, characterized in that information regarding the temperature of the component received by the placement unit when the component reaches the measuring device is calculated with reference to the temperature distribution information.
複数の部品保持機構によって複数の部品を保持する搬送装置によって、搬送経路の一部に沿って、複数の前記部品を同時に搬送し、
前記搬送経路に配置される部品供給領域で、前記部品を前記部品保持機構に供給し、
前記搬送経路における前記部品供給領域の下流側に位置する第一処理領域に、該搬送経路から独立した第一回転移動経路に沿って前記部品を搬送して、前記部品の出力特性を測定するための第一処理装置を配置し、
前記搬送経路における前記第一処理領域の下流側に位置する第二処理領域に、該搬送経路から独立した第二回転移動経路に沿って前記部品を搬送して、前記部品の出力特性を測定するための第二処理装置を配置し、
前記搬送経路における前記第二処理領域の下流側に配置される部品搬出領域で、前記部品保持機構から前記部品を搬出し、
前記第一処理装置では、
第一載置プレートの複数の載置部に載置される複数の前記部品を前記第一回転移動経路に沿って搬送し、
第一熱移送部材によって前記部品に熱を移送することで、前記第一載置プレート全体を単一となる第一目標温度となるように制御し、
前記部品の前記第一回転移動経路上に、前記部品の出力特性を測定する第一測定装置を配置しておき、
前記部品保持機構が、前記第一載置プレートに前記部品を載置して、前記第一載置プレートによって前記部品を前記第一測定装置まで移動させる間に、前記第一載置プレートを介して前記第一目標温度となるように調節される前記部品の出力特性を、前記第一測定装置によって測定し、
前記部品保持機構が、前記第一測定装置によって測定された前記部品を回収し、
前記第二処理装置では、
第二載置プレートの複数の載置部に載置される複数の前記部品を前記第二回転移動経路に沿って搬送し、
第二熱移送部材によって前記部品に熱を移送することで、前記第二載置プレート全体を単一となる第二目標温度となるように制御し、
前記部品の前記第二回転移動経路上に、前記部品の出力特性を測定する第二測定装置を配置しておき、
前記部品保持機構が、前記第二載置プレートに前記部品を載置して、前記第二載置プレートによって前記部品を前記第二測定装置まで移動させる間に、前記第二載置プレートを介して前記第二目標温度となるように調節される前記部品の出力特性を、前記第二測定装置によって測定し、
前記部品保持機構が、前記第二測定装置によって測定された前記部品を回収し、
前記第一処理装置において温度調整される前記部品の前記第一目標温度と、前記第二処理装置において温度調整される前記部品の前記第二目標温度を、互いに異なるように設定し、
前記搬送装置によって、前記部品を前記部品供給領域から前記部品搬出領域まで搬送する間に、前記第一処理装置と前記第二処理装置の双方において前記部品の出力特性を測定する
ことを特徴とする部品処理方法。
A plurality of parts are simultaneously transported along a part of a transport path by a transport device that holds a plurality of parts by a plurality of component holding mechanisms,
supplying the component to the component holding mechanism in a component supply area disposed on the transport path;
For measuring output characteristics of the component by transporting the component along a first rotational movement path independent from the transport path to a first processing area located downstream of the component supply area in the transport path. The first processing equipment is arranged,
The part is transported to a second processing area located downstream of the first processing area in the transport path along a second rotational movement path independent from the transport path, and the output characteristics of the part are measured. Place a second processing device for
In a component unloading area located downstream of the second processing area in the transport route, unloading the component from the component holding mechanism;
In the first processing device,
Conveying the plurality of parts placed on the plurality of placement parts of the first placement plate along the first rotational movement path,
Controlling the entire first mounting plate to a single first target temperature by transferring heat to the component by a first heat transfer member;
A first measuring device for measuring output characteristics of the component is disposed on the first rotational movement path of the component,
While the component holding mechanism places the component on the first mounting plate and moves the component to the first measurement device using the first mounting plate, measuring an output characteristic of the component that is adjusted to the first target temperature using the first measuring device;
The component holding mechanism collects the component measured by the first measuring device,
In the second processing device,
Conveying the plurality of parts placed on the plurality of placement parts of the second placement plate along the second rotational movement path,
Controlling the entire second mounting plate to a single second target temperature by transferring heat to the component by a second heat transfer member;
A second measuring device for measuring output characteristics of the component is disposed on the second rotational movement path of the component,
While the component holding mechanism places the component on the second mounting plate and moves the component to the second measurement device by the second mounting plate, the component holding mechanism measuring an output characteristic of the component that is adjusted to the second target temperature using the second measuring device;
the component holding mechanism collects the component measured by the second measuring device;
The first target temperature of the component whose temperature is adjusted in the first processing device and the second target temperature of the component whose temperature is adjusted in the second processing device are set to be different from each other,
The output characteristic of the component is measured in both the first processing device and the second processing device while the component is transported by the transportation device from the component supply area to the component delivery area. Parts processing method.
JP2021203045A 2017-10-04 2021-12-15 Parts processing equipment, parts processing system, parts processing method Active JP7405446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021203045A JP7405446B2 (en) 2017-10-04 2021-12-15 Parts processing equipment, parts processing system, parts processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017193919A JP7006917B2 (en) 2017-10-04 2017-10-04 Parts processing system
JP2021203045A JP7405446B2 (en) 2017-10-04 2021-12-15 Parts processing equipment, parts processing system, parts processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017193919A Division JP7006917B2 (en) 2017-10-04 2017-10-04 Parts processing system

Publications (2)

Publication Number Publication Date
JP2022043161A JP2022043161A (en) 2022-03-15
JP7405446B2 true JP7405446B2 (en) 2023-12-26

Family

ID=66340689

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017193919A Active JP7006917B2 (en) 2017-10-04 2017-10-04 Parts processing system
JP2021203045A Active JP7405446B2 (en) 2017-10-04 2021-12-15 Parts processing equipment, parts processing system, parts processing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017193919A Active JP7006917B2 (en) 2017-10-04 2017-10-04 Parts processing system

Country Status (1)

Country Link
JP (2) JP7006917B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139163A (en) * 2021-03-11 2022-09-26 上野精機株式会社 Electronic component inspection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075504A (en) 2001-09-05 2003-03-12 Nec Eng Ltd Electronic part measuring method and device therefor
JP2009008652A (en) 2007-05-25 2009-01-15 Ueno Seiki Kk To-high temperature-low temperature changing device and test handler with to-high temperature-low temperature changing device
JP2010133716A (en) 2008-12-02 2010-06-17 Ueno Seiki Kk Temperature raising/lowering device, and test handler including the same
JP2011220704A (en) 2010-04-05 2011-11-04 Arufakusu Kk Measuring method for laser diode
JP2013032940A (en) 2011-08-01 2013-02-14 Akim Kk Temperature characteristics measuring device
JP2017105619A (en) 2015-12-11 2017-06-15 上野精機株式会社 Relay apparatus, conveying apparatus and inspecting apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226150A (en) * 1988-03-07 1989-09-08 Tokyo Electron Ltd Spinning chuck
JP2581404B2 (en) * 1993-09-03 1997-02-12 日本電気株式会社 IC handling equipment
JPH09175647A (en) * 1995-10-27 1997-07-08 Advantest Corp Semiconductor device conveyance and process device
JP3344545B2 (en) * 1995-12-27 2002-11-11 株式会社アドバンテスト Structure of rotary arm device chuck part of handler
JP3780692B2 (en) * 1998-03-30 2006-05-31 セイコーエプソン株式会社 Temperature control method in IC inspection device
US6168004B1 (en) * 1998-11-05 2001-01-02 Kalish Canada, Inc. Container distribution apparatus
JPWO2006114836A1 (en) * 2005-04-07 2008-12-11 株式会社アドバンテスト Electronic component pick and place mechanism, electronic component handling device, and electronic component suction method
JP2013057572A (en) * 2011-09-07 2013-03-28 Seiko Epson Corp Handler and component inspection device
US9606171B2 (en) * 2015-01-28 2017-03-28 Asm Technology Singapore Pte Ltd High throughput test handler system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075504A (en) 2001-09-05 2003-03-12 Nec Eng Ltd Electronic part measuring method and device therefor
JP2009008652A (en) 2007-05-25 2009-01-15 Ueno Seiki Kk To-high temperature-low temperature changing device and test handler with to-high temperature-low temperature changing device
JP2010133716A (en) 2008-12-02 2010-06-17 Ueno Seiki Kk Temperature raising/lowering device, and test handler including the same
JP2011220704A (en) 2010-04-05 2011-11-04 Arufakusu Kk Measuring method for laser diode
JP2013032940A (en) 2011-08-01 2013-02-14 Akim Kk Temperature characteristics measuring device
JP2017105619A (en) 2015-12-11 2017-06-15 上野精機株式会社 Relay apparatus, conveying apparatus and inspecting apparatus

Also Published As

Publication number Publication date
JP7006917B2 (en) 2022-02-10
JP2019066397A (en) 2019-04-25
JP2022043161A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
CN102445573B (en) The pre-heating mean of wafer inspector and probe
JP7405446B2 (en) Parts processing equipment, parts processing system, parts processing method
JP5981848B2 (en) Automatic teaching and position correction system for manipulators
KR102236151B1 (en) Industrial robot
WO2023125158A1 (en) Semiconductor processing device and wafer transport system thereof
JP5663785B2 (en) Resin molding method and resin molding apparatus
TWI509728B (en) Substrate positioning device, substrate processing device, substrate positioning method, and memory medium recorded with program
KR20120081023A (en) Automatic substrate loading station
CN209105510U (en) A kind of PCB process equipment of automatic flip
JP4490332B2 (en) IC handler
US10449678B2 (en) Boat, assembly and method for handling electronic components
CN110034044A (en) The method of operation of substrate processing device and substrate processing device
JP3545387B2 (en) IC component mounting method and device
JP7282359B2 (en) Parts transfer processing equipment
CN111765984A (en) Component handling system
CN112331602B (en) Semiconductor process equipment and pushing piece device
JP4495033B2 (en) IC handler
CN114103487A (en) Ink drying and baking device and method
CN112230028A (en) Probe and probe card preheating method
JP7295055B2 (en) glass forming machine
JP7309645B2 (en) Glass forming machine and conveying device for conveyed object
JP7273399B2 (en) Parts transfer processing equipment
CN215163124U (en) Pushing device, loading machine and PECVD (plasma enhanced chemical vapor deposition) equipment
CN220445277U (en) Automatic DIP device welding equipment
JP2014116536A (en) End effector device and positioning method of planar member using end effector device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7405446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150